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Abstract

Leaping methods provide for efficient and approximate time stepping of chemical reaction systems modeled by contin-
uous time discrete state stochastic dynamics. We investigate the application of leaping methods for ‘‘small number and
stiff’’ systems, i.e. systems whose dynamics involve different time scales and have some molecular species present in very
small numbers, specifically in the range 0 to 10. We propose a new explicit leaping scheme, reversible-equivalent-monomo-
lecular tau (REMM-s), which shows considerable promise in the simulation of such systems. The REMM-s scheme is
based on the fact that the exact solution of the two prototypical monomolecular reversible reactions S1 M S2 and
S M 0 as a function of time takes a simple form involving binomial and/or Poisson random variables. The REMM-s
method involves approximating bimolecular reversible reactions by suitable monomolecular reversible reactions as well
as considering each reversible pair of reactions in the system to be operating in isolation during the time step s. We illus-
trate the use of the REMM-s method through a number of biologically motivated examples and compare its performance
to those of the implicit-s and trapezoidal implicit-s algorithms. In most cases considered, REMM-s appears to perform
better than these two methods while having the important advantage of being computationally faster due to the explicit
nature of the method. Furthermore when stepsize s is increased the REMM-s exhibits a more robust performance than
the implicit-s or the trapezoidal implicit-s for small number stiff problems.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Gene expression and regulation involve cellular events that are stochastic and discrete in nature. The sto-
chasticity of these events, often hidden by population measurements, is increasingly being captured by novel
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experimental techniques that probe cells and organisms at the single cell and sometimes single molecule level
[1]. The resolution of such techniques has allowed researchers to identify purely stochastic phenomena, not the
least of them being population heterogeneity [2,3]. At the same time, it has been suggested that the accurate
stochastic mathematical modeling of cellular dynamics is an important tool that can complement and guide
experimentation in identifying the spectrum of biological noise-induced phenomena. The success of such an
endeavor, however, crucially hinges on the development of modeling and simulation methods and algorithms
that are mathematically rigorous, numerically accurate and computationally tractable for realistic biological
systems.

The traditional description of a chemically reacting set of molecules relies on the formulation of the Chem-
ical Master Equation (CME), a differential equation for the time evolution of probabilities [4,5]. The CME
corresponds to a continuous time discrete state Markov process model, the sample paths of which can be sim-
ulated exactly using a simple Monte carlo procedure known as the stochastic simulation algorithm (SSA) [6,7].
The SSA has been used with great success for the study of a number of cellular networks. However, it has been
repeatedly pointed out that the SSA can become prohibitively inefficient when reactions occur so frequently
that accounting for every event causes a dramatic slow down in simulation time. This effect is exacerbated by
the presence of stiffness, i.e. the coexistence of drastically different time scales for the occurrence of the chem-
ical reactions. In such situations, most of the computational time is dedicated to the accurate tracking of the
fast reactions, such as the reversible binding and unbinding of molecules to each other. In most practical cir-
cumstances, such binding and dissociation events are of lower importance compared to production or degra-
dation of molecules, typically much less frequent events.

A number of approaches have been proposed to improve the computational efficiency of the SSA. These
approaches are roughly divided into two classes: leaping methods and singular perturbation based methods.
Both classes involve generating approximate sample paths of the process described by CME. Direct numerical
solution of the CME to obtain the time evolution of probabilities is computationally expensive for large sys-
tems as the effective number of states grows exponentially with the number of distinct species. However, meth-
ods have been proposed to find reduced order models of CME by a finite state projection approach [8].

The leaping methods, more widely known as the tau-leaping methods, were first introduced by Gillespie [9].
Rather than accounting for the time of occurrence of every molecular reaction, leaping techniques proceed by
generating an approximation for the number of reactions of each type that occur during a certain time step
and then updating the state of the system accordingly. Devising an appropriate approximation for the number
of reactions occurring during a time step s as well as a suitable strategy for the selection of s has been the
subject of active investigation recently and several leaping methods have been proposed in the literature.
The explicit, implicit and trapezoidal implicit leaping methods [9–11] all use Poisson random variables. Since
Poisson random numbers are unbounded, there is a non-zero probability that either of these three methods
will produce a negative state. In order to address this problem, leaping methods based on the Binomial dis-
tribution and sequential updating of states have been proposed [12,13]. In [14] a bounding procedure was pro-
posed to deal with the same problem. Implicit or semi-implicit methods such as the implicit tau and the
trapezoidal implicit tau lead to non-integer states which are not physically meaningful and rounding was pro-
posed in [10] to remedy this problem. The leaping methods have their counterparts in the deterministic chem-
ical kinetics, namely the numerous time stepping schemes such as Runge–Kutta, backward differencing
formula (BDF) etc. that have been developed for the numerical solution of ordinary differential equations
(ODEs).

In addition to leaping methods other forms of approximations based on the quasi-steady-state assumption
or the partial equilibrium assumption have also been proposed to speed up the SSA [15–19]. These methods
are intended for stiff systems that exhibit a clear scale separation between very fast reactions that are stable
and very slow reactions. These methods in principle should work well for ‘‘small number and stiff’’ systems
provided there is a wide separation of scales. Just like leaping methods, these methods have deterministic
counterparts as well. The theoretical justification of the quasi-steady-state or the partial equilibrium approx-
imation involves singular perturbation theory [20]. Singular perturbation theory makes use of the existence of
a very small parameter � > 0 in the model description and attempts to expand the exact solution in terms of an
asymptotic series in powers of �. See [21] for a survey paper that applies singular perturbation theory to sto-
chastic systems. In the case of chemical reaction systems, the small parameter � is the ratio between the time
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scales of the slow and the fast reactions. The quasi-steady-state as well as the partial equilibrium approxima-
tions roughly correspond to the leading order term in the asymptotic expansion.

A key difference between the singular perturbation inspired approximations mentioned above and the leap-
ing methods is that in the latter, we can control the stepsize parameter s while in the former we do not have
any control over the parameter �, rather it is given to us in the form of system parameters. Thus the accuracy
of these methods is not under our control, unless we choose to include the higher order terms from the asymp-
totic expansion. If one were to learn lessons from the ODE counterparts, the flexibility of the time stepping
paradigm is clearly evident from the wide range of software systems that mostly produce a robust solution.
Thus the leaping methods have the appeal that they are potentially amenable to a general software implemen-
tation in which the time steps s are chosen to keep local errors within a certain tolerance and maintain stability
just as it is done in the case of time stepping of ODEs. Local error analysis of leaping methods may be carried
out in a relatively straight forward manner as it is shown in [14] where convergence is also proven. Thus we
already have some of the essential tools necessary for adaptive stepsize selection in place. However some key
problems remain to be addressed, and it is yet to be decided if the leaping paradigm will prove to be as fruitful
as its counterpart did for the ODEs. Some issues that need to be addressed include rounding which becomes
necessary for implicit or semi-implicit leap methods, as well as negativity of states mentioned earlier.

While the implicit and semi-implicit methods work reasonably well for stiff problems, when the number of
molecules is small, the effects of rounding and bounding become prominent, and our investigations in this
paper show that their performance is impaired severely by the rounding procedure. One possible solution is
to not implement rounding; this however leads to non-integer states which are difficult to interpret physically.
Thus we propose an alternative new method that holds substantial promise in tackling small number and stiff
situations. This method is based on the idea of decomposing a system of chemically reacting species into
‘‘motifs’’ (or commonly occurring subsystems) and then generating appropriate approximations for the indi-
vidual subsystems. While all leaping methods in the literature consider every reaction in isolation and seek
approximation for the number of firings of this reaction during a simulation time step, our method currently
considers reversible pairs of bimolecular or monomolecular reactions as motifs. We present a derivation of
exact time solutions for two common types of monomolecular reversible reactions. Since bimolecular revers-
ible reactions are not amenable to a simple analytical solution, we approximate them by suitable monomolec-
ular reversible reactions. We then use the exact solution of these monomolecular reactions to produce the
leaping approximation. We call our new method the reversible-equivalent-monomolecular tau, REMM-s in
short. Our method leads to both binomial and Poisson random variables with parameters that differ from
those used by other leaping methods. Our method has the great advantage of being explicit and hence com-
putationally less demanding, and yet works well for small number and stiff systems. It is first order consistent
by construction and always results in integer states, and therefore avoids the error introduced by rounding
present in implicit or semi-implicit methods. We describe two different implementations of the method, par-
allel and sequential. The parallel updating procedure may produce negative states which we correct by a
bounding procedure. The sequential updating is always guaranteed to produce nonnegative states. However
the sequential updating may be less desirable in systems where race conditions exist (see Remark 5).

This paper is organized as follows. In Section 2 we review the stochastic chemical model behind the CME as
well as review some of the existing leaping methods. In Section 3 we motivate and derive the REMM-s
method. In Section 4, we numerically investigate the behavior of REMM-s, implicit tau and trapezoidal impli-
cit tau when applied to simple test problems. We particularly focus on stiff behavior in the presence of small
number of molecules where bounding and rounding procedures play a critical role. We finally consider a stiff
genetic circuit example with small number of molecules and show that REMM-s performs very well.

2. The stochastic chemical kinetics model

In this section we describe the discrete state, continuous time Markov process model for well-stirred
chemical reaction systems, as well as an exact simulation algorithm for this model known as the Stochastic

Simulation Algorithm (SSA) [6,7]. We also describe the tau-leaping schemes, explicit, implicit and trapezoi-
dal-implicit, which were suggested for efficient and approximate simulation of this model [9,22,10]. Through-
out this paper, Zþ denotes the set of nonnegative integers and Rþ the set of nonnegative real numbers.
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The formulation we consider consists of a system of well-stirred chemical reactions with N molecular spe-
cies. We use the state X ðtÞ 2 ZN

þ to denote the vector whose elements Xi(t) are the number of molecules of the
ith species at time t. If there are M elementary chemical reactions Rj (j = 1, . . . ,M) that can occur among these
N species, then we associate with each reaction Rj a nonnegative propensity function aj : ZN

þ ! Rþ defined such
that aj(X(t))s + o(s) is the probability that reaction Rj will happen in the next small time interval (t, t + s], as
s! 0. The form of the propensities aj(x) may be derived from fundamental principles under certain assump-
tions, and the aj turn out to be polynomials [6]. Furthermore, occurrence of a reaction Rj leads to a change of
mj 2 ZN n f0g for the state X. The vectors mj are the stoichiometric changes to the reactant species due to a reac-
tion Rj, and are therefore independent of the state and time. Based on these premises, it can be shown that the
probability density function for the waiting time s for the next reaction is given by a0ðxÞe�a0ðxÞs, where x is the
current state and a0ðxÞ ¼

PM
j¼1ajðxÞ. Also, the probability that the next reaction is Rj is given by

ajðxÞ
a0ðxÞ

and is
independent of s. Knowing these two probability densities for the next reaction time and type, we can simulate
the system one reaction event at a time. This method is known as the Stochastic Simulation Algorithm (SSA)
[7].

2.1. The explicit, implicit and trapezoidal implicit tau-leaping methods

Since the SSA accounts for every reaction that occurs in the system, it can become very computationally
expensive, and sometimes prohibitively slow in realistic biological systems whose dynamics evolve at different
times scales and involve species whose molecular count can differ by orders of magnitude. Leaping methods,
whose main rationale is to leap in simulation time over a number of reactions, have been proposed to speed up
SSA. Generally stated, the leaping methods try to accelerate the simulation by asking the question: How many
times does each reaction channel fire in each subinterval? If one defines
Kjðs; x; tÞ ¼ the number of times; given X ðtÞ ¼ x;

the reaction channel Rj will fire in the time interval ðt; t þ s� ðj ¼ 1; . . . ;MÞ; ð1Þ
then this question can be reformulated as: What is the best approximation for Kj(s;x, t)? To answer this ques-
tion, several approximations have been suggested, including the explicit, implicit and trapezoidal implicit tau-
leaping [9,22]. Below, we give a brief account of these methods.

Suppose X(et)(t) = x is the current state (the superfix ‘‘et’’ stands for explicit tau). Then for a time step of
s > 0, the update equation for the state at t + s is given by
X ðetÞðt þ sÞ ¼ xþ
XM

j¼1

mjK
ðetÞ
j ðx; sÞ: ð2Þ
In this method, KðetÞ
j ðx; sÞ ¼ PjðajðxÞ; sÞ, for j = 1, . . . ,M, are independent Poisson random variables with

mean and variance aj(x)s. The explicit tau-leaping method morphs to the explicit Euler method when the
SSA can be approximated by the chemical Langevin equation or even the reaction rate equations.

The approximation in the implicit tau (unrounded version) method, on the other hand, proceeds as follows
[10]. Given that X(it)(t) = x is the current state, the state at time t + s (s > 0), is taken to be
X ðitÞðt þ sÞ ¼ xþ
XM

j¼1

mjðPjðajðxÞ; sÞ � ajðxÞsþ ajðX ðitÞðt þ sÞÞsÞ: ð3Þ
Here, the superfix ‘‘it’’ stands for implicit tau. The estimate for Kj is then given by
KðitÞj ¼ ðPjðajðxÞ; sÞ � ajðxÞsþ ajðX ðitÞðt þ sÞÞsÞ; j ¼ 1; . . . ;M : ð4Þ
Newton’s method is used to solve (3). It has been demonstrated [10] that the implicit tau method allows much
larger stepsizes than the explicit tau method, when applied to stiff problems. Convergence proofs for the ex-
plicit and implicit tau-leaping methods are given in [14]. However, the unrounded implicit tau has the disad-
vantage that it leads to state values that are not integers. In order to circumvent this problem, the rounded
implicit tau was proposed in [10]. It may be described as follows.
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Suppose that at time t we have the state X(itr)(t) = x (the superfix ‘‘itr’’ stands for rounded implicit tau).
First, compute the intermediate state value X 0 according to (3). Thus
X 0 ¼ xþ
XM

j¼1

mjajðX 0Þsþ
XM

j¼1

mjðPjðajðxÞ; sÞ � ajðxÞsÞ: ð5Þ
Then approximate the actual number of firings Kj(x,s) of reaction channel Rj in the time interval (t, t + s] by
the integer-valued random variable KðitrÞj ðx; sÞ defined by
KðitrÞj ðx; sÞ ¼ ½ajðX 0ÞsþPjðajðxÞ; sÞ � ajðxÞs�: ð6Þ
Here the PjðajðxÞ; sÞ for j = 1, . . . ,M are the same numbers used in Eq. (5), and [z] denotes the nearest non-
negative integer to z.

Finally, take the state at time t + s to be
X ðitrÞðt þ sÞ ¼ xþ
XM

j¼1

mjK
ðitrÞ
j ðx; sÞ: ð7Þ
If X(itr)(t) = x is an integer vector, then so is X(itr)(t + s).
The trapezoidal implicit tau method, has been defined in [11] (also see [23]). The trapezoidal method gen-

erates the update equation
X ðtrÞðt þ sÞ ¼ xþ
XM

j¼1

mj PjðajðxÞ; sÞ �
s
2

ajðxÞ þ
s
2

ajðX ðtrÞðt þ sÞÞ
� �

ð8Þ
for the unrounded version. The rounded version is implemented as follows. Given current state x first solve for
X 0 as in the unrounded trapezoidal implicit tau:
X 0 ¼ xþ
XM

j¼1

mj
s
2

ajðX 0Þ þ
XM

j¼1

mj PjðajðxÞ; sÞ �
s
2

ajðxÞ
� �

: ð9Þ
Then approximate the actual number of firings Kj(x,s) of reaction channel Rj in the time interval (t, t + s] by
the integer-valued random variable KðtrrÞ

j ðx; sÞ defined by
KðtrrÞ
j ðx; sÞ ¼

s
2

ajðX 0Þ þPjðajðxÞ; sÞ �
s
2

ajðxÞ
h i

: ð10Þ
Here the PjðajðxÞ; sÞ for j = 1, . . . ,M are the same numbers used in Eq. (9), and [z] denotes the nearest non-
negative integer to z.

Finally, take the state at time t + s to be
X ðtrrÞðt þ sÞ ¼ xþ
XM

j¼1

mjK
ðtrrÞ
j ðx; sÞ: ð11Þ
We note that the unrounded trapezoidal tau method tends to the well known trapezoidal method for ODEs in
the deterministic regime.

2.2. The bounding procedure

Since all of the above methods explicit, (rounded) implicit and (rounded) trapezoidal implicit taus may lead
to negative integer states, it was proposed in [14] that a bounding procedure be applied whenever a negative
state is encountered. The bounding procedure is described below.

Suppose the state update corresponding to stepsize s results in ~x ¼ bX ðt þ sÞ which has negative compo-
nents. Then execute the following loop to obtain a new state which is nonnegative:
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while ~x has negative components

for i ¼ 1 : N

while ~xi < 0

for j ¼ 1 : M

if ðmjÞi < 0; bK j  bK j � 1 end if

end for

end while

end for

end while

ð12Þ
Upon exiting the loop set bX ðt þ sÞ  ~x.
Throughout this paper we shall refer to the Algorithm (12) as the bounding procedure. We like to remark

that the bounding procedure (12) is guaranteed to terminate and produce a nonnegative state bX ðt þ sÞ. It is
shown in [14] that this bounding procedure does not affect the consistency of the leaping method since it will
only modify events with probabilities of order O(s2) or higher.

3. Reversible-equivalent-monomolecular tau

3.1. The general idea

The proposed REMM-s method is based on a sequence of three ideas.
The first idea is the decomposition of the system of reactions into subsystems that are then considered in

isolation. The number of firings of reaction channels forming such subsystems during a time step s is approx-
imated by the exact number of firings that would have occurred in the absence of all other reaction subsys-
tems. The smaller the step size s, the more accurate we expect this approximation to be.

To see the intuition behind this idea let us consider the case where each subsystem consists of a single
reaction channel. We denote by X(t) the exact solution of a stochastic chemical system and denote bybX ðtÞ the leaping approximation. An important requirement of a leaping approximation is consistency. It
was shown in [14] that the explicit and implicit (Poisson) tau methods are first order consistent in the sense
that
EðgðbX ðt þ sÞÞ � gðX ðt þ sÞÞjX ðtÞ ¼ bX ðtÞ ¼ xÞ ¼ Oðs2Þ; s! 0; ð13Þ

where g is any scalar valued multivariate polynomial function of the state. Let us denote by Kj(x,s) the actual
(random) number of firings of reaction channel j during the interval (t, t + s] given X(t) = x. The analysis in
[14] shows that to order O(s), K1, . . . ,KM are independent random variables. Thus if bK jðx; sÞ represent the ac-
tual number of firings of reaction channel j in the absence of all other reaction channels, then all moments ofbK jðx; sÞ and Kj(x,s) will agree to order O(s)
EðbK r
jÞ � EðKr

jÞ ¼ Oðs2Þ; s! 0: ð14Þ
Then it follows from the state update formulae:
X ðt þ sÞ ¼ xþ
XM

j¼1

mjKjðx; sÞ
and
bX ðt þ sÞ ¼ xþ
XM

j¼1

mj
bK jðx; sÞ
that (13) holds for any scalar valued multivariate polynomial function g. This may be easily shown by the (fi-
nite) Taylor expansion of g and using (14).
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The second idea of our method is based on the observation that several chemical reaction systems contain
reversible pairs of reaction channels that are often fast and are a source of stiffness. Thus our method treats
each reversible pair as a whole but in isolation from the other reaction channels. Such reversible pairs can be
monomolecular or bimolecular, in the latter case a further approximation is necessary.

The third idea is to approximate reversible bimolecular reactions by suitable reversible monomolecular
reactions. This is necessary since no known simple analytical solutions for bimolecular reversible reactions
are available. In the next section, we derive exact analytical solutions for two different types of reversible
monomolecular reactions that will be used extensively. We then elaborate on the bimolecular to monomolec-
ular approximations in Section 3.3.

Remark 1. It must be noted upfront that the REMM-s method produces a Markovian approximation to a
Markov process (see Remark 7). The notion of equivalence between a monomolecular reversible reaction
pair and a bimolecular reversible reaction pair to be presented is not an exact one; but rather an
approximate one. Approximating one Markov process by another leads to ‘‘loss of memory’’ in the sense
that the error made in each step is propagated very much in the same manner as it happens in one-step
methods such as Runge–Kutta for ODE solvers. However this approximation applies only over a time
interval s and a new approximation is computed based on the new state just as the vector field is
recomputed after each time step in Runge–Kutta type methods. Thus the ‘‘loss of memory’’ is limited in the
sense that after every time step s a new approximation is computed based on the bimolecular nature of the
system. Thus the sample trajectories produced by the REMM-s method do not correspond to those of any
single monomolecular system.
3.2. Reversible monomolecular reactions

The considerations outlined in the previous subsection would require that we know the exact solution for
the two types of monomolecular reversible reactions: S1 M S2 (Type 1) and S M 0 (Type 2).

3.2.1. Reversible monomolecular reaction: Type 1

The Type 1 reversible monomolecular reaction is also known as the reversible isomerization reaction and is
given by
S1!
c1 S2;

S2!
c2 S1:

ð15Þ
Suppose we denote by Xi(t) the total number of molecules of species Si for i = 1,2 then we may write
X 1ðtÞ ¼ X 1ð0Þ � Y 12ðtÞ þ Y 21ðtÞ;
X 2ðtÞ ¼ X 2ð0Þ � Y 21ðtÞ þ Y 12ðtÞ;

ð16Þ
where Yij(t) for i = 1,2 and j = 1,2 is the number of Si molecules at time t = 0 that are observed to be Sj mol-
ecules at a later time t. Note that the definition of Yij is justified because the monomolecular nature of the
system allows us to think of each molecule in the system to be changing from being S1 to being S2 and vice
versa independently of all other molecules. It may be shown (see Appendix A) that Y12(t) and Y21(t) are inde-
pendent and that
Y 12ðtÞ � BðN 1; p1ðtÞÞ; Y 21ðtÞ � BðN 2; p2ðtÞÞ; ð17Þ

where BðN ; pÞ denotes the binomial distribution with parameters N and p [24], N1 = X1(0), N2 = X2(0) and the
probabilities pj(t) are given by
pjðtÞ ¼
cj

c1 þ c2

ð1� e�ðc1þc2ÞtÞ: ð18Þ
By definition, Yij(t) satisfy
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Y 11ðtÞ þ Y 12ðtÞ ¼ X 1ð0Þ;
Y 21ðtÞ þ Y 22ðtÞ ¼ X 2ð0Þ:

ð19Þ
Using (19), we may rewrite (16) as
X 1ðtÞ ¼ Y 11ðtÞ þ Y 21ðtÞ;
X 2ðtÞ ¼ Y 22ðtÞ þ Y 12ðtÞ;
establishing that the solution at all times is the sum of two independent binomial random variables.
Let us define K1(t) and K2(t) to be the number of firings of reaction channels 1 and 2, respectively during the

interval [0, t] and notice that they are different from Y12(t) and Y21(t). However, the relation between these
quantities is such that
K1ðtÞ � K2ðtÞ ¼ Y 12ðtÞ � Y 21ðtÞ:

Since the changes in Xi(t) only depend on K1(t) � K2(t), it suffices to approximate K1(t) � K2(t). Let us definebK 1 and bK 2 to be bK 1ðtÞ ¼ Y 12ðtÞ and bK 2ðtÞ ¼ Y 21ðtÞ.

Thus in vector form we may write the state update for reaction (15) as
X ðt þ sÞ ¼ X ðtÞ þ m1
bK 1 þ m2

bK 2;
where m1 = (�1,1)T, m2 = (1,�1)T and
bK j � BðNj; pjðsÞÞ; j ¼ 1; 2;
with Nj = Xj(t) and pj(s) given by (18). This update method is exact for this particular reaction. Remark that,
as one would expect, if c2 = 0 then we only have the forward reaction S1! S2 and
N 1 ¼ X 1ð0Þ; N 2 ¼ X 2ð0Þ ¼ 0;

p1ðsÞ ¼ 1� e�c1s; p2ðsÞ ¼ 0:
Remark 2. It must be emphasized that bK 1ðsÞ and bK 2ðsÞ are not meant to approximate K1(s) and K2(s)
separately, but rather meant to yield a result which gives the correct update for the state. Since we are leaping
in the state space of X(t) values rather than the reaction count space of K(t) values this is sufficient for our
purposes. It is critical to observe that attempting to generate approximations for Kj(t) themselves is
unnecessary and may even be a hindrance in trying to generate good leaping approximations for X(t).
3.2.2. Reversible monomolecular reaction: Type 2

The Type 2 reversible monomolecular reaction we consider here is given by
S1!
c1

0;

0!a2 S1;
ð20Þ
where we have intentionally used the notation a2 (instead of c2) for reasons that will become clear.
Note that 0 represents the void, and thus S1! 0 stands for disintegration of a molecule S1, and 0! S1

stands for the production or inflow of a molecule S1. The first reaction is also called the irreversible isomer-
ization reaction and in the absence of the second reaction has the binomial distribution BðN 1; 1� e�c1tÞ for all
times. However in the presence of the second reaction, the pair of reactions represent a birth–death process
[24,25], which reaches a stationary distribution that is Poisson distributed with mean a2/c1 [24]. Here, we
are additionally interested in the time evolution for the distribution of X1(t) (the number of S1 molecules
for all t). We present a derivation of an expression for this distribution by regarding the reversible reaction
(20) as a parametric limit of the reversible reaction (15) in which N2 = X2(0)!1 while N2c2 = a2 is held con-
stant. This can be done because one may think of S1 in (20) as becoming a ‘‘ghost’’ molecule S2 in the forward
reaction, with the ghost molecule S2 becoming S1 in the backward reaction, conditional on assuming an infi-
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nite supply of ghost molecules S2 in order for the backward reaction to have a constant propensity. Thus we
take a2 = c2N2 to be held fixed, while we take the limit N2!1. This means that c2! 0. From Eq. (18) we
obtain the limits
p1 ! 1� e�c1t; p2 ! 0
and
N 2p2 !
a2

c1

ð1� e�c1tÞ:
It is a very well known property of binomial distributions [24,25] that in the limit that N2!1 with N2p2 = l2

held constant, the binomial distribution BðN 2; p2Þ limits to the Poisson distribution Pðl2Þ with mean and var-
iance l2. For us, l2 is given by
l2 ¼ N 2p2 ¼
a2

c1

ð1� e�c1tÞ:
If Y12(t) and Y21(t) are as defined in Section 3.2.1, then in the above limit Eq. (17) tends to
Y 12ðtÞ � BðN 1; p1Þ; Y 21ðtÞ � Pðl2Þ:

However, since for all times the solution X1(t) is given by
X 1ðtÞ ¼ Y 11ðtÞ þ Y 21ðtÞ;

it is consequently the sum of two independent random variables: one with a binomial distribution
Y 11ðtÞ � BðN 1; 1� p1ðtÞÞ and the other with a Poisson distribution Y 21ðtÞ � Pðl2ðtÞÞ. As t!1, it follows
that p1(t)! 1 and hence Y11! 0 with probability 1. Also as t!1, we obtain that
l2 !
a2

c1

;

recovering the asymptotic stationary Poisson distribution for X1.
As in Section 3.2.1 it follows that
K1 � K2 ¼ Y 12 � Y 21:
Thus we may write the state update for reaction (20) as
X 1ðt þ sÞ ¼ X 1ðtÞ þ m1
bK 1 þ m2

bK 2;
where m1 = �1, m2 = 1 and
bK 1 � BðN 1; 1� e�c1sÞ; bK 2 � P
a2

c1

ð1� e�c1sÞ
� �

;

with N1 = X1(t). Once again, this update method is exact for this particular reaction.

3.3. Reversible bimolecular reactions

After having described the exact solutions for the Type 1 and Type 2 reversible monomolecular reactions,
we are now in a position to consider general pairs of reversible bimolecular reactions. We distinguish between
five different types of bimolecular reaction pairs, and provide a way to approximate each one of them by a
suitable monomolecular reversible reaction.

3.3.1. Reversible bimolecular reaction: Type 1

The first reversible bimolecular reaction that we consider is given by
S1 þ S2!
c1 S3;

S3!
c2 S1 þ S2:

ð21Þ
The first thing to note about the dynamics of (21) is that the reaction satisfies the conservation relations
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X 1ðtÞ þ X 3ðtÞ ¼ X 1ð0Þ þ X 3ð0Þ;
X 2ðtÞ þ X 3ðtÞ ¼ X 2ð0Þ þ X 3ð0Þ
for all times. The following conservation relation:
X 2ðtÞ � X 1ðtÞ ¼ X 2ð0Þ � X 1ð0Þ;

also holds for all times. Thus there are two independent conserved quantities XT = X1 + X3 and Xe = X2 � X1.
In the following discussion we assume without loss of generality that Xe P 0; which implies that X1(t) 6 X2(t),
and hence S1 is the limiting species for the forward reaction. For the backward reaction, S3 is always the lim-
iting species. The notion of the limiting species is captured by the inequalities:
�X 3ðtÞ 6 K1ðX ðtÞ; sÞ � K2ðX ðtÞ; sÞ 6 minfX 1ðtÞ;X 2ðtÞg ¼ X 1ðtÞ;

where K1 and K2 are the actual number of firings of the forward and backward reaction channels.

Now, based on the limiting species, we approximate the system (21) by the monomolecular reversible
system
S1!
~c1 S3;

S3!
~c2 S1;

ð22Þ
where the effective monomolecular rate constants ~cj need to be found. Assuming that we have suitable values
for ~cj and that bX ðtÞ ¼ x, we update the state according to
bX ðt þ sÞ ¼ xþ m1
bK 1 þ m2

bK 2; ð23Þ

where m1 = (�1,�1,1), m2 = (1,1,�1),
cK1 � BðN 1; p1Þ; cK2 � BðN 2; p2Þ;

where N1 = x1, N2 = x3 (number of limiting species) and
p1 ¼
~c1

~c1 þ ~c2

ð1� e�ð~c1þ~c2ÞsÞ;

p2 ¼
~c2

~c1 þ ~c2

ð1� e�ð~c1þ~c2ÞsÞ:
ð24Þ
At this point, we need to derive appropriate values for ~cj. For this purpose, we first require that the propensity
of the forward or backward reaction in (22) must be equal to the propensity of the forward or backward reac-
tion in (21) respectively. This ensures that the method is consistent in the sense of numerical analysis terminol-
ogy [26,14], keeping in mind that in general ~cj may depend on the current state bX ðtÞ ¼ x.

Since the backward reactions are the same for both (22) and (21) it is natural to choose ~c2 ¼ c2, and this
choice keeps the propensities the same.

Equating the propensities of the forward reactions for both (22) and (21), leads to the condition that
~c1x1 ¼ a1ðxÞ ¼ c1x1x2
for all values of x1 and x2. If x1 6¼ 0 this implies that
~c1 ¼ c1x2:
If x1 = 0, both propensities are zero and consistency condition alone does not give us any useful information.
One may still use the formula ~c1 ¼ c1x2 to hold for all values of x1 and x2, and this may seem like the simplest
choice. But this however does not lead to an accurate formula, especially when x2 = 0 and s is large. To see
this, consider the case when x1 = x2 = 0. The formula ~c1 ¼ c1x2 would dictate that ~c1 ¼ 0 and hence p1 = 0
according to (24). This implies that eK 1 ¼ 0. i.e. The forward reaction never fires in the interval [t, t + s]. Which
is reasonable when s! 0, but unreasonable when s is large.

In order to deal with the x1 = 0 case, it is instructive to consider the specific small number situation in which
XT = 1. This means X1(t) + X3(t) = 1, and in this instance the bimolecular system (21) behaves exactly like the



M. Rathinam, H. El Samad / Journal of Computational Physics 224 (2007) 897–923 907
monomolecular system S1 M S3 with forward and backward rate parameters (Xe + 1)c1 and c2, respectively.
Then the best choice for ~c1 in the system (22) would be ~c1 ¼ c1ðx2 þ 1Þ when x1 = 0 (because then Xe = x2).
The ‘‘simpler’’ choice ~c1 ¼ c1x2 would lead to a monomolecular system with forward rate Xec1 which differs
from (Xe + 1)c1. This difference is most dramatic when Xe = 0, the situation described in the previous para-
graph. In Section 4.3 we illustrate this point via a numerical example.

For the general situation (either S1 or S2 could be the limiting species) we summarise our choice for ~c1 as
follows:
~c1 ¼ ðmaxfx1; x2g þ 1Þc1 if minfx1; x2g ¼ 0;

~c1 ¼ maxfx1; x2gc1 otherwise:
ð25Þ
Remark 3. The equivalent monomolecular approximation chosen here is consistent as s! 0, but for large s
we may not expect it to be very accurate in general. Intuitively, we expect it to be more accurate when Xe is
large, since the relative fluctuations in the ‘‘excess species’’ will be small when XT/Xe is small. Clearly the worst
case is when Xe = 0 which corresponds to X1 = X2. In Section 4.3 this point is explored via a numerical
example.

In summary the REMM-s applied to the reversible reaction (21) is given by
bX ðt þ sÞ ¼ xþ m1
bK 1 þ m2

bK 2; ð26Þ

where x ¼ bX ðtÞ,
cK1 � BðN 1; p1Þ; cK2 � BðN 2; p2Þ;
N 1 ¼ minfx1; x2g; N 2 ¼ x3;
and the pj are given by (24), ~c1 by (25) and ~c2 ¼ c2.

Remark 4. It is important to note that the mj in (26) are the stoichiometric vectors of the bimolecular reactions
and not of the monomolecular approximation; in other words
m1 ¼ ð�1;�1; 1ÞT; m2 ¼ ð1; 1;�1ÞT:

Thus the monomolecular system is only used to generate approximations bK j for the Kj, but not in the updating
of the state.
3.3.2. Reversible bimolecular reaction: Type 2

In the same spirit, the slightly more complex bimolecular reversible reaction
S1 þ S2!
c1 S3 þ S4;

S3 þ S4!
c2 S1 þ S2

ð27Þ
may be approximated in the obvious way. We obtain
N 1 ¼ minfx1; x2g; N 2 ¼ minfx3; x4g;
~c1 ¼ ðmaxfx1; x2g þ 1Þc1 if minfx1; x2g ¼ 0;

~c1 ¼ maxfx1; x2gc1 otherwise;

~c2 ¼ ðmaxfx3; x4g þ 1Þc2 if minfx3; x4g ¼ 0;

~c2 ¼ maxfx3; x4gc2; otherwise;
where x ¼ bX ðtÞ.
3.3.3. Reversible bimolecular reaction: Types 3 and 4

Now, we consider the reversible reaction where two molecules of the same species come together
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S1 þ S1!
c1 S2;

S2!
c2 S1 þ S1:

ð28Þ
The REMM-s update for this reversible pair is still based on the Type 1 reversible monomolecular reaction,
and hence is similar to the reversible pair (21), except for the choices for N1 and ~c1, which are given by (with
x ¼ bX ðtÞ)
N 1 ¼ floorðx1=2Þ; ~c1 ¼ a1ðxÞ=N 1; when N 1 6¼ 0;

~c1 ¼ c1; when x1 ¼ 0;

~c1 ¼ 3c1; when x1 ¼ 1;
where floor(z) denotes the largest integer less than or equal to z and a1(x) = c1x1(x1 � 1)/2 is the propensity of
the forward reaction. Note that we obtain N1 = 0 when either x1 = 0 or x1 = 1. Our choice of ~c1 is exact for
specific types of initial conditions for which the bimolecular system behaves exactly like a monomolecular sys-
tem. One is for the initial condition X(0) = (2,0) (or equivalently X(0) = (0, 1)) in which case the system be-
haves identical to the monomolecular system S1 M S2 with parameters c1 and c2. The other is for the initial
condition X(0) = (3,0) (or equivalently X(0) = (1, 1)) in which case the system behaves identical to the mono-
molecular system S1 M S2 with parameters 3c1 and c2.

The reversible pair
S1 þ S1!
c1 S2 þ S2;

S2 þ S2!
c2 S1 þ S1

ð29Þ
may be dealt with in the obvious way.

3.3.4. Reversible bimolecular reaction: Type 5

Up to this point, all the reversible bimolecular examples we considered were treated using the Type 1 revers-
ible monomolecular reaction as given by (15). The next bimolecular example that we consider can be best
approximated using the Type 2 reversible monomolecular reaction given by (20). The reaction pair we con-
sider here is given by
S1 þ S2!
c1 S2;

S2!
c2 S1 þ S2:

ð30Þ
In this reaction pair S2 is never altered and the limiting species in the forward reaction is always S1. The back-
ward reaction has no limiting species. Hence the equivalent monomolecular system is not of the form (22) but
rather of the form
S1!
~c1

0;

0!~a2 S1:
ð31Þ
Consistency considerations would require that
~c1 ¼ c1x2; ~a2 ¼ c2x2;
where x ¼ bX ðtÞ. In fact since X2(t) is constant the equivalent monomolecular reaction (31) is identical to the
original (30). The presence of S2 merely scales the constants c1 and c2. This leads to the leaping approximation
(in fact the exact solution)
bK 1 � BðN 1; p1Þ; bK 2 � Pð~l2Þ;

where
N 1 ¼ x1; p1 ¼ 1� e�~c1s; ~l2 ¼
c2

c1

ð1� e�c1sÞ:
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3.3.5. Reversible bimolecular reaction: Type 6

Here we consider the reaction pair
S1 þ S2!
c1 S1 þ S3;

S1 þ S3!
c2 S1 þ S2:

ð32Þ
In the absence of other reactions, this reaction pair behaves identically to S2 M S3 with parameters ~c1 ¼ c1x1

and ~c2 ¼ c2x1, where x1 is the (constant) number of S1 molecules. This is clear because the number of S1 mol-
ecules is unchanged by the two reactions. For the same reason, the limiting species are always S2 and S3 for the
forward and backward reactions, respectively.

This leads to the leaping approximation (in fact the exact solution)
bK 1 � BðN 1; p1Þ; bK 2 � BðN 2; p2Þ;

where
N 1 ¼ x2; N 2 ¼ x3
and
p1 ¼
~c1

~c1 þ ~c2

ð1� e�ð~c1þ~c2ÞsÞ;

p2 ¼
~c2

~c1 þ ~c2

ð1� e�ð~c1þ~c2ÞsÞ:
3.4. The REMM-s algorithm: parallel versus sequential updating

At this point, we have derived and presented the main steps of the REMM-s method as it applies to
subsystems consisting of reversible pair of reactions. As outlined in Section 3.1, a general algorithm to
apply REMM-s method to a large system of chemical reactions can be devised by considering each such
reversible reaction in isolation, then updating according to the methods described in Sections 3.2 and 3.3.
If a reaction is not reversible but is of the form of any of the reactions in the reversible pairs considered
in Sections 3.2 and 3.3, then one can still apply the method with the rate constant of the backward reac-
tion set to zero.

A general important requirement for any leap method is that starting with a state bX ðtÞ with nonnegative
components, the resulting state bX ðt þ sÞ after one application of the method should also have nonnegative
components. As pointed out in [13,12] there are two main situations that lead to a negative state.

To see this, we first note that given a current state x with nonnegative components, for each reaction j

one may define a limiting number of firings Nj, by the criterion that Nj is the largest nonnegative integer
such that x + mjNj does not have negative components. We also define the limiting species corresponding
to j (and x) to be any species i such that xi + (Nj + 1)mji < 0. The first situation of negative states described
in [13,12] may occur when for a given reaction with index j, the leaping approximation bK j exceeds Nj, i.e.bK j > Nj. This situation is circumvented by the construction of REMM-s, since the method is designed to
satisfy the condition bK j 6 Nj. It is important to note that the condition bK j 6 Nj is neither necessary nor
sufficient to avoid negative states in general. However in systems where each species is decreased by at
most one reaction channel (particular examples being a single reversible pair of reactions), this is indeed
a sufficient condition.

To illustrate the second situation that leads to negative states, consider a species with index i which is dimin-
ished by two different reactions with indices j and l with limiting numbers Nj and Nl. Thus we have assumed
mji < 0 and mli < 0. It is possible that xi þ mji

bK j þ mli
bK l < 0 even if bK j 6 Nj and bK l 6 Nl. i.e. The combined

decrease in the species i due to the approximated simultaneous firings of reactions j and l may lead to a neg-
ative state. The REMM-s as described so far does not necessarily avoid this second situation of negative
states. We suggest two ways to deal with such negative states. These two algorithms, the parallel update
and the sequential update are described below.
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3.4.1. REMM-s with parallel updating

(1) Given current state x ¼ bX ðtÞ and having chosen a stepsize s, consider each reversible reaction pair in iso-
lation from all other reaction channels and generate samples for bK j according to the prescriptions set
forth in Sections 3.2 and 3.3. Note that conditioned on x ¼ bX ðtÞ these bK j are all independent random
variables, some are binomial and some are Poisson depending on the reaction.

(2) Update the state according to the general state update formula
bX ðt þ sÞ ¼ xþ
XM

j¼1

mj
bK j:
(3) If bX ðt þ sÞ has negative components, apply the bounding procedure (12) to obtain a new nonnegative
value for bX ðt þ sÞ.

3.4.2. REMM-s with sequential updating

Instead of updating the state of the system based on the collective firing of all reaction channels, the idea
here is to sequentially update based on individual reversible reaction pairs. The main idea is the same as the
one proposed in [12], except that we update reversible pairs simultaneously.

The algorithm proceeds as follows. Suppose the reaction channels are ordered so that channels with indices
j = 2l � 1 and 2l for l = 1, . . . ,L form a reversible pair. Thus we are assuming there are 2L reaction channels. If
a reaction channel with index 2l � 1 does not have a reversible counterpart we simply take c2l = 0.

(1) Given current state x ¼ bX ðtÞ and a step size s set x(0) x.
(2) Execute the following loop. for l = 1:L
(a) Generate samples for bK 2l�1 and bK 2l using the prescriptions outlined in Section 3.3 taking x to be
x(l�1) and using the same time step s.

(b) Compute the lth intermediate state x(l) using

xðlÞ ¼ xðl�1Þ þ m2l�1
bK 2l�1 þ m2l

bK 2l:
end for
(3) Set bX ðt þ sÞ  xðLÞ.

The sequentially updated REMM-s is guaranteed to produce nonnegative states without having to apply
the bounding procedure.

Remark 5. The choice of ordering l = 1, . . . ,L of the reversible reaction pairs will be an important subject to
be studied further. It is intuitive to choose an ordering based on the total propensity of a reversible pair;
updating the fastest pair first and the slowest pair last. Naturally this ordering will in general depend on the
current state X(t) = x. It is also possible to choose the ordering l = 1, . . . ,L of the reversible reaction pairs in a
random manner at each time step s as suggested in [12]. In this case, it is still intuitive to choose the
probabilities of the ordering such that faster pairs are more likely to get updated earlier. It is also important to
note that in the presence of ‘‘race conditions’’, i.e. when the system is in a state where small fluctuations may
lead to drastically different future states, the ordering of the reactions in the sequential updating may bias the
probabilities of the future outcomes. Typically this situation arises in bimodal systems (also known as bistable)
where the asymptotic distribution has two modes (peaks). The deterministic analogue of this situation is a
system with two stable equilibria with their own basins of attraction and the sensitive states are the ones close
to the boundary between the two regions of attraction. Intuitively one would expect that the random ordering
of the reaction pairs based on propensities may be better since all reaction pairs are given an opportunity to
fire first based on their propensities. But it is also important to note that when the system is in such a sensitive
state, it is desirable that the stepsize s be chosen to be small. Thus adaptive stepsize selection is again an
important issue. We do not investigate the topic of ordering the reactions in this paper, but consider it to be an
important topic of future investigation.
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Remark 6. In some examples it is natural to group three reactions into a subsystem (motif) which is exactly
solvable in isolation. See the last example presented in this paper for such a situation. We believe that future
development of REMM-s is likely to involve groupings of several reactions as a motif.

Remark 7. All leap methods proposed in literature as well as the REMM-s (both the sequential and parallel
versions) lead to discrete time Markov processes. In particular, in the sequential updating, the successive inter-
mediate states x(l) are not part of the final numerical solution. Thus given bX ðtÞ for a fixed s there is a well
defined Markov transition function
P ðbX ðt þ sÞ ¼ x0jbX ðtÞ ¼ xÞ;
where x; x0 2 ZN
þ are any pair of states. This is also true of random order of updating.

4. Examples

In this section we illustrate the use of the REMM-s method and compare its performance to those of the
implicit tau and the trapezoidal implicit tau using a number of test examples. The first two examples we con-
sider involve reversible reactions that are themselves very fast, in the absence of any slow non-reversible reac-
tion. The rationale for starting with these examples is that such systems are often ‘‘fast subsystems’’ of a bigger
system where the rest of the reactions occur on a much slower time scale. It is therefore desirable that a leaping
method produces reasonable approximates for the asymptotic probability distribution for the ‘‘fast species’’
when applied with a stepsize that is small in comparison to the time scale of the rest of the reactions but large
in comparison with the time scale of the fast subsystem. The third example precisely illustrates such a situation
in a biologically motivated context.

In the analysis of these examples, we mostly focus on the stiff behavior of the methods. We use the term stiff

behavior to denote the asymptotic behavior of a method when applied with a constant stepsize s that is not
necessarily smaller than the time scale of the system. Such aspect of any leaping method is of great important
since the aim is to generate accurate approximations of the real process with the largest possible leaping step-
size s. Therefore, we specifically consider the stiff behavior as a function of s and investigate if the methods
being compared provide a robust performance as s is increased. Since our simple test examples are meant
to be fast subsystems of a larger system, it would be typical to use stepsizes s that may be much larger than
the time scale of the fast subsystem. As a reference for the comparison, we use the true asymptotic probability
distribution of the test systems computed through exact SSA simulations or accurate numerical integration of
the CME.

To estimate the time scales of a system, two approaches are possible. The first approach is to consider the
reaction rate equations (RRE) and compute the eigenvalues of the (time varying) Jacobian matrix along ‘‘typ-
ical trajectory values’’. We use this method for linear propensity systems where the Jacobian is constant and
therefore choice of trajectories is irrelevant. In this case, it may be easily shown that the time evolution of
the moments of the system follow linear systems of ODEs whose eigenvalues are the same (for the mean) or
are an integer multiple (for higher order moments) of the eigenvalues of the corresponding RRE. Alternatively,
one may consider the eigenvalues of the chemical master equations (CME). The latter approach is practical
when the system is closed, and hence the CME constitutes a finite dimensional linear time invariant system.
When the system is not closed, it is still possible to truncate the infinite system generated by the CME and con-
sider the eigenvalues of the approximate truncated system.
4.1. Linear test example S1 M S2

The simplest linear propensity system whose state does not decay to zero is the reversible pair of reactions
S1 M S2. As shown in previous sections, the time solution of this reversible reaction pair is the sum of two
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binomials, and the REMM-s method is exact by construction. The stiff behavior of the explicit, implicit and
trapezoidal implicit s methods when applied to this test system were studied in [11]. However the analysis in
[11] ignores rounding and bounding, whose effect can become very noticeable if the molecular species are pres-
ent in small numbers as we demonstrate here.

For the case we consider, the parameter values are set to c1 = 1 and c2 = 2 for the forward and backward
reactions, respectively. First, we set the total number of molecules in the system to xT = 1, the smallest pos-
sible. With this choice of xT, there are only two possible states X = 0 or X = 1, where we have used X to denote
the number of S1 molecules. If we let p = (p1,p2) be a row vector, where p1 = P(X = 0) and p2 = P(X = 1), then
the CME is given by
Fig. 1.
is the
horizo
_p ¼ pQ;
where the 2 · 2 matrix Q is given by
Q ¼
�2 2

1 �1

� �
:

The matrix Q has eigenvalues at 0 and �3. Note that the eigenvalue �3 is the same as that of the deterministic
RRE. Hence the time scale of the system is considered to be 1/3 � 0.33. The asymptotic distribution of this
system is characterized by one quantity, for instance P(X = 1), which is computed by finding the left nullvector
of Q. Note that the Markov transition probability matrix P(s) defined by
P ijðsÞ ¼ PfX ðt þ sÞ ¼ jjX ðtÞ ¼ ig

may be computed by matrix exponential P(s) = esQ. While the exact model of the chemical system is a discrete
state and continuous in time Markov process, the result of any leaping approximation with constant time step
s may be regarded as a discrete state and discrete time Markov process. (See Appendix B). The Markov tran-
sition matrices bP ðsÞ corresponding to the implicit tau and trapezoidal implicit tau methods, as well as the sta-
tionary probability distributions (if any) corresponding to these matrices, can also be computed for various s.
(See Appendix B for some details.) Once bP ðsÞ is computed, the asymptotic distribution is given by the left
eigenvector of P(s) with eigenvalue 1 provided it is unique. We refer the reader to [24,25] for basics on discrete
state Markov processes (with both continuous and discrete time cases) and their relevant properties.

Fig. 1 shows the asymptotic probability P(X = 1) as a function of s for both these methods. For s values
much smaller than 0.33 convergence is seen, and both methods coincide due to rounding as pointed out in [14].
In fact for small s, both methods coincide with explicit-s due to rounding. For very large values of s, in par-
10
–2

10
–1

10
0

10
1

10
2

10
3

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Asymptotic probability P(S1=1) versus tau:Test example S1<−>S2: XT=1,c=[1,2]

Trap Imp
Imp Tau
Exact

Linear test example S1 M S2 with total number of molecules xT = 1. The plot shows the asymptotic probability P(X = 1) where X

number of S1 versus stepsize s. Square – implicit-s, diamond – trapezoidal-implicit-s. The exact value (CME) is shown by the
ntal line. For s = 1000 the implicit-s does not lead to an ergodic chain, so it is omitted.



M. Rathinam, H. El Samad / Journal of Computational Physics 224 (2007) 897–923 913
ticular s = 1000 or greater, both methods become very poor in estimating the asymptotic probability. In fact
for very large s both methods produce a transition matrix very close to the identity matrix. This results in a
Markov chain which stays in the initial state with probability almost equal to 1, a behavior far from that of the
true system. A noticeable behavior for the trapezoidal implicit-s in this example is a non-monotonic depen-
dence of the accuracy on s. Indeed, for intermediate values of the stepsize, the accuracy of the trapezoidal
method deteriorates, then approaches the exact solution before grossly overestimating the probability in
the limit where the transition matrix tends to one.

We repeated the above computations for the same parameters, except that we used a total number of mol-
ecules xT = 3. This resulted in a 4 · 4 Q matrix for the CME with eigenvalues at 0, �3, �6, �9. Hence the time
scale is 1/3 � 0.33, the same as before. The asymptotic distribution in this case is no longer characterized by a
single number. We therefore plot the total variation error between the asymptotic distribution resulting from
the trapezoidal and implicit s methods and that computed from the CME. Fig. 2 shows the result, where again
divergence is seen for large s values.

Remark 8. For the case where xT = 3, the asymptotic variance of the trapezoidal implicit-s for large s values
was much smaller than the actual asymptotic variance of the process. This does not contradict the analysis in
[11], which did not include effects of rounding and bounding. In fact in this example, for large values s the
probability of bounding (equivalently encountering a negative state) was almost zero. Thus we attribute this
deviation from the analysis in [11] primarily to rounding rather than bounding. It is possible that a suitable
modification of the rounding as well as bounding may lead to better performance. However a detailed
investigation of this topic is beyond the scope of this paper.
4.2. Linear test example S2 M S1 M S3

A more complex situation where the REMM-s method is no longer exact arises when S1 is modified
through two reaction pairs. Specifically, we consider the test system
Fig. 2
distrib
S1 $ S2; S1 $ S3:
This system remains bounded and has one conserved quantity
X 1ðtÞ þ X 2ðtÞ þ X 3ðtÞ ¼ X T :
When XT = 10 and the parameter values are taken to be
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c12 ¼ 1; c21 ¼ 2; c13 ¼ 3; c31 ¼ 4;
the eigenvalues of the Jacobian matrix corresponding to the RRE are 0, �2.3542 and �7.6458. The time scale
of the system is approximately given by 1/2.3542 � 0.5. The system is started at the initial conditions
X(0) = (10, 0,0)T, and the simulation interval is taken to be [0,1000] at the end of which the system has settled
to its asymptotic distribution. Fig. 3(a) and (b) shows the estimated probability density function (PDF) at time
T = 1000 for S1 and S2, respectively, computed using the SSA along with PDFs generated by the REMM-s,
implicit-s and trapezoidal-implicit-s with a stepsize s = 10. We deliberately chose the stepsize s = 10 to be
much larger than the slowest time scale �0.5. It is clear from these figures that while none of the methods accu-
rately captures the asymptotic PDF for S1, REMM-s captures the PDF of S2 rather accurately. Furthermore,
REMM-s which is a fully explicit method performs similar to trapezoidal implicit-s and much better than the
fully implicit-s.

In a simulation of 10,000 sample trajectories each with 100 time steps, the REMM-s encountered 9611 steps
(out of 106 steps which is about 0.96%) in which negative states occurred and a bounding procedure had to be
performed. For the trapezoidal implicit-s this number was 53,360 (corresponding to 5.34%) and for the impli-
cit-s method this number was 0.

To investigate the dependence of these results on the choice of s, we repeated the same computations for a
larger time step, specifically s = 100. We took 100 time steps so as to allow the numerical methods to settle
down to their asymptotic distribution. Fig. 4(a) and (b) shows the PDF for S1 while Fig. 4(c) and (d) show
the PDF for S2 using REMM-s and trapezoidal implicit-s for s = 10 and s = 100. It is apparent that the
behavior of REMM-s does not change much as the step size is varied, illustrating the robustness of this
method to the choice of the time step. In contrast, panels (b) and (d) of Fig. 4 clearly indicate that the behavior
of the trapezoidal-implicit-tau deteriorates when s is changed from s = 10 to s = 100. The performance of the
implicit-tau was worse and is not shown.

4.3. Nonlinear test example

The first simple nonlinear test example that we investigate is the bimolecular reversible reaction of Type 1
considered in (21) and given by
1 2 3 4 5 6 7 8 9 10

Linear test example: PDF of #S1: T=1000, tau=10, 10000 samples
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Linear test example: PDF of #S2: T=1000, tau=10, 10000 samples
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Linear test example S2 M S1 M S3: (a) Estimated PDF of X1(1000). (b) Estimated PDF of X2(1000). Circle – SSA, plus – REMM-s,
– implicit-s, diamond – trapezoidal implicit-s. Stepsize s = 10 for all methods. PDF was estimated using Monte Carlo simulation of
size 10,000.
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Fig. 4. Linear test example S2 M S1 M S3: Estimated asymptotic PDF of X1. (a) S1 PDF using REMM-s Circle – SSA, plus with solid line
– REMM-s with s = 10 and 100 time steps, plus with dashed line – REMM-s with s = 100 and 100 time steps. (b) S1 PDF using
trapezoidal implicit s Circle – SSA, diamond with solid line – trapezoidal-implicit-s with s = 10 and 100 time steps, diamond with dashed
line – trapezoidal-implicit-s with s = 100 and 100 time steps. PDF was estimated using 10,000 trajectories. (c) and (d) are PDF for S2 with
the same conventions. The implicit-tau performed worse and is not shown here.
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S1 þ S2!
c1 S3;

S3!
c2 S1 þ S2:
Let Xi, i = 1,2,3 denote the number of molecules of Si. This reaction system has two independent conserved
quantities X1 + X3 and X2 + X3. Thus X2 � X1 is also a conserved quantity. Defining XT = X1 + X3,
Xe = X2 � X1, we may essentially treat the system as consisting of a single state X = X1. Without loss of gen-
erality we shall take Xe P 0.

It must be noted that when XT = 1 the system behaves identical to a monomolecular system S1 M S3 in
which the parameters are (Xe + 1)c1 for the forward and c2 for the backward reactions. Letting p = (p1,p2),
where p1 = P(X1 = 0) and p2 = P(X1 = 1), the CME describing the system is given by
_p ¼ pQ;
where the 2 · 2 matrix Q assumes the form
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Q ¼
�c2 c2

ðX e þ 1Þc1 �ðX e þ 1Þc1

� �
:

In this case, the REMM-s method with ~c1 chosen according to (25) gives the correct Markov transition matrix
for all s.

To illustrate this numerically, we set c1 = c2 = 100, Xe = 0 and XT = 1. Then the transition matrix P(s) with
s = 1 for the exact process is given by
P ¼
0:5 0:5

0:5 0:5

� �

(note that P = eQs), and this coincides with the transition matrix for the REMM-s method with the choice
(25). Note that this leads to the asymptotic probability P(X1 = 1) = 1/2. However, if we choose
~c1 ¼ maxfx1; x2gc1 ¼ x2c1 (we assumed x1 6 x2) instead of (25) in the REMM method, we obtain the transi-
tion matrix
0 1

0:5 0:5

� �

which is clearly wrong and leads to the wrong asymptotic probability P(X1 = 1) = 2/3.

Note that when XT > 1, the bimolecular system is truly nonlinear and the REMM method is no longer exact.
We choose XT = 3, Xe = 5, c1 = 100, c2 = 1000 and compare the performance of the REMM-s method against
the implicit tau and the trapezoidal implicit tau. For this choice of parameters, the matrix Q has real negative
eigenvalues (except one zero), the smallest (in magnitude) of which is ��1830. Hence, the time scale of the sys-
tem is around 1/1830 � 0.001. Proceeding as with the first test example, we can compute the 4 · 4 Markov tran-
sition matrices corresponding to the implicit-s, trapezoidal implicit-s as well as the REMM-s methods for
various s values and determine the stationary probability distribution corresponding to these matrices.

The result of these computations is shown in Fig. 5 where the asymptotic probability distributions of the
methods REMM-s, implicit-s and trapezoidal implicit-s are compared against the exact asymptotic distribu-
tion. Our computations show that for small s values (s � 0.0001) convergence is seen for all methods. How-
ever, as s increases the behavior of implicit-s and trapezoidal implicit-s become more erratic. In contrast the
REMM-s method is more robust to variations in s and shows a modest increase in the error which then sta-
bilizes for s values greater than 0.01. The plots are shown only for the values s = 0.0001,0.01, 1. It can be seen
that the REMM-s does not change noticably for s P 0.01.

Remark 9. This robust behavior of the REMM-s does not come as a surprise since all the probabilities bP ijðsÞ
in the Markov transition matrix corresponding to the REMM-s method have a dependence on s of the form
1� e�Cijs;
where Cij are integer linear combinations of the constants c1 and c2 . A careful scrutiny of the formulation of
the REMM-s method will show that the Cij are always greater than or equal to c1 + c2. A similar statement
holds true in a more general context than this specific example, hence one can expect that in general, the stiff
behavior of REMM-s to be robust with respect to changes in s values.

Finally we explored the behavior of REMM-s for the larger value XT = 100 and for two different choices for
Xe; Xe = 0 and Xe = 10. See Fig. 6. As mentioned in Remark 3, we expect the performance of REMM-s to be the
worst when Xe = 0 for fixed values of XT, c1, c2. Our computations show that when Xe = 0 the result of REMM-s
deteriorates for large stepsizes. In fact trapezoidal-implicit tau does better in this case. However even for the small
value Xe = 10 of excess species (10% of XT) the performance of REMM-s quickly recovers. We also observed
(plots not shown here) that when Xe = 0 and for smaller values of XT such as 10 the error is less dramatic.

4.4. Biological example: genetic circuit

The final example we present builds on the previous simpler nonlinear test example, to present a genetic
transcription module that has important biological significance. This example consists of a gene DA that
encodes for protein A. A itself can bind to its own gene promoter and act as a repressor for its own production.
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Fig. 5. Nonlinear test example with Xe = 5 and XT = 3. The plots show the asymptotic probability distributions corresponding to the leap
methods (dashed lines) against the exact asymptotic distribution (star with solid line), for three different stepsizes (diamond – s = 0.0001,
square – s = 0.01, circle – s = 1). (a) implicit tau, (b) trapezoidal implicit tau, (c) REMM-s.
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In other terms, when the gene promoter is naked, A is produced at a rate c3. However, when A is bound, the
rate of production of A itself decreases to c4 < c3, hence implementing a negative feedback loop. If c4 > c3, then
the situation represents a positive feedback loop. Both possibilities exist in biological systems. We consider the
negative feedback situation here. The rates of binding and unbinding of A to the gene promoters are c1 and c2,
respectively. Finally, A naturally decays at a rate c5. The set of biochemical reactions that give rise to this
scheme of gene regulation are given by
DA þ A!c1 D0A;

D0A!
c2 DA þ A;

DA!
c3 DA þ A;

D0A!
c4 D0A þ A;

A!c5
0;
where D0A is the bound form of the gene promoter DA. The state vector describing the system is given by x = (x1,x2,x3)
where x1 = #A, x2 = #DA and x3 = #D0A and x2 + x3 is a constant. The propensities are in turn given by
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Fig. 6. Nonlinear test example with XT = 100. The plots show the asymptotic probability distributions corresponding to REMM-s as well
as the exact asymptotic distribution for X1. (a) For the case Xe = 0, c1 = 100, c2 = 100 the plots show REMM-s for time steps s = 0.0001
(circle), s = 0.001 (square) and s = 0.01 (diamond) as well as the exact values (star). For larger values of s, REMM-s gives the same results
as s = 0.01. The time scale of the exact system is about 5 · 10�4 (as measured by the smallest eigenvalue). (b) For the same case as in (a)
this plots shows REMM-s (circle), trapezoidal-implicit tau (diamond) and implicit tau (square) for time step s = 0.01, as well as the exact
values (star). The PDFs of the trapezoidal-implicit and implicit tau methods were estimated by running 10,000 samples. The PDFs of
REMM and the exact process (SSA) were computed using the Markov transition matrices. (c) For the case Xe = 10, c1 = 50, c2 = 100 the
plot shows REMM-s (circle),trapezoidal-implicit tau (diamond) and implicit tau (square) for a very large time step s = 1 and the exact
values (star). The time scale of the exact system is about 6.5 · 10�4. The PDFs of the trapezoidal-implicit and implicit tau methods were
estimated by running 10,000 samples. The PDFs of REMM and the exact process (SSA) were computed using the Markov transition
matrices.
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a1ðxÞ ¼ c1x1x2;

a2ðxÞ ¼ c2x3;

a3ðxÞ ¼ c3x2;

a4ðxÞ ¼ c4x3;

a5ðxÞ ¼ c5x1:
With the corresponding stoichiometric vectors mj
m1 ¼ ð�1;�1; 1ÞT; m2 ¼ ð1; 1;�1ÞT; m3 ¼ ð1; 0; 0ÞT; m4 ¼ ð1; 0; 0ÞT; m5 ¼ ð�1; 0; 0ÞT:
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In order to apply the REMM-s method to this system, we first note that the first two reactions form a bimo-
lecular reversible pair of Type 1 described in (21). Thus the first pair forms a subsystem. Contrary to the exam-
ples presented so far, we consider the last three reactions together as a subsystem or motif since they reduce to
the exactly solvable monomolecular reversible form 0 M S if considered in isolation from the first subsystem.
In the absence of the first pair of reactions, X2(t) and X3(t) are constants as the last three reactions do not
modify the number of DA or D0A. Thus the last three reactions together (in the absence of the first two) are
equivalent to the exactly solvable monomolecular trio of reactions
0!~c3 S; 0!~c4 S; S!~c5
0;
where ~c3 ¼ x2c3, ~c4 ¼ x3c4 and ~c5 ¼ c5. This trio, in turn, is equivalent to the reversible monomolecular reac-
tion 0 M S since the sum of two independent Poisson processes with rates ~c3 and ~c4 is equivalent to a single
Poisson process with a rate ~c3 þ ~c4.

Thus the parallel update REMM-s when applied to this reaction system starting at state x with stepsize s
leads to the update formula
bX ðt þ sÞ ¼ xþ
X5

j¼1

mj
bK j;
where the mj are the stoichiometric vectors of the original bimolecular system (see Remark 4) and the bK j are
given by
bK 1 � BðN 1; p1Þ; bK 2 � BðN 2; p2Þ; bK 3 � Pðl3Þ; bK 4 � Pðl4Þ; bK 5 � BðN 5; p5Þ;

with
N 1 ¼ minfx1; x2g; N 2 ¼ x2; N 5 ¼ x1;

p1 ¼
~c1

~c1 þ c2

ð1� e�ð~c1þc2ÞsÞ; p2 ¼
c2

~c1 þ c2

ð1� e�ð~c1þc2ÞsÞ; p5 ¼ 1� e�c5s;
and
~c1 ¼ ðmaxfx1; x2g þ 1Þc1 if minfx1; x2g ¼ 0;

~c1 ¼ maxfx1; x2gc1 otherwise;

l3 ¼
a3ðxÞp5

c5

; l4 ¼
a4ðxÞp5

c5

:

We consider the circuit with three promoters, thus x2 + x3 = 3. We choose the parameter values
c1 ¼ 100; c2 ¼ 1000; c3 ¼ 1; c4 ¼ 0:1; c5 ¼ 0:1:
The system is started at the initial conditions x(0) = (14,3,0) and ran for a time interval of length T = 200.
This formulation results in a stiff system where the first two reaction channels fire much more often than
the rest of the three reaction channels. The mean time step for the SSA when used to simulate the system
was about 3 · 10�4, and we chose a much large time step of s = 1 for the leap methods. With s thus chosen,
we are leaping on average over 3300 reaction events in one time step.

Fig. 7 shows the PDF of A estimated for X1(T) using SSA. The same figure shows the PDF computed from
the different leaping methods. We used a sample size of 10,000 trajectories for all the methods. It is clear that
while the REMM-s captures the distribution well, both the implicit and trapezoidal implicit methods show a
bias in the mean and produce more skewed distributions.

In the sample of 10,000 trajectories each with 200 steps the number of time steps in which a negative state
was reached (resulting in the bounding procedure being applied) were 0, 131,174 and 0 for the implicit-s, trap-
ezoidal implicit-s and the REMM-s (parallel update) respectively. In terms of probability these correspond to
0, 0.066 and 0, therefore the error in implicit s cannot be attributed to bounding. Also, note that the parallel
REMM-s does not guarantee nonnegativity because more than one reaction diminish the number of A mol-
ecules. On the other hand, the sequential version of REMM-s guarantees nonnegative states without having to
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perform any bounding procedures. For comparison we ran 10,000 sample trajectories using the sequential
REMM-s as well. In the implementation of the sequential update, we always updated the fast reversible pair
first, and then the other slow reactions. Fig. 8 shows the plot comparing the results of parallel REMM-s and
sequential REMM-s against SSA. Both seem comparable in their performance.

5. Conclusions and future work

In this paper, we developed the reversible-equivalent-monomolecular-tau (REMM-s), a new leaping
method for the simulation of stochastic chemical kinetics. The REMM-s method considers reversible pairs
of reactions in isolation, approximates bimolecular reversible pairs by suitable monomolecular reversible pairs
and then advances the state by approximating the actual system by a set of reversible monomolecular pairs of
reactions that fire in isolation. The method presented, whether in its parallel or sequential updating form, nat-
urally leads to integer states and hence avoids the error introduced by rounding. Since stiffness manifests itself
in a much more complicated way in stochastic systems than in deterministic systems, we defined the notion of
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stiff behavior as the behavior of the asymptotic distribution (rather than that of the asymptotic mean and var-
iance alone) generated by a method when applied with a constant stepsize. Using this definition, we compared
the stiff behavior of the REMM-s method to those of the implicit and trapezoidal implicit tau methods for a
number of test systems, both linear and nonlinear. We focused on situations which involve a small number of
total molecules, since these situations are both frequent in realistic biological problems and challenging for all
existing leaping methods. We demonstrated that the stiff behavior of REMM-s under these conditions is more
robust as s is increased beyond the slowest time scale of the system than those of the implicit and trapezoidal
implicit s methods. The benefits of the accuracy and robustness of REMM-s are complemented by its simplic-
ity as an explicit method.

In our investigation, we mainly focused on the parallel updating method for REMM-s. Our future work
will focus on the investigation of sequential updating since it guarantees nonnegativity without any bounding
procedure and as such is more amenable to analysis. Specifically, a topic of major interest is the choice of the
sequential order in which the reversible pairs are updated. In addition the suitability of the sequential updating
in the presence of race conditions needs to be investigated.

In addition the performance of leaping methods when applied to stiff oscillatory genetic circuit models will
need to be investigated. In oscillatory systems a suitable measure of the periodic nature (such as the power
spectrum) rather than the probability distribution at some final time needs to be used as the criterion for com-
paring the accuracy of leaping methods. Furthermore adaptive stepsize selection will be an important compo-
nent in a successful implementation of any leaping method when it comes to such oscillatory systems.

While our method is motivated by small number and stiff stochastic chemical models, it will in principle be
applicable to other small number and stiff Markov process models such as population dynamics as described
in [27]. However the success of REMM-s in such systems is likely to depend on the presence of fast reversible
pair motifs which are common in chemical reaction systems.
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Appendix A. Exact solution of S1 M S2

Here we show that the exact solution at any finite time t of the chemical system
S1!
c1 S2; S2!

c2 S1;
started with arbitrary initial conditions may be given in terms of two independent binomial random variables.
In [28,29] the solution at time t is derived for general initial conditions by applying transform methods to

solve the CME, but the fact that the solution can be expressed in terms of two binomials was not mentioned.
Our approach is more combinatorial and is closer to the approach taken in [30] where it is derived that the
solution at time t is given by a single binomial random variable when the system is started with initial condi-
tions of a specific form.

Instead of considering the number of S1 and S2 molecules in the system, let us focus on a given S1 or S2

molecule. Either of these may be considered in isolation from the rest of the molecules to be independently
following a dynamic behavior in which an S1 becomes an S2 after an exponential waiting time and vice versa.
This situation is modeled by a continuous time two state Markov process Z(t), where Z(t) is defined to be
Z(t) = 1 if the molecule is S1 at time t, and Z(t) = 2 if it is S2. The Markov process is characterized by the
transition rates [24] or propensities (in the chemical kinetics terminology [9]): c1 being the rate of transition
from S1 to S2 and c2 the rate of transition from S2 to S1. Let us define Pij(t) = P{Z(t) = jjZ(0) = i}; this is
the probability that a molecule observed at time t = 0 to be Si will be observed to be an Sj molecule at a later
time t. The 2 · 2 matrix P(t) is the transition probability matrix for the Markov process Z(t) and from elemen-
tary Markov process theory [24] it follows that the off diagonal terms are given by
P ijðtÞ ¼
cj

c1 þ c2

þ ci

c1 þ c2

e�ðc1þc2Þt; i 6¼ j;
and the diagonal terms are given by the condition that the rows sum to 1.
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Suppose we have a system in which at time t = 0 there are a total of N1 number of S1 molecules and N2

number of S2 molecules. For i = 1,2; j = 1,2, denote by Yij(t) the number of Si molecules observed at time
t = 0 that are observed to be Sj molecules at time t. Note that by definition Yi1(t) + Yi2(t) = Ni for i = 1,2.
It follows that Yij(t) is the sum of Ni independent identically distributed random variables each of which takes
values 0 and 1 with probabilities 1 � Pij(t) and Pij(t), respectively. Thus
Y ijðtÞ � BðNi; P ijðtÞÞ;
where BðN ; pÞ denotes the binomial distribution with parameters N and p [24]. It is also clear that Y1i(t) and
Y2j(t) are independent for all choices of i, j. Let us denote by Xi(t) for i = 1,2 the total number of Si molecules
at time t. Then it follows that X1(t) = Y11(t) + Y21(t) at any time t, and thus is the sum of two independent
binomial random variables. Note that by definition X1(0) = N1 and X2(0) = N2. Also note that
X 1ðtÞ þ X 2ðtÞ ¼ X 1ð0Þ þ X 2ð0Þ ¼ N 1 þ N 2 ¼ xT ;
xT being the total number of molecules.
Appendix B. Computation of Markov transition matrices for leap methods

All leap methods studied in literature so far are methods that can be described by the general functional
form
bX ðt þ sÞ ¼ F ðx; bK ðx; sÞÞ;

where x ¼ bX ðtÞ,
bK ðx; sÞ ¼ ðbK 1ðx; sÞ; . . . ; bK Mðx; sÞÞ

are nonnegative integer-valued random variables whose distributions depend on x and s, and F is some func-
tion that may sometimes be implicitly defined (as in the case of the implicit and trapezoidal implicit tau meth-
ods). For all the explicit methods (including the REMM-s), F(x,k) is simply
F ðxÞ ¼ xþ
XM

j¼1

mjkj:
If the leaping method is applied with a fixed constant time step s, then bX ðnsÞ for n 2 N forms a discrete time
Markov process whose transition function bP ðx; x0; sÞ defined by
bP ðx; x0; sÞ ¼ P ðbX ðt þ sÞ ¼ x0jbX ðtÞ ¼ xÞ

may be computed from the distributions of bK jðx; sÞ. The reader may refer to [24,25] for general background on
Markov processes. Since bK j take nonnegative integer values it follows:
bP ðx; x0; sÞ ¼ X
k2ZM

þ ;x
0¼Fðx;kÞ

PðbK 1ðx; sÞ ¼ k1; . . . ; bK Mðx; sÞ ¼ kMÞ;
where k = (k1, . . . ,kM). Thus in principle for any given x 2 ZN
þ and x0 2 ZN

þ (and given s) knowing the joint
probabilities
P ðbK 1ðx; sÞ ¼ k1; . . . ; bK Mðx; sÞ ¼ kMÞ

and F (even implicitly) allows one to compute the bP ðx; x0; sÞ. For the parallely updated leap methods (this in-
cludes all methods studied in this paper except for the sequentially updated REMM-s), K1(x,s), . . . ,KM(x,s)
are independent random variables and hence
P ðbK 1 ¼ k1; . . . ; bK M ¼ kMÞ ¼ P ðbK 1 ¼ k1ÞP ðbK 2 ¼ k2Þ � � � P ðbK M ¼ kMÞ:

Since Kj(x,s) are either Poisson or binomial random variables, the probabilities P(Kj = kj) are easy to com-
pute. For a given j, if Kj is a binomial random variable the summation over kj is finite and can be performed
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exactly. When Kj is Poisson the summation is infinite. However since the Poisson probabilities P(Kj = kj) de-
cay for kj much larger than the mean value of Kj, we may approximate the sum by a suitable truncation.

In general the transition function bP ðx; x0; sÞ has noncompact support. For chemical systems that are closed
such as Sections 4.1–4.3, for a given deterministic initial condition the transition function may be effectively
reduced to have compact support, and thus to a finite matrix. When the total number of feasible states is small
(such as in Sections 4.1 and 4.3) then the computation of this matrix is quite inexpensive.
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