
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Stanford University]
On: 28 September 2010
Access details: Access Details: [subscription number 918549937]
Publisher Routledge
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Applied Mathematical Finance
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713694021

Trader Behavior and its Effect on Asset Price Dynamics
James A. Primbsa; Muruhan Rathinamb

a Management Science and Engineering, Stanford University, Stanford, CA, USA b Mathematics and
Statistics, University of Maryland, Baltimore, MD, USA

Online publication date: 24 June 2010

To cite this Article Primbs, James A. and Rathinam, Muruhan(2009) 'Trader Behavior and its Effect on Asset Price
Dynamics', Applied Mathematical Finance, 16: 2, 151 — 181
To link to this Article: DOI: 10.1080/13504860802583444
URL: http://dx.doi.org/10.1080/13504860802583444

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713694021
http://dx.doi.org/10.1080/13504860802583444
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Trader Behavior and its Effect on Asset
Price Dynamics
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ABSTRACT In this paper, we present a natural mathematical framework to model trader
behavior as a continuous time discrete event process, and derive stochastic differential equations
for aggregate behavior and price dynamics by passing to diffusion limits. In particular, we model
extraneous, value, momentum and hedge traders. Through analysis and numerical simulation we
explore some of the effects these trading strategies have on price dynamics.

KEY WORDS: Trader behavior, price dynamics, stock pinning, diffusion limit, Poisson random
measure

1. Introduction

Market prices are determined by individual market participants that submit buy and

sell orders at random times. These market participants use a range of strategies to

determine the time and size of each trade. Thus, it is the interaction of many traders

with diverse trading strategies that ultimately determines the price dynamics of a

financial asset. However, in many areas of finance, price dynamics are modeled

exogenously and traders are price takers that do not influence price dynamics. Thus,

market dynamics are considered from a phenomenological viewpoint. Hence, an

important area of investigation is whether phenomenological models can be

consistently and profitably connected with more detailed models of price dynamics

that stem from fundamental properties of trader behavior.

In this paper, our goal is to develop a framework for a first principles model of

price dynamics that begins from an explicit assignment of trader behavior and yet

under reasonable assumptions can be simplified to a relatively low order stochastic

dynamics model. Thus, we seek a mathematical bridge between the low order

phenomenological models often encountered in financial engineering, and the agent-

based models used in simulated markets (LeBaron, 2001). While the goal of

Correspondence Address: James A. Primbs, 444 Terman Engr. Ctr., Management Science and Engineering,

Stanford University, Stanford, CA 94305-4026, USA. Email: japrimbs@stanford.edu

Applied Mathematical Finance,

Vol. 16, No. 2, 151–181, April 2009

1350-486X Print/1466-4313 Online/09/020151–31 # 2009 Taylor & Francis

DOI: 10.1080/13504860802583444

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
t
a
n
f
o
r
d
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
2
0
:
3
0
 
2
8
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



providing a seamless connection between these domains is overly ambitious, this

paper contributes in that direction by proposing a framework in which four different

classes of trader behavior are modeled, and aggregate behavior is obtained in terms

of a low dimensional diffusion process.

One approach to exploring the range of price dynamics that can arise from the

complex interactions of heterogeneous traders is to use a simulated market
environment in which individual agents can be assigned complex trading rules.

One of the best known examples of this approach is the Santa Fe Artificial Stock

Market (LeBaron, 2002). Broadly speaking, such an approach falls under the

category of agent-based models of markets (Farmer and Joshi, 2002; LeBaron, 2000,

2001; Lux, 1997; Raberto et al., 2001). This approach has the advantage of allowing

for complicated rule-based behavior assignments, but analysis of resulting dynamics

can be challenging. An example of this is the work of Chiarella and Iori (2002) where

fundamentalist, chartist and noise traders are analyzed in a simulated order-driven
market. In an option pricing context, Qiu et al. (2007b) use an agent-based market of

speculators and arbitrageurs to explore the origins of volatility smiles. In certain

cases, simplifications of the dynamics result from aggregation of groups of traders.

An alternate approach to agent-based simulated markets is to use low dimensional

analytic models of trader behavior. This can allow for a more transparent connection

between model parameters and resulting dynamics. Examples of this include the

work of Farmer (2000) and Farmer and Joshi (2002), who use a discrete event model

in discrete time to explore various trading strategies. Other work that explicitly
considers trader feedback effects either from hedging or in illiquid market settings is

that of Frey and Stremme (1997), Platen and Schweizer (1998), Sircar and

Papanicolaou (1998), Schonbucher and Wilmott (2002) and Avellaneda and

Lipkin (2003). Our work starts from a discrete event model similar to Farmer

(2000), however we allow these events to happen at random times. We then make use

of simplifying assumptions to obtain lower order stochastic differential equation

models via diffusion limits.

Our market is populated with four classes of traders. The first class is referred to
as extraneous traders, and are those who trade for reasons not based upon market

conditions or prices. The next class is value traders. These traders refer to a perceived

‘true value’ to determine their buy and sell decisions. Thus, value traders are likely to

purchase a stock that they perceive to be ‘undervalued’ and sell a stock that they

perceive to be ‘overvalued’. The third class of traders are momentum traders.

Momentum traders use past price action to compute a measure of the ‘trend’ of

prices. They then seek to take advantage of the trend by purchasing when price

momentum is positive, and selling when price momentum is negative. The final class
of traders are known as hedge traders. These are traders that hold a position in

options, and trade the underlying stock in order to hedge their option holdings. We

assume they trade the stock according to a Black–Scholes-based delta hedging

strategy.

In our discrete event continuous time market model, each trader’s demand process

is modeled mathematically as driven by Poisson random measures, and each buy and

sell event has the effect of moving the price proportional to the size of the trade.

Hence, we use a linear price formation rule governed by a liquidity parameter as in
Avellaneda and Lipkin (2003) and Farmer (2000). An alternative would be to use an

152 J. A. Primbs and M. Rathinam

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
t
a
n
f
o
r
d
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
2
0
:
3
0
 
2
8
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



explicit market clearing condition as in Frey and Stremme (1997) or Schonbucher

and Wilmott (2000). We favor the linear price formation rule since market makers

are not explicitly modeled as a class of traders. We also note that, for mathematical

tractability, we use a Poissonian model, but a growing body of research is indicating

that the time between human events is not Poissonian (Johansen, 2004; Vazquez et al.,

2006) and this includes inter-trade times in financial markets (Ivanov et al., 2004;

Masoliver et al., 2003; Palatella et al., 2004; Scalas et al., 2004, 2005; Silva and

Yakovenko, 2007). From our discrete event model for price dynamics, we proceed

by aggregating trading classes and taking diffusion limits that simplify the model

to a set of Ito diffusions. While in principle our framework can accommodate

heterogeneous agents within a class of traders, to aggregate and obtain diffusion

limits we make assumptions of homogeneity. With the resulting diffusion model,

we analyze and simulate the effects of trading strategies on price dynamics using

parameters calibrated to market data. We use a mix of both analytics and

simulations to explore the effects of value, momentum and hedge trading. In

particular, we consider the stability and stochastic volatility consequences of value

and momentum traders, and the stock pinning phenomenon that arises due to

hedging.

The paper is organized as follows. Section 2 develops the basic mathematical

model, including models of extraneous, value, momentum and hedge traders. It also

justifies the diffusion limit and resulting Ito diffusion equations. Section 2 analyzes

the effects of trading strategies in the diffusion model. Both analytic techniques and

simulation are used to explore price dynamics. Finally, Section 3 provides

conclusions.

2. Mathematical Model

2.1 Discrete Event Model

Our basic model involves discrete trade events of a continuous range of sizes

happening in continuous time, all in a stochastic manner. Suppose there are a total of

n traders excluding the market maker. We assume that all traders buy or sell shares

of a given stock from or to the market maker. Let Ni
t be the process counting the

number of trades by the ith trader. The trading activity of the ith trader is uniquely

characterized by a sequence Ti
j , Ci

j

� �
, j51, 2, …, of random trade times Ti

j and

random trade sizes Ci
j : Ti

j is the time at which the jth trade by the ith trader occurs.

Ci
j stands for the number of units (shares) that the ith trader purchased (or sold if

negative) at time Ti
j . We assume without loss of generality that Ti

j vTi
jz1 for all i and

j. We shall also assume that Ti1
j1
=Ti2

j2
almost surely for all j1, j2 when i1?i2. In other

words, at any given time instant, at most one trader is involved in a trade. The

aggregate trade process, which we also call the aggregate demand process for the ith

trader, is denoted by X i
t and stands for the number of units (shares) that the ith

trader has purchased (or sold if negative) by time t in the net balance:

X i
t ~X i

0z
XNi

t

j~1

Ci
j :
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We shall denote by pt the log of the stock price. In addition to X i
t and pt, we shall

introduce trader-specific processes Zi
t which carry information about a given trader’s

strategy.

The processes Ni
t , X i

t , Zi
t and pt are considered to be carried by and adapted to a

filtered probability space V, F , F tf g, Pð Þ.
We shall assume the processes X i

t to be conditionally independent compound

Poisson processes. By this we mean that, conditioned on F t{ (all events prior to time

t), X i
t for i51,…,n are independent, and each process X i

t has a stochastic

jump intensity and a jump size distribution (a probability measure on R of trade

sizes) both of which are assumed to be functions determined by time t, the log stock

price pt2 just prior to time t and the value of the trader-specific variable Zi
t{ just

prior to t.

This situation may be stated precisely in terms of a Poisson random measure. We

refer the reader to Appendix A for some basics on Poisson random measures. More

details may be found in Bitchteler (2002), Jacod and Shiryaev (2003) and Applebaum

(2004). Let mi for i51, …, n be independent Poisson random measures on

Rz|Rz|R with intensity measures of the form dt6da6ni, respectively, where

dt and da indicate the Lebesgue measures on the time and jump rate spaces and ni are

probability measures on R describing the jump size distribution. The X i
t are then

assumed to be given by

X i
t ~X i

0z

Z

s [ 0, tð �

Z

a [ 0, ?½ Þ

Z

y [R

1 0vaƒri ps{, Zi
s{ð Þf g

|Ki s, ps{, Zi
s{, y

� �
mi ds, da, dyð Þ, i~1, . . . , n: ð1Þ

These describe what we call conditional compound Poisson processes with stochastic

intensities Ri
t~ri pt{, Zi

t{

� �
which determine the rates at which trades occur, and the

kernel functions Ki : Rz|R|R|R?R (assumed to be non-vanishing except on a

set of measure zero and continuous on the first argument) which determine the trade

size.

For the rest of our discussion in this paper, we shall assume that ri(p, Z)5Ri are

constants for i51, …, n. This lets us simplify the model, allowing us to consider the

Poisson random measures mi to be measures on Rz|R (eliminating the ‘jump rate’

variable a) with intensity measures Ri dt6ni(dy), and Equation (1) can be written as

X i
t ~X i

0z

Z t

0

Z

R

Ki s, ps{, Zi
s{, y

� �
mi ds, dyð Þ, i~1, . . . , n: ð2Þ

Note that
R t

0
shall stand for

R
0, tð � throughout this paper. This definition implies that

X i
t are cadlag (sample paths are continuous from the right with left-hand limits), and,

furthermore, X i
t are pure jump processes in the sense that sample paths are constant

between their jumps. Also note that the Poisson random measure mi with intensity

measure Ri dt6ni(dy) can be equivalently characterized by the point process

Ti
j , Y i

j

� �
; j [N, where the time between trades Ti

jz1{Ti
j is exponentially distributed

with rate parameter Ri and the random variables Y i
j for j [N are independent and

identically distributed real valued random variables with associated probability
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measure ni on R. It may be noted that (2) may be written in summation form

X i
t ~X i

0z
XNi

t

j~1

Ki Ti
j , pTi

j
{, Zi

Ti
j
{, Y i

j

� �
, i~1, . . . , n, ð3Þ

where

Ni
t~

Z t

0

Z

y [ R

mi ds, dyð Þ, i~1, . . . , n, ð4Þ

which is also equivalently written as

Ni
t~max jjTi

j ƒt
n o

:

The trader-specific processes Zi
t follow a dynamics that is dependent on the process

pt and possibly on an external source of information which we model by processes

which are also assumed adapted to the same filtration.

2.2 Types of Traders

Now we shall describe certain types of traders that we study in this paper, and the

corresponding appropriate forms for Zi
t, the equations driving them as well as

the functional forms for the trade size functions Ki. We consider four types of

traders: extraneous, value, momentum and hedge. We shall see that suitable

assumptions allow us to aggregate all the trader-specific variables Zi into one

variable within each category of traders leading to a fewer number of variables for

our model.

2.2.1 Extraneous Traders. The simplest case of traders is a collection of traders, all

of whom trade in a manner independently of the log asset price pt, time t and of each

other. This may be captured by setting Ki(t, p, z, y)5y, which leads to

X i
t being compound Poisson processes. Thus the aggregate demand of all such

traders X e
t ~X 1

t z � � �zX ne
t (where ne is the number of extraneous traders) is given by

X e
t ~X e

0z
Xne

i~1

Z t

0

Z

R

y ui ds, dyð Þ,

where mi for i51, …, ne are independent Poisson random measures with intensity Ri

dt6ni(dy). Thus the ith extraneous trader trades at a Poisson rate Ri and his or her

trade sizes are all independent and identically distributed with probability measure ni.

The aggregate demand can be rewritten as

X e
t ~X e

0z

Z t

0

Z

R

y me ds, dyð Þ, ð5Þ

where me~m1z � � �zmne is the aggregate Poisson random measure, which has intensity

measure neR
e dt6ne(dy), where

Re~

Pne

i~1 Ri

ne

,
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and

ne~
Xne

i~1

Ri

Re
ni,

which follows from the independence assumption on m1, . . . , mne . Thus we note that it

is possible to aggregate the extraneous traders into one equation purely based on the

independence assumption and also note that there is no trader-specific Z variable for

this case.

Note that ne is the probability measure on R which describes the trade size

distribution of a randomly chosen extraneous trade event and Re is the average rate

of trading for a randomly chosen extraneous trader. For later use we shall denote the

first moment of ne by Ce
1 and the square root of the second moment by Ce

2. Thus

Ce
1~

Z
R

y ne dyð Þ, Ce
2

� �2
~

Z
R

y2 ne dyð Þ: ð6Þ

2.2.2 Value Traders. Value traders are those traders who believe that the asset has

a true value Vt which may or may not be equal to its price Pt. These traders believe

that eventually the asset price Pt shall revert to its perceived to be true value Vt. The

perceived value Vi
t may vary trader to trader. But often it is based on some common

source of information. Thus we make the simplifying assumption that V i
t is

independent of i.

Furthermore, we model them as having trade sizes in proportion to the

discrepancy between the log market price pt and the log perceived price

vt5log(Vt). To capture this, we choose Ki(t, p, z, y)5Cvz where z5v2p is the

discrepancy and Cv is some proportionality constant independent of i. The

assumption of a common proportionality constant leads to Ki being independent

of i and allows us to aggregate the Poisson random measures. We may write the
aggregate demand X v

t of value traders as

X v
t ~X v

0z

Z t

0

Z

y [R

Cv vs{{ps{ð Þmv ds, dyð Þ,

where mv is the aggregate Poisson random measure corresponding to the value
traders and we take it to have intensity measure nvR

v dt6nv(dy) where nv is the total

number of value traders and Rv is the average rate of trading of a randomly chosen

value trader. Define Nv
t to be the Poisson process that counts the total number of

trades by all value traders. Thus

Nv
t ~

Z t

0

Z

y [R

mv ds, dyð Þ,

and we may rewrite the equation for X v
t as

X v
t ~X v

0z

Z t

0

Cv vs{{ps{ð ÞdNv
s nvRvð Þ, ð7Þ

where we have used the notation Nv
t nvR

vð Þ to denote the fact that Nv
t has (constant)
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intensity nvR
v. The integral in (7) is to be interpreted as the Lebesgue–Stieltjes

integral.

It is possible to explore different forms for the true value process vt. In this paper

we shall model the movement of vt by a Brownian motion for simplicity. Thus we set

vt~v0zs0Wt,

where Wt is a standard Brownian motion independent of Nv
t . Hence, the perceived

value Vt~evt follows a geometric Brownian motion and is independent of Nv
t .

2.2.3 Momentum Traders or Trend Followers. Momentum traders or trend

followers are traders who look to past price action as an indication of future price

movement. These traders base current trades on the perceived momentum of past

prices. We set up a basic model of momentum trading. We assume that the

momentum traders will determine their demand for the asset by computing an

exponentially weighted average of past increments in log prices. This weighted

average, called momentum, serves as an indicator of the trend.

We begin by defining a quantity ji
t that serves as the Zi variable in (2) and captures

the momentum by

ji
t~

Z t

{?
Gicie

{ci t{sð Þ dps:

In other words, the price momentum is an exponentially weighted average of past

jumps in log prices. The quantity Gi is a proportionality constant and 1/ci is the effective

time window of averaging. The ji
t may be written in terms of values at t50 as

ji
t~ji

0e{ci tz

Z t

0

Gicie
{ci t{sð Þ dps: ð8Þ

This equation in turn could be rewritten in a more dynamic form as

ji
t~ji

0zGi

Z t

0

ci dps{

Z t

0

cij
i
s ds: ð9Þ

In order to see this, define rt and qt by

rt~

Z t

0

ci ecis dps, qt~e{ci trt:

Thus we may rewrite (8) as

ji
t~ji

0e{ci tzGiqt: ð10Þ

Since e{ci t and rt do not have common jumps (in fact e{ci t is continuous), we may use

the integration by parts formula for Lebesgue–Stieltjes integrals to obtain

qt{q0~

Z t

0

e{ci s drs{

Z t

0

ci e{ci srs ds

~

Z t

0

ci dps{

Z t

0

ciqs ds:
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Using (10) and substituting for qt and qs and noting q050 we obtain

ji
t{ji

0e{ci t~Gi

Z t

0

ci dps{

Z t

0

cij
i
s dsz

Z t

0

ci e{cisji
0 ds:

Then (9) follows at once.

Note that the momentum ji
t is an indication of the direction of movement of the

asset price. The parameter ci reflects the time scale of the exponentially weighted

moving average. Specifically, 1/ci may be considered to be the effective length of the

time window of the moving average used by the ith momentum trader. In order to be

able to aggregate the demands X i
t of individual momentum traders we shall make the

simplifying assumption that both Gi and ci are independent of i which allows us to

assume the ji are independent of i. Letting ci5c, Gi5G and ji5j, we obtain

jt~j0zG

Z t

0

c dps{

Z t

0

cjs ds: ð11Þ

Furthermore, for the momentum traders, we assume the Ki(t, p, j, y) have a common

form

Km t, p, j, yð Þ~Cmj,

where C m is a common proportionality constant independent of i. The proportion-

ality model makes sense since the larger the momentum variable j, the more a

momentum trader wants to purchase. If the momentum is negative, the trader will

be selling. The assumption of a common proportionality constant C m is for

convenience and enables us to aggregate all the momentum traders.

This leads to the following aggregate demand process X m
t for momentum traders:

X m
t ~

Z t

0

Z

R

Cmjs{ mm ds, dyð Þ, ð12Þ

where mm is the aggregate Poisson random measure corresponding to the momentum

traders and we take it to have intensity nmRm dt6nm(dy), where nm is the total

number of momentum traders and Rm is the average rate of trading for a randomly

chosen momentum trader. As in the case of value traders we may rewrite this in

terms of an integral with respect to the Poisson process Nm
t nmRmð Þ which counts the

total number of trades by momentum traders:

X m
t ~

Z t

0

Cmjs{ dNm
s nmRmð Þ: ð13Þ

2.2.4 Hedge Traders. Hedge traders are those that have taken positions in options

and trade in the underlying stock in order to hedge. Hence, their trading is tied to

their position in options, and, in the simplest model, is guided by the Black–Scholes

delta hedging approach.

To model this, recall that according to the Black–Scholes model, the value of a

European call option is
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c P, t, K , sð Þ~PN d1ð Þ{K e{r T{tð ÞN d2ð Þ,

d1~
ln P=Kð Þz rz 1

2
s2

� �
T{tð Þ

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T{tð Þ

p , d2~d1{s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T{tð Þ

p
,

where N(?) is the cumulative distribution function of a standard normal random

variable. Note that P5ep.

Suppose that, collectively, hedge traders have written ah call options on the

underlying stock. Recall that delta hedging ideally involves maintaining

ahD p, t, K , sð Þ

shares of the underlying stock. Here, D5Lc/LP, where c the price of a call option, P

the stock price, K the strike price and s the volatility of the stock. It follows that the

delta of the option is given by

D~N d1ð Þ:

Suppose that the hedgers collectively hold Ht shares. The variable Ht shall play the role of

Zt in (2). The discrepancy between their holdings and the ideal position is ahD(pt, t)2Ht.

We model the purchase size Ki(t, p, H, y) of each hedge trader to be

Kh t, p, H, yð Þ~Ch ahD p, tð Þ{H
� �

,

a quantity independent of i. The constant Ch represents the proportion of the

discrepancy that is traded and we shall take it to be 1/nh, where nh is the number of

hedge traders. See Remark 1.

This common functional form allows us to aggregate all the hedge traders. This

leads to the aggregate demand process X h
t of hedge traders

X h
t ~

Z t

0

Z

R

Ch ahD ps{, sð Þ{Hs{

� �
mh ds, dyð Þ, ð14Þ

where mh is the aggregate Poisson random measure corresponding to the hedge

traders and we take it to have intensity nhRh dt6nh(dy), where Rh is the average

rate of trading for a randomly chosen hedge trader. As in the case of value and

momentum traders we may rewrite this in terms of Nh
t nhRh
� �

, the Poisson

process with intensity nhRh that counts the total number of trades by all the hedge

traders:

X h
t ~

Z t

0

Ch ahD ps{, sð Þ{Hs{

� �
dNh

s nhRh
� �

: ð15Þ

It also follows that the aggregate holding Ht is adjusted by this same amount, and

thus

Ht~H0z

Z t

0

Ch ahD ps{, sð Þ{Hs{

� �
dNh

s nhRh
� �

: ð16Þ

Remark 1. The constant Ch51/nh represents the proportion of the discrepancy

that is traded whenever a given hedge trader trades. Note that if there was only a
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single hedge trader (nh51), then each time (s)he trades (s)he would likely trade the entire

discrepancy ahD2H in order to restore his or her portfolio to a fully delta hedged

position. In such a case, we would use C h51. However, in order to obtain a diffusion

limit we must have a large number (nh is much larger than 1) of hedge traders.

Realistically speaking, it will be impossible to aggregate all the hedge traders because

the holdings Hi
t of individual traders cannot be identical since at any instant at most

one trader shall trade and only the holdings of that trader shall jump at that instant.

However, in order to enable aggregation, we assume a somewhat collective social

behavior on the part of hedge traders. We assume that the hedge traders look at the

collective holdings Ht to make trade decisions rather than keep track of their individual

holdings; in fact, the individual holdings are considered equal and hence Ht/nh. We also

assume that each trader trades independently (with a Poisson rate Ri), and, whenever

(s)he trades, (s)he only trades 1/nh of the actual adjustment ahD2H needed to the total

holdings Ht, which in effect only adjusts his or her share of the holdings. While this

collective social behavior is not representative of the real market, we believe that the

diffusion limit obtained is likely to capture some of the key features of a more detailed

model that necessarily involves a large number of variables H1
t , . . . , Hnh

t and some

form of reduced order modeling and diffusion limit to simplify the dynamics.

2.3 Price Dynamics

So far we have derived models for the aggregate demand processes of different types

of traders. These aggregate demands Xe, Xv, Xm, Xh evolve based on the log asset

price pt and some external processes.

In order to close the dynamics, we need to describe how the aggregate demands

affect the asset price. We introduce the price formation rule

pt{p0~
1

l

Xn

i~1

X i
t {X i

0

� �
: ð17Þ

In other words we assume that the log asset price jumps are proportional to the

jumps in the aggregate demand (Avellaneda and Lipkin, 2003; Farmer, 2000; Farmer

and Joshi, 2002). The quantity l is the market liquidity parameter and is assumed to

be a constant. Thus after each trade of size K (in number of shares) the log asset price

jumps by K/l. Thus we are not including the market maker in the price dynamics,

but rather assuming an algebraic relationship between changes in demand and

changes in prices. A more detailed model would involve extra dynamic variables that

account for the market maker. We simply assume that this unmodeled dynamics is

much faster and either equilibrates rapidly to the price formation rule (17) or its

oscillations lead to (17) after suitable averaging.

Throughout the rest of the paper we shall adopt the differential notation and

suppress the time dependence (subscripts t, s or s2) to keep the presentation

compact.

Following the price formation rule, we obtain

dp~
1

l
dX ezdX vzdX mzdX h
� �

:
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Combining this with the dynamics describing the demand processes of each strategy

leads to the coupled system dynamics

dp~
1

l

Z
y [R

y me dt, dyð ÞzCv v{pð ÞdNv nvR
vð ÞzCmj dNm nmRmð Þ

�

zCh ahD{H
� �

dNh nhRh
� ��

, ð18Þ

dv~s0 dW , ð19Þ

dj~Gc dp~cj dt, ð20Þ

dH~Ch ahD{H
� �

dNh nhRh
� �

: ð21Þ

Equations (18), (19), (20) and (21) describe a coupled system for the variables p, v,

j and H driven by independent driving processes me, Nv, Nm, Nh, and W. In the next

section we shall see that, under suitable scaling assumptions, if the number of traders

of each category is very large we may obtain a diffusion approximation for this

system of equations.

2.4 Diffusion Limit

Equations (18), (19), (20) and (21) describe a system of jump and diffusion Markov

dynamics.

An important characteristic of a Markov process is its generator A. Intuitively,

given any function f(t, x) of time t and process value Xt5x at time t, Afð Þ t, xð Þ is the

rate of change of the expected value of f(t, Xt) at time t. The reader is referred to

Appendix B for a definition and some details.

First we shall write down the time-dependent generator for this system:

Af ~
Lf

Lt
zneRe

Z

R

f t, pz
y

l
, v, jz

Gcy

l
, H

	 

{f t, p, v, j, Hð Þ

� �
ne dyð Þ

znvR
v f t, pz

Cv v{pð Þ
l

, v, jz
GcCv v{pð Þ

l
, H

	 

{f t, p, v, j, Hð Þ

� �

znmRm f t, pz
Cmj

l
, v, jz

GcCmj

l
, H

	 

{f t, p, v, j, Hð Þ

� �

znhRh f t, pz
Ch ahD{H
� �

l
, v, jz

GcCh ahD{H
� �

l
,

	�

HzCh ahD{H
� ��

{f t, p, v, j, Hð Þ
�

{cj
Lf

Lj
z

1

2
s0ð Þ2

L2f

Lv2
,

ð22Þ

where f(t, p, v, j, H) is assumed to be twice differentiable in arguments p, v, j and H

and once differentiable in t with bounded continuous derivatives.
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In order to obtain a diffusion limit, we will scale various parameters in the model

with the total number of traders in the market n. First we shall assume that the fraction

of each category of traders is denoted by b with appropriate superscripts. Thus be5ne/n,

bv5nv /n, bm5nm/n and bh5nh/n. Hence the number of traders within the different

categories is given by ne5ben, nv5bvn, nm5bmn and nh5bhn. We shall be concerned with

the asymptotic behavior as nR‘ with b* parameters being held constant. We shall

assume that the trading intensity of each trader remains constant as n increases, thus the

R* parameters are independent of n. Furthermore, we also assume that all trade size

parameters C* scale proportional to 1/n. The interpretation of this scaling is as follows.

If we assume that there is a fixed amount of the asset available for trading, then as the

number of traders increases, the amount of the asset held by each trader scales inversely

with n. Therefore, the trade size of each trader should also scale inversely with n. Hence,

C* scales as 1/n. Note that, in the case of hedge traders, it was already explained that

Ch51/nh51/(bhn). In the case of extraneous traders, only the first two moments of the

trade size distribution become relevant in the diffusion limit. We denoted these by Ce
1

and Ce
2

� �2
, respectively (6). The scaling assumption then simply states that both C1

e and

Ce
2 are proportional to 1/n. Thus the second moment actually scales as 1/n2. We shall

rename all the trade size parameters C* so that, in all equations written so far, C* is

replaced by C*/n
*
, which is equal to C*/b*n. Thus we rewrite (22) for the generator A

showing the dependence on n as

Anf ~
Lf

Lt
znbeRe

Z

R

f t, pz
y

l
, v, jz

Gcy

l
, H

	 

{f t, p, v, j, Hð Þ

� �
ne dyð Þ

znbvRv f t, pz
Cv v{pð Þ

nbvl
, v, jz

GcCv v{pð Þ
nbvl

, H

	 

{f t, p, v, j, Hð Þ

� �

znbmRm f t, pz
Cmj

nbml
, v, jz

GcCmj

nbml
, H

	 

{f t, p, v, j, Hð Þ

� �

znbhRh f t, pz
Ch ahD{H
� �

nbhl
, v, jz

GcCh ahD{H
� �

nbhl
,

	�

Hz
Ch

nbh
ahD{H
� �


{f t, p, v, j, Hð Þ
�

{cj
Lf

Lj
z

1

2
s0ð Þ2

L2f

Lv2
: ð23Þ

We also rewrite (6) in terms of the renamed parameters:

Ce
1~ben

Z

R

y ne dyð Þ, Ce
2

� �2
~ benð Þ2

Z

R

y2ne dyð Þ: ð24Þ

Now we consider the sequence of generators An indexed by n, and show that this

sequence is asymptotic to another sequence Bn of generators which correspond to Ito

diffusion equations. More specifically, for each function f(t, p, v, j, H) with the
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differentiability conditions stated above we shall show that

Anf*Bnf , n??,

pointwise. We take this as justification for using the Ito diffusion equations

corresponding to Bn in place of the jump Markov model described by (18), (19), (20)

and (21). See Remark 2.

To obtain the appropriate diffusion generator Bn we simply truncate to terms of

order O(1) and O(n21) after applying Talyor’s theorem to Anf to expand around

(t, p, v, j, H). This leads to the equation for Bnf where all derivatives of f are

evaluated at (t, p, v, j, H):

Bnf ~
Lf

Lt
zRe Lf

Lp

Ce
1

l
z

Lf

Lj

GcCe
1

l
z

1

2

1

nbe

L2f

Lp2

Ce
2

� �2

l2

"

z
1

2

1

nbe

L2f

Lj2

G2c2 Ce
2

� �2

l2
z

1

nbe

L2f

LpLj

Gc Ce
2

� �2

l2

#

zRv Lf

Lp

Cv v{pð Þ
l

z
Lf

Lj

GcCv v{pð Þ
l

�
z

1

2

1

nbv

L2f

Lp2

Cv v{pð Þ
l

	 
2

z
1

2

1

nbv

L2f

Lj2

GcCv v{pð Þ
l

2
 !

z
1

nbv

L2f

LpLj
Gc

Cv v{pð Þ
l

	 
2
#

zRm Lf

Lp

Cmj

l
z

Lf

Lj

GcCmj

l
z

1

2

1

nbm

L2f

Lp2

Cmj

l

	 
2
"

z
1

2

1

nbm

L2f

Lj2

GcCmj

l

	 
2

z
1

nbm

L2f

LpLj
Gc

Cmj

l

	 
2
#

zRh Lf

Lp

Ch ahD{H
� �

l

�
z

Lf

LH
Ch ahD{H
� �

z
Lf

Lj

GcCh ahD{H
� �

l

z
1

2

1

nbh

L2f

Lp2

Ch ahD{H
� �

l

	 
2

z
1

2

1

nbh

L2f

Lj2

GcCh ahD{H
� �

l

	 
2

z
1

2

1

nbh

L2f

LH2
Ch ahD{H
� �� �2

z
1

nbh

L2f

LpLj

Gc Ch ahD{H
� �� �2

l2

z
1

nbh

L2f

LpLH

Ch ahD{H
� �� �2

l
z

1

nbh

L2f

LjLH

Gc Ch ahD{H
� �� �2

l

#

{cj
Lf

Lj
z

1

2
svð Þ2L

2f

Lv2
: ð25Þ
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By the assumed continuity of the second partial derivatives of f and Taylor’s theorem

it follows that Bnf and Anf differ by terms of order o(n21) as nR‘, and hence

Bnf*Anf as nR‘.

We observe that Bn corresponds to the following Ito–SDE model (see Appendix B

or Oksendal, 1998):

dp~
ReCe

1

l
z

RvCv v{pð Þ
l

z
RmCmj

l
z

RhCh ahD{H
� �

l

� �
dt

z

ffiffiffiffiffiffiffi
Re

nbe

s
Ce

2

l
dBez

ffiffiffiffiffiffiffi
Rv

nbv

s
Cv v{pð Þ

l
dBvz

ffiffiffiffiffiffiffiffi
Rm

nbm

s
Cmj

l
dBm

z

ffiffiffiffiffiffiffi
Rh

nbh

s
Ch ahD{H
� �

l
dBh,

ð26Þ

dv~s0 dW , ð27Þ

dj~
GcReCe

1

l
z

GcRvCv v{pð Þ
l

z
GcRmCmj

l

�

z
GcRhCh ahD{H

� �
l

{cj

�
dtz

ffiffiffiffiffiffiffi
Re

nbe

s
GcCe

2

l
dBe

z

ffiffiffiffiffiffiffi
Rv

nbv

s
GcCv v{pð Þ

l
dBvz

ffiffiffiffiffiffiffiffi
Rm

nbm

s
GcCmj

l
dBm

z

ffiffiffiffiffiffiffi
Rh

nbh

s
GcCh ahD{H

� �
l

dBh,

ð28Þ

dH~RhCh ahD{H
� �

dtz

ffiffiffiffiffiffiffi
Rh

nbh

s
Ch ahD{H
� �

dBh, ð29Þ

where Be, Bv, Bm, Bh and W are independent standard Brownian motions. We will

use this diffusion model (26), (27), (28) and (29) to explore the behavior of different

trading strategies on price dynamics. It must be noted that (28) may be written as

dj5Gc dp2cj dt, as in (20). It must also be noted that Ch51 from our modeling

assumptions.

Remark 2. A rigorous proof of the diffusion limit is beyond the scope of this

paper and is a subject of ongoing work. For a detailed study of diffusion limits

where the leading order behavior is the solution to a deterministic ODE and the

correction of O 1=
ffiffiffi
n
p

ð Þ includes the diffusion terms, the reader is referred to the

study of`density dependent processes’ (Ethier and Kurtz, 1986; Kurtz, 1981). Our

result cannot be obtained by direct application of the results of Kurtz (1981) and

Ethier and Kurtz (1986) as our jump sizes are not restricted to lie in a countable set

of lattice points.
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3. Analysis of Trader Behavior

In this section we investigate the effects of trading behavior by exploring the

dynamics in (26)–(29) both analytically and through simulation. We begin by

calibrating parameters in (26)–(29) to a market of only extraneous traders using

NYSE data. Next, we include value and momentum traders in the dynamics.

With this model, we analytically characterize the mean stability properties of the

price dynamics when value and momentum traders interact. In addition, we are

able to analytically explore the stochastic volatility properties of the resulting

dynamics. This is followed with numerical simulations. Finally, we consider a

market with hedge traders and extraneous traders. In this setting, we investigate

the stock pinning phenomena due to hedging feedback through numerical

simulations.

3.1 Calibration of Model Parameters to Extraneous Traders

We begin by calibrating (26)–(29) to market data when the market is only populated

by extraneous traders. We used data from six different NYSE stocks of various sizes

(General Electric (GE), 3M (MMM), Hewlett-Packard (HPQ), Airtran Holdings

(AAI), OSI Restaurant Partners (OSI), Oxford Industries (OXM)).

The results of the calibration are shown in Table 1. The first two rows under the

stock price symbols tabulate the shares outstanding and yearly volatility for each

company. The yearly stock price volatility was estimated using daily historical data

from January 3, 2000 to February 23, 2007.1 Table 1 also summarizes data

downloaded from the NYSE website (nyse.com) that provides the number and

volume of trades that took place on April 1, 2004 for trade sizes in the ranges 0–2000

shares, 2001–5000 shares, 5001–10,000 shares and 10,000+ shares.

The next portion of the table presents parameter values in the dynamics. The

parameter be is chosen to be 1, indicating a market of only extraneous traders. The

next value tabulated (
R

R
yj jne dyð Þ= nbeð Þ) is the average trade size per extraneous

trade event. This value is estimated from the NYSE trade and volume data by

dividing the total volume by the total number of trades. The next quantity Ce
2

�
nbeð Þ

is the square root of the second moment of the trade size per extraneous trade event.

This was estimated by computing the square of the average trade size in each of the

ranges, 0–2000, 2001–5000, 5001–10,000 and 10,000+, weighting these numbers by

the number of trades in that particular trade range, and then computing the square

root of the average. Thus, this estimate is smaller than the true value, but we assume

it to be close enough for our purposes.

In the following row, the total number of extraneous traders n is estimated by

dividing the shares outstanding by the average trade size
R

R
yj jne dyð Þ= nbeð Þ. Thus, we

have assumed that the average trader holds the average trade size, and trades

everything (s)he owns at each trade event. Using n, one may then easily compute

Ce
2

�
be from values above. Note that since Ce

2

�
nbeð Þ is related to the average trade

size per trade event, we assume that its value should be constant regardless of the

actual fraction be of traders that are extraneous traders. Since n is a fixed constant,

Ce
2

�
nbeð Þ can only be constant if Ce

2

�
be is constant. Thus, we tabulate a value for the

ratio Ce
2

�
be that is assumed to be constant regardless of the value of be. Note that
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Table 1. Extraneous parameter calibration for GE, MMM, HPQ, AAI, OSI and OXM (note: calculations were done to many digit precision in

Excel but only up to two digits beyond the decimal point is shown in the table).

Stock GE MMM HPQ AAI OSI OXM

Shrs. outstd. 10,310,000,000 733,890,000 2,720,000,000 91,050,000 73,950,000 17,780,000
Yearly vol. 0.29255 0.244098 0.444440461 0.584288327 0.330121618 0.337124611
# of trades
0–2k 4552 4300 3559 1073 1369 334
2–5k 784 96 489 85 34 1
5–10k 579 20 193 24 19 0
10k+ 846 19 150 23 15 1
Volume
0–2k 3,238,100 1,646,300 1,971,800 561,800 537,100 60,600
2–5k 2,492,600 290,300 1,513,600 268,800 107,500 2100
5–10k 4,014,700 127,000 1,242,300 140,000 129,400 0
10k+ 22,287,400 377,100 3,850,000 588,200 351,100 10,300
Parameters
be 1 1 1 1 1 1R

R
yj jne dyð Þ

�
nbeð Þ 4737.88 550.33 1953.47 1293.61 782.95 217.26

Ce
2

�
nbeð Þ 9616.33 1486.43 5063.72 3756.43 2591.40 601.33

n 2,176,079.21 1,333,552.73 1,392,391.90 70,384.43 94,450.40 81,836.71

Ce
2

�
be 20,925,885,490 1,982,236,132 7,050,676,303 264,393,842.7 244,758,896.8 49,210,513.68

Re 0.776741028 0.83142569 0.788391544 4.280065898 3.803583502 1.026434196
l 42,735,079.41 6,412,063.14 11,937,336.11 3,528,670.08 4,704,994.15 516,962.34

1
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later in Section 3.2.3 where value and momentum traders are calibrated, similar

reasoning will lead us to assume the ratios Cv/bv and Cm/bm should also be constant

across values of bv and bm, respectively.

Next, the intensity of the average trader Re is provided. This is computed by first

considering that the shares outstanding divided by the daily volume gives the length

of time in years for the entire shares outstanding to be traded. This is also the period

of time within which every trader will trade once on average. Therefore, Re is the

reciprocal of this number. Finally, to estimate the liquidity parameter l,

Equation (26) indicates that, in the presence of only extraneous traders, the stock’s

volatility is given by

s~

ffiffiffiffiffiffiffi
Re

nbe

s
Ce

2

l
: ð30Þ

Using the values in the table, one can then solve for the liquidity parameter.

The parameter values in Table 1 allow us to describe completely the price

dynamics in a market populated only with extraneous traders. In fact, it is clear from

our model that a market populated with extraneous traders alone will produce price

dynamics in the form of geometric Brownian motion. Thus, to create more

interesting dynamics we must include other classes of traders.

Next, we will consider a market with extraneous, value and momentum traders.

Before performing numerical simulations, we analytically explore the stability effects

of the interaction of value and momentum traders. Additionally, we compute the

stochastic volatility properties implied by the model. After this analysis, we simulate

price paths from this market using parameters in line with those calibrated in

Table 1.

3.2 Value and Momentum Dynamics

3.2.1 Stability. In this subsection we shall explore the mean stability of our

diffusion model described by (26), (27), (28) and (29) in the absence of hedge traders.

For simplicity we shall assume that the perceived true log value v is a constant

(equivalently s050). Also we assume that Ce
1~0, which is equivalent to assuming

that the extraneous traders on average purchase or sell equal amounts. Let us define

the variable q5v2p, which is the discrepancy between the market log price and the

perceived true log price. These assumptions lead to the coupled system of two affine

SDEs for q and j:

dq~ {
RvCvq

l
z

RmCmj

l

� �
dtz

ffiffiffiffiffiffiffi
Re

nbe

s
Ce

2

l
dBe

{

ffiffiffiffiffiffiffi
Rv

nbv

s
Cvq

l
dBvz

ffiffiffiffiffiffiffiffi
Rm

nbm

s
Cmj

l
dBm, ð31Þ
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dj~ {
GcRvCvq

l
z

GcRmCmj

l
{cj

� �
dtz

ffiffiffiffiffiffiffi
Re

nbe

s
GcCe

2

l
dBe

{

ffiffiffiffiffiffiffi
Rv

nbv

s
GcCvq

l
dBvz

ffiffiffiffiffiffiffiffi
Rm

nbm

s
GcCmj

l
dBm:

ð32Þ

If we define

av~
RvCv

l
, am~

RmCm

l
,

for stability of the mean, it suffices to investigate the eigenvalues of the drift matrix

{av am

{Gcav Gam{1ð Þc

� �
: ð33Þ

The characteristic equation is

z2z av{c Gam{1ð Þð Þzzcav~0:

Since c av,0, asymptotic stability (of the mean) is equivalent to

avwc Gam{1ð Þ: ð34Þ

If Gam,1, then we always have asymptotic stability of the mean. Even when Gam is

larger than 1, the presence of value traders can create a stabilizing effect as predicted

by (34). Also note that the shorter the effective length 1/c of the time window the

more likely the system to be unstable.

3.2.2 Stochastic Volatility. In the absence of hedge traders we obtain the

equations

dp~av v{pð Þdtzamj dtzse dBezbv v{pð ÞdBvzbmj dBm,

dv~s0 dW ,

dj~Gc dp{cj dt, ð35Þ

where

bv~
avffiffiffiffiffiffiffiffiffiffiffiffi

nbvRv
p , bm~

amffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nbmRm

p , se~

ffiffiffiffiffiffiffi
Re

nbe

s
Ce

2

l
:

If value and momentum traders are absent and only the extraneous traders are

present, we obtain the geometric Brownian motion model for stock price Pt~ept :

dPt~sePt dBe
t ,

with constant volatility se. With the value traders present, we may derive the SDE

for Pt. Using the Ito formula we obtain
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dPt~avPt vt{ptð ÞdtzamPtjt dtz
1

2
Pt s2

ezb2
v vt{ptð Þ2zb2

mj2
t

� �
dt

zsePt dBe
tzbvPt vt{ptð ÞdBv

tzbmPtjt dBm
t :

ð36Þ

This equation shows that both the diffusion and drift terms are nonlinear in Pt

(bearing in mind pt5ln(Pt)), and also depend on vt, jt. The instantaneous square

volatility Lt of Pt is given by

Lt~s2
ezb2

v vt{ptð Þ2zb2
mj2

t : ð37Þ

Thus the instantaneous square volatility itself is a stochastic process. Using the Ito

formula we obtain

dLt~2b2
v vt{ptð Þdvtzb2

v dvtð Þ2{2b2
v vt{ptð Þdpt

z2b2
mjt djtzb2

v dptð Þ2zb2
m djtð Þ2:

Substituting djt5Gc dpt2cjt dt we obtain

dLt~2b2
v vt{ptð Þdvtzb2

v dvtð Þ2z2 {b2
v vt{ptð Þzb2

mGcjt

� �
dpt

{2b2
mcj2

t dtz b2
vzb2

mG2c2
� �

dptð Þ2:

Several stochastic volatility models have been proposed in the literature (Heston,

1998; Hull and White, 1987; Stein and Stein, 1991). A quantity of interest is the

conditional covariance of price increments and square volatility increments, i.e.

Cov dPt, dLtjF tð Þ. More precisely, this is the differential of the cross variation

process <Pt, Lt> (Oksendal, 1998). To compute Cov dPt, dLtjF tð Þ, we first observe

that Cov dvt, dptjF tð Þ~0 due to the independence of Wt, Be
t , Bm

t and Bv
t . Thus

Cov dPt, dLtjF tð Þ~2Pt b2
mGcjt{b2

v vt{ptð Þ
� �

Var dptjF tð Þ:

Noting that Var dptjF tð Þ~ dptð Þ2, the quadratic variation process of pt is given by

s2
ezb2

v vt{ptð Þ2zb2
mj2

t

� �
dt, we obtain

Cov dPt, dLtjF tð Þ~2Pt b2
mGcjt{b2

v vt{ptð Þ
� �

s2
ezb2

v vt{ptð Þ2zb2
mj2

t

� �
dt:

Thus the covariance is positive (negative) if the price momentum and the mismatch

pt2vt are both positive (negative respectively).

3.2.3 Calibration of Value and Momentum Traders. We consider the stock MMM

in Table 1. To calibrate the parameters for value traders, we began by assuming that

value traders transact at the same intensity as extraneous traders. Thus, we chose

Rv5Re50.83142569 from Table 1.

Next, we calibrated the ratio Cv/bv by considering markets with different (but

roughly realistic) proportions of value traders (i.e. different values of bv) and chose

the value for Cv/bv that best preserved the total volume traded in the entire market

relative to a market of only extraneous traders. That is, in a market of only

extraneous traders, the expected yearly volume is given by the average trade size
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from Table 1 (
R

R
yj jne dyð Þ

�
nbeð Þ~550:33) multiplied by the number of extraneous

traders (n51,333,552.73) multiplied by the intensity (Re50.83142569). This gives a

total volume of 610,178,386.8.

When the market is made up of a fraction bv of value traders and be512bv of

extraneous traders, then we expect the total volume in the market to be roughly the

same as the total volume in the market with only extraneous traders. Thus, the value

traders should make up a fraction bv of the overall volume of 610,178,386.8.

Now, the volume of the value traders varies over time depending on the difference

between the market price pt and the value price vt. However, given a constant value

of (vt2pt), the yearly expected volume for value traders would be

Expected Trade Volume of Value Traders~Cv vt{ptj j Rvð Þ

~
Cv

bv

	 

bv vt{ptj j Rvð Þ:

ð38Þ

This should be equal to the corresponding fraction of the total volume from an all

extraneous trader market, bv6(610,178,386.8). Setting these values equal gives

Cv

bv

	 

vt{ptj j Rvð Þ~610,178,386:8, ð39Þ

where we assume the quantity Cv/bv is a constant for all values of bv (just as Ce
2

�
be is

assumed constant for extraneous traders across values of be (see the discussion of

Table 1 values in Section 3.1 for clarification)). The left-hand side of (39) can only be

computed by simulations that depend upon the value of bv. Thus, we selected various

values of bc and attempted to find a reasonable value of Cv/bv that approximately

satisfied Equation (39). Furthermore, we represented Cv/bv relative to Ce
2

�
be as

Cv=bv~k Ce
2

�
be

� �
and equivalently searched for a value of k.

Figure 1 shows the left-hand side of (39) versus the right-hand value for bv50.1,

0.25 and 0.5 under k535 and the volatility of the value price as s050.12. As the

figure shows, this value of k535 is a slight underestimate across those values of bv,

but is of the correct order of magnitude. Furthermore, when momentum traders are

added to the market that increases the volume of value traders, thus correcting for

Figure 1. Volume of extraneous traders (horizontal line) and volume of value traders (jagged
lines) with k535 corresponding to Equation (39) for three values of bv. Left, bv50.1; middle,

bv50.25; right, bv50.5.
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the underestimation. Thus, k535 is a reasonable choice and we use it across all

simulations in this section.

For momentum traders, parameter values were chosen to explore a range of

phenomena rather than to fit a single specific market scenario. Furthermore,

calibration as was done with the value traders is difficult due to the destabilizing

effect that momentum traders have on the market. Thus, for simplicity with
momentum traders we used Cm=bm~Ce

2

�
be~1,982,236,132. Furthermore, we

selected G51 and set the intensity of the momentum traders equal to the time

scale of their trend following, Rm5c. Thus, momentum traders that look at short-

time-scale trends use a larger value of c and are assumed to trade more often with an

intensity matching the time-scale.

3.2.4 Simulations. With the parameter selections guided by the previous

subsection, we ran simulation results of a market with extraneous, value and
momentum traders.

Figure 2 provides simulations of a market for 1000 days. Plots on the left show the

value price and the market price, the middle plots provide the corresponding daily

returns, and the plots on the right show the volatility of the market price averaged

over a 20 day window. The top plot is a market with 40% value traders (bv50.4) and

60% extraneous traders (be50.6). With value traders in the market, the market price

closely follows the value price. Furthermore, the volatility of the market price is

higher than the value price (see the right-hand plot) and no volatility spikes or
clustering is present. As the proportion of value traders is increased, the market

volatility decreases due to the increased action of value traders holding the market

price tighter to the value price. Overall, the top plot of Figure 2 is qualitatively

representative of the return and volatility characteristics seen for a wide range of bv

values.

Next, we performed simulations with 0.4 of the market as value traders (bv50.4)

and 0.3 as momentum traders (bm50.3). The rest of the traders in the market were

assumed to be extraneous traders (be512bv2bm50.3). The middle and bottom plots
in Figure 2 show the results. In the middle plot, the momentum traders use a

parameter value of c52 and a trading intensity of Rm52. Roughly speaking, this

corresponds to a half year time scale for both the frequency of their trades and the

time scale of the trends they attempt to capture. From the figure, one can see the

emergence of infrequent periods of slightly increased volatility. The bottom portion

of Figure 2 shows the results for c54 and Rm54. Thus, the momentum traders trade

more frequently and based upon a shorter time scale. In this case, periods of

increased and clustered volatility are clearly present. From Equation (37), this
clustering is predicted to occur at times when the market price is trending (large jt)

and/or is different from the value price (large vt2pt). These conditions induce

increased trading by momentum traders and/or value traders, respectively, leading to

periods of increased volatility. It is interesting to note that this volatility clustering

appears before the dynamics enters a region with complex eigenvalues (cf.

Equation (33)). In fact, in the complex eigenvalue region the market price dynamics

exhibits unrealistic oscillations around the value price.

Finally, we compared our simulation results against the actual price data from
MMM between 2002 and 2006. The data show periodically occurring price and

Trader Behavior and its Effect on Asset Price Dynamics 171

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
t
a
n
f
o
r
d
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
2
0
:
3
0
 
2
8
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



return spikes that are of a different nature than the volatility clustering seen in our

simulations. We hypothesized that these spikes could be due to periodic information

shocks to the value price, and come in the form of earnings announcements or the

like. Therefore, we attempted to mimic this by placing a 3% jump in the value price

(with equal probability of being positive or negative) at quarterly intervals.

The simulated results appear in the top plots of Figure 3 for bv50.6, bm50.3 and

c54 and show a qualitative resemblance to the actual data shown in the bottom

plots. The plots on the left show the price, while the middle plots show returns and

the plots on the right are an estimate of the volatility using daily data over a 20 day

window. Note that, given only daily data, one cannot accurately estimate the

volatility inside a 20 day window. Thus, in our simulation in the top right volatility

plot, for consistency we also only used daily data to estimate the volatility. The

resulting plots of volatility (right-hand side of Figure 3) are qualitatively quite

similar. A perceptible difference is that increases in volatility in the simulation tend

Figure 2. Extraneous, value and momentum traders. Plots on the left show the value price
(light line) and the market price (dark line). Plots in the middle are the returns corresponding
to the market price. Plots on the right are the volatility of the value price (lower line), market

price (dashed upper line) and theoretical volatility
ffiffiffiffiffiffiffiffiffi
L tð Þ

p
averaged over a 20 day window

(light upper line). Top, bv50.4 and bm50; middle, bv50.4 and bm50.3, c52; bottom, bv50.4

and bm50.3, c54.
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to happen more abruptly than in the actual data, where a volatility spike can increase

over a couple of days.

Our calibrated results are able to reproduce price dynamics that show a qualitative

resemblance to the actual market data, especially after including periodic jumps in

the value price. Furthermore, even without shocks to the value price, volatility

clustering appears due to the interaction of value and momentum traders. Thus, our

model is able to qualitatively capture some features of real markets while also

allowing for reasonable calibration procedures.

Our model and results should be contrasted with existing literature that also

creates realistic price dynamics. For example, in the work of Bak et al. (1997), Lux

and Marchesi (2000) and Qiu et al. (2007a), volatility clustering and heavy tails are

exhibited, but through a different mechanism. Those models allow agents to switch

between behaviors, giving rise to crowd or imitation effects that lead to heavy tails

and volatility clustering. In our simulations, agents are not allowed to switch

between strategies. Furthermore, our model uses a simple linear price formation rule

depending on a single liquidity parameter and does not capture effects at the level of

the order book. For example, Chiarella and Iori (2002) show through the simulation

of an order driven double auction market that order book effects among traders can

create significant volatility clustering and heavy tails.

Thus, our model is not alone in being able to mimic market price dynamics.

Nevertheless, our ability to calibrate to actual market data and provide low order

stochastic differential equation models is perhaps a useful link between the effects of

trader behavior and phenomenological models used in areas of finance such as

option pricing.

Figure 3. Top: simulation of the value price with shocks (left), its returns (middle) and
estimated volatility using a 20 day window (right). Parameters: bv50.4, bm50.3 and c54.

Bottom: data from MMM for the period 2002 into 2006.
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3.3 Hedge Traders and Stock Pinning

In this section we explore the effects of hedging options on the price process of the

underlying asset in a market populated with only extraneous and hedge traders.

In the context of option pricing and agent-based simulations, Qiu et al. (2007b)

have used market simulations involving speculators and arbitrageurs to generate the

well-known implied volatility smile phenomenon. Qiu et al.’s volatility smile paper

models the buying and selling of options themselves to explain the volatility smile.

While we study hedge traders, we only model the buying/selling of the underlying

stock and not that of the option. While our framework could be applied to the

modeling of buying/selling of options we do not pursue that in this paper. Instead,

we explore a different phenomenon, namely stock pinning.

Stock pinning is a phenomenon in which a stock with high open interest in an

option is drawn to the strike price of the option at expiration. This phenomenon has

been empirically observed (Krishnan and Nelken, 2001) and studied in the context of

hedging (Avellaneda and Lipkin, 2003). In addition to the pinning phenomenon, our

model also predicts reverse pinning when the hedgers are short options and hence

replicating a long position. In this case, the hedge traders drive prices away from the

strike price of the option.

To calibrate parameters for hedge traders, we used option data from

Yahoo!Finance. In Table 2 we have collected data on March 1, 2007 for the option

strike and expiration with the largest open interest values corresponding to each

stock. The first four rows of the table give the option specifications.

The next two rows present our assumptions about the fraction of the open interest

that is being hedged, and the average number of trades in a day that a hedger makes.

In this table, we have assumed that half of the open interest is being hedged, and that

hedgers trade twice a day on average. From these assumptions, the parameter values

can be computed. For hedge traders, Ch is always set to 1. The parameter ah

represents the size of the option position held by the hedgers and indicates the

direction of their hedging strategy. Thus, the negative value of ah in the table

indicates that hedgers hold a long position in options equal to one half the total open

interest and are replicating an offsetting short position. An Rh value of 500 comes

Table 2. Hedge parameter calibration data for GE, MMM, HPQ, AAI, OSI and OXM.

Underlying GE MMM HPQ AAI OSI OXM

Call/put Call Put Call Call Call Put
Strike 37.5 70 45 12.5 40 40
Expiration 3/16/2007 4/20/2007 5/18/2007 3/16/2007 5/18/2007 4/20/2007
Open interest 73,672 15,880 22,531 7776 13,416 386

Fraction of hedgers 0.5 0.5 0.5 0.5 0.5 0.5
Trades in day 2 2 2 2 2 2

Ch 1 1 1 1 1 1
ah 236,836 27940 211,265.5 23888 26708 2193
Rh 500 500 500 500 500 500
bh 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
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from our assumption of 250 trading days in a year and that hedgers trade twice a

day. Finally, we chose bh, which is the fraction of hedgers in the market, to be

0.0001, representing a very small fraction of all traders.

Figure 4. Hedge and extraneous traders. Left-hand plots show simulations of the drift term in
the dynamics for MMM with ah520.5 (top), ah5220 (middle) and ah520 (bottom). Right-
hand plots are histograms of the price at expiration for 1000 simulations of the full stochastic

dynamics from the initial condition $75 (T50.2, K570).
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All six of the stocks and option values produce roughly similar hedge trading

dynamics. For example, the quantity (RhChah/l) that appears in the drift term of the

price dynamics (26) corresponding to hedge traders ranges from 20.187 for OXM to

20.713 for OSI, and the quantity (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rh
�

nbh
q	 


Chah
�

l
� �

) corresponding to the

volatility produced by hedge traders ranges from 20.0013 for GE to 20.0104 for

OSI.

Since the six stocks in Table 2 produced similar parameter values, to explore the

price dynamics caused by hedging, again we ran simulations only on the stock

MMM. In addition to the parameter values in the table, we varied the parameter ah

that represents the open interest of the hedgers in the market. Avellaneda and Lipkin

(2003) report that pinning often occurs at times when the open interest is unusually

large. In particular, they give an example where open interest for a single strike in the

front month expiration was more than 25,000 on a stock that averaged a few

hundred contracts per strike! To capture this range of potential situations, we varied

ah from half of the open interest as given in Table 2 to 20 times the open interest, and

considered both positive and negative values.

First, using MMM parameter values and a strike price of $70, we simulated only

the drift terms of the dynamics, ignoring the diffusion terms, for different initial

conditions. The results using ah equal to 20.5, 220 and 20 times the open interest are

shown in the left-hand side of Figure 4. Next, we simulated the full stochastic

dynamics starting from an initial price of $75 for the same values of ah. The results of

1000 sample paths at expiration are shown on the right-hand side of Figure 4. With

parameter values corresponding to the open interest data observed on March 1, 2007

in Table 2 and ah equal to 20.5 the open interest, hedging activity is not large enough

to produce a noticeable pinning effect. Thus, assuming that Table 2 represents

typical market values, we are unlikely to observe pinning under typical option and

hedging activity. However, when ah is chosen as 220 times the open interest, pinning

is clearly observed. In fact, at an ah value of 25 times the open interest, pinning

becomes perceptible in the simulations. Thus, the situation described by Avellaneda

and Lipkin (2003) with nearly a 100-fold increase in open interest is likely to induce

severe pinning. In the bottom plots of Figure 4 we assume that hedgers were

replicating a positive position in options equal to 20 times the open interest. In this

case, we observe a reverse pinning phenomena in which the underlying stock price is

driven away from the strike price. Thus, the histogram shows a strong dip at the

strike price of $70.

4. Conclusions

In this paper we built a model of price dynamics beginning from the trading

strategies and discrete buy and sell orders of individual agents. We considered four

classes of traders: extraneous, value, momentum and hedgers. The demand process

of each trader was modeled to capture their trading style using Poisson random

measures, resulting in a discrete event model of price movement. To simplify this

model, we aggregated trading classes and took diffusion limits to arrive at a coupled

set of Ito diffusions. We analyzed these equations both analytically and through

simulation to explore the effects of trading strategies on price dynamics. In
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particular, we considered the stability and stochastic volatility consequences of value

and momentum trading, and the stock pinning phenomenon associated with hedge

trading. Overall, we produced a consistent model beginning from first principles that

allows one to gain a better understanding of the role of trader behavior in price

dynamics.

Future work will include a detailed model of the dynamics that underlies the price

formation rule. This will involve including a model of the market maker and the

order book. Additionally, a rigorous proof of the diffusion limit is a subject of

ongoing research.
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Appendix A. Poisson Random Measures

Poisson random measures provide a convenient way to describe jump processes that

have prescribed jump rates and jump size distributions. A Poisson random measure

m on Rz|R is a random assignment of markers (isolated points) on Rz|R with the

following three properties. Firstly, the number of markers in a measurable subset

A5Rz|R is Poisson distributed with mean m(A) where m is an underlying measure

on Rz|R. This measure m is called the intensity measure of the Poisson random

measure. Secondly, given two disjoint subsets A, B5Rz|R the number of markers

in A and B are independent. The third condition requires that the number of markers

in any set of the form {t}6A where t [Rz and A5R is either 0 or 1 with probability

1. This ensures that there is no more than one jump at any given time instant.

In the models encountered in this paper the intensity measure m takes the form

m5R dt6n where dt is the Lebesgue measure on Rz and n is a probability measure

on R. Given a Poisson random measure m on Rz|R with intensity measure R dt6n,

Zt~

Z

s [ 0, tð �

Z

y [R

y m ds, dyð Þ
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describes a process that has a jump rate R and jump size distribution n on R. In fact,

Zt is a process with independent increments and the probability that exactly one

jump with jump size belonging to a subset A5R occurs in an interval (t, t+h] is given
by Rn(A)h+o(h) as hR0+ and the probability of more than one jump occurring

during (t, t+h] is o(h) as hR0+. By definition, Zt is a process with right continuous

paths with left-hand limits.

One way to look at the infinitesimal description of the process Zt is to consider

how the expected value of any function of Zt changes in an infinitesimal time

interval. Given a function f : R?R, and given Zt5z,

E f Ztzhð Þð Þ~
Z

y [R

Rhf zzyð Þn dyð Þzo hð Þ:

For convenience we shall write
R t

0
to mean

R
s [ 0, tð � . More complex forms of jump

Markov processes Xt are modeled via an integral equation using the Poisson random

measure m by

Xt~X0z

Z t

0

Z

y [ R

K s, Xs{, yð Þm ds, dyð Þ,

where the kernel function K(t, x, y) is assumed to be continuous in t.

Given Xt5x and any function f : R?R,

E f Xtzhð Þð Þ~
Z

y [R

Rhf xzK t, x, yð Þð Þn dyð Þzo hð Þ,

as hR0+. A particular case is when K(t, x, y) is independent of y, K(t, x, y)5K(t, x).

In this case, Xt is given by

Xt~X0z

Z t

0

K s, Xs{ð ÞdNs,

where Nt is the Poisson process with rate R that counts the number of markers:

Nt~

Z t

0

Z

y [R

m ds, dyð Þ:

For more details the reader is referred to Bitchteler (2002), Jacod and Shiryaev
(2003) and Applebaum (2004).

Appendix B: Generators of Markov Processes

Given an Rn valued time non-homogeneous Markov process Xt, its time-dependent
generator A is an operator defined by

Afð Þ t, xð Þ~ lim
h?0z

1

h
E f tzh, Xtzhð Þ{f t, xð Þð Þ

for all functions f : R|Rn?R for which this limit exists, and the expected value is

taken under the condition that Xt5x. Intuitively, given any function f(t, x) of time t

and process value x at time t, Afð Þ t, xð Þ is the rate of change of the expected value of
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f(t, Xt) at time t. The generator essentially captures all the relevant information

about a Markov process. We refer the reader to Ethier and Kurtz (1986) and

Applebaum (2004) for more details.

Now we shall outline the derivation of the form for generators of the type of

Markov processes that we encounter in this paper. For simplicity we consider an R

valued Xt which satisfies the following equation:

Xt~X0z

Z t

0

Z

y [R

F s, Xs{, yð Þm ds, dyð Þz
Z t

0

G s, Xs{ð ÞdWs

z

Z t

0

H s, Xs{ð Þds,

where m and W are a Poisson random measure and a Brownian motion, respectively,

that are independent of each other. Let f : R|R?R be twice continuously

differentiable. Then by Ito’s formula (Applebaum, 2004) we obtain that

f tzh, Xtzhð Þ~f t, Xtð Þz
Z tzh

t

Lf

Lt
u, Xu{ð Þdu

z

Z tzh

t

Z

y [R

f u, Xu{zF u, Xu{, yð Þð Þð

{f u, Xu{ð ÞÞu du, dyð Þ

z

Z tzh

t

Lf

Lx
u, Xu{ð ÞG u, Xu{ð ÞdWu

z

Z tzh

t

Lf

Lx
u, Xu{ð ÞH u, Xu{ð Þdu

z
1

2

Z tzh

t

L2f

Lx2
u, Xu{ð ÞG2 u, Xu{ð Þdu:

Taking the expected value conditioned upon Xt5x, we obtain

E f tzh, Xtzhð Þð ~f t, xð Þz
Z tzh

t

E
Lf

Lt
u, Xu{ð Þ


 �
du

z

Z tzh

t

Z
y [R

E f u, Xu{zF u, Xu{, yð Þð Þf

{f u, Xu{ð ÞgRn dyð Þdu

z

Z tzh

t

E
Lf

Lx
u, Xu{ð ÞH u, Xu{ð Þ


 �
du

z
1

2

Z tzh

t

E
L2f

Lx2
u, Xu{ð ÞG2 u, Xu{ð Þ

( )
du,
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where we have used the fact that the expected value of the Ito integral (w.r.t. the

Brownian motion) is zero and n6R dt is the intensity measure of m. Applying the

mean value theorem and taking the limit as hR0+, we obtain

lim
h?0z

1

h
E f tzh, Xtzhð Þ{f t, xð Þð Þ~ Lf

Lt
t, xð Þz

Z

y [R

R f t, xzF t, x, yð Þð Þð

{f t, xð Þn dyð ÞÞz Lf

Lx
t, xð ÞH t, xð Þ

z
1

2

L2f

Lx2
t, xð ÞG2 t, xð Þ:

The third and fourth terms involving Lf/Lx and L2f/Lx2 are the drift and diffusion
terms. The second term is the term due to the Poisson random measure.
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