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is also important for the method to capture the asymptotic variances accurately. In the
context of stochastic chemical systems, time stepping methods are known as tau leaping.
Well known existing tau leaping methods have shortcomings in this regard. The implicit
tau method is far more stable than the trapezoidal tau method but underestimates the

I;fg:::;glsc chemical kinetics asymptotic variance. On the othef hand, the trapezoidal tau method which estima.tes the
Tau leaping asymptotic variance exactly for linear systems suffers from the fact that the transients of
Central limit approximation the method do not decay fast enough in the context of very stiff systems. We propose a
Stiff systems tau leaping method that possesses the same stability properties as the implicit method
Fluid limit while it also captures the asymptotic variance with reasonable accuracy at least for the test

system S; « S,. The proposed method uses a central limit approximation (CLA) locally over
the tau leaping interval and is referred to as the LCLA-7. The CLA predicts the mean and
covariance as solutions of certain differential equations (ODEs) and for efficiency we solve
these using a single time step of a suitable low order method. We perform a mean/covari-
ance stability analysis of various possible low order schemes to determine the best scheme.
Numerical experiments presented show that LCLA-t performs favorably for stiff systems
and that the LCLA-7 is also able to capture bimodal distributions unlike the CLA itself. The
proposed LCLA-t method uses a split implicit step to compute the mean update. We also
prove that any tau leaping method employing a split implicit step converges in the fluid
limit to the implicit Euler method as applied to the fluid limit differential equation.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Intracellular processes are best described by the discrete and stochastic model of well stirred chemical systems where the
vector of molecular copy numbers X(t) is a Markov process with nonnegative integer state space Z". Probabilistically exact
simulation of the sample paths of X(t) via the well known stochastic simulation algorithm (SSA) is relatively straightforward
[1,2]. However in many practical systems of importance the SSA is exceedingly slow in the presence of vastly different time
scales and/or large molecular copy numbers. The tau leaping methods were devised to provide an approximate but efficient
way to simulate sample trajectories of such systems and the first tau method was proposed in [3].

The basic idea of a tau leaping method is to approximate the random number of firings of various reactions over a pres-
elected time step by a reasonable criterion. Tau leaping methods can be regarded as the discrete and stochastic counterparts
of the time stepping methods for ordinary differential equations (ODEs). Chemical reaction systems are well known for
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possessing vastly different time scales and hence the resulting systems are almost always stiff. The implicit tau leaping
method was developed to deal with stiff systems, but it was realized that stiffness manifests in stochastic systems in a more
complex manner than in deterministic systems [4]: it was not only important for a tau method to remain stable but it was
also important for the method to capture the asymptotic variances correctly. See [5] where the asymptotic behavior of the
explicit tay, the implicit tau as well as the trapezoidal tau methods are analyzed. Additionally when molecular copy numbers
of some species are small, it was realized that while dealing with stiffness, preserving the integrality and nonnegativity of the
states was also an important issue. The methods proposed in [6,7] address stiffness in the presence of small molecular copy
numbers.

For non-stiff systems nonnegativity issues are addressed in [8-11]. A higher order method for moderately large copy
number non-stiff systems is presented in [12]. In [13], the authors proposed a tau leaping method based on a splitting
scheme and provided some error analysis. Step size selection for the explicit tau method is addressed in [14] and references
therein. Error and convergence analysis of some tau leaping methods can be found in [15-17].

The stability analysis in [5] shows that while the implicit tau is stable, it underestimates the variance and that the trap-
ezoidal tau captures the asymptotic variance exactly (in the case of linear propensity systems). Nevertheless the trapezoidal
tau is undesirable in stiff systems due to the fact that the transients of the fast dynamics of the method decay much slower
than those of the true system [7]. Additionally implicit tau and trapezoidal tau methods are only suited for moderately large
molecular copy numbers as they produce non-integer states (without rounding).

In this article we present a new tau leaping method which also applies to stiff stochastic chemical systems with moder-
ately large molecular copy numbers where integrality of the states is not an issue. The proposed new method overcomes the
shortcomings of both the implicit tau and the trapezoidal tau methods and is based on a local approximation of the evolution
of the mean and the covariance of the reaction count vector which holds for moderately large molecular copy numbers. More
specifically, this method uses the central limit approximation (CLA) derived in [18] (Chapter 11, Section 2), locally over the tau
leaping interval (conditioned on the initial random state at the beginning of the leaping interval). This approximation is
recomputed for each successive tau leaping interval. We refer to our method as tau leaping via local central limit approxima-
tion (LCLA) and use the abbreviation LCLA-t.

For sake of efficiency, we propose to solve the ODEs resulting from the CLA by applying one time step (of the same size as
the tau leap) of a low order numerical scheme. We analyze the stability of mean and covariance of the resulting tau leaping
methods to decide the best possible discretization of these ODEs. The stability analysis presented here clearly demonstrates
one of the schemes as superior to the others in terms of performance in stiff systems, leading us to incorporate this scheme
as part of the proposed method. What is remarkable about this scheme is that while it is as stable as the implicit tau method,
it also captures the asymptotic variances very accurately at least in the case of the linear test system S; « S, as revealed by
our stability analysis. We refer to the resulting method as the LCLA-7.

The proposed LCLA-7 uses a split implicit step to update the mean, a strategy also employed in [7]. We prove a theorem in
the appendix showing that under modest assumptions any tau leaping method employing the split implicit step converges in
the fluid limit to the implicit Euler method as applied to the resulting fluid limit RRE. In this fluid limit analysis we fix T > 0
and let V — oo. To our knowledge fluid limit (with T > 0 fixed and V — oo) of a tau leaping method has not been rigorously
proven before.

Finally we like to remark that the basic idea of the LCLA-t can be applied to stiff stochastic differential equations driven by
Brownian motion with a “small” diffusion term as the CLA can be effectively applied to such equations. In that case the sta-
bility analysis provided in this paper will need to be generalized to such systems.

The outline of the paper is as follows. Section 2 provides an overview of stochastic chemical kinetics, the fluid limit, the
central limit approximation (CLA) as well as tau leaping methods. Section 3 introduces the LCLA-t method and discusses var-
ious choices of potential numerical schemes for computing the covariance. Section 4 provides the absolute stability analysis
which helps to identify the best numerical scheme to use in computing the covariance. In Section 5, we compare LCLA-t with
SSA, and other tau leaping methods showing a favorable performance by LCLA-t in the moderately large copy number re-
gime. We also show that unlike CLA, the LCLA-7 can capture bimodal distributions. Finally Section 6 provides some conclud-
ing remarks. Additionally in Appendix A we prove under modest assumptions that any tau leaping method employing the
split implicit step converges in the fluid limit to the implicit Euler method applied to the fluid limit RRE.

2. Overview of stochastic chemical systems, central limit approximation and tau leaping methods
2.1. Stochastic chemical systems and SSA
Stochastic chemical reaction systems involved with small number of molecules have a discrete and stochastic dynamic

behavior. The standard well-stirred chemical model in [19,20] can be described by a Markov process in continuous time with
nonnegative integer state space Z%.

The model is based on a well-stirred mixture of N molecular species {S1,...,Sy} interacting through M chemical reaction
channels {Ry, ..., Ryu}. The state of the system is described by the molecular population vector X(t) = (X;(t),...,Xn(t)), where
Xi(t) is the number of molecules S; at time ¢ for eachi=1,...,N. Foreachj = 1,..., M, the propensity function a;(x) is defined

by the condition that given X(t) = x, the probability that reaction R; will occur during (t,t + h] is a;(x)h + o(h) as h — 0+.
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Vector v; forj = 1,..., M is the stoichiometric vector, whose ith component v; is the change in the number of S; molecules due
to one occurrence of reaction R;. We often denote by v an N x M matrix with column vectors v;, and denote by a(x) the pro-
pensity vector with components g;(x), forj=1,...,M.

It also follows that the probability distribution as a function of time satisfies the chemical master equation (CME) [19] gi-
ven by

M
P(X, tXo, to) = Y _[a;(X — v;)P(X — Vj, t|Xo, to) — @;(X)D(X, t|Xo, to)],
j:

—_

where p(x, t|xo, to) denotes the probability that X(t) = x given X(ty) = xo. The CME completely determines the dynamics of
chemical systems. But computing probabilities via the CME is prohibitive due to the fact that the number of possible states
grows exponentially with the number of distinct molecular species.

Probabilistically correct realizations of sample paths of such systems can be generated by the stochastic simulation algo-
rithm (SSA) [1,2]. The SSA is based on the next-reaction density function p(t,j|x, t) which is defined such that p(z,j|x, t)dt is the
probability, that given X(t) = x, the next reaction in the system will occur in the infinitesimal time interval (t + 7,t + T + dt]
and will be an R; reaction. It generates an elapsed time 7 and the index of the next reaction j following

p(Tjlx,t) = gi(x) exp[-ao(x)7] (> 0;j=1,....M), (M
where ay(x) = Zj"ilaj(x). Then it advances the system according to
X(t+ 1) =X(t) + ;.

Since the SSA tracks every reaction event each time, it is very time consuming for systems with multiple time or population
scales.

We shall denote by R(t) = (R (t), Ra(t), ..., Ru(t))" the reaction count vector where R;(t) is the number of times the jth reac-
tion channel fires during (0, t]. Thus

X(t) = X(0) + VR(t), (2)

where v is the N x M matrix whose jth column is v;.

Finally, if one knows the initial state X(0) and the reaction count vector R(t) for a given t € [0, T] then one can recover X(t).
However, knowing X(t) for a given t € [0, T] does not allow one to reconstruct R(t) unless v is one-to-one. For this reason, in
tau leaping approximations it is desirable to have approximations of R(t) rather than X(t).

2.2. Fluid limit

The stochastic behavior of the model described is typically prominent only when some species are present in small or
moderately large copy numbers. When all the molecular species are present in large numbers and under certain additional
assumptions on the propensity functions, the chemical system is well approximated by a deterministic ODE model known as
the reaction rate equation (RRE). The RRE can be regarded as the limiting behavior that ensues when the system volume V
approaches co with the initial number of species X(0) also growing proportional to V so that the concentration X(0)/V is fixed
[21,18]. This limit is known as the thermodynamic limit in chemical literature and is also known as the fluid limit in queueing
theory.

The fluid limit can be described in mathematical terms [18] as follows. For a system with initial state X(0) = xo € ZY and
volume Vy, let us denote by z, = xo/V the initial concentration. Consider a family of related systems with different volumes
V and initial states Xy (0) = Vzp = Vloxo, so that they have the same initial concentration. Denote by Xy (t) the trajectory for the

system with volume V. Note that our original system has a trajectory X(t) = Xy, (t). Thus the concentrations are Zy(t) = ’#
Additionally we assume that the propensities a;(x) depend on volume V such that

llm — = 4(x), (3)

which is true in the standard model of stochastic chemical kinetics (see [21]). See Appendix A where this is discussed in more
detail. It is shown in [18] that (under a suitable coupling of all the systems with different V values) for each fixed t > 0, Zy
converges with probability 1 to the deterministic trajectory Z(t) uniformly on each bounded interval [0, t] (for t > 0) where
Z(t) is the unique solution of the reaction rate equation (RRE)

7 M
2O _ S a@e), (4)
=1

with initial condition Z(0) = z,.
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Usually the large V limit is valid when molecular copy numbers of each species is very large and then (3) and (4) justify
the following ODE approximation X(t) for the molecular population vector X(t):

dX(t) - "
S = e

2.3. Central limit approximation of stochastic chemical systems

The ODE approximation obtained via system size expansion described in the previous section is valid only when molec-
ular copy numbers are very large (when system volume V is very large) as it ignores the random fluctuations. However, when
the population count is only moderately large, the central limit approximation (CLA) [18] provides an improved asymptotic
approximation in which the mean of X(t) is given by the above ODE model while the deviation from the mean satisfies a
simple stochastic differential equation (SDE). When the system has linear propensities, it can be shown that this approxima-
tion yields the exact mean and covariance for X(t) while the distribution of X(t) need not be accurate unless molecular copy
numbers are moderately large.

More specifically, according to CLA, the process X(t) is approximated by X(t) where E(X(t)) = m,(t) which is the solution
of the RRE:

dmyg(t)
dt

and the deviation &(t) = X(t) — E(X(t)) from the mean value, is given by the solution of the following stochastic differential
equation (SDE):

= va(m(t)), mg(0) = Xo, (5)

M
de(t) = Ay(DE(DdE + > by(6)dBi(D),  £(0) =0, (6)
=1
where By, ...,By are independent standard Brownian motions,
oa
Ay () = V5 (M (D)), (7)

and

bi(t) = vi/a(my (1), j=1.....M. ®)

It can be shown that &(t) is Gaussian distributed for all t > 0. Thus the CLA X(t) is Gaussian with mean my(t) and covariance
Cy(t), where Cy(t) satisfies the matrix ODE:

dCy(t)

X5 = CUOALD) + A (0) + Ex (1), Cx(0) = 0. ©)

Here
M
Ex(t) = vy a;(mg(t)).
j=1

For a rigorous derivation of CLA based on the random time change representation, the law of large numbers and the central
limit theorem [18] (Chapter 11.2).

Central limit approximation can also be applied to the reaction count vector R(t). Let R(t) denote the CLA for R(t). Then
R(t) is Gaussian with mean m(t) and covariance Ci(t), where m(t) and Cj(t) satisfy

%:a()ﬂﬂ)m&(t)), my(0) = 0, "o
and

dcjt(t) = Co(DAL(E) + Ag(E)Ci (D) + Eg(t),  C4(0) =0, -
where

Ap(t) =%(X+vmk(t))v, )
and

M
Ex(t) = > _ejel a(x + vimg(t)). .

=

Here ¢; is a vector whose jth element is one and others are zeros.
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Note that the CLA for R(t) and X(t) are consistent with the relation (2):

X(t) = X(0) + VR(b).

2.4. Tau leaping methods

Tau leaping methods proceed as follows. First a time step 7 is chosen. Given the current state X(t) = x, define R;(x, T) to be
the (random) number of times that jth reaction channel will fire during the time interval (t,t + 7], for j=1,...,M. Then

X(t+1) :X+2M:VjRj(X,T). (14)

j=1

In general, the distribution of R;(x, 7) is not known. In a tau leaping method, an approximation Kj(x, t) of R;(x, T) is computed.
We review the three most basic tau leaping methods here. The explicit tau method (see [3]) chooses Kj(x,7) forj=1,...,.M
to be independent Poisson random variables with mean q;(x)z, i.e., K}e” (x,7) ~ 2(a;(x)7). Here we denote by (/) a Poisson
random variable with mean 4.
The implicit tau method (see [4]) computes X™(t + T) from

M
X0t + 1) =x+> V(P - ()7 + (X" (t + 1))7}, (15)
j=1

where P; ~ 2(aj(x)7) for j=1,...,M are independent. Thus R;(x, 7) is approximated by
K (x,7) = P — q;(x)T + g;(X"(t + 7).
The trapezoidal implicit tau method (see [5]) generates the update equation by

T

M
X+ 1) =x+Y (P - 200 +5
=

SG(X "+ 1)), (16)

where P; ~ 2;(a;(x)7) are independent. Thus R;(x, T) is approximated by

K" (6,7) = Py — S ) + 2 (X (¢ 4 7).

2 2
We introduce a new tau method in this paper which is well suited for stiff systems with moderately large molecular copy
numbers. This method combines the advantages of the implicit tau and the trapezoidal tau methods. Specifically it has the
same stability characteristics as the implicit tau (i.e. very stable) while nearly preserving the asymptotic covariance (at least
for the linear test system S; < S,). We note that even though the trapezoidal tau method computes the covariance exactly
for linear propensity systems, it is unsuitable in very stiff systems due to the fact that the transients of the fast dynamics of
the trapezoidal tau method decay much slower than those of the true system [7].
In order to ensure stability we use a split implicit step to compute the mean update. Thus at each time step, we first com-
pute an intermediate deterministic state X’ by applying the implicit Euler method to the underlying RRE: given current state
x and step size 7, we compute X' that satisfies

M
X =x+Y vgX)t. (17)
=1
Then we choose a random vector K = (Kj,...,Ky) such that E(K;) = a;(X')T. We obtain the population state X at t + 7 by
M
X=x+> vk

=

Heuristically, in the fluid limit, since K; will be nearly deterministic, K; ~ E(K;) and the updated state X ~ X'. In Appendix A
we prove under suitable assumptions that any tau method employing the split implicit step has a fluid limit which is the
implicit Euler applied to the fluid limit RRE.

The split implicit step scheme dictates only the expected values E(Kj). The question of how to choose an appropriate joint
distribution for K = (K1, ...,Ky)" needs to be addressed. In [7] two variants of a split implicit step tau leaping method were
proposed where the Minkowski-Weyl decomposition was used to determine the joint distributions of K;. These methods,
termed the implicit Minkowski-Weyl tau (IMW-t1) were shown to perform better than the implicit tau, trapezoidal implicit
tau and the REMM-t methods when applied to stiff systems with small number of molecular copy numbers. The key decision
criterion governing the choice of distributions for K; in the IMW-t methods was based on satisfying the nonnegativity and
integrality conditions on the updated state. For the tau method introduced in this paper, we propose an alternative criterion
to choose the joint distribution for the Kjs. Having decided on the mean of K; via the split implicit step, it is natural to focus
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on obtaining a good approximation for the covariance of K, and then to choose a joint distribution for K satisfying the mean
and covariances. In order to obtain an approximation for the covariance we shall use the central limit approximation (CLA)
described in the previous subsection. This leads to the tau leaping method proposed in this paper which is described in Sec-
tion 3. Since the central limit approximation is only valid in moderately large molecular copy numbers we expect the method
to work well only when the species counts are moderately large.

3. Tau leaping method via local central limit approximation

Given X(t) = x, we let R(7) denote the vector of reaction counts during (t, t + 7]. Then the number of species X(t + 7) = X at
time t + 7 is given by

X =x4VR(1).

Noting that Cov(X) = vCov(R(t))Vv", we shall attempt to approximate Cov(R(t)). When the population count is moderately
large, the central limit approximation (CLA) described in Section 2.3 can be applied. In general, even with moderately large
population count, CLA may not be accurate over a large time interval. Note that the CLA predicts the species counts as well as
reaction counts to be Gaussians over arbitrary time intervals. This may not be accurate on several instances, especially in
examples with bistability.

We may expect a better performance if CLA is applied over a relatively small time interval (¢, t + 7] (which shall be the tau
leaping interval for us), the population state updated according to a sample from the distribution computed by CLA, and then
the CLA is recalculated for the next interval (t + 7,t + 27] based on the updated state corresponding to time t + t. This forms
the basis of the tau leaping method introduced in this paper.

3.1. Local central limit approximation and the LCLA-t method

If CLA is used to compute the distribution at some final time ¢t = T for a chemical system then one may simply solve the
ODEs for my/(t) and Cy(t) using highly accurate ODE solvers to obtain the parameters for the Gaussian distribution at t = T.
However, if sample paths of X(t) are required then one needs to generate sample paths of the SDE (6) which requires more
computational effort. Given this fact, it may very well be desirable to recompute the CLA based on the random updated state
after each time step. This incurs little extra cost but results in better accuracy. Thus the method we propose recomputes CLA
during each time step based on the current state and updates the state according to a Gaussian sample computed using CLA.
Since CLA is recomputed at each time step, we shall name this approach local central limit approximation (LCLA), and refer to
the resulting tau leaping method as LCLA-7 in short. We note that the LCLA-t method proposed produces updated states that
are Gaussian when conditioned on the state at the previous time step, but the unconditional distribution of the states needs
not be Gaussian. We shall describe this idea in more details below.

Let X(t) = x be given. Consider a time interval (t,t + t]. With slight inconsistency in notation let us denote by R(t) the
number of times that reactions fire during (t,t + 7]. Let X = X(t + 7). Then

X =x4VR(1).

Let E(R(t)) = mg(7), and Cov(R(T)) = Cg(7). Then according to CLA, mg(t) and Cg(t) are approximated by my(t) and Cg(7)
which are given by (10) and (11). We need to use a suitable numerical scheme to approximately solve the ODEs (10) and
(11). We denote the resulting numerical solutions by mg(t) and Ck(7). The tau leaping approximation K(7) of R(7) is then
chosen to be Gaussian with E(K(t)) = mg(t), and Cov(K(t)) = Ck(7). Then the state is updated to obtain

Y =x+vK(7).

Thus the framework of the proposed method is summarized in Table 1 which is described for constant step size T > 0
with initial state x, and time interval [0, T].

We note that the important step is Step 2 which involves efficient numerical approximation of the ODEs (10) and (11) and
this is considered in detail in Section 3.3.

Table 1
Basic framework of LCLA-t algorithm.

Initialize x «— xp and t < 0. Set 7 > 0

(2 Compute my(7) and Ck(t) by approximate solutions of (10) and (11)
3 Compute Cholesky factor Bi(t) such that Cx(t) = By (t)Bk(7)"
(4 Generate Gaussian random M-vector G ~ .47(0,I)

)
)
)
)
(5) Set K(t) — B ()G + m(7)
)
)
)

(6 Compute updated state Y = x + vK(1)
(7 Setx—Yandt—t+t
(8 If t <T go to step 2
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3.2. Relationship to the chemical Langevin equation

At this point it is worth mentioning the chemical Langevin equation (CLE) and the relationship of the proposed LCLA-t
method to the CLE. The CLE for a chemical system with propensities a; and stoichiometric vectors v; is an Ito stochastic dif-
ferential equation (SDE) for the state vector X(t) driven by independent Brownian motions B; of the form:

dX;(t) Zv,,a, t))dt + Zv,,, [a;(X(t))dB;(t). (18)

See [22,18] for instance. When the molecular copy numbers of a chemical system are moderately large, the CLE provides a
reasonable approximation to the exact system governed by CME (or equivalently the SSA). In some literature this is referred
to as the diffusion approximation [18]. It must be noted that unlike CLA, the approximation provided by CLE does not predict
X(t) to be Gaussian. In general the CLE has been numerically observed to provide a better approximation to CME than the
CLA. A recent work [23] provides an analytical justification for this.

However, the computation of CLA solution is relatively easy compared to the solution of the CLE. Samples paths of the CLE
may be generated using discrete time methods for SDEs such as the explicit Euler or the implicit Euler [24]. These methods in-
volve generating random updates that are Gaussian conditioned on the previous state. In the limit as step size approaches zero
with number of steps going to infinity, these methods are shown to converge to the exact solution of the SDE [24]. In thist — 0
limit, the LCLA-7 updates which are Gaussian (along with the implicit Euler updates of the CLE) will approach the updates of the
explicit Euler for CLE, and hence may be expected to converge in a similar manner to the exact solution of the CLE and not to the
exact solution of the CME. In this regard, the LCLA-t method may be regarded as a discrete time method for solving the CLE. The
key advantage of the LCLA-t method over the more familiar updating methods is that while it enjoys the same stability as the
implicit method it better captures the asymptotic distribution as will be demonstrated analytically and numerically.

To see why the LCLA-t update approaches that of the explicit Euler update in the T — 0 limit, we simply note first that
since (see (10))

dmy(0)
dt

the mean m(7) ~ a(x)t and since (see (11))

= a(x).

dC, (0 el
i = EO=) adaw

the covariance matrix Ci(7) is diagonal (up to O(t)) with jth entry being g;(x)7. Since the LCLA-7 is a discrete time approx-
imation that agrees with the above ODE solutions for the mean and covariance up to O(t), this leads to an update of the reac-
tion count vector with independent Gaussian entrees with mean and variance a;(x)7 for the jth entry. This is exactly the
explicit Euler update of the CLE.

Of course in the case of stiff systems, step size 7 is only small compared to the slow time scales but potentially very large
compared to the fast time scales and thus the LCLA-t method differs significantly from the explicit Euler in practice.

3.3. Numerical schemes for computing my(t) and Ck(7)

In this section, we describe in detail the numerical schemes for obtaining m(t) and Ck(t) which we shall simply denote
by m(t) and C(t) from hereafter.

Given the fact that CLA is only an approximation of the true stochastic system, it is not clear whether it is worth the com-
putational effort to use higher order implicit methods or multiple time steps of the ODE solver over a given tau leaping inter-
val. Additionally the use of higher order methods and/or multiple ODE solver time steps over a given tau leaping interval
require extra computational effort. Thus we shall only investigate low order Euler type methods applied with one time step
of the same size as the tau leaping step size t.

To obtain m(t) we shall use the implicit Euler approximation of (5) since among the low order schemes the implicit Euler
is best suited for stiffness. Thus we first solve an intermediate step X’ from implicit Euler solutions of the RRE given by

X =x+vaX)z, (19)
and then set

m(t) = a(X)T. (20)
Note that the above setup is equivalent to applying the implicit Euler to solve (10) given by

m(t) = a(x+vm(t))r, m(0) =0,

since X' = x + vm(7), and a(X')t = a(x + vm(1))T.
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There are several possibilities for a low order numerical approximation of (11). We investigate two types of numerical
schemes that one could consider when solving for C(t). The first type is the approximation of an exact integral representa-
tion of C;(7), and the second type is via low order Euler approximations of (11).

Type 1: Approximations of the integral representation.

The analytical solution of (11) can be written as

Cult) = [ 9lLSE(0" (0, )ds. @)
where ¢(t,s) is the fundamental solution of
D 0(t5) = A09(ts), with ¢(5.5) =1 (22)

Thus, within a step size 7, Cy(7) is given by

T
Cu(1) = [ 9l 9E(s)4" (x.)ds. (23)
We discuss the approximations for C(t) from three aspects.

1. Approximating E(s).
2. Approximating ¢(t,Ss).
3. Approximating the integral given by (23).

For computational efficiency, we want to approximate E(s) and ¢(t,s) by their values at s = 0 and/or s = 1.
To approximate Eg(s), we may use E(0), E(t), or (E(0) + E(t))/2, where E(0) and E(t) are given by

M
E0) = el ),
j=1

and
BT = 3 el ax + vm(o).

=

where m(t) is already solved. Note that E(0) and E(t) are diagonal matrices with diagonal elements being a;(x) and
a;j(x + vm(7)), respectively.

For most values of s in the interval [0, 7], we note that ¢(t,s) is very close to ¢(t,0) in the case of stiff systems. To see this,
for simplicity consider a linear propensity system so that A(t) = A is a constant matrix and ¢(7,s) = e**9 where s < [0, 7]. For
a stiff system, the fast time scales correspond to the eigenvalues 2 of A that have large negative real parts, and typically 7 is
much bigger than |1/R(1)| so that e*?~9) decays fast with s and is close to e®* for most values of s, s € [0, 7]. On the other
hand for the eigenvalues corresponding to the slow time scales, 7 is smaller than |1/4| and hence evaluating e**=9 at either
endpoints s = 0 or s = T results in equal errors. Hence, for stiff systems, for most of the values of s € [0, 7],e**9 is closer to
eA?, and not to eA*-® = |. Therefore, we shall approximate ¢(t,s) by ¢(7,0).

Now we consider how to approximately compute ¢(t,0). Experience suggests that explicit Euler is not a good method for
stiff systems. We shall investigate two choices, the implicit Euler and the trapezoidal Euler applied in (22) to approximate
#(t,0). We denote the resulting approximations by ¢(t,0)™ and ¢(z,0). These are given by

$(1,0)™ = (I - 7A(1)) ",

and

. -1
9.0 = (1-341)  (1+5A0)),
where A(0) and A(t) are given by

A(0) = %(X)V, and A1) = %(x +vm(T))v.

Finally, we approximate the integral (21) by
C(t) = T$EQT,

where ¢ is chosen to be either ¢(t,0)™ or ¢(t,0)”, and E is chosen to be E(0), E(t), or (E(0) + E(t))/2. This leads to six
numerical schemes in different combinations.
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Type 2: Euler approximations of the ODE. Another numerical approach to solve for (11) is to use Euler approximation meth-
ods, i.e., the explicit Euler, implicit Euler and trapezoidal Euler methods. Given C(0) = 0, we consider applying Euler methods
in one step.

The solution of the explicit Euler method of (11) is

C(7)™ = E(0)t,

where E(0) is the same as defined before.

Note that C(7)® is a diagonal matrix since E(0) is diagonal. Thus it cannot capture the correlations between different
reactions since the covariances are zero for off-diagonal terms. Therefore, we do not consider the explicit Euler approxima-
tion for C(1).

Applying the implicit Euler to solve for (11), we obtain

C(t)™ = C(t)"™A(1)"t + A(1)C(7) ™1 + E(1)T,

which is equivalent to the following Lyapunov equation

T
C(t)™ <A(T)T - %) + <A(‘c)r - %) C(1)™ + E(t)t = 0. (24)
Similarly, the trapezoidal Euler approximating method gives
C(1)"(A(T)T = D" + (A(T)T — )C(T)™ + (E(0) + E(T))T = 0. (25)

Here A(7),E(0), and E(7) are same as before.

Cholesky factorization and positive semi-definiteness of C(t): Table 1 provides a scheme for generating K(t) that are Gauss-
ian with mean m(t) and covariance C(t). Note that C(t) should be symmetric and positive semi-definite. For type 1 numer-
ical scheme, C(7) is given by C(t) = T¢E¢T, where E is a diagonal matrix. Hence C(t) is always positive semi-definite and the
Cholesky decomposition of C(t) is given by

B(7) = VT¢Eq(1), (26)

where E;(7) is the square root of the nonnegative diagonal matrix E(t). Hence the advantage of type 1 approximation is that
the numerical computation of the Cholesky decomposition is not required.

For Type 2 schemes, i.e., the implicit Euler and trapezoidal Euler approximating methods, one needs to solve for the
Lyapunov equation (24) or (25) to obtain C(t), then obtain B(t) by numerical computation of the Cholesky decomposition
of C(7).

We present a lemma which follows from a theorem in [25] to obtain sufficient conditions for the positive semidefinite-
ness of C(7).

Lemma 3.1. Let Q,R and W be M x M matrices, where W is symmetric and positive semidefinite. Suppose that all eigenvalues of R
have negative real parts. Then the Lyapunov equation

OR" +RQ +W =0, (27)

has a unique symmetric solution Q, and Q is positive semidefinite.
The following lemma presents sufficient conditions for the positive semidefiniteness of C(1).

Lemma 3.2. If A(t) has eigenvalues with real part less than 1/(27), then C(t)™ is symmetric positive semidefinite. If A() has
eigenvalues with real part less than 1/1, then C(t)\") is symmetric positive semidefinite.

Proof. Follows from (24) and (25), Lemma 3.1 and the fact that E(t) and E(0) are positive semidefinite. O

We note that the conditions that the real part of the eigenvalues of A(t) be less than 1/(27) or 1/7 are not restrictive for
stiff systems where the fast time scales all have negative real parts.

Thus we have described eight different possible numerical schemes for computing Ck (7). In Section 4 we present the sta-
bility analysis of these schemes. This stability analysis shows that the type 2 method with the implicit Euler solution of (11)
(which leads to (24)) provides the best scheme in terms of preserving the asymptotic covariance.

Table 2
Step 2 of the LCLA-t algorithm: computing m(t) and C(7).

i) Compute X' from X' = x + va(X')t (Newton’s method).

i)  Setm(t) — aX')t.

i) Set A(T) — % (x+m(t))v and E(1) — Zj"i]eje}aj(x +vm(1)).

V) Solve C(t) from C(t)(A(t)T —1/2)T + (A(t)T —1/2)C(1) + E(t)T = 0.
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We note that the type 2 schemes are more costly than the type 1 schemes due to the numerical solution of Lyapunov
equations and Cholesky decompositions. Nevertheless the type 2 scheme with implicit Euler allows one to take step sizes
much larger than the fast (and stable) time scales without compromising the accuracy of the asymptotic covariance. Hence
the type 2 scheme with the implicit Euler shall be our choice for Step 2 of the basic framework of LCLA-7 algorithm shown in
Table 1. Table 2 describes the details of Step 2 of Table 1.

4. Absolute stability analysis

We study the absolute stability of the LCLA-t method with the various numerical schemes for computing C(7) as de-
scribed in Section 3.3. In absolute stability analysis we fix 7 and let the number of time steps n — oo and investigate the
asymptotic mean and covariance.

First we study the test example S; < S, in Section 4.1. Then in Section 4.2 we extend the study to general linear systems
with the aid of numerics. Our analysis shows that the type 2 method of approximating (11) via implicit Euler provides the
closest asymptotic covariance to the true one.

We state an important lemma (see [26] for the scalar version) which shall form the backbone of our analysis.

Lemma 4.1. For (vector valued) random variables G and H,

E(G) = E(E(G|H)), Cov(G) = E(Cov(G|H)) + Cov(E(G|H)).

4.1. Stability analysis with S; < S,

In this section, we study the absolute stability of the LCLA-t method by applying it to the test problem
$15S,, S8 (28)

We denote by Y/ and Y3, the tau leaping approximations of X; (nt) and X, (nt) respectively (assuming constant time step t).
Since the system has a conserved quantity X; (t) + X»(t) = X1(0) + X3 (0) = xr, it follows that Y} = x; — Y7 and it is adequate to
study the behavior of Y]. We will derive propagation equations for the mean and variance of Y] by applying Lemma 4.1. Note
that it is not necessary to derive Cov(Y],Y3) since this is equal to Cov(Y],xr — Y]) = —Var(Y7).

Let X" be a random variable with a distribution which is the same as the asymptotic distribution of the true process X, (t)
as t — oo. For 2 =c¢y + ¢, E(X") = coxr/4 and Var(X") = clczxr/).z (see [27]). With modest abuse of notation, we shall use
E(YY) and Var(YT) to denote respectively the limits lim,_.. E(Y]) and lim,_. Var(Y]) when they exist.

We first compute Y/ from the implicit Euler step

Y, =Y —atY) 4+ atx - YY), (29)
and obtain
v - Y] T
LR ISP P

According to the LCLA-t scheme, random variables K" = (K|,K;) are chosen to be Gaussians with mean
E(K™) = (c1Y)7,c2(xr — Y))7). Since
1
Yt =Y] + K, — K],
by conditioning on Y7, we obtain

1 n  CaTXT

n+1yny _
E(YPIYD) e

14T

Applying the first formula from Lemma 4.1, we obtain that

— 1 n
=13t +

Letting n — oo, and solving for E(Y{"), we obtain that
E(Y?) =EX).

CoTXT
1+t

E(YT™)

We note that the stability condition for the mean
‘ 1

Tom b 2

is satisfied for all At > 0.
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We show the details only for the implicit Euler approximation method of type 2 described in Section 3.3 in obtaining the

propagation equation for the variance. Let Cy = Cov(Y""!|Y") be the implicit Euler solution of (9). It follows that Cy is the
solution of the Lyapunov equation given by

T
Cy (Ay'f - é) + <Ayf — %) Cy +EyT = 0.

-G G
AY = < )7
C1 —C

o —0o
EY = )
—0o Qo

where

Here

and

(c1—C)Y]  CXr  2c1CaXrT

N N L I A T

A formula in [28] gives the analytic form of the solution Cy for a 2 x 2 system of the Lyapunov equation to be
( t/(1+21) —-1/(1 +2),r))
Cy = N Qo
—t/(1+221) t/(1+27)
Therefore,

(c1 — ca)TY] CoXrT 2C1CoX7T?

n+1yny _
Vo ) = g T v T A 20 1)

Thus we obtain

Var(Y}™) = E(Var(Y{™|Y])) + Var(E(Y{™|Y]))
1 (c1 — ) TE(YY) CoXrT 2C1CoXrT
=—— Var(Y" 1 .
1+ 1) (¥y) + (1+221)(1+21)  (1+221)(1 + A7) + (14 227)(1 + A7)

Hence the stability condition for the variance is the same as (30) and the variance is stable for all At > 0. Letting n — oo, and
solving for Var(Y{") we obtain

. 2(1+ 1)° .
Var(Y{) = mVar(X ).
We define the variance quotient VQ of a tau leaping method as the ratio of the asymptotic variance Var(Y7") of the method to
the true asymptotic variance Var(X") for the test problem S; < S,. Note that VQ is typically a function of it and ideally VQ is
the constant function 1.

Similar analysis can be carried out for the other numerical schemes, and for sake of brevity, we shall not provide all the
details. We note that since all these schemes involve linear low order methods applied to the ODE (9) which depends linearly
on current state x, it follows that for all these schemes Var(Y""!|Y") is linear in Y" and as a result the coefficient of propa-
gation in the difference equation for Var(Y") is always 1/(1 + At)*. Hence for all these schemes the variance (in addition
to the mean) is stable provided /it > 0. However, the asymptotic variances, and hence the variance quotients VQ differ.

Table 3 summarizes the VQ for the various LCLA-t schemes discussed in Section 3.3. None of the LCLA-t numerical
schemes provide a constant value of 1. Nevertheless, one may look for a VQ(4t) that remains bounded away from 0 and
oo and preferably close to 1 for At € [0, ).

The variance quotient of an LCLA type 1 numerical scheme is independent of the approximation E. When it — oo, VQ
either approaches oo (for ¢(t,0)™) or 0 (for ¢(t,0)™). Of the type 2 numerical schemes, if explicit Euler is used to solve
(11), the resulting scheme has a variance quotient that approaches co as At — co.

Only two schemes, namely the type 2 with implicit Euler and type 2 with trapezoidal Euler have VQ that is bounded away
from 0 and oco. But as A1 — oo for the type 2 with implicit Euler VQ approaches 1 while for the type 2 with Trapezoidal Euler
VQ approaches 2. Thus we conclude that the best scheme as judged by the variance quotient is the type 2 implicit Euler
scheme. Fig. 1 illustrates the dependence of VQ on At for this scheme and we note that VQ is always between approximately
0.88 and 1, a very desirable feature indeed.

Table 3 also shows the VQ of the basic tau methods for the purpose of comparison which were derived in [5]. For the
Trapezoidal tau method VQ = 1 identically for all it > 0. Nevertheless as discussed and illustrated in [7], the problem with
the trapezoidal tau method is that in stiff systems the fast dynamics of the method decay much slower than those of the true
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500

Table 3
Test example S; < S: variance quotients for LCLA-t with type 1, type 2 numerical schemes, and comparison with the basic tau leaping
methods.
(7,0) E
E(0) E(1) E(O);E(I)
LCLA-t Type 1 (approximations of the integral representation)
$(1,0)™ Prv Pr i
b(T.0)) 2(2—i1)*(1+41)° 22—} (1+i1)° 2(2-i1)*(14+i1)*
¢(7.0) (241 2+ 2+
LCLA-t Type 2 (Euler approximations of the ODE)
Exp. Euler Imp. Euler Trap. Euler
Lyapunov 2(1+41)% 2(1+1)% 2(1+/7)
2471 (1+277)(2+77) (2+i7)
Basic tau leaping methods
Exp. tau Imp. tau Trap. tau
2 2
pvid v 1
1 . . . . 1 . —————————= — ——————
//“—
0.98} E 0.98f E
| H
U
c I c ;
O 0.96p __--1 S o096, 1
c \ .- c !
2 ! .- . 2 ,‘
g 0.9411 et 1 % 094p .
QL 1 - = f
é '. - ﬂLE) I
@ 092} ! R {1 @ oo} ]
Q ' . Q i
[&] \| e o I
1 //
0.9F R 1 0.9} 1
\ ,’
N,
0.88 . . . . 0.88 . . . .
0 2 4 6 8 10 0 100 200 300 400
lambda*tau lambda*tau

(a) VQ = (1432(;:7))(\;3:\7) vs. At for At € [0, 10]

(b) VQ = % vs. At for At € [0,500]

142A7) (24 AT

Fig. 1. VQ(/7) vs. At for the LCLA-t Type 2 implicit Euler (test example S; < S,).

system. Thus for a very stiff system the LCLA-t method (with the Type 2, implicit Euler scheme) will outperform the Trap-

ezoidal tau method.

4.2. Numerical studies of stability with linear propensity systems

In this section, we expand the stability analysis to general linear systems. Consider chemical systems with linear propen-

sities, where the LCLA-7 solutions at the nth time step are given by Y"

equations for E(Y") and Cov(Y"). Note that linear propensities have a general form a(x) = Px + d.
First step of LCLA-t involves solving for the intermediate state X' from

X =Y"+vaX) =YY"+ 1v(PX +d),
and we obtain that

X' =(I-tvP) (Y + 7vd).
Thus

EY™ Y™ =X = (I— vP) ' (Y" + 7vd).
Moreover,

Cov(Y™ ' |Y") = vCov(K"|Y")V" = vCyVT,

(Y1,Y5,...,Y}). Here we will derive the propagation

31)

(32)
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where Cx = Cov(K"|Y"). By Lemma 4.1 we obtain the following propagation equations from (31) and (32):

E(Y™) = (I — 7vP)  (E(Y") + Tvd), (33)

Cov(Y™™) = vCv" + (I — TvP) ' Cov(Y™)((I — TvP) ). (34)

We note that Cx depends on which one of the numerical schemes of Section 3.3 is used. For the type 1 schemes we may
obtain an analytical form for C. For the type 2 implicit Euler and trapezoidal Euler schemes an analytical form for Cg is not
available as C is given by the solution of a Lyapunov equation. For instance for type 2 implicit Euler scheme Cy is the same as
C (r)“m) given by (24). Nevertheless we may compute Cx numerically using the 1yap command in MATLAB.

Noting that Cov(Y°) = 0, we obtain Cov(Y") according to (34) numerically where the computation of Cx varies according
to the numerical scheme. The comparison of the trajectories of Cov(Y") (against n) for various numerical schemes is illus-
trated through a linear test example (35) shown below.

A linear test example:

(1)S125, (2)$2S,
(3)$1 2S5, (4) S35, (35)

We chose the initial value to be X(0) = (20,20,20)". The system has a conserved quantity X (t) +Xa(t) + X3(t) = X;(0)+
X3(0) + X3(0) = xr, where xr = 60. We set ¢c; = 0.5, ¢; = 0.3, c3 = 1000 and ¢, = 500. The eigenvalues of the Jacobian matrix
corresponding to the RRE are (—1500,0,-0.5)" with the slowest time scale 1/0.5=2, and the fastest time scale
1/1500 =~ 0.0007. We chose final time T = 20, and step size T = 0.2. Because X5 = xy — X; — X3, it is adequate to study the
variance and covariance of species X; and X5, namely, Var(X;), Var(X,) and Cov(X;, X;). We also used the MATLAB ODE solver
odel5s to solve the evolution equation for Var(X;), Var(X,) and Cov(X;,X>) to use as a benchmark for comparison of the
different schemes.

The comparison of the evolutions of the variances and the covariance for all the type 1 and type 2 schemes are shown in
Figs. 2—4. It is shown that the type 2 implicit Euler method is the most accurate. Type 1 with ¢(t,0)™ underestimates the

12 14 0
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6 -3
4 4 -3.5
2 4N\
4444949444444 4444444 2 ode 45 J444944444449494444
< typetl:imp -
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(a) Var(X7) (b) Var(Xs) (c) Cov(Xy, X>)

Fig. 2. Stability analysis of (35): trajectories of Var(X; ), Var(X>) and Cov(X;, X>) obtained by ODE solver (MATLAB: odel5s, solid line), and type 1 numerical
schemes with ¢™ (triangle). Three choices of E lead to same asymptotic trajectories.
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4444444444444444 T:’y"p“fe“mp
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(a) Var(X7) (b) Var(X>) (c) Cov(Xy, X2)

Fig. 3. Stability analysis of (35): trajectories of Var(X;), Var(X,) and Cov(X;, X») by ODE solver (MATLAB: odel5s, solid line), and type 1 numerical schemes
with ¢ (triangle). Three choices of E lead to same asymptotic trajectories.
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Fig. 4. Stability analysis of (35): trajectories of Var(X;), Var(X,) and Cov(X;,X2) by ODE solver (MATLAB: odel5s, solid line), type 2 with implicit Euler
(triangle), and trapezoidal Euler (circle) methods.

variance for Var(X;), and type 1 with ¢(t,0)™ overestimates the variance for Var(X;). We also confirm that for type 1
schemes, the asymptotic numerical behaviors depend only on the choices of approximations for ¢ and not on the choices
of E. These numerical results agree with the analysis of the example S; < S, shown in Table 3.

5. Numerical examples

In this section we will illustrate LCLA-7 through several numerical examples and compare with other tau leaping meth-
ods. By LCLA-t we shall mean the LCLA-t with type 2 implicit Euler scheme as outlined in Tables 1 and 2.

All tau leaping simulations were run on MATLAB. Since the SSA simulations were prohibitively slow on MATLAB, they
were run on a C platform. For the purpose of reasonable comparison of computational effort, we ran few SSA trajectories
on MATLAB to estimate the average running time (physical time) of a trajectory on the MATLAB platform (using tic toc
command). Tables 4, 5, 7, and 9 show running time comparison.

The time scales of the chemical systems were estimated from the RRE by the eigenvalues of the Jacobian matrix evaluated
at the final time. We chose both stiff and non-stiff systems. For stiff systems, we selected the time step t to be small when
compared with the slowest time scale, but much larger than the fastest time scale. We compared LCLA-t with SSA, trapezoi-
dal tau, the implicit Minkowski-Weyl tau methods including IMW-S and IMW-P. We chose chemical systems with number
of molecules for each species ranging from small to large. We note that for the LCLA-t method we applied rounding of the
final state for ease of comparison of probability distributions.

5.1. Linear test example: S, < S; « S3

We used the example (35), with the same parameter settings described before. We chose three initial values:
X(0) = (2,2,2)", X(0) = (20,20,20)", and X(0) = (200, 200,200)". We chose the final time T = 2. The step size was T = 0.2.

The comparison of the probability distributions in a simulation of 10,000 trajectories for SSA, LCLA-t, IMW-S, and trap-
ezoidal tau methods are shown in Figs. 5-7. The IMW-S performed better than LCLA-7 and the trapezoidal tau methods for
small number of molecules (xr = 6). For large x; such as xr = 60 and xr = 600, LCLA-t performed better in capturing
probability distributions. The trapezoidal tau did not capture the mean correctly due to its poor performance for very stiff
systems which was discussed in [7].

Table 4
Linear test example: comparison of estimated mean execution time for one trajectory (in s) between the SSA and LCLA
methods on MATLAB platform.

XT:6 XT:60 XTZGOO
SSA 0.18 1.9 19.9
LCLA 0.0049 0.0051 0.0048

Table 5
Genetic loop example: comparison of estimated mean execution time for one
trajectory (in s) between the SSA and LCLA methods on MATLAB platform.

SSA 744
LCLA 0.034
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Linear test example: probability distribution of X1(2), tau=0.2 Linear test example: probability distribution of X2(2), tau=0.2
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(a) X1(2), Tz =6 (b) X2(2)a zr =6
Fig. 5. Linear test example: comparison of probability distributions (10,000 sample trajectories) of X;(2) and X, (2) obtained by the SSA (circle), LCLA (star),

IMW-S (square), and trapezoidal tau (triangle). Here T = 0.2, T = 2, and xr = 6.

Linear test example: probability distribution of X1(2), tau=0.2 Linear test example: probability distribution of X2(2), tau=0.2
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Fig. 6. Linear test example: comparison of probability distributions (10,000 sample trajectories) of X;(2) and X, (2) obtained by the SSA (circle), LCLA (star),
IMW-S (square), and trapezoidal tau (triangle). Here 7 = 0.2, T = 2, and xr = 60.

5.2. Genetic positive feedback loop

We considered the example (36) with large and small species counts. It describes a genetic transcription model with
important biological significance (see [29]). Here x is the protein monomer, y is the protein dimer, dy is the regulatory site
unbounded to protein dimer, d, is the regulatory site bounded to protein dimer, and m is the mRNA. Reactions (1) and (2)
correspond to reversible reactions involving the dimerization of the protein x. Reactions (3) and (4) describe the binding and
unbinding processes of the dimer y to the regulatory site. Reactions (5) and (6) are the processes of transcription, and reac-
tion (7) is the process of translation. Reactions (8) and (9) are the decays of the protein monomers x and the mRNA m. Here
reactions (1)-(4) occur more frequently than reactions (5)-(9).

ki

(M x+x5y,  2)ySx+x. B)y+do—dy,
@) dSy+de, (5)doSdo+m, (6)d Ld +m, (36)
N mZm+x, (8)x2%0, (9) m™ 0.
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Linear test example probablllty distribution of X1(2 ) tau=0.2 Linear test example probablllty distribution ofX2(2) tau=0.2
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Fig. 7. Linear test example: comparison of probability distributions (10,000 sample trajectories) of X; (2) and X»(2) obtained by the SSA (circle), LCLA (star),
IMW-S (square), and trapezoidal tau (triangle). Here 7 = 0.2, T = 2, and xr = 600.

Let X1 = #x, X2 = #Y, X3 = #do, X4 = #d,, Xs = #m. The initial value chosen was X(0) = (10,0, 20, O,O)T, and we note that
X3(t) + X4(t) =20 is a conserved quantity. The reaction parameter values used were x, =50, k. = 1000, k, =50,
k- =1000, 2 =1, =10, 0 =3, y, =1, 7, =6 and we chose T = 50. The eigenvalues of the Jacobian correspondmg to
RRE at T =50 are (—9979, 711382 —0.083,-6.02,0)". The fastest and the slowest time scales are 1/11,382 ~ 10> and
1/0.083 =~ 12, respectively. We chose T=1.

The histograms are shown in Fig. 8 with the comparisons of SSA, LCLA-t, IMW-P and trapezoidal tau methods. It can be
seen that for the species with small number of molecules, such as S;, the IMW-P is better than the LCLA. For species with
large molecule numbers such as S;,S, and Ss, LCLA performs better than the IMW-P. We also note that the trapezoidal
tau shows a bimodal distribution for X;(50) which is because of the oscillatory transient which does not decay fast enough.
This is seen by the fact that the amplification factor (for the mean) for trapezoidal method is (2 + 4t)/(2 — A7) for an eigen-
value /. For the fastest time scale 7 = —11382 and since 7 =1 the amplification factor is —0.9996. Over 50 time steps
(—0.9996)° ~ 0.9826 which shows the oscillatory transient of the method does not decay.

5.3. Examples with bistability

In this section, we emphasize the advantage of the LCLA-7 over a direct application of CLA. We chose two examples with
bistability which leads to a bimodal distribution. For comparison we show the result of simply approximating the final state
via CLA which predicts Gaussians with mean mg(T) and Cg(T) which we obtain by solving (10) and (11) with high order ODE
solvers.

5.3.1. The Schlégl model

The first example is the Schlégl model in [21] involving three species and four reactions. Suppose the number of mole-
cules for S is given by X(t), where X(0) = 250. We denote by X, and X the number of species for A and B, and these numbers
are fixed. Here X, = 10°, X3 =2 x 10°, and ¢; =3 x 1077, ¢, = 1074, ¢3 = 1073, ¢4 = 3.5. Schlégl reactions are given by

(1)A+2523S, (2)352A+25,

. . (37)
(3)B=S5, (4) S B.
The propensities for each reaction are
a;1(X) = 0. 03X( - )/21
—4
as(X) = 200,
as(X) = 3.5X.

It can be shown that the ODE system has two stable stationary states, and one unstable state. We first observe that the
range of eigenvalue of the Jacobian 2 is from —9.1 to 1.1 as the species counts X(t) varies from 80 to 750. Therefore, for 1 > 0,
one needs to choose 7 < 2/(2 x 2.2) to ensure the positive semidefiniteness of C(t) as stated in Lemma 3.2 in Section 3.3.
Therefore, we chose 7 = 0.4.
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Genetic loop example: probability distribution of X1(50), tau=1  Genetic loop example: probability distribution of X2(50), tau=1
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Fig. 8. Genetic loop example: comparison of probability distributions (10,000 sample trajectories) of X;(50) (i = 1,2, 3, 5) obtained by the SSA (circle), LCLA
(star), IMW-P (square), trapezoidal tau (triangle). Here T = 1 and T = 50.

We chose two different final times T = 4 and T = 20. The probability distributions obtained by the LCLA-t and the CLA
methods are shown in Fig. 9(a) and (b) for T =4, and in Fig. 9(c) and (d) for T = 20. We note that the LCLA-t method per-
forms well in capturing the bimodal probability distribution. Table 6 shows that CLA also fails to compute the variance cor-
rectly while LCLA-t performs better.

5.3.2. Toggle switch example
We consider the toggle switch model (39) proposed by Gardner et al. [30]. It consists of two proteins S and R and switches
between two states. One state has large population for S and small population for R while the other has small population for S

and large population for R.
(1)0—R, (2)R—0, (39)
3)0—-S, 4S-—o0.

The populations of R and S are denoted by X; and X, respectively. Thus the state is X = (X1, X;)". The system has Hill function
like propensities, given by

o
:#7 nX) =X, a(X) :1 % 4 =X;.
1+ + 200

a1 (X)
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Schlogl example: probability distribution of X(4) with tau=0.4 Schlogl example: probability distribution of X(4) of CLA
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Schlogl example: probability distribution of X(20) with tau=0.4 Schlogl example: probability distribution of X(20) of CLA
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Fig. 9. Schlogl reactions: comparison of probability distributions (10,000 sample trajectories) of X obtained by SSA (circle), LCLA (star) and CLA (pentagram)
methods. Here (a) is SSA and LCLA for T = 4, (b) is CLA for T =4, (c) is SSA and LCLA for T = 20, and (d) is CLA for T = 20. Here t = 0.4 for all plots.

Table 6
Schlégl reactions: comparison of the variances computed from SSA, LCLA and CLA for T = 4 and
T = 20.
Covariance Methods
SSA LCLA CLA
Var(X), T =4 4.7014 x 10* 5.4323 x 10* 2.3476 x 10°
Var(X), T =20 5.6602 x 10* 5.8193 x 10* 1.9499 x 10°
Table 7

Schlégl reactions: comparison of estimated mean execution time for one trajectory (in s)
between the SSA and LCLA methods on MATLAB platform.

T=4 T=20

SSA 0.56 3.65
LCLA 0.0461 0.22
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We chose o; = 10*, o, = 3200, X(0) = (200, 200)", T = 20, and 7 = 0.05. The eigenvalues of the system at final time are given
by (—0.6353, —1.3647)". We define the switch being in the OFF state when X; has a small population, and X, has a large pop-
ulation. Correspondingly for ON state, X; has a large population, and X; has a small population.

We compare the probability distribution for X;(20) and X,(20) in Fig. 10 with SSA, LCLA, and CLA methods. We observed
that the copy numbers of X; widely range from 0 to 10,000 at T = 20. For the purpose of clarity, we show the OFF state and
ON state for X; separately in plots (a) and (b). It can be seen from Fig. 10 that LCLA method is good in capturing both oscil-
lating population states for X; and X,, where as CLA only exhibits one of the oscillating states.

Table 8 shows that LCLA-7 is far more accurate in capturing the variances and the covariance than CLA.

We like to mention that it has been shown that the CLE does not always provide a good approximation to bimodal asymp-
totic distributions [31]. While we expect the LCLA-7 to be no more accurate than the CLE, in these two examples considered
the agreement with SSA (CME) is quite good.

Toggle switch: probability distribution of X1(20) with tau=0.05

x 10"

Toggle switch: probability distribution of X1(20) with tau=0.05 Toggle switch: probability distribution of X2(20), tau=0.05
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Fig. 10. Toggle switch example: comparison of probability distributions (10° sample trajectories) obtained by SSA (circle/dashed line), LCLA (star/dot), and

CLA (pentagram). Here (a)-(b) are the distributions of OFF and ON states for X; obtained from LCLA, (c) is the distribution for X, obtained from LCLA, and

(d)-(e) are distributions for X; and X, obtained from CLA. Here X(0) = (200,200)", T = 20, and 7 = 0.05.

Table 8
Toggle switch example: comparison of the variances and covariances computed from SSA, LCLA
and CLA for T = 20.

Covariance Methods
SSA LCLA CLA
Var(Xy) 1.5610 x 107 1.8489 x 107 0.0144 x 10°
Var(Xz) 0.1607 x 107 0.1866 x 107 8.5099 x 10°
Cov(Xy,X32) —0.4931 x 107 —0.5799 x 107 —0.2904 x 10°
Table 9

Toggle switch example: comparison of estimated mean execution time
for one trajectory (in s) between the SSA and LCLA methods on MATLAB

platform.
SSA 4.82
LCLA 0.21

599
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6. Conclusion

In this paper, we introduced a new tau leaping method called the LCLA-t for the efficient simulation of stiff stochastic
chemical systems with moderate molecular copy numbers. The method uses a local central limit approximation over each
tau leaping step. A split implicit step is used to compute the mean update, a strategy which ensures that in the fluid limit
the method behaves like the implicit Euler as applied to the fluid limit reaction rate equation (RRE). We provided (in Appen-
dix A) a rigorous proof of this fluid limit which holds under certain reasonable assumptions for any tau leaping method that
employs the split implicit step.

The local central limit approximations result in an ODE to be solved for the covariance. For numerical efficiency, we pro-
posed to solve this ODE by the application of one time step (same as the tau leaping step) of a suitable low order scheme. We
investigated several possible numerical schemes to compute this covariance and performed an absolute stability analysis of
all the possible variants of the resulting LCLA-t method. Based on this stability analysis one scheme emerged as the most
suitable for stiff systems. Thus we adopted this scheme as part of our proposed LCLA-t method.

We illustrated the resulting LCLA-t method through several numerical examples and compared it with the SSA, IMW-1
and the trapezoidal tau methods. We demonstrated that LCLA-t achieves better performance than these existing tau leaping
methods for stiff systems with species in moderately large population numbers. In addition, for chemical systems with bista-
bility the LCLA-t was able to capture the resulting bimodal distribution, whereas a straightforward implementation of the
central limit approximation always predicts a unimodal Gaussian distribution.

We also remark that the basic idea of the LCLA-7 can be applied to stiff stochastic differential equations driven by Brown-
ian motion with a “small” diffusion term as the CLA can be effectively applied to such equations. For that purpose the sta-
bility analysis provided in this paper will need to be generalized to such systems.
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Appendix A. Fluid limit of tau methods employing the split implicit step

The fluid limit described in Section 2.2 provides a good approximation when all molecular copy numbers are very large.
The parameter V that is interpreted as the volume plays a critical role in the study of this limit. In practice, in many stochastic
systems some species behave closer to the fluid limit (because of large molecular copy numbers) while other species exhibit
behavior far from fluid limit. This multiregime behavior should be contrasted with the more familiar multiscale behavior in
the form of stiffness that is often present in both ODE systems as well as stochastic systems.

When a tau leaping method is applied to a stochastic system a natural question that arises is whether the tau leaping
method is effective in a multiregime and/or stiff situation. One may formulate the multiregime situation as follows. Given
a family of suitably scaled systems Zy (t) indexed by V with propensities g;(x, V), denote the corresponding tau leaping solu-
tion with step size 7 by Zj,(t) over a time interval [0, T]. An ideal condition that ensures that the tau leaping method is effec-
tive uniformly across all regimes (characterized by V values) is that the error at the final time Zj,(T) — Zy(T) (measured in
some suitable sense) is of order O(t) uniformly in V.

Establishing such a uniform error bound is much harder than investigating the following related question: for the tau
leaping solution, do the limits as V — oo and T — 0 commute? In other words does the following hold:

fim ligZ3(1) =ty Ym0
where the limits are taken in some suitable sense? If we assume the convergence of the tau leaping method (for each V) to
the true solution Zy (T) then the above question is equivalent to asking whether the fluid limit limy_..Z (T) = Z*(T) of the tau
leaping method corresponds to a convergent time stepping method for the fluid limit ODE.

For a nonstiff system an intuitive argument is presented in [3] which essentially asserts that in the large V limit the ex-
plicit tau behaves like explicit Euler applied to the fluid limit ODE. A similar intuitive reasoning has been used by Rathinam
et al. [4] to assert that the implicit tau method in the fluid limit behaves like implicit Euler. However, a rigorous proof of
these assertions has not been provided. In this appendix, we focus on the fluid limit of tau leaping methods that employ
the split implicit step. Examples of such methods include the IMW-7 proposed in [7] and the LCLA-t proposed in this paper.

In this appendix, we shall show that under suitable assumptions the fluid limit (7 fixed, V — oo) of any tau leaping meth-
od employing the split implicit step scheme is the implicit Euler method applied to the fluid limit RRE. We like to note that in
contrast the analysis in [17] considers a limit where V — oo while T = V¥ scales inversely with V when applied to two spe-
cific explicit leaping methods.

Let us suppose a stochastic chemical system has M reaction channels and N molecular species. For each reaction channel j,
we define nonnegative vectors i/, ii; € 7', where 1 is the vector whose ith component counts the number of molecules of ith
species appearing as reactants in the reaction while 1 is the vector whose ith component counts the number of molecules of
ith species appearing as products in the reaction. As an example, consider a two species system with a reaction channel j



Y. Yang, M. Rathinam/Journal of Computational Physics 242 (2013) 581-606 601

given by Si 451 — 51 +S,. Then y; = (2,0)" and w=1, 1)". We define v; = 1 — W to be the stoichiometric vectors. Let us
define the “combinations” function k: 7, x Z, — 7, by
X!
k(x,y) = ————=, Y <X,
)= =y (40)
k(x,y)=0, y>x.
Thus k(x,y) is the number of distinct ways to choose y items from x items. Note that k(x,0) = 1.
Volume dependence of propensity function
The key to the fluid limit is the form of volume dependence of the propensity functions. Denote the system volume by V.
Let p be the matrix with jth column g;. Then the propensity function g; of reaction j is given by (see [19])

1 N
ai(x,V) = CiWHk(X“MU)’ (41)
i=1

where |1 = p;; + - - - + ;. Thus we obtain
“1) g gy 1)
!

Note that the derivation in [19] does not consider zero order reactions (i.e. reactions that involve no reactants) of the form
0 — S;. But we assume that (42) also holds for zero order reactions. For such reactions |t| = 0 and above equation yields

aj(x,V) =qV.

1 XX
af(X=V>=Cwa,HH — : (42)
i=1

We define the concentration Z(t) = ’% € R to be the number of species per volume. Introducing the change of variable
z=1x/V in (42) and keeping z fixed and letting V — oo (such that Vz remains integer), yields the asymptotic form

N Z.ftj
a;(Vz,V) ~ VCjHﬁ. (43)
i=1 11
We define the reaction rate function a; of reaction j by
N P
6(2) = 15 [2" (44)
i=1
where the reaction rate constant ; is related to the reaction propensity constant c; by
G
=D (45)
[Tizq 1!
Now we state a Lemma that describes the asymptotic behavior of propensities and their derivatives.
Lemma 6.1. For each fixed V > 0, let zy € RY, and suppose zy — z € RY as V — co. We obtain that, as V — oo
ai(Vzy,V _
a(Vev,V) — G(2). (46)
74
Moreover, as V — oo,
da a;
L (vzy, V) - (2. 47
2 (Vzy, V) - 2L (2) (47)

Proof. The results follow from (42) which shows a polynomial dependence of a; on x. O

The fluid limit

Having established the V — oo limit properties of the propensity functions, we are ready to study the fluid limit of the tau
leaping method. Fix a step size T > 0, let us consider the application of L steps of step size t of the split implicit step tau
method starting with an initial state xq = zoV for a system of volume V > V. Here V, is some given volume and z, is a fixed

concentration. Let K{, forl=1,...,L denote the reaction count vector updates at successive time steps. Let X(, forl=0,...,L
denote the successive states reached by the tau leaping method. Thus X!, = X," + vK!, for1 = 1,...,Lwith X% = z,V. Let Z, for
[=0,...,L denote the corresponding concentrations given by Z’V = X’V/V. noting that ZS = 79 is independent of V. We shall
show that under suitable assumptions, Z{, —Z'inl*forl=1,...,L,whereZ for | = 0,...,L denote the implicit Euler solution
of the RRE (4) with step size t for the initial condition Z° = z,. Thus

Z'=7"" vva(Zht, 1=1,...,L
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We note that since Z' are constants (nonrandom), the L? convergence of Z{, to Z! is well-defined even if Z(, for different V are
not defined on the same sample space. In what follows, we assume that for each V, there is a probability space (Qy, #v, Py) on
which X}, Z, and K}, are defined.

To aid the analysis of the implicit equation solved during the application of the implicit Euler step we define g, : RN — RY,
where 7 > 0 is the fixed step size,

va(yv,V)t
gy =y - YRV (48)
and define g : RN — R where
gWy) =y —va@y)r. (49)

We make the following assumptions.

Assumption 1. Suppose Vj is the volume of the given system. Suppose there exists a compact and convex set U c RN such
that for any V > V,, the following holds:

1. g and g, have unique inverse functions f and f, on U.
2. f(U) c U and fy(U) c U.
3. fand f, are C' on U.

We note that fy and f are characterized implicitly by
va V.V)t
) =y + VYT
and

fy)=y+vafy))r.

Thus the functions fy and f describe the implicit Euler solution. Hence according to the split implicit step scheme Z{, and K’V
satisfy the following relations:

EKLZVY = a2V, V)T, 1=1,2,... L, (50)
in addition to the update formula Z}, = Z;* + v% Therefore it follows that
EZZ,Y =fu(Zy"), 1=1,2,... L (51)

Also Z' satisfy the relations

Z'=fZ"Y, 1=1,2,... L
We state a Lemma that relates fy to f.

Lemma 6.2. Foranyy € U,fy(y) — f(y) as V — .

Proof. The proof follows from standard arguments. Let V,, be an increasing sequence such that V,, — occ. For any y € U, let
Yy, = fv,(¥), and Y = f(y). By Assumption 1, Yy, has a convergent subsequence Yv, . Suppose Yy, —Y. Then Y € U. By
Lemma 6.1, it follows that
WY V) o,
V

k
Since

va(Yv, Va,,Vn,)T

Yv, =y+ v
s

it follows that Y =y + tva(Y). Hence by Assumption 1, we conclude that Y =Y.

Also by the same argument, it follows that every subsequence of Yy, has a subsequence that converges to Y. By the
“subsubsequence Lemma” it follows that Yy, converges to Y. Thus we conclude that limy, .Yy, =Y, namely, for any
yeUlimy_fy(y) =f(y). O

Lemma 6.3. The family fy : U — U, for V > Vy, is uniformly Lipschitz on U. In other words, there exists a finite constant C > 0
such that for all V > Vo, and all y,,y, € U,

v 1) =)l < Clys =2l
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Proof. For y € U and V € [V, oo], we define Q(V,y) by

T
QV,y) = <8gv(y)> %BvY) ¢ vy, o0),

aay ' %y (52)

We note that Q(V,y) is symmetric positive definite for (V,y) € [V, o] x U. Moreover Q(V,y) is continuous on [V, o] x U.
This follows from the form of the propensity functions and by virtue of Lemma 6.1.

Fori=1,...,N,let (V,y) be the ith largest eigenvalue of Q(V,y). Then i(V,y) is continuous on [V, cc] x U for each i, by
virtue of the eigenvalue perturbation theory in [32] (p. 551). Hence 4{(V,y) has a minimum value on [Vy, o] x U for each i,
and this minimum value is strictly positive. In particular,

7 =min{i(V,y)|(V.y) € [Vo,00] x U} >0,

where A(V,y) is the smallest eigenvalue of Q(V,y).
z et
Fory e U240 — (ag"—o’)) , where y' = f,(y) € U. Hence

'y ay
_ <8gv(y,)> -
2 dy

Letting C = 1/,/7 and using the Mean Value Theorem we obtain the result. O

1
2 %V(y/)

‘|5fv()’)
| oy

The following lemma is related to the application of one time step of the split implicit step scheme. In the lemma z, and z
may be thought of as the states at the beginning of the time step corresponding to the (stochastic) system with volume V and
the fluid limit system respectively. Likewise Zy and Z may be thought of as the updated states.

Lemma 6.4. For V > V,, let zy and Zy be RN valued random variables carried by (Qy, #v, Py). Further suppose zy for V.= V,
take values in U and suppose as V — oo, zy — z € U in L?, where z is nonrandom. Let Z = f(Z). Also suppose Zy for V > V, satisfy
the following:

1. E(Zylzy) — fy(zv) = 0in [* as V — .
2. Foreachi,je{1,...,N}, Cov(Zylzy);; —» 0 in L' as V — cc.Then Zy — Z in L*.

Proof. First we shall show that fy(zy) — Z = f(2) in L. Let Z;, = fy(zv). Then we may write,

(Zy;i = Z0)" = vz = f(20)" < 2 (2v); = (@) +2(0(2); — f(2))” < 2C(zvi - 20)* +2(fu(2); - f(2))*,  ass.,

where subscript i stands for the ith component of a vector and C is the uniform Lipschitz constant from Lemma 6.3. Taking
the expected value of the above inequality, we obtain

E((Zy; - Zi)*) < 2CE((zvi — 1)) + 2(fv (2); — f(2);)°

As V — oo, E((zy; — Z:)*) — 0 by assumption, and fy(z); — f(z); — 0 by Lemma 6.2. Thus E((Zy; - Z)H — 0.
We define wy = E(Zy|zv) — fy(zv) and note that by our assumption E((wy)?) — 0 as V — cc. By the definition of the
conditional variance Var(Zy — Z|zy), for V > Vy, it follows that

E((Zvi - Z)|zv) = Var(Zy; — Zilzv) + (E(Zvi — Zilzv))* = Var(Zvilzy) + (Zy; — Zi + wy;)?
<Var(Zyilzy) + 2(Zy; — Zi)* + 2(wy)?,  as..

Taking expectation we obtain

E((Zvi - Zi)*) < E(Var(Zvilzy)) + 2E((Zy; — Zi)*) + 2E(wy;)* - 0, asV —oco. O

Finally we have the desired fluid limit in the following theorem.

Theorem 6.5. Suppose L steps of a split implicit step tau method with fixed step size T > 0 is applied to a system with initial
concentration zo € U. Suppose that for each 1=1,...,L, Z’V € U with probability 1 for all V > V. Further suppose that the
following conditions hold for l=1,... L:
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15(

2. Foreachi,je{1,...,M}, Cov(

l]
zy 1) W2y WVT_, 0 in L2 as V — oo.

z 1)__H0inL1 asV —oo.Then forl=1,...,L,Z, = Z'in[* as V — oc.

Proof. The result follows from Lemma 6.4 using mathematical induction and the relationship Z, = Z;' + # O

We like to remark that in Theorem 6.5 the assumption that E(%‘Z’V’]) M — 01in L? is a relaxation of the relation
in (50). This relaxation compensates for the restrictive assumption that for all [, Z{, takes values in U with probability 1.
Assuming that the state Z’V’1 at the beginning of the Ith step is in U, one needs a mechanism to guarantee that the updated
Z(, is in U with probability 1. One way to accomplish this is to bound Ki, by an upper bound Ky which may be chosen based on
the initial (deterministic) state zy € U as follows. Let R be the radius of the largest ball centered at z, and contained in U. Then

set Ky = ¢ Thus HK’VH < Ky implies that HZﬁ, —ZOH <Rforl=1,...,L.

Fluid limit of the LCLA-T

In this section we shall show that the LCLA-t method described in Tables 1 and 2 in combination with the bounding pro-
cedure described below indeed satisfies the conditions 1 and 2 of Theorem 6.5 on the fluid limit.

Bounding procedure: At each time step [, generate tentative reaction count vectors Hﬁ, according to the LCLA-t prescription.
Then set actual reaction count vectors K, as follows:

Ky; = —Ky, if Hy; < —Kv,
Ky; =Hy; if |H,| <Ky, (53)
Ky; =Ky, if Hy; > Ky,

wherel=1,...,L,j=1,...,Mand K, = % as mentioned before. N
First we shall show that the conditional covariance C(V,z) = Cov(HY,|Z, " = z) is O(V) as V — cc. Recall that C(V,z)

satisfies

C(V,2) (A(V,z) - %) + (A(v, zZ) - é) C(V,2) = —E(V,2), (54)
where
A(V,z) = %(va(z), Vyvr, Ze, Ta;(Vfy(2), V)t.

Now from Lemmas 6.1 and 6.2 it follows that A\V,z) - & (f(z))vt =A(z) and E(V,2)/V — Zj"ilejefaj(f(z))r =E2).
Let us consider the following equation obtained as a limiting form of (54).

C(2) <E(z) - %)T + (E(z) - %)f(z) =-E(2). (55)

Assumption 2. We shall assume that for allz € U and V > Vj all eigenvalues of the matrix A(V,z) as well the eigenvalues of
A(z) have real part less than 1/2.

From Assumption 2 and Lemma 3.2 it follows that C(V,z) and C(z) are uniquely defined. Furthermore since C(V,z) is un-
iquely defined implicitly via a linear equation, it follows that C(V,z)/V — C(2).

Now we shall verify both conditions 1 and 2 of Theorem 6.5.

Condition 1: Let us fix . For V > V, and z € U, let G;(V,z) be defined by

Gi(V.2) = E((Ky; - Hy)*1Z, " = 2).
Then one may write

1 (w=m?

Ky 74 _(u m ‘ —
Gj(V7Z):/ (u+Kv)2 \/21?17 )du+/K (ufKV)2 ije* 7 du,
oo : oy

where m = q;(Vfy(z),V)t and v = E(V,z)”-. Using the limiting properties of m and » one can establish that for each fixed z,
Gi(V,2)/V* — 0 as V — oo. Additionally G;(V,z)/V? is continuous for (V,z) € [V, o0] x U and thus it is bounded on that set.
Since Z,' € U with probability 1, it follows from dominated convergence that G;(V,Z")/V?> - 0in L' as V — .

We may write
H
-1\ v

(5(’% 2 1> i aj<va<zV’v-l>,V)r>2 _ <E<’<lw

2
_ 1 - ;
z’f)) < o E(KY — HL P2 ) = G2y v
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From this condition 1 follows.
Condition 2: It follows from the preceding discussions that

C(V,2)

I
Cov %\Z{,’]:z :T%O, as V — oc.

Using basic inequalities we may obtain

2 2

1 1
Ky (%
v v

K, H. H,  (H, 2 H, K.
z,' =z <37 - 3Bl =2)| +3E(a =) —E(Sa =2

Taking conditional expectation of both sides by conditioning on Z{,’l = z we see that the terms on the right hand side tend to

1
zero as V — oo for each z € U and hence so does the term on the left. Thus for each z € U, Var(K—‘Zf

Z(71:z> —0asV — oco. As

1
before using the continuity of Var(’%

z! :z) in (V,z) we can establish that it is bounded as a function of

1
(V,2) € [Vo, 0] x U. Since Z' € U with probability 1, by dominated convergence it follows that Var(K#

z(,*) —0inL".
When i # j, it follows that,

1 I ! 1 3 | 7
E|Cov va z,") | <E|,|Var % Z," |var K% Z," | | <{E|Vvar ﬁvvl z,! E( Var K% z,! - 0.

ij
Therefore condition 2 holds.

We remark that the bounding procedure described above was not used in our numerical simulations. It merely serves as a
conceptual tool in establishing the fluid limit. We also remark that to our knowledge a rigorous demonstration that a tau
leaping method converges to some suitable discretization of the fluid limit RRE of the stochastic model has not appeared
before. While the result seems intuitive, the proof in the case of implicit methods is nontrivial as we have seen here.
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