
Option Pricing with a Pentanomial Lattice
Model that Incorporates Skewness and
Kurtosis

JAMES A. PRIMBS*, MURUHAN RATHINAM** & YUJI YAMADA{

*Management Science and Engineering Stanford University Stanford, CA, USA, **Mathematics and

Statistics University of Maryland, Baltimore County Baltimore, MD, USA, {Graduate School of Business

Sciences University of Tsukuba Tokyo, Japan

(Received 24 August 2005; in revised form 30 December 2005)

ABSTRACT This paper analyzes a pentanomial lattice model for option pricing that
incorporates skewness and kurtosis of the underlying asset. The lattice is constructed using a
moment matching procedure, and explicit positivity conditions for branch probabilities are
provided in terms of skewness and kurtosis. We also explore the limiting distribution of this
lattice, which is compound Poisson, and give a Fourier transform based formula that can be used
to more efficiently price European call and put options. An example illustrates some of the
features of this model in capturing volatility smiles and smirks.
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Introduction

Lattices for option pricing were first introduced in 1979 in the pioneering work of Cox

et al. (1979) and Rendleman and Bartter (1979). In particular, Cox et al. used a

binomial lattice to model geometric Brownian motion and an exponential Poisson

process. An attractive property of their model is that the binomial lattice for geometric

Brownian motion is consistent with the standard Black–Scholes formula for European

options in that no mismatch occurs if a lattice is used to price an American option

where early exercise is not optimal. Since that initial work, lattices have become a

standard tool in option pricing, especially for valuing American options.

Due to the simplicity and versatility of lattice models, a number of extensions to

the basic model have been proposed. Lattices have been constructed for more than a

single underlying asset, and for more complicated models of a single underlying asset

(Rubinstein, 1998; Yamada and Primbs, 2001; Amin, 1993; Boyle, 1988). In

particular, lattice models have also been used extensively to extract implied volatility

surfaces as in the well known works of Rubinstein (1994), Derman and Kani (1994a,

b), Dupire (1994). Additionally, lattice models have been proposed as a method of
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capturing skewness and kurtosis in the underlying asset. Specifically, Rubinstein

(1994) proposed a lattice model that incorporates skewness and kurtosis by using an

Edgeworth expansion. While such models have been proposed, they are far fewer in

number than models that have been proposed for European option pricing under

skewness and kurtosis. In that area, researchers have proposed exponential Levy

process models (Carr and Madan, 1999; Chan, 1999), Edgeworth and Gram–

Charlier expansions (Corrado and Su, 1996, 1997; Jarrow and Rudd, 1988), and

others (Barndorff-Nielsen, 1998).

This paper looks at the issue of incorporating skewness and kurtosis directly in a

lattice model using a moment-matching procedure, and explores the pricing

consequences of such a model. By capturing the first four moments, this lattice

model is able to match skewness and kurtosis, and hence can produce volatility smiles

and smirks. For a range of skewness and kurtosis values, we provide explicit positivity

conditions for branch probabilities. Hence, we give a thorough characterization of this

lattice model and its features and limitations. Additionally, we analyse the possible

limits in continuous time of this model, which lead to probability distributions that can

be used to price European options in a manner consistent with the assumptions of the

lattice model. It turns out that Fourier transform techniques (Carr and Madan, 1999)

can be used to more efficiently price European options using the limiting distributions,

and those pricing formulas are derived as well. Therefore, beginning from a simple

lattice model, we develop a consistent and complete approach to pricing both

American (using the lattice) and European (using Fourier transform techniques)

options. Important aspects of this model are highlighted along the way.

The paper proceeds as follows. In the following section we develop the basic

pentanomial lattice model. Conditions for positivity of probabilities are provided.

We compute the limiting distribution in the third section. The fourth section uses

Fourier transform pricing in conjunction with the limiting distribution to present a

pricing formula for European calls and puts. The fifth section provides a numerical

example and illustrates some of the features of the model.

The Lattice Model

Since an exponential Levy process model has the form

St~S0eXt

by constructing a lattice to match Xt, exponentiation provides a lattice model for St.

Even before considering the problem of creating a lattice for the process Xt, we begin

with the more generic setup of determining a discrete random variable that matches a

given set of moments.

A Discrete Moment-matching Random Variable

We begin with the generic set-up of matching moments of a random variable X with a

discrete random variable Z. Hence, consider a random variable X. Let mj denote its jth

raw moment, mj its jth central moment, and cj its jth cumulant. We will construct a

discrete random variable Z that matches the moments of the random variable X.
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Let Z denote the discrete random variable which takes the values

Z~m1z 2l{L{1ð Þa, l~1, . . . , L with probabilities pl

where a is a parameter and m1 is the mean of X. Note that the distance between

outcomes is 2a. Hence, Z is a discrete random variable that may take on L values.

Note that this choice of values for Z is such that sums of Z correspond to a

recombining lattice.

Equations for the moments of Z. We would like to require that the moments of Z

match those of X. Using the central moments of X, this would require the following

equations to hold:

XL

l~1

2l{L{1ð Það Þjpl~mj ð1Þ

where the mj are the jth central moments of X, and m150. (The condition that m150

ensures that the mean of Z is m1.)

Matching four moments. To proceed further, let us consider matching four

moments, and choose L55. (Hence, this will ultimately correspond to a

pentanomial lattice (i.e. five branches).) We choose to focus on four moments

because in financial problems it is common to consider skewness and kurtosis of

underlying asset return distributions, which requires knowledge of the first four

moments. With four moments, one could conceivably use a quadranomial lattice (i.e.

four branches), however the recombination condition along with the requirement of

non-negative probabilities is quite limiting in terms of the range of skewness and

kurtosis that can be captured. A pentanomial lattice allows for a much wider range

of behaviour without significant additional complication, and hence is our focus.

Solving (1) for pl with l51, …, 5 gives

Z5~

m1{4a p1~
m4{4a2m2{4am3ð Þ

384a4

m1{2a p2~
{m4z16a2m2z2am3ð Þ

96a4

m1 p3~1z
{20a2m2zm4ð Þ

64a4

m1z2a p4~
{2am3{m4z16a2m2

96a4

m1z4a p5~
m4{4a2m2z4am3ð Þ

384a4

8
>>>>>>>>>><

>>>>>>>>>>:

ð2Þ

where a is still a free parameter. Note that because of symmetry we may take a>0

without loss of generality and that the choice a50 leads to a degenerate lattice.

Hence throughout the rest of this paper we shall assume that a.0. An important

question is for what values of a are all the probabilities nonnegative. The following

proposition answers this question.

Proposition 1. Provided m2m4§3m2
3 and 25m2

2§16m4 (or equivalently k>3s223 and

k§{ 23
16

, where s~
m3

m
3=2

2

denotes skewness and k~
m4

m2
2

{3 is excess kurtosis), there

Option Pricing with a Pentanomial Lattice 3



exists a range of values of a given by

1

16m2

m3z m2
3z16m2m4

� �1
2

� �
ƒaƒ

1

4m2

{2m3z2 m2
3zm2m4

� �1
2

� �
ð3Þ

that includes

â~

ffiffiffiffiffiffiffiffiffiffi
m4

12m2

r
~s

ffiffiffiffiffiffiffiffiffiffi
3zk

12

r
ð4Þ

for which all the probabilities pl, l51, …, 5, are nonnegative.

The proof of this proposition is contained in Appendix A.

Proposition 1 provides a sufficient condition for the nonnegativity of the

probabilities. Additionally, it can be shown that â will result in nonnegative

probabilities for values of m2, m3, and m4 satisfying m2m4§3m2
3 and 3m2

2§2m4 (or

equivalently k>3s223 and k§{ 3
2
,), which is slightly more inclusive than the

conditions in the proposition. However, (3) is not valid under these more inclusive

conditions. For values of excess kurtosis below { 23
16

, the conditions for

nonnegativity are more complex. We do not include these conditions as positive

excess kurtosis (k.0) is the typical situation of interest in finance, and is covered by

Proposition 1.

The proposition determines a range of allowable skewness and kurtosis values

that are compatible with a simple five branch lattice model. In fact, in the next

section when a lattice model is considered explicitly, it will determine a valid range

of skewness and kurtosis (or equivalently cumulants) that are consistent with a

lattice model. The proposition also gives conditions on the spacing between

outcomes of the random variable Z (given by the parameter a). This result

determines allowable spacing in a lattice model as well. Finally, a simple formula

for that spacing is given by â. Hence, this simple proposition provides the foundation

for the creation of a lattice model, and also determines it features and limitations.

One may attempt to carry out a similar analysis as in Proposition 1 except for

multinomial lattices with more than five branches. However, even with five branches,

the algebra required to obtain the conditions in Proposition 1 is tedious, and with

even more branches, it would require even further effort. When only skewness and

kurtosis need to be captured, the pentanomial lattice is general enough to capture

most parameter ranges of interest, and simple enough to allow for relatively clean

characterizations, as in Proposition 1. Therefore, we find the pentanomial lattice a

suitable compromise between complexity and practicality.

Creating a lattice model. Above, we have shown how to match the moments of a

random variable X with a discrete random variable Z. To convert this to a lattice

model, we first assume that Xt is a Levy process with moments. Then for any given

time t, the results of the previous section indicate how to match the moments of Xt

with a discrete random variable Z(t). Since Xt is a Levy process, its cumulants scale

linearly with time, and hence we may specify its cumulants at any time t by specifying

its yearly cumulants. That is, let cj be the jth cumulant of X1, then the jth cumulant of

Xt is cjt.
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Let t be an increment in t that represents the step size of the lattice. To create a

lattice model we model each increment Xt with the discrete random variable Z(t)

that matches its moments (and cumulants). This corresponds to the following

recombining lattice model.

Lattice Model

Let S0 be the initial underlying price. Then a lattice model approximating St~S0eXt

is given by Sn tð Þ~S0 exp
Pn

k~1 Zk tð Þ
� �

where n denotes the number of time steps of

size t and the Zk(t) are iid random variables distributed as

Z tð Þ~

c1t{4a p1 tð Þ~ c4tz3c2
2

tð Þ2{4a2c2t{4ac3tð Þ
384a4

c1t{2a p2 tð Þ~ { c4tz3c2
2

tð Þ2ð Þz16a2c2tz2ac3tð Þ
96a4

c1t p3 tð Þ~1z
{20a2c2tz c4tz3c2

2
tð Þ2ð Þð Þ

64a4

c1tz2a p4 tð Þ~ {2ac3t{ c4tz3c2
2

tð Þ2ð Þz16a2c2t

96a4

c1tz4a p5 tð Þ~ c4tz3c2
2

tð Þ2ð Þ{4a2c2tz4ac3tð Þ
384a4

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð5Þ

Figure 1 shows one step of length t of the lattice.

Since the lattice model above is stated in terms of cumulants of Xt, we also restate

the positivity condition of Proposition 1 in terms of cumulants.

.

Figure 1. One step of the pentanomial lattice
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Proposition 2. Provided

c4c2§3c2
3{3c3

2t and c4§{
23

16
c2

2t ð6Þ

there exists a range of values of a given by

1

16c2t
c3tz c2

3t2z16c2t c4tz3c2
2t2

� �� �1
2

� �
ƒaƒ

1

4c2t
{2c3tz2 c2

3t2zc2t c4tz3c2
2t2

� �� �1
2

� �
ð7Þ

which includes

â~
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2tz

c4

3c2

r
ð8Þ

for which the probabilities pl, l51, …, 5, are non-negative.

By stating these results in terms of the cumulants of the process Xt, this shows how

the conditions scale with the time step t. In particular, we are interested in the limit

as tR0.

Limits of the Lattice Model

In this section we consider the limits in continuous time of the lattice model as tR0.

For this purpose, we assume that the third and fourth cumulants c3 and c4 are not

both zero. If they are zero then it is well known that the lattice will converge to a

geometric Brownian motion.

For this discrete model to have a limit in continuous time, the positivity condition

must be feasible as tR0. In the limit, (6) becomes

c4c2§3c2
3 and c4§0 ð9Þ

Hence, we further assume that (9) holds. Note that the requirement of c4>0 is

equivalent to the assumption of nonnegative excess kurtosis.

We would like this lattice to have a well defined limit as the step size approaches

zero. Therefore, we also assume that a has a limit as tR0. Let us denote this limit by

a05limtR0 a where it must fall in the range specified by Equation 7.

To proceed, let us define l and the new probabilities q1, q2, q4, q5 in terms of the

branch probabilities as follows:

limt?0 1=tð Þp1 tð Þ~ {4a2
0
c2{4a0c3zc4ð Þ

384a4
0

~lq1

limt?0 1=tð Þp2 tð Þ~ 16a2
0
c2z2a0c3{c4

96a4
0

~lq2

limt?0 1=tð Þ p3 tð Þ{1ð Þ~ {20a2
0
c2zc4ð Þ

64a4
0

~{l

limt?0 1=tð Þp4 tð Þ~ 16a2
0
c2{2a0c3{c4

96a4
0

~lq4

limt?0 1=tð Þp5 tð Þ~ {4a2
0
c2z4a0c3zc4ð Þ

384a4
0

~lq5

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:
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Therefore,

q1zq2zq4zq5~1

If we use â as given in (8) then these quantities simplify to

l~
3c2

2

2c4

q1~
1

6
1{c3

ffiffiffiffiffiffiffiffiffi
3

c2c4

s !

q2~
1

3
1zc3

ffiffiffiffiffiffiffiffiffi
3

c2c4

s !

q4~
1

3
1{c3

ffiffiffiffiffiffiffiffiffi
3

c2c4

s !

q5~
1

6
1zc3

ffiffiffiffiffiffiffiffiffi
3

c2c4

s !

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

ð10Þ

In the limit one might guess that Z(t) approximates the increment of a compound

Poisson process given by

c1tz
XNt

k~0

Wk

where Nt is a Poisson process with intensity l and the Wk are iid random variables

with the distribution

Wk~

{4a0 with probability q1

{2a0 with probability q2

2a0 with probability q4

4a0 with probability q5

8
>>><

>>>:
ð11Þ

This is indeed the case, as presented in the following:

Proposition 3. Consider a fixed interval [0, T ] of time in which the number of steps

n may be increased. Thus the step size is t5T/n. We are interested in the random

variable at time T given by

Xn~
Xn

k~1

Zk tð Þ

Then as nR‘, Xn converges in distribution to

c1Tz
XNT

k~0

Wk ð12Þ

Option Pricing with a Pentanomial Lattice 7



where NT is a Poisson random variable with mean lT and the Wk are iid random

variables given by (11).

For the proof of this proposition, see Appendix B.

This proposition provides us with the distribution to use to price European

options that is consistent with the lattice model. Next, we employ Fourier transform

techniques as in Carr and Madan (1999) to efficiently compute the price of European

options. For that purpose, the characteristic function of the distribution must be

known. For the random variable given by (12), the characteristic function or the

Fourier transform (Breiman, 1992) is given by

wT uð Þ~eiuc1T exp lT
X

l[ 1, 2, 4, 5f g
ql eiu 2l{6ð Þa{1
� �

0
@

1
A ð13Þ

This will be used in the following section on pricing European calls and puts.

Pricing European Calls and Puts with the Fourier Transform

In this section, we follow the work of Carr and Madan (1999) on option pricing

using the Fourier transform. The Fourier transform approach is particularly useful

when the Fourier transform of the risk neutral probabilities is known. Our case only

differs slightly from Carr and Madan (1999) in that we have a discrete distribution

and therefore use the discrete Fourier transform.

Let qT (n) denote the discrete risk neutral probability distribution of the random

variable given in (12). Using the limiting distribution in (12) as the risk neutral

probabilities, the value of a call option is simply given as a discounted expectation of

the payoff. This is given by

CT k, K
� �

~e{rT
X?

n~k

ec1Tz2a0n{K
� �

qT nð Þ ð14Þ

where k̄ is the smallest integer greater than

ln K=Sð Þ{c1T

2a0

� �

Since the approach is similar to Carr and Madan (1999), we present the pricing

formula below and leave the details of the derivation to Appendix C.

Fourier Transform Pricing Formula

The value of a non-dividend paying European call option on an underlying modeled

as S0eXt with initial price S0, distribution of Xt at expiration T of (12), and strike

price K may be computed as

CT k, K
� �

~
e{bk

2p

Z p

{p

y u, Kð Þe{iukdu ð15Þ

8 J. A. Primbs et al.



where b.0 is a parameter used to make the Fourier transform well defined,

y u, Kð Þ~e{rT 1

1{e{ bziuð Þ

� �
S0ec1T w {iðbz2a0ziu

2a0

� �
{Kw {iðbziu

2a0

� �� 	
ð16Þ

and

w uð Þ~E eiuX

 �

~
X?

n~{?

eiu2a0nqT nð Þ~exp lT
X

l[ 1, 2, 4, 5f g
ql e 2l{6ð Þa0iu{1
� �

0

@

1

A ð17Þ

is the moment generating function of the limiting distribution in (12).

Remark: Since the formula is given in terms of a Fourier transform, the fast

Fourier transform algorithm may be used to efficiently evaluate the price. Using the

fast Fourier transform in this context was introduced by Carr and Madan (1999).

In the above formula, we need to input the drift (c1) of the Levy process Xt in a risk

neutral world. To determine this value when the underlying asset does not pay a

dividend, note that c1 should be chosen so that the following risk neutral condition is

satisfied

erT~E eXT

 �

~w {ið Þ~exp c1Tð Þexp lT
X

l[ 1, 2, 4, 5f g
ql e 2l{6ð Þa0{1
� �

0

@

1

A

which, upon solving for c1, gives

c1~r{l
X

l[ 1, 2, 4, 5f g
ql e 2l{6ð Þa0{1
� �

Numerical Examples

In this section we demonstrate features of the pentanomial lattice model for option

pricing. In particular we use the model to generate volatility smiles and smirks for

European call options.

We consider two cases. The first involves a non-dividend paying underlying asset

with daily skewness and excess kurtosis values of

s~0, k~3

The yearly volatility is s50.2, the risk-free rate is assumed to be zero, and we used

times to expiration of 20, 50, and 100 days with a convention of 250 trading days in a

year. The resulting volatility smiles are shown in Figure 2.

The underlying limit of the lattice corresponds to the compound Poisson process

given in (12). Proposition 2 provides an allowable range for a. For these parameter

values, a may lie between

a[ 0:0055, 0:0110½ � ð18Þ

Option Pricing with a Pentanomial Lattice 9



and â~0:0063. Additionally, the intensity of the limiting process is l5125, and the

probabilities are q150.1667, q250.3333, q450.1667, q550.3333.

The second case considered uses a daily skewness and excess kurtosis of

s~0:5, k~3

The rest of the parameter values were kept the same. These results are shown in

Figure 3. In this case, the allowable range for a is given by

a[ 0:0059, 0:0082½ � ð19Þ

and â~0:0063. The intensity of the limiting process is l5125, and the jump

probabilities are q150.0833, q250.5000, q450.1667, q550.2500.

These examples demonstrate that this simple lattice model is able to model a wide

range of volatility smiles and smirks. However, some features of the model also

emerge. An important artefact of the model and its limit as a compound Poisson

process is that the minimum change in value of the underlying asset is determined by

the allowable range of a. In these two numerical examples, this range is given in (18)

and (19). This puts an explicit limit on the fidelity of the model, and this can be a

limitation especially in cases that exhibit large kurtosis.

Conclusions

In this paper we have analysed a pentanomial lattice model that incorporated

skewness and kurtosis. We also determined conditions on skewness and kurtosis

Figure 2. Implied volatility plots under excess kurtosis. Parameter values: rf50, s50.2, s50,
and k53

10 J. A. Primbs et al.



under which this model could be taken to a limit in continuous time. We derived the

limiting distribution to be a compound Poisson distribution. Finally, we presented a

formula using Fourier transform techniques to more efficiently and consistently

compute European option prices under the limiting distribution. Hence, this

provides a consistent model for computing American and European option prices

under skewness and kurtosis. These results also indicate that a compound Poisson
process may be a reasonable choice for a model of an underlying asset where it is

desired to have American and European options priced simply, efficiently, and

consistently.
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Appendix A. Positivity Condition

In this section we prove Proposition 1 by determining the range of a over which all of

the branch probabilities are nonnegative. Clearing denominators in (2) leads to the

following conditions

m4{4a2m2{4am3§0 ð20Þ

{m4z16a2m2z2am3§0 ð21Þ

64a4{20a2m2zm4§0 ð22Þ

{m4z16a2m2{2am3§0 ð23Þ

m4{4a2m2z4am3§0 ð24Þ

First, consider condition (22) and note that it does not depend on m3. Minimizing

(22) over a leads to a2~ 5
32

m2. Plugging this back into (22) gives the condition m4

m2
§

25
16

for nonnegativity. Therefore, requiring that m4

m2
§

25
16

ensures that p3 is nonnegative.

Now, let’s consider the other conditions, (20), (21), (23), and (24). Without loss of

generality, we assume skewness (hence m3) is positive (otherwise, we simply flip the

distribution). The roots of these equations lead to
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aƒ

1

4m2

{2m3z2 m2
3zm2m4

� �1
2

� �� 	

a§

1

4m2

{2m3{2 m2
3zm2m4

� �1
2

� �� 	

a§

1

16m2

{m3z m2
3z16m2m4

� �1
2

� �� 	

a§

1

16m2

{m3{ m2
3z16m2m4

� �1
2

� �� 	

a§

1

16m2

m3z m2
3z16m2m4

� �1
2

� �� 	

a§

1

16m2

m3{ m2
3z16m2m4

� �1
2

� �� 	

aƒ

1

4m2

2m3z2 m2
3zm2m4

� �1
2

� �� 	

a§

1

4m2

2m3{2 m2
3zm2m4

� �1
2

� �� 	

The most constraining conditions are

1

16m2

m3z m2
3z16m2m4

� �1
2

� �
ƒaƒ

1

4m2

{2m3z2 m2
3zm2m4

� �1
2

� �
ð25Þ

which defines an allowable range of the parameter a. Now, let us employ the
following parameterization. Take b2m2m4~m2

3. If we substitute this parameterization

into both sides of (25) we obtain

m2m4ð Þ1=2

16m2

bz b2z16
� �1

2

� �
ƒaƒ

m2m4ð Þ1=2

4m2

{2bz2 b2z1
� �1

2

� �

Both sides are equal when b~ 1ffiffi
3
p , and the inequality is true for bƒ

1ffiffi
3
p . Hence, we

have feasibility if bƒ
1ffiffi
3
p or m2m4§3m2

3. Furthermore a~
ffiffiffiffiffiffiffi

m4

12m2

q
is a feasible choice.

This proves Proposition 1.

Appendix B. Convergence Proof

Here we prove a theorem which is stronger than Proposition 3. We consider a

pentanomial lattice model in the time interval [0, T]. Denote by T a ‘mesh’ of a finite

number of time steps in the interval [0, T ]:

T : 0~s0vs1 � � �vsN~T

Option Pricing with a Pentanomial Lattice 13



Let tj5sj2sj21 for j51, …, N denote the step sizes. We shall assume sj and hence tj

are all deterministic. We shall denote by Tj j the largest step size:

Tj j~max tj j~1, . . . , Nj
� 


For a given mesh T define nt by

nt~max n snƒtjf g

We shall define the lattice process corresponding to mesh T to be

X̂ tð Þ~
Xnt

j~1

Zj

for all tg[0, T], where the increments Zj are given by

P Zj~c1tjz 2l{L{1ð Þa tj

� ��� 

~pl tj

� �
, l~1, . . . , L

Thus the process X̂ tð Þ by definition has sample paths that are continuous from the

right with left-hand limits.

Let X(t) be the process with sample paths that are continuous from the right with

left-hand limits, defined by

X tð Þ~X 0ð Þzc1tz
XNt

j~1

Wj

where Nt is the Poisson process with intensity l defined by (10) and Wj are iid

random variables defined by (11).

Consider any finite set of time points

0~t0vt1vt2v � � �vtmƒT

Define the increments

Yi~X tið Þ{X ti{1ð Þ,Ŷi~X̂ tið Þ{X̂ ti{1ð Þ, i~1, . . . , m

For an R-valued random variable A we shall denote its characteristic function by fA.

Thus

fA uð Þ~E eiuA
� �

Lemma 1. For each ugR and i51, …, m there exist di(u).0 and Ci(u).0 such that

f ^
Yi

uð Þ{fYi
uð Þ

���
���ƒCit

for all meshes T such that t~ Tj jvdi.

Proof. For brevity we denote fYi
by fi and f ^

Yi
by f̂i. From the definition, Yi is the

sum of c1(ti2ti21) and four independent Poisson random variables with means qll
for l51, 2, 4, 5 where ql are as defined in (10). It follows that

14 J. A. Primbs et al.



log fi uð Þ~iuci ti{ti{1ð Þz
X5

l~1, l=3

qll ti{ti{1ð Þ e 2l{6ð Þia0u{1
� �

It also follows from the definition that

Ŷi~
Xnti

j~nti{1
z1

Zj

where Zj are the iid random variables defined earlier. Thus

log
^
fi uð Þ~

Xnti

j~nti{1
z1

log fZj
uð Þ

From the definition of Zj it follows that

log fZj
uð Þ~ic1tju

zlog p3 tj

� �
ze{4ia tjð Þup1 tj

� �
ze{2ia tjð Þup2 tj

� �
ze2ia tjð Þup4 tj

� �
ze4ia tjð Þup5 tj

� �n o

where p1, …, p5 are as defined in (5). Note that for each fixed u[R, log fZj
uð Þ is an

analytic function of tj in a neighbourhood of tj50. First we obtain the Taylor

expansion of the terms inside the log in the above equation to obtain

p3 tj

� �
~1{ltjzO t2

j

� �

e{4ia tjð Þup1 tj

� �
~lq1e{4ia0utjzO t2

j

� �

e{2ia tjð Þup2 tj

� �
~lq2e{2ia0utjzO t2

j

� �

e2ia tjð Þup4 tj

� �
~lq4e2ia0utjzO t2

j

� �

e4ia tjð Þup5 tj

� �
~lq5e4ia0utjzO t2

j

� �

Using the fact that log(1+z)5z+O(z2) we obtain

log f̂i uð Þ{log fi uð Þ
���

���ƒ c1uj j
Xnti

j~nti{1
z1

tj

0
@

1
A{ ti{ti{1ð Þ

������

������

z
X5

l~1, l=3

qll e 2l{6ð Þia0u{1
� ������

�����
Xnti

j~nti{1
z1

tj

0

@

1

A{ ti{ti{1ð Þ

������

������

z
Xnti

j~nti{1
z1

Kjt
2
j
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which holds for tj.0 small enough, and Kj.0. Thus we obtain

log
^
fi uð Þ{log fi uð Þ

���
���ƒDit

for all meshes T for which t~ Tj j is sufficiently small. The quantity Di.0 depends

on ti21 and ti as well as u. By continuity of the exponential function the claim

follows.

Without loss of generality let us assume that X 0ð Þ~X̂ 0ð Þ~0 with probability 1.

Then using Lemma 1 we may prove that all the finite dimensional distributions of

the processX̂ converge to that of X with order O(t). Here is a precise statement and

proof.

Theorem 1. Let 0(t1,t2,…,tm(T be any finite set of time points. Let F̂ and F

be the multivariate characteristic functions defined by

F u1, . . . , umð Þ~E ei
Pm

i~1
uiX tið Þð Þ

� �

and

F̂ u1, . . . , umð Þ~E ei
Pm

i~1
uiX̂ tið Þ

� �� �

Then for each (u1, …, um)gRm there exist C.0 and d.0 such that

F̂ u1, . . . , umð Þ{F u1, . . . , umð Þ
���

���ƒCt

for all meshes T such that t~ Tj jvd.

Proof. Assuming X 0ð Þ~X̂ 0ð Þ~1, from the independent increment property of

both X and X̂ we see that

F u1, . . . , umð Þ~fY1
u1ð Þ . . . fYm

umð Þ

and

F̂ u1, . . . , umð Þ~f ^
Y1

u1ð Þ . . . f ^
Ym

umð Þ

The theorem follows by the application of Lemma 1.

It is clear that Theorem 1 implies Proposition 3.

Appendix C. Fourier Transform Pricing

In this section, we derive the Fourier transform based pricing formula given

in Equations 15–17. The basic approach is to apply a discrete Fourier transform in

k̄ to Equation 14. Similar to Carr and Madan (1999), we must first multiple this by

ebk with b.0 in order to guarantee existence of the discrete Fourier transform and

write
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cT k, K
� �

~ebkCT k, K
� �

~ebk
X?

n~k

e{rT S0ec1Tz2a0n{K
� �

qT nð Þ ð26Þ

Now, we simply compute the Fourier transform of the modified cT(k̄, K). This is

given by

y u, Kð Þ~
X?

k~{?

eiukcT k, K
� �

~
X?

k~{?

eiuk
X?

n~k

ebke{rT S0ec1Tz2a0n{K
� �

qT nð Þ

~e{rT
X?

n~{?

qT nð Þ
Xn

k~{?

e bziuð Þk S0ec1Tz2a0n{K
� �

~e{rT
X?

n~{?

qT nð Þ
X?

k~0

e bziuð Þ n{kð Þ S0ec1Tz2a0n{K
� �

~e{rT
X?

n~{?

qT nð Þe bziuð Þ nð Þ S0ec1Tz2a0n{K
� �X?

k~0

e{ bziuð Þk

~e{rT
X?

n~{?

qT nð Þe bziuð Þ nð Þ S0ec1Tz2a0n{K
� � 1

1{e{ bziuð Þ

� �

~e{rT 1

1{e{ bziuð Þ

� � X?

n~{?

qT nð Þe bziuð Þ nð Þ S0ec1Tz2a0n{K
� �

~e{rT 1

1{e{ bziuð Þ

� � X?

n~{?

qT nð ÞS0ec1T e bz2a0ziuð Þ nð Þ{
X?

n~{?

qT nð Þe bziuð Þ nð ÞK

 !

~e{rT 1

1{e{ bziuð Þ

� �
S0ec1T w {i

bz2a0ziu

2a0

� �� �
{Kw {i

bziu

2a0

� �� �� 	

ð27Þ

where

w uð Þ~E eiuX

 �

~
X?

n~{?

eiu2a0nqT nð Þ~exp lT
X

l[ 1, 2, 4, 5f g
ql e 2l{6ð Þa0iu{1
� �

0
@

1
A

To compute the price of the option, we compute the inverse Fourier transform of the

result in (27), and remove the ebk term. We can do this using the fast Fourier

transform and furthermore, since it is a discrete Fourier transform, the integral is
limited to be between [2p, p]. Hence prices are given by

CT k, K
� �

~
e{bk

2p

Z p

{p

y u, Kð Þe{iukdu
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