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Parametric sensitivity of biochemical networks is an indispensable tool for studying system
robustness properties, estimating network parameters, and identifying targets for drug therapy. For
discrete stochastic representations of biochemical networks where Monte Carlo methods are
commonly used, sensitivity analysis can be particularly challenging, as accurate finite difference
computations of sensitivity require a large number of simulations for both nominal and perturbed
values of the parameters. In this paper we introduce the common random number �CRN� method in
conjunction with Gillespie’s stochastic simulation algorithm, which exploits positive correlations
obtained by using CRNs for nominal and perturbed parameters. We also propose a new method
called the common reaction path �CRP� method, which uses CRNs together with the random time
change representation of discrete state Markov processes due to Kurtz to estimate the sensitivity via
a finite difference approximation applied to coupled reaction paths that emerge naturally in this
representation. While both methods reduce the variance of the estimator significantly compared to
independent random number finite difference implementations, numerical evidence suggests that the
CRP method achieves a greater variance reduction. We also provide some theoretical basis for the
superior performance of CRP. The improved accuracy of these methods allows for much more
efficient sensitivity estimation. In two example systems reported in this work, speedup factors
greater than 300 and 10 000 are demonstrated. © 2010 American Institute of Physics.
�doi:10.1063/1.3280166�

I. INTRODUCTION

Stochastic models of chemical reaction networks have
gained significant attention recently due in large part to the
increasing appreciation of the important role that stochastic
effects and intrinsic noise have on biological networks.1,2

These networks involve some molecular species, which are
present only in small copy numbers so that the discrete and
stochastic nature of the system cannot be neglected. In fact in
the presence of nonlinearities, the continuous deterministic
model described by reaction rate equations may not even
capture the average behavior of these systems correctly.

Chemical reaction models typically depend on a set of
kinetic parameters whose values are often unknown or fluc-
tuate due to an uncertain environment, such as is the case for
gene regulatory networks. Even small changes to the param-
eters may significantly alter the system output, and thus it is
critical to characterize such effects. Parametric sensitivity
analysis studies the change in system outputs to variations in
kinetic parameters and is an indispensable analysis technique
in the study of kinetic models. It is instrumental in deducing
system properties, such as robustness in an uncertain envi-
ronment. In large networks, sensitivity analysis can pinpoint

critical or rate limiting pathways and aid in reduced order
modeling, or in the biological context, guide drug targeting.

Sensitivity analysis may focus on the effects of finite or
infinitesimal perturbations of certain parameters. In deter-
ministic chemical kinetics the infinitesimal sensitivities are
computed easily via the integration of the linearization of the
reaction rate equations. If one is interested in effects of larger
perturbations for which linear approximation is not adequate,
one typically recomputes the solution to the reaction rate
equations for the perturbed parameter values. In the stochas-
tic setting the simplest and most common method for finite
perturbations is via Monte Carlo simulations to compute a
finite difference. The approach here is to characterize the
sensitivity to a finite perturbation h of a parameter c about a
nominal value c=c0 via a finite difference, such as
�E�f�X�T ,c0+h���−E�f�X�T ,c0���� /h, of the expected val-
ues. Here f is a function of interest of the final state X�T� of
the chemical system. One uses Monte Carlo simulations to
estimate the expected values via sample means. The simplest
approach would be to use two independent streams of ran-
dom numbers to generate samples of X�T ,c0� and
X�T ,c0+h�, the so called independent random number �IRN�
approach. A recent study used this approach in combination
with the Fisher information matrix to generate several differ-
ent sensitivity measures.3 However the use of IRNs may re-
sult in a statistical estimator with large variance, thereby in-
creasing the computational effort as large samples may be
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required. In this paper we show how the approach of using
the same stream of common random numbers �CRNs� to
generate samples of X�T ,c0� and X�T ,c0+h� can typically
result in an estimator with low variance and thus requires far
fewer samples and hence yields increased computational ef-
ficiency. We also propose a new method of computing sen-
sitivities called the common reaction path �CRP� method that
uses CRNs in the particular setting of random time change
�RTC� representation of Markov processes.4 We show that
both the CRN and CRP methods can dramatically reduce
computation time over IRN, with CRP performing better
than CRN. In addition to numerical evidence, we also pro-
vide a theoretical explanation �but not a rigorous proof� as to
why CRP is expected to perform better.

The finite difference �E�f�X�T ,c0+h���
−E�f�X�T ,c0���� /h characterizes sensitivity to the perturba-
tion h. When h is sufficiently small, one may treat the finite
difference estimate as an approximation to the infinitesimal
sensitivity given by the partial derivative �� /�h�E�f�X�T ,c0

+h��� at h=0. Instead of using the finite difference, one may
directly compute the infinitesimal sensitivity. One such ap-
proach is based on the Girsanov measure transformation,5

and another employs polynomial chaos methods.6

The contents of the paper are organized as follows. Sec-
tion II provides a brief introduction to stochastic chemical
kinetics. The RTC representation of discrete stochastic
chemical systems is presented in Sec. III, which is used to
formulate a variant of the stochastic simulation algorithm
�SSA� that handles computations corresponding to individual
reaction paths in Sec. III B. Section IV discusses Monte
Carlo finite difference schemes using IRNs and CRNs in the
context of accuracy of estimates. Section IV B introduces the
CRP algorithm, which exploits the RTC representation in
conjunction with CRNs to achieve higher efficiencies. All
three methods are compared via numerical examples in Sec.
V.

II. STOCHASTIC CHEMICAL KINETICS

Let us consider a chemical reaction system consisting of
n chemical species whose evolution in continuous time is
discrete and stochastic. Under the well stirred assumption7

the random state of the system at time t is characterized by
the n dimensional vector X�t ,�� whose ith entry Xi�t ,�� is a
non-negative integer corresponding to the number of mol-
ecules of the ith species at time t. Here � captures the ran-
domness and refers to an element of the sample space �
consisting of sample trajectories. In what follows we some-
times drop � for simplicity of presentation. The system con-
sists of M reaction channels whose firings transition the sys-
tem from one state to another, changing the population by a
discrete amount given by the stoichiometric vectors
� j , j=1, . . . ,M. Each reaction channel has associated with it
a propensity function aj�X�t� ,c� , j=1, . . . ,M, which is typi-
cally a function of the system state and one or more kinetic
parameters contained in the vector c. The propensity function
aj is defined by the prescription that conditioned on being in
state X�t� at time t, aj�X�t� ,c��t gives the probability for the
jth reaction to occur in the infinitesimally small time interval

�t , t+�t�. The functional form for the propensity functions is
usually combinatorial �and hence polynomial� in nature and
is obtained from physical reasoning.7 Alternative forms using
rational functions are also found in literature.8

It follows that this system is a continuous time Markov
process whose probability mass function evolves in time ac-
cording to the chemical master equation �CME�.7 The ana-
lytical solution of the CME is usually intractable, but gener-
ating exact sample trajectories of the system is easy using a
SSA such as the direct and first reaction methods presented
by Gillespie7 or the next reaction method presented by Gib-
son and Bruck.9

III. RANDOM TIME CHANGE REPRESENTATION

In this section we describe the RTC description of a
stochastic chemical process. In general such a description is
possible for any Markov process whose state space is an
integer lattice.4 We provide a physical interpretation that will
help visualize the RTC representation from Ref. 4 in the
context of chemical reactions.

In the RTC description, one may envisage each reaction
channel to be carrying its own internal clock, which runs at a
rate that equals its propensity function. In other words the
internal times Sj�t ,�� for the reaction channels j=1, . . . ,M
are defined by

Sj�t,�� = �
0

t

aj�X�s,���ds, j = 1, . . . ,M . �1�

It should be noted that although we refer to Sj�t ,�� as the
internal times in order to aid the interpretation, the Sj are in
fact dimensionless quantities. The key point of Ref. 4 is that
viewed from their respective internal times the reaction
channels will fire as though they are independent unit rate
Poissons. This is made mathematically precise by the follow-
ing equation:

X�t,�� = X�0,�� + �
j=1

M

� jY j�Sj�t,��,�� , �2�

where Y1 , . . . ,YM are independent unit rate Poisson pro-
cesses corresponding to the reaction channels. The advantage
of this representation is that the “driving noise” processes are
described independently of the state and the particular char-
acteristics of the system, namely, � j and aj. The equation
above holds pathwise, i.e., for each realization �. For a given
realization Y j�. ,��, j=1, . . . ,M of the driving noise pro-
cesses the computation of the state process X is a determin-
istic procedure specified according to the above equation.
Thus the total number of times the reaction channel j fires
between times 0 and t is given by evaluating the unit rate
Poisson process Y j at the random internal time Sj�t�. We shall
describe this computation in more detail later.

Since we are interested in the sensitivity with respect to
parameters we include the dependence on parameters c and
write the equation as follows:
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X�t,�,c� = X�0,�,c� + �
j=1

M

� jY j�Sj�t,�,c�,�� , �3�

where

Sj�t,�,c� = �
0

t

aj�X�s,�,c�,c�ds, j = 1, . . . ,M . �4�

Note that the � j are independent of parameters while the
propensities aj are dependent on the parameters: aj =aj�x ,c�.
It is also important to note that the noise processes Y j are
Poisson with unit rate in their respective internal time
frames, and do not depend on c explicitly. We shall mainly
be interested in situations where the initial condition is inde-
pendent of c and deterministic: X�0,� ,c�=x0. Equation �3�
enables us to couple two processes X�. , . ,c1� and X�. , . ,c2�
corresponding to different parameter values. In other words
they are represented as functions of the same sample space
and this allows for direct comparison. For instance the ques-
tion “how does a given sample trajectory vary when the pa-
rameter is perturbed?” is mathematically well posed.

A. Pathwise computations based on random time
change representation

Given a realization Y1�. ,�� , . . . ,YM�. ,�� of the noise we
wish to solve for X�. ,� ,c� from Eq. �3�. This may be done as
follows. Let us denote the random internal jump times of the
Poisson process Y j by Ii

j, where j=1, . . . ,M and i=1,2 , . . ..
Thus

I1
j � I2

j � I3
j
¯

for each j. For a value t of physical time if Sj�t ,� ,c�
= Ii

j���, then the ith firing of the jth reaction channel will
occur at that time t. Let us denote this physical time at which
the ith firing of the jth reaction channel occurs by Ti

j�� ,c�.
Thus by definition Sj�Ti

j�� ,c� ,� ,c�= Ii
j���. Let us also intro-

duce Ti�� ,c� and Ji�� ,c� for i=1,2 , . . . as the random times
at which the ith reaction event of any type occurs and the
random type of this reaction channel, respectively. Thus Ji is
a number in �1,2 , . . . ,M�. It is clear that the collection
�Ti ,Ji� for i=1,2 , . . . carries the same information as the col-
lection Ti

j for i=1,2 , . . . and j=1, . . . ,M. It is also clear that
either one of the above will uniquely determine the trajectory
X�. ,� ,c�. Thus we focus on the computation of Ti and Ji.

An important point to note is that Sj�t ,� ,c� is piecewise
linear in t. In fact for Ti� t�Ti+1,

Sj�t,�,c� = Sj�Ti,�,c� + aj�X�Ti,�,c�,c��t − Ti�,

j = 1, . . . ,M .

This allows for easy computation.
To further facilitate the computation we define I+

j �t ,� ,c�
for j=1, . . . ,M by

I+
j �t,�,c� = min�Il

j���	Sj�t,�,c� � Il
j,l = 0,1,2, . . . ,� ,

j = 1, . . . ,M .

In words, I+
j �t� is the internal time of the next firing of reac-

tion channel j at physical time t. It is convenient to keep
track of I+

j .
Assuming T1 , . . . ,Ti and J1 , . . . ,Ji are known for some i

we compute Ti+1 and Ji+1 as follows. First note that knowing
this information we also know I+

j �Ti� for j=1, . . . ,M and
X�Ti�. It follows that

Ti+1 = Ti + min
� I+
j �Ti� − Sj�Ti�

aj�X�Ti��
� j = 1, . . . ,M� . �5�

To see this, first observe that when the physical time equals
Ti, the internal times of the processes are given by Sj�Ti�.
Second during t� �Ti ,Ti+1� the internal times Sj�t� are in-
creasing at the constant respective rates aj�X�Ti��. Third the
next internal times of firing of the reactions are given by
I+

j �Ti�. Thus the elapsed physical time Ti+1−Ti before
the next firing of a reaction is the minimum of
�I+

j �Ti�−Sj�Ti�� / �aj�X�Ti��� taken over j. Furthermore Ji+1 is
the index of the minimum. Thus Ti+1�� ,c�= Ii+1

Ji+1��,c�. It must
be remarked that the minimum is unique except for a set of �
with probability zero. This is because given Ti, the I+

j �Ti� are
continuously jointly distributed.

The above reasoning also gives us the first jump time T1.
It is given by

T1��,c� = min�I1
j /aj�x0,c�	j = 1, . . . ,M� �6�

and J1�� ,c� is the index of the minimum. Thus
T1�� ,c�= I1

J1��,c�. The pathwise computations described
above are illustrated visually for a simple example in Fig. 1.

B. The random time change algorithm for simulation
of stochastic chemical systems

The above methods of pathwise computation allow us to
write an alternative algorithm for the exact simulation of
stochastic chemical systems, which we term as the RTC
simulation algorithm. The algorithm uses variables Sj, I+

j and
indices kj for j=1, . . . ,M. Also we assume that M streams of
unit exponential random numbers Ei

j �for j=1, . . . ,M and
i=1,2 , . . .� are available. These random numbers represent
the �internal� times between successive firings of the unit rate
Poisson processes Y j and are related to the internal firing
times Ii

j by Ii+1
j − Ii

j =Ei
j. Note that if we can generate M inde-

pendent streams of uniform random numbers in �0,1�, then
we can easily convert these to M independent streams of unit
rate exponentials.

In what follows, kj is the index into the jth stream of
exponential numbers, Sj is the current internal time of jth
reaction channel, and I+

j is the internal time at which the next
firing of reaction channel j occurs. Note that explicit depen-
dence on parameters c is omitted to simplify notation.

034103-3 Efficient stochastic sensitivity computation J. Chem. Phys. 132, 034103 �2010�
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RTC simulation algorithm.
�1� Initialization Set i=0, T0=0, X�T0�=x0; Sj =0, kj =1 and I+

j =E1
j

for j=1, . . . ,M
General step Ti ,X�Ti� ,kj , I+

j and Sj are known.
�2� Exit if terminal condition is reached, otherwise continue.
�3� Calculate propensity functions aj�X�Ti�� for j=1, . . . ,M.

�4� Compute Ti+1 :Ti+1=Ti+min� I+
j −Sj

aj�X�Ti�� 	 j=1, . . . ,M�.
Let j� be the index of the minimum in above equation.

�5� Set X�Ti+1�=X�Ti�+� j�.
�6� For j=1, . . . ,M set Sj←Sj +aj�X�Ti���Ti+1−Ti�.
�7� Increment kj�.

�8� Set I+
j�← I+

j� +Ekj�
j� .

�9� Increment i and return to step 1.

As there are several widely used exact SSAs available, it
is worthwhile discussing here where the RTC simulation al-

gorithm fits into the present landscape. Gibson and Bruck’s
next reaction method,9 Anderson’s modified next reaction
method,10 and our proposed RTC method are all stochasti-
cally equivalent to Gillespie’s direct method as well as first
reaction method7 in that they are all exact simulation meth-
ods. The main differences are algorithmic and are outlined
next.

Gillespie’s direct method differs from the rest of the
methods mentioned in that it explicitly generates a uniform
random number to determine which reaction channel fired,
whereas all the other methods make this determination by
taking the minimum of M different firing times. Gibson and
Bruck’s next reaction method resembles Gillespie’s first re-
action method in that it keeps in memory M IRNs at every
step, one per each reaction channel. However, following the
initialization step in which M random numbers are drawn to
set the firing times of each reaction, the next reaction method
only generates one random number at each iteration because
the next firing times for all reactions besides the one that
fired are reused. This feature is shared with the modified next
reaction and RTC methods. Gillespie’s first reaction method
differs from these three methods in that it discards the un-
used M −1 random numbers from the previous step and gen-
erates another M random numbers.

The difference between Anderson’s modified next reac-
tion method and Gibson and Bruck’s next reaction method is
algorithmically insignificant but conceptually significant.
The first works with internal times �which naturally arise in
the RTC representation� while the latter with physical time.
The advantage of this conceptual framework also allowed
Anderson10 to efficiently simulate systems with time depen-
dent propensities.

While the RTC is most similar to the modified reaction
method, it differs from it in a subtle but important way: RTC
draws from M independent, parallel streams of random num-
bers E1

j ,E2
j , . . . �for j=1, . . . ,M� corresponding to each reac-

tion channel rather than drawing them from a single stream.
This tweak to the algorithm makes a difference when doing
sensitivity analysis. In particular, it ensures that keeping the
same M parallel streams of random numbers is equivalent to
keeping the same paths for the processes Y j. See Appendix A
for an illustration.

The next reaction method as it originally appeared in
Ref. 9 makes use of dependency graphs and priority queues.
These increase efficiency compared to the direct method by
updating only those propensities that change following a par-
ticular reaction firing and by using specific data structures to
make update operations faster. While the modified next reac-
tion method and our proposed RTC method do not employ
these tools, they could easily be incorporated to improve
efficiency.

IV. MONTE CARLO BASED SENSITIVITY ANALYSIS
OF STOCHASTIC CHEMICAL NETWORKS

Now we consider the problem of using Monte Carlo
simulation to estimate the stochastic analog to the sensitivity
coefficient of deterministic dynamical systems.11 Typically
one is interested in the sensitivity of the expected value of a
function f of the state X�T� at some final time T,
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T1

X(t)

T3
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T4

T5

Reaction 1

Birth-Death of Species

Reaction 2

X(0)

X = species count

c1 c2X

FIG. 1. RTC representation of a birth-death example. Panel A shows the two
reactions describing the birth-death of species S. The propensity for reaction
1 is a1�X�=c1, which is independent of the population count X. Panels
B1–B3 describe the RTC representation for the birth-death example. For this
example, three time clocks can be envisioned. One maintains global time for
an observer watching the reaction system. Two other clocks maintain inter-
nal times S1 and S2 for reactions 1 and 2, respectively. The rate of each
internal clock is given by the propensity of the corresponding reaction:
ai�X�s�� , i=1,2. The integral of each internal clock rate gives that respec-
tive clock’s time Si �plotted in panels B1 and B2 against global time, t�.
Randomness is generated through two independent unit rate Poisson pro-
cesses, Y1 and Y2, one for each reaction. The jump times for Y1 and Y2 can
be generated ahead of time, and these in turn determine the path of the entire
process as follows: At time t=0 the population count starts at X�0� and
remains there until the firing of the next reaction at time T1 �B3�. As global
time flows past t=0, the internal times also flow each according to their
respective rate: ai�X�. In between reactions, aj�X� will be constant and
hence, its integral, the clock time Si, will be piecewise linear. A reaction fires
when its internal time coincides with the jump time for its corresponding
Poisson process. These are shown by the red, horizontal arrows emanating
from the jump times Ii

j. In this example, this happens first for reaction 1 at
global time T1, when 
0

T1a1�X�s��ds= I1
1. When a reaction fires, the popula-

tion X changes according to the reaction stoichiometry. This change in X
will subsequently affect the rates of reaction clocks whose propensity de-
pends on X �reaction 2 in this example�. The process proceeds until a final
time is reached. The advantage of this random time representation is that the
driving randomness is decoupled from the state.
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E�f�X�T ,c0���, to perturbations in a nominal parameter c0.
We may characterize the sensitivity by the finite difference

E�f�X�T,c0 + h,���� − E�f�X�T,c0,����
h

,

where h is a variation in the parameter c0. As h approaches 0
this limits to the partial derivative

�

�h
E�f�X�T,c0 + h,����

evaluated at h=0. It is useful to define the random variable Z
whose expected value is what we seek to compute,

Z =
f�X�T,c0 + h,��� − f�X�T,c0,���

h
. �7�

Since X is a stochastic process whose distribution cannot
typically be obtained analytically, one can compute a sample
of independent realizations of Z and estimate E�Z�. Any ex-
act SSA—the first reaction and direct methods,7 the next
reaction method,9 the modified next reaction method,10 or the
RTC simulation algorithm of Sec. III B—is suitable to gen-
erate independent samples of f�X�T ,c0�� and of f�X�T ,c0

+h�� to estimate E�Z�. At first it would seem natural to gen-
erate the sample of f�X�T ,c0+h�� to be independent of the
sample of f�X�T ,c0��. This approach is referred to as the IRN
method. Here we describe the overall structure of such an
algorithm.

Algorithm for sensitivity estimation using IRN.
�1� For i=1 to Ntr, where Ntr is the number of trajectories to be

simulated:
�2� Initialize random number generator with random seed.
�3� Let c=c0 and run any version of the SSA algorithm to compute:

X�T ,c0�. All random numbers needed are generated by
successive calls to a random number generator.

�4� Let c=c0+h and use same version of SSA algorithm to compute
X�T ,c0+h�. All random numbers needed are generated indepen-
dent of the numbers used in step 2 by successive calls to a random
number generator. This can be accomplished by continuing to draw
from the same stream without resetting the state, or by reinitial-
izing the random number generator with a different random seed.

�5� Compute sensitivity for the ith trajectory:
Zi= f�X�T ,c0+h��− f�X�T ,c0�� /h.

�6� End For loop in i.
�7� Compute sample mean and sample standard deviation of

�Zi 	 i=1, . . . ,Ntr�.

Although this procedure is straightforward and easy to
implement, one must simulate the system a great many times
Ntr in order to generate accurate estimates using IRN. To see
this, let us briefly recall the problem of estimating E�Z� from
an independent sample of random variables Z1 , . . . ,ZNtr

, all
having the same distribution as Z.

The standard estimator of E�Z� is the sample mean

Z̄= �Z1+ ¯+ZNtr
� /Ntr. The accuracy of the estimator Z̄ may

be measured in terms of its standard deviation. The standard

deviation of Z̄ is equal to

�Z̄ = �Z/�Ntr,

where �Z is the standard deviation of Z. The relative standard
error �RSE� in the estimation �assuming E�Z��0� is

RSE =
�Z

�Ntr	E�Z�	
.

In the sensitivity estimation problem at hand, Z is the
sensitivity from Eq. �7�. For notational simplicity set
Y1= f�X�T ,c0�� and Y2= f�X�T ,c0+h��. Hence
Z= �Y2−Y1� /h. Thus its standard deviation is

�Z = �var�Y1� + var�Y2� − 2cov�Y1,Y2�/	h	 �8�

and the RSE is

RSE =
�var�Y1� + var�Y2� − 2cov�Y1,Y2�

�Ntr	E�Y2� − E�Y1�	
. �9�

Thus the RSE in general depends on cov�Y1 ,Y2�, h, and Ntr.
In the IRN method, X�T ,c0� and X�T ,c0+h� are independent
random variables and hence cov�Y1 ,Y2�=0.

Increasing h reduces RSE; however if one aims to esti-
mate the infinitesimal sensitivity via the finite difference,
then a large h leads to a bias. Thus if the goal is to estimate
the infinitesimal sensitivity, the proper selection of h in the
finite difference scheme equation �7� involves a tradeoff be-
tween its variance and its bias: h must be small to reduce the
bias, yet large enough to keep the estimator variance in
check. An appropriately chosen sequence of diminishing h
values can yield optimal convergence rates �to the infinitesi-
mal sensitivity�.12,13 However this investigation is not the
focus of this paper.

Given that h is determined by other considerations, the
only option left to reduce the RSE using the IRN algorithm is
to increase Ntr, i.e., to generate more independent samples of
f�X�T ,c0�� and f�X�T ,c0+h��. In Sec. IV A and IV B, we
provide ways to decrease RSE by increasing cov�Y1 ,Y2�.

It is worth noting here that other finite difference
schemes, such as the central difference approximation, could
be used in place of Eq. �7�. The approach presented below is
also applicable to these estimators, but we only consider the
scheme in Eq. �7� throughout for the sake of simplicity.

A. Using common random numbers to reduce the
sensitivity estimator variance

The easiest and most common method to achieve vari-
ance reduction is to introduce dependence among the random
variables being estimated by using CRNs in simulations.14

The concept behind CRN is simple. By using CRNs for
the simulation of both X�T ,c0� and X�T ,c0+h�, one intro-
duces nonzero covariance between the two processes. Posi-
tive covariance is not guaranteed in general, but when h ap-
proaches zero, under some mild assumptions, var�Y1−Y2�
approaches zero as well �see Appendix C�, which is equiva-
lent to cov�Y1 ,Y2� approaching var�Y1�.

Here we present a straightforward implementation of
CRN as applied to a SSA such as Gillespie’s direct method.7

When one computes the sensitivity with the direct method
SSA, implementation of the method of CRN is achieved by
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using the same stream of uniform random numbers that gen-
erate r1 and r2 at each step, i.e., the random variables used to
determine the time increment until the next reaction firing
and the random type of reaction channel which fires, respec-
tively. The practical implementation of CRN can be achieved
multiple ways; here we reseed the random number generator
prior to computing X�T ,c0+h� with the same initial seed
used to simulate X�T ,c0� at each step.

To present the algorithm for sensitivity estimation em-
ploying CRN more generally, we define the functions rand� �
to return a uniform random number in the interval �0,1� and
seed�w� to initialize rand� � with seed w. The function
time�NULL� returns the current system time for the purpose
of generating a random seed.

Algorithm for sensitivity estimation using CRN.
�1� For i=1 to Ntr

�2� Generate random seed: w=time�NULL�.
�3� Seed the random number generator: seed�w�.
�4� Let c=c0 and run any version of the SSA algorithm to compute

X�T ,c0�. Here all random numbers needed are generated by
successive calls to rand� �.

�5� Reseed random number generator using same w as before: seed�w�.
�6� Let c=c0+h and run the same version of the SSA algorithm to

compute X�T ,c+h�. All random numbers needed are again generated
by successive calls to rand� �.

�7� Compute sensitivity for ith trajectory:
Zi= f�X�T ,c0+h��− f�X�T ,c0�� /h.

�8� End For loop in i.
�9� Compute sample mean and sample standard deviation of

�Zi 	 i=1, . . . ,Ntr�.

B. The common reaction path method for sensitivity
estimation

It is apparent from the above discussion that the sensi-
tivity estimates obtained with any of the popular SSA vari-
ants �the first reaction and direct methods,7 the next reaction
method,9 and the modified next reaction method10� will be
improved by using CRN rather than IRN. In this section we
present a particular form of CRN method, namely, the use of
CRNs in the context of the RTC simulation algorithm pre-
sented in Sec. III B, which we refer to as the CRP algorithm.
The rationale for this terminology is as follows. The se-
quence of samples taken from the jth stream of random num-
bers during simulation, which determine the internal jump
times of that reaction channel, can be interpreted as the re-
action path of the jth reaction channel. Collectively, the set
of M reaction paths uniquely determines the evolution of the
state, as detailed previously in Sec. III A.

In the following we assume the existence of M indepen-
dent streams of unit rate exponential random numbers. Sup-
pose the jth stream is accessed by E=rande�j�, and jth
stream is seeded by seed�j ,w�. Let Ntr be the number of
trajectories that will be generated. The algorithm described
here randomly seeds each stream before each new trajectory
is generated using the current system clock as the seed. This
is to ensure independence of the streams. In practice other
implementations may be used so long as care is taken to
preserve independence of the streams.

The CRP method, like the CRN method, also requires a

viable way of sharing the reaction paths between simulations
of the processes with parameters c0 and c0+h. One way to
implement this is to generate a trajectory of X�c0� and to
store the random numbers Ej

i in an M dimensional array,
making sure that they are ordered exactly as they were gen-
erated during simulation and into the row corresponding to
their reaction channel. Then a trajectory of X�c0+h� would
be generated using the numbers from the array in the identi-
cal order. However from a practical standpoint, this approach
has several disadvantages, including possible storage bottle-
necks when used for simulations with many reaction chan-
nels and/or jump events. A more practical approach which
we take here is to seed each stream and then store the seed
prior to generating a trajectory for X�c0�, and then reseed
each stream with the identical seeds before generating
X�c0+h�.

CRP sensitivity analysis algorithm.
�1� For i=1 to Ntr.
�2� Seed the streams: For j=1, . . . ,M, w�j�=time�NULL�, seed�j ,w�j��.
�3� Let c=c0 and run RTC simulation algorithm to compute X�T ,c0�.

Here the E1
j ,E2

j , . . . for j=1, . . . ,M are generated by successive calls
to rande�j�.

�4� Reseed the streams with same w�j� as before: seed�j ,w�j��
for j=1, . . . ,M.

�5� Let c=c0+h and run algorithm RTC to compute X�T ,c0+h�. Here
the E1

j ,E2
j , . . . for j=1, . . . ,M are generated by successive calls to

rande�j�.
�6� Compute sensitivity for ith trajectory:

Zi= f�X�T ,c0+h��− f�X�T ,c0�� /h.
�7� End For loop in i.
�8� Compute sample mean and sample standard deviation of

�Zi 	 i=1, . . . ,Ntr�.

It is clear how to run this algorithm for any general
number of p parameter values c0 ,c0+h1 , . . . ,c0+hp instead
of p=1 as described above. First, it must be noted that CRP
is a special case of CRN. Second it is important to point out
the distinction between the CRP algorithm and the more gen-
eral CRN algorithm. If CRN is used with Gillespie’s direct
SSA, although the same set of random numbers is used to
generate X�t ,c0� and X�t ,c0+h�, the internal jump times for
each reaction channel will likely be different. When CRN is
used with either the next reaction method or the modified
next reaction method, at each step in the simulation the ran-
dom number drawn from the single common stream may set
the internal time for a different reaction than that in the un-
perturbed simulation �see Appendix A for an illustration�.
The resulting deviations in the internal jump times for each
channel will likely limit the positive correlation at each rep-
licate. In contrast, by sharing M independent streams �one
per reaction channel� in the CRP algorithm, one ensures that
each of the reaction paths will be identical between the per-
turbed and unperturbed processes. This we believe more
tightly couples the processes thus, increasing the covariance
compared to using CRN with the other simulation algo-
rithms.

Our numerical examples demonstrate that CRP tends to
achieve a lower variance than the other CRN estimators dis-
cussed. This is further borne out by a continuity property
enjoyed by CRP estimators �and not shared by the other
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CRN estimators�, which more tightly couples the nominal
and perturbed trajectories to achieve the observed reduction
in variance. The plot of estimator variances as a function of
perturbation size h for three examples shown in Fig. 5 justi-
fies our intuition that the CRP estimator has lower variance.
Furthermore, the trajectories perturb in a more continuous
manner with respect to the parameters c in the CRP method
than in the CRN method implemented with any existing SSA
variants. While the states at any fixed time are integers and
hence cannot be expected to change continuously with re-
spect to parameters c �for any fixed sequence of random
numbers�, the times Tn of reaction events typically change
continuously in the CRP method while only piecewise con-
tinuously in a general CRN method. In Appendix B we ex-
plore this continuity property of CRP and CRN in conjunc-
tion with Gillespie’s direct method.

In Appendix C we show under some modest assumptions
that the variance of the CRP and CRN estimators approaches
0 as the perturbation h approaches 0. In numerical examples
we observe that the variances behave as O�h� for small h
�see Fig. 5�. In contrast the variance of the IRN estimator
does not approach 0, but rather a nonzero value as h→0.
This observation leads to the following conclusions. The ra-
tio of the variances of the CRP and CRN estimators is con-
stant for small h while the ratio of CRP �or CRN� and IRN
estimator variances depends on h. As h gets smaller, both
CRP and CRN become increasingly better than IRN and thus
the advantage can be made arbitrarily large although all
methods become increasingly computationally expensive.
Moreover, the advantage �or disadvantage� of CRP over
CRN remains constant for all sufficiently small h. Our nu-
merical examples suggest that both CRP and CRN �in con-
junction with Gillespie’s direct method� perform much better
than IRN for h small enough to estimate infinitesimal sensi-
tivity. Also we observe in Sec. V that CRP performs better
than CRN in each example. Although the advantage depends
on the specific problem, in all examples the advantage is
substantial, as even a factor as small as two may translate to
a savings of hours or even days of computation time in larger
problems.

V. NUMERICAL EXAMPLES

We provide three examples in this section to compare the
performance of IRN, CRN with Gillespie’s direct method,
and CRP.

A. Birth-death process

To illustrate how the CRN and CRP methods are used in
the sensitivity analysis of discrete chemical systems, we first
consider the simple example of a one species birth-death
process,

�→
c1

S→
c2X

� , �10�

in which a chemical species S, whose population is denoted
by X, is created at constant rate c1 and decays proportionally
to its current population at rate c2X. The solution for the
evolution of the state X�t� is known exactly for this

example.15 For deterministic initial condition X�t0 ,� ,c�=x0,
the distribution at time t is the sum of independent Binomial
and Poisson random variables with distributions B�N , p�
and P���, respectively, where N=x0, p=e−c2t, and
�= �c1 /c2��1−e−c2t�. The expected value and variance of
X�t ,c� are thus computed exactly as follows:

E�X�t,c�� = Np + � = x0e−c2t + �c1/c2��1 − e−c2t� , �11�

var�X�t,c�� = Np�1 − p� + � = x0e−c2t�1 − e−c2t�

+ �c1/c2��1 − e−c2t� . �12�

For this example, consider the initial condition x0=0 and
parameters c1=2.5, c2=0.1.

The proposed CRP algorithm was used to estimate the
sensitivities of the population of X at time T=115 to changes
in the death rate, c2. The sensitivity also was computed via
Gillespie’s direct algorithm7 using both IRNs and CRNs.
Figures 2–4 show comparisons between the sensitivity esti-
mates obtained by each method.

Figure 2 shows results of the three sensitivity estimators
computed by each method using different numbers of inde-
pendent samples for fixed h=5	10−4. The CRP estimator
converges to the exact sensitivity coefficient �
248.7� much
faster and with much lower variance than the IRN estimator
�Fig. 2�a��. CRP also outperforms estimates computed using
CRN, shown in Fig. 2�b�.

In Fig. 3�a�, Ntr=105 samples were used by the CRP and
IRN methods to estimate the sensitivity coefficient from dif-
ferent sized perturbations h to c2. While the exact sensitivity
coefficient lies within the confidence intervals for both esti-
mators, the CRP estimator demonstrates far lower variance
for small h compared to the IRN method. As seen in Fig.
3�b� the CRP estimator is also more accurate than the CRN
estimator, achieving tighter confidence intervals especially
for smaller h. When larger magnitude h was used, however,
the sample paths of X�c� and X�c+h� lose their strong posi-
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FIG. 2. Estimated sensitivities of E�X�T ,c�� at final time T=115 to changes
in parameter c2 for the birth-death process computed by �a� CRP and IRN
methods and �b� IRN and CRN methods. Estimates were computed from
independent samples of various sizes with fixed h=5	10−4 for each of the
methods. �a� The CRP sensitivity estimator exhibits significantly lower vari-
ance than those in the IRN. The inset rescales the axes to show detail of the
CRP estimates.
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tive correlation and the advantage is decreased. These results
are seen more clearly by examining the RSE and the speedup
factor of each method, shown in Figs. 4�a� and 4�b�.

RSE computed from Eq. �9� compares the standard de-
viation of the estimator relative to the process mean. As dem-
onstrated in Fig. 4�a�, the RSE of the estimates for each
method is low for large h and increases as the magnitude of
h diminishes. RSE first exceeds one and begins a steep as-
cent at approximately h=10−3 for the IRN estimator and near
h=7	10−5 for the CRN estimator. In comparison RSE of
the CRP estimator stays below one for h values as low as
5	10−6.

The practical benefit of computing sensitivity with CRN
or CRP instead of IRN is more clearly seen by the computa-
tional speedup of Fig. 4�b�. The actual computation times
depend on the architecture and implementation, therefore we
define the speedup factor for a method as the time required
to compute the sensitivity within a desired accuracy using
that method divided by the time required using IRN. Using
this metric, the sensitivity estimates with the desired standard
deviation are computed nearly 30-fold faster with CRN and
more than 350-fold faster with CRP than with IRN.

Note that it is proven in Appendix C that for both CRN
and CRP the estimator variance approaches 0 as h ap-
proaches 0. In fact the behavior is O�h� as verified numeri-
cally in Fig. 5�a�.

Table I�a� lists the CPU time and number of unique uni-
form random numbers generated as two measures of the
computational cost required of estimating the sensitivity co-
efficient using each method. The IRN and CRN methods take
nearly the same amount of CPU time to compute the esti-
mate from a given number of samples, while it takes �6%
longer to generate the CRP estimate. The reduction in vari-
ance far exceeds the minimal increase in computational ef-
fort; however, the confidence interval for the CRP estimate
from 104 samples �14.1� is only roughly 5% that of the IRN
estimator �283.1� and 27% that of the CRN estimator �52.3�.

Additionally, because the CRN and CRP methods reuse
random numbers between simulations, fewer unique random
numbers must be generated. The CRN method uses half the
amount of random numbers as IRN, while CRP uses only
one-quarter of the number of random numbers. It should be
noted that the CRN and CRP algorithms used to generate

E
st

im
at

ed
se

n
si

ti
v

it
y

(a)

−9000

−6000

−3000

0

3000

6000
exact IRN CRP

10
−5

10
−4

10
−3

10
−2

−300

−250

−200

Perturbation size, h

E
st

im
at

ed
se

n
si

ti
v

it
y

(b)

10
−5

10
−4

10
−3

10
−2

10
−1

−300

−200

−100

0

100

exact CRN CRP

FIG. 3. �a� Estimated sensitivity coefficient for the birth-death process with
respect to changes in the death rate c2 computed by IRN and CRP methods.
Insert: rescaled axes detail the low variance estimates found using the CRP
method. �b� Sensitivity estimates computed by the CRN and CRP methods.
Estimates, plotted as markers, were computed using Ntr=105 trajectories
simulated by the algorithm indicated. The black dashed line corresponds to
the finite difference approximation computed from the exact solution in Eq.
�12�. Shaded regions indicate the 95% confidence intervals for the estimates.

10
−5

10
−4

10
−3

10
−2

10
−1

0

1

2

3

4

Perturbation size, h

R
el

.
st

d
.

er
ro

r

(a)

IRN

CRN

CRP

10
0

10
1

10
2

10
3

CRP

CRN

IRN

Speedup factor ( h = 5×10
−4

)

(b)

1

29.2

370.2

FIG. 4. �a� RSE and �b� computational speed up for birth-death process
sensitivity computations. �a� The RSE, computed from 1.25	105 samples,
is substantially lower for both the CRN and CRP estimators than the IRN
estimator for all h. �b� With h fixed and the IRN computation time set as the
reference value, the CRP method speeds up the sensitivity computation by a
factor of 370, which is more than one order of magnitude higher than the
speedup achieved by using the CRN method.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

(a) Birth−death process

×10
−5

E
st

im
at

o
r

v
ar

ia
n
ce

CRN

CRP

0 1 2 3 4 5
0

0.015

0.03

0.045

0.06

×10
−4

(b) Genetic toggle switch

E
st

im
at

o
r

v
ar

ia
n
ce

CRN

CRP

0 0.5 1 1.5 2 2.5
0

2.5e4

5e4

7.5e4

10e4

Perturbation size, h

(c) Chemical oscillator

E
st

im
at

o
r

v
ar

ia
n
ce

×10
−3

CRN

CRP

FIG. 5. Variance of the difference estimator, X�T ,c0+h�−X�t ,c0�, for de-
creasing perturbation size h shown for the �a� birth-death process, �b� ge-
netic toggle switch, and �c� chemical oscillator numerical examples. The
data points are the variances of each method estimated from many indepen-
dent samples, the dashed lines indicate the 68% �one standard deviation�
confidence intervals of the estimates, and the solid lines are least-squares
linear regressions for the estimates. Although the variance at a fixed h de-
pends upon the problem, the variance of the CRP and CRN estimators
decrease linearly as h→0 for each numerical example considered. For all
examples greater variance reduction was observed in the CRP estimator than
CRN, and the �problem dependent� ratio of variances is constant for small h.

034103-8 Rathinam, Sheppard, and Khammash J. Chem. Phys. 132, 034103 �2010�

Downloaded 14 Jun 2013 to 130.85.145.94. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



these results were programed with ease of implementation as
the primary concern. Because only the seeds and states of the
random number generator were reused between simulations,
each CRN was actually generated twice. An alternative
implementation that stores random numbers generated be-
tween sequential simulations may be able to exploit this
property for modest improvements in computation time.
However, this clearly will have no effect on the variance
properties.

B. Genetic toggle switch

A more interesting example of a stochastic biochemical
system is that of the genetic toggle switch.16 This system
consists of two repressor-promoter gene pairs that interact to
form a bistable switch for a given set of parameters, and is a
prototype for mutually inhibitory genetic circuits exhibiting
bistability. The synthesis of one gene product represses the
production of the other, and the stochastic nature of the sys-
tem enables the system to randomly switch between states
for which one product is present in large quantities and the
other is nearly completely absent. Bistable stochastic genetic
switches are of particular relevance because they arise natu-
rally in biology17 and have also have been constructed in
synthetic biological networks.16 Here we consider a simpli-
fied stochastic version of the model presented in Ref. 16. The
model describes two species, U and V, whose respective
populations are described by the state vector,
X�t ,c�= �X1�t ,c�X2�t ,c���. The system transitions between
states according to four reactions,

�→
a1

U, U→
a2

� , � →
a3

V, V→
a4

� ,

with the following propensity functions aj and stoichiometry
vectors � j associated with each reaction channel j:

a1�X�t�,c� =
�1

1 + X2
� , a2�X�t�,c� = X1,

a3�X�t�,c� =
�2

1 + X1

 , a4�X�t�,c� = X2, �13�

�1 = �1 0��, �2 = �− 1 0��, �3 = �0 1��, �4 = �0 − 1��.

�14�

For this example, we analyze the system having the nominal
set c=c0 of model parameters,

�1 = 50, �2 = 16, � = 2.5, 
 = 1,

beginning at T=0 with initial conditions X1�0�=X2�0�=0.
The probability densities for the toggle switch example

can be solved to an arbitrarily high degree of accuracy using
the finite state projection �FSP� algorithm.18 The sensitivity
of E�X1�t�� for t=10 with respect to perturbations in param-
eter �1 was computed using the IRN, CRN, and CRP meth-
ods. The results are presented in comparison with the exact
distributions as computed by the FSP in Figs. 5�b�, 6, and 7
and Table I�b�. Figure 5�b� numerically verifies that the vari-
ances of the CRN and CRP estimators are of O�h� as h→0,
indicating that these methods should achieve significant vari-
ance reduction for small enough h.

TABLE I. Numerical statistics for the sensitivity analysis performed for �a� the birth-death example and �b� the genetic toggle switch example. The confidence
intervals included with the estimate correspond to two standard deviations �approximately 95%�. The “Random numbers” column gives the quantity of unique
random numbers actually used during simulation for each method.

Samples generated Method

�a� Birth-death example h=5	10−4 �b� Toggle switch example h=1	10−3

Estimated sensitivity Random numbers
CPU time

�s� Estimated sensitivity Random numbers
CPU time

�s�

¯ Exact 
248.7 ¯ ¯ 1.19 ¯ ¯

10 000 IRN −306.4�283.1 2.20	10+07 1.8 231.5�573.4 2.53	10+07 3.3
CRN −250.8�52.3 1.10	10+07 1.8 −1.1�8.0 1.27	10+07 3.2
CRP −251.0�14.1 5.52	10+06 1.9 −1.3�4.6 6.34	10+06 3.7

25 000 IRN −245.4�179.0 5.51	10+07 4.4 215.1�362.6 6.33	10+07 8.2
CRN −231.8�33.1 2.76	10+07 4.4 −2.5�5.0 3.16	10+07 7.9
CRP −247.0�8.9 1.38	10+07 4.7 0.5�2.9 1.59	10+07 9.2

50 000 IRN −343.8�126.6 1.10	10+08 8.8 92.6�256.4 1.27	10+08 16.1
CRN −243.3�23.4 5.52	10+07 8.8 −1.2�3.6 6.33	10+07 15.8
CRP −248.0�6.3 2.76	10+07 9.3 0.6�2.1 3.18	10+07 18.5

75 000 IRN −349.4�103.4 1.65	10+08 13.1 78.5�209.4 1.90	10+08 24.1
CRN −244.6�19.1 8.28	10+07 13.2 −0.8�2.9 9.49	10+07 23.8
CRP −247.5�5.2 4.14	10+07 13.9 1.0�1.7 4.77	10+07 27.9

100 000 IRN −326.5�89.5 2.20	10+08 17.5 23.7�181.3 2.54	10+08 32.1
CRN −247.0�16.6 1.10	10+08 17.6 −1.1�2.5 1.27	10+08 31.9
CRP −248.7�4.5 5.52	10+07 18.6 0.9�1.5 6.37	10+07 37.4
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Figure 6�a� shows that the CRP estimator outperformed
the IRN method in computing the sensitivity coefficient by
achieving significantly lower variance, especially at small h.
The CRP estimator has slightly lower variance than the CRN
estimates for all h �Fig. 6�b��. Unlike the previous example,
the discrepancy between the CRN and CRP methods is not as
large. This is further illustrated in the plots for RSE and
computational speedup, shown in Fig. 7. The RSE of CRP is
roughly 60% that of CRN, and the speedup is over double
compared to CRN. However the CRN and CRP methods
calculate estimates of comparable accuracy over 5000- and

14 000-fold faster than the IRN, respectively, making them
much more efficient than the IRN method. We note that the
although the advantage in speedup using CRP over CRN is
much smaller here �2.7� compared to the previous example
�12.7� that this advantage is still significant in cases where
simulations can take hours or days to compute.

Comparison among the computational times and number
of unique random numbers that were needed for the simula-
tions, listed in Table I�b�, shows consistent trends with what
was seen in the birth-death example. Namely, the IRN and
CRN methods had comparable computation times, while the
CRP method required �16% more CPU time to compute an
estimate from the same number of samples.

C. Chemical oscillator

As another example, consider the model of a chemical
oscillator19 in which one repressor protein R and one activa-
tor protein A are under the control of their respective pro-
moters Pr and Pa. Protein A is able to bind with both Pa and
Pr to significantly enhance the transcription of mRNAa and
mRNAr and subsequent synthesis of proteins A and R. The
repressor R inhibits this activity by forming the intermediate
complex A_R with protein A before inducing its degrada-
tion. This system is capable of inducing periodic oscillations.
In total the model consists of nine chemical species partici-
pating in 14 chemical reactions, whose propensities depend
on 17 kinetic parameters. The reactions and parameters for
the model are listed in Table II. The population of each spe-
cies was set to zero initially, except for promoters Pa and Pr,
which were set to one. The sensitivity of protein A at
T=20 was estimated using the CRN and CRP methods as
described previously.
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FIG. 6. Sensitivity of E�X1�T ,c�� at T=10 with respect to changes in �1 for
genetic toggle switch example computed by �a� the IRN and CRP methods
and �b� the CRN and CRP methods. Estimates were computed from 105

samples simulated using the algorithm indicated. The exact sensitivity coef-
ficient as computed from the distributions obtained by the FSP corresponds
to the black dashed line. The CRN and CRP methods achieve much lower
variance estimates than the IRN method for small h, with CRP having a
slight advantage over the CRN estimator.
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FIG. 7. Relative error and computational speedup for genetic toggle switch
sensitivity computations. �a� The relative error �computed from 105 samples�
is substantially lower for both the CRN and CRP estimators than the IRN
estimator. �b� Using either the CRN or CRP methods will compute estimates
of a given accuracy over 5000 times faster than using IRN, which is used as
the basis for comparison. The CRP method is roughly twice as fast as the
CRN method for this example, with a speedup factor of 14 000 over IRN.

TABLE II. Model reactions and parameters for chemical oscillator example.

Reactions Parameter Value

Pa→
c1

Pa+mRNAa c1 50.0

Pa_A →
�ac1

Pa_A+mRNAa c2 0.01

Pr→
c2

Pr+mRNAr c3 500.0

Pr_A →
�rc2

Pr_A+mRNAr c4 100.0

mRNAa→
c3

mRNAa+A c5 20.0

mRNAr→
c4

mRNAr+R c6 0.0

A+R�
c6

c5

A_R c7 20.0

Pa+A�
c8

c7

Pa_A c8 0.0

Pr+A�
c10

c9

Pr_A c9 1.0

A→
c11

� c10 100.0

R→
c12

� c11 1.0

mRNAa→
c13

� c12 0.2

mRNAr→
c14

� c13 10.0

A_R→
c15

R c14 0.5
c15 10.0
�a 10.0
�r 5000

034103-10 Rathinam, Sheppard, and Khammash J. Chem. Phys. 132, 034103 �2010�

Downloaded 14 Jun 2013 to 130.85.145.94. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



The estimator variances as a function of h are shown for
this example in Fig. 5�c�. The variances for both the CRN
and CRP estimators behave as O�h� for small h, consistent
with the prior two examples and again confirming the proof
in Appendix C. Additionally, the ratio of CRP variance to
CRN variance indicates that CRP performs much better than
CRN in this example, resembling the significant advantage in
variance reduction observed previously in example VA.

VI. CONCLUSIONS AND FUTURE WORK

We have demonstrated two efficient alternatives to the
familiar approach of using IRNs in Monte Carlo finite differ-
ence sensitivity analysis of discrete stochastic chemical net-
works: the CRN and CRP methods. Sensitivity analysis with
CRN can be readily implemented with any version of the
popular SSAs by merely running the perturbed and unper-
turbed trajectories with the same stream of random numbers.
The CRP method uses CRNs in the setting of RTC represen-
tation of jump Markov processes. The implementation of the
CRP algorithm is also relatively easy; the only additional
requirement is the availability of a modern random number
generator which supports multiple, independent streams of
random numbers. Both methods result in an estimator with
reduced variance, thereby requiring fewer samples to achieve
the same accuracy, although the CRP method performs better
than CRN by achieving greater variance reduction.

We showed via numerical examples that both CRP and
CRN achieve significant computational speedup over IRN
�factors of over 10 000 were observed in one example�. The
CRP method outperformed the CRN method in all the ex-
amples. We also demonstrated that typically in the CRP
method the times of reaction events perturb continuously
when the parameters are perturbed while in CRN they per-
turb only piecewise continuously. This we believe is the rea-
son for the greater covariance between the perturbed and
unperturbed trajectories and hence the reduced variance of
the finite difference estimator in the case of CRP over CRN.

Ongoing work involves direct �without using finite dif-
ferences� Monte Carlo estimation of infinitesimal sensitivi-
ties using the CRP approach as well as theoretical investiga-
tions of the CRP approach.
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APPENDIX A: THE SIGNIFICANCE OF USING M
PARALLEL STREAMS OF RANDOM NUMBERS

Consider the example depicted in Fig. 1. If CRN method
is chosen in conjunction with the modified next reaction
method proposed by Anderson,10 the internal times I1

1 , I2
1 , I3

1

and I1
2 , I2

2 will be generated from a single stream of unit rate

exponentials. Suppose the first five numbers of this single
stream are 0.52, 0.2, 1.1, 0.9, and 1.2. For the situation de-
picted in the figure, the order in which the reaction channels
1 and 2 fire is 1, 2, 1, 1, 2,…. Thus the internal times are
assigned values in the order I1

1 , I1
2 , I2

1 , I3
1 and I2

2, and their val-
ues are �keeping in mind that I0

j =0 for j=1,2�

I1
1 = 0.52, I1

2 = 0.2, I2
1 = I1

1 + 1.1 = 1.62,

I3
1 = I2

1 + 0.9 = 2.52, I2
2 = I1

2 + 1.2 = 1.4.

Now if keeping the same single stream of random numbers
0.52, 0.2, 1.1, 0.9, 1.2,…, one recomputes the modified next
reaction method for a different choice of parameter values
c1 ,c2 since the propensities change, the order in which the
reactions fire might change. Suppose this order changes to 1,
2, 1, 2, 1…. Then the internal times will be assigned the
values

I1
1 = 0.52, I1

2 = 0.2, I2
1 = I1

1 + 1.1 = 1.62,

I2
2 = I1

2 + 0.9 = 1.1, I3
1 = I2

1 + 1.2 = 2.82.

Thus even though the same stream of random numbers are
used, the reaction paths as specified by the values of Ii

j are
assigned with different values. In the CRP method, by keep-
ing M parallel streams of �unit rate exponential� random
numbers, we can ensure that the same values of Ii

j are used
when a simulation is repeated with different parameter val-
ues. To see this suppose that in the same example, two par-
allel streams �one for each reaction channel� of unit rate ex-
ponential random numbers are used. Suppose the first few
numbers of this double stream are 0.43, 1.3, 0.7,… and 0.9,
1.1, 0.1,…. By using the first stream exclusively for reaction
channel 1 and the second for reaction channel 2 we ensure
the following assignment of values for the internal times Ii

j

irrespective of parameter values and thus the exact order in
which reactions occur:

I1
1 = 0.43, I2

1 = I1
1 + 1.3 = 1.73, I3

1 = I2
1 + 0.7 = 2.43, . . .

and

I1
2 = 0.9, I2

2 = I1
2 + 1.1 = 2.0, I3

2 = I2
2 + 0.1 = 2.1, . . . .

APPENDIX B: CONTINUITY PROPERTIES OF CRP
AND CRN

It can be shown that in the CRP method the reaction
times Tn are continuous functions of the parameters c in most
cases,20 while for CRN implemented in conjunction with
other methods, the reaction times Tn are only piecewise con-
tinuous in parameters c. Here we use a simple example to
show why this is the case for CRP and for CRN implemented
in conjunction with Gillespie’s direct method.

Let Tn denote the time of the nth reaction event and Jn

denote the type of the nth reaction event �Jn is a number in
the set �1,2 , . . . ,M��. Let us denote the stream of uniform
random number pairs used in Gillespie’s direct method by Un

and Vn, where Un decides the time of nth reaction event and
Vn its type. Then we may write

034103-11 Efficient stochastic sensitivity computation J. Chem. Phys. 132, 034103 �2010�

Downloaded 14 Jun 2013 to 130.85.145.94. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



Tn�c� = Tn−1�c� +
log�1/Un�

a0�Xn−1�c�,c�

and Jn�c� is the smallest number J in �1,2 , . . . ,M� such that

�
j=1

J

aj�Xn−1�c�,c� � Vna0�Xn−1�c�,c� .

In addition it follows that

Xn�c� = Xn−1�c� + �Jn�c�.

Once we fix the sequence of numbers Un ,Vn, the above three
deterministic equations govern the evolution of Tn and Xn for
n=1,2 , . . .. Assume the initial condition X0=x0 �determinis-
tic� and set T0=0. For simplicity let us focus on the birth-
death example with a1�x ,c�=c1 and a2�x ,c�=c2x. Then

T1�c� =
log�1/U1�
c1 + c2x0

,

which is a continuous function of both c1 and c2. Suppose c1

is varied. It is easy to see that in the neighborhood of a
typical value of c1, T1�c� and J1�c� are continuous functions
�the latter being constant�. However when c1 is varied across
some critical value c1=c�, J1�c� will jump. Here c� satisfies
c�=V1�c�+c2x0� or equivalently,

c� =
c2x0V1

1 − V1
.

This causes X1�c� to jump across c1=c� as well. In fact when
c1�c�, J1�c�=2 and X1�c�=x0−1. �We have assumed
x0�0.� When c1�c� we have X1�c�=x0+1. It follows that
T2�c� is given by

T2�c� = T1�c� +
log�1/U2�

c1 + c2�x0 + 1�

for c1�c� and

T2�c� = T1�c� +
log�1/U2�

c1 + c2�x0 − 1�

for c1�c� indicating a discontinuous change across c1=c�.
Likewise J2 jumps across c1=c�. However in addition to the
discontinuity at c1=c� inherited from that of J1�c�, there will
be additional discontinuities in J2�c�. One additional discon-
tinuity occurs at c1=c�� given by

c�� =
c2�x0 + 1�V2

1 − V2

if �c2�x0+1�� / �1−V2��c� and another one at c1=c��� given
by

c��� =
c2�x0 − 1�V2

1 − V2

if �c2�x0−1�� / �1−V2��c�. Depending on how c� ,c�� ,c���

are ordered �clearly c���c���� one or both c�� and c��� will
be discontinuities. Likewise X2�c� and T3�c� both will have
discontinuities at the same c1 values as J2�c�.

Thus we conclude that for a typical stream of random
numbers, the reaction firing times Tn are only piecewise con-
tinuous in the parameters c, and the number of discontinui-
ties in Tn increases with n.

On the other hand let us examine what happens when the
RTC algorithm is used again with the aid of the birth-death
example. Suppose E1

j ,E2
j , . . . for j=1,2 is a given double

stream of unit rate exponential random numbers. Then we
obtain the following formulas for Tn and Jn:

Tn�c� = Tn−1�c� + min
� I+
j �Tn−1�c�� − Sj�Tn−1�c��

aj�Xn−1�c�,c�
� j

= 1, . . . ,M�
and Jn�c� equals the j value at which the minimum occurs.
Furthermore as before, Xn=Xn−1+�Jn

. Again note that X0

=x0 and T0=0. In particular, we have

T1�c� = min
E1
1

c1
,

E1
2

c2x0
� .

As in the case of CRN with Gillespie’s direct method, T1�c�
will be continuous in c �because the minimum of M different
continuous functions is still a continuous function� and J1�c�
will undergo a jump as c1 is varied across the value c1=c�

given by E1
1 /c�=E1

2 / �c2x0�, or equivalently

c� =
E1

1c2x0

E1
2 .

First note that this jump occurs at a point when both reac-
tions fire simultaneously. In other words T2=T1 at c1=c�.
Also J1�c�=2, X1�c�=x0−1 for c1�c� and J1�c�=2,
X1�c�=x0+1 for c1�c�. Let us examine what happens for
c1=c��1+�� when ��0 is arbitrarily small. The internal
times elapsed by T1 are given by

S1�T1� = c1T1 = E1
1

and

S2�T2� = c2x0T1 =
E1

1c2x0

c1
� E1

2�1 − �� ,

where we have used 1 / �1+���1−�. Then T2 is given by

T2�c� = T1�c� + min
E2
1

c1
,

�E1
2

c2�x0 + 1�� .

Thus for � near 0, the next reaction to fire will be J2=2 and
T2=T1+O���. Similarly examining c1=c��1−�� for arbi-
trarily small ��0, we see that J2=1 and T2=T1+O���. This
shows that T2 remains continuous across c1=c� even though
the order of reactions changes from J1=1 , J2=2 for
c1�c� to J1=2 , J2=1 for c1�c�.

The critical reason for the continuity property of CRP is
that in instances when one reaction is close to firing but loses
out to a competing reaction, the reaction times are rescaled
rather than reset, ensuring that it will next fire soon. When
parameters change, the two reactions swap order of firing
with two successive firings occurring very close in physical
time. In Gillespie’s direct method that a reaction “lost out” to
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another reaction—no matter how close to firing it was—is
forgotten after the winning reaction fires. Thus when reaction
firing orders change, the times for the subsequent reactions
also undergo a discontinuous change.

There are exceptions to this continuity property of reac-
tion times Tn in CRP. This happens when the firing of one
reaction changes the propensity of a competing reaction to
zero, thus preventing it from firing immediately thereafter. A
detailed investigation of this phenomenon is beyond the
scope of this paper. However our reasoning shows that typi-
cally the number of discontinuities of Tn are fewer �if any at
all� in CRP when compared to CRN with Gillespie’s direct
method.

APPENDIX C: ACCURACY OF THE STATISTICAL
ESTIMATION OF SENSITIVITY

In Sec. IV A it was noted that methods using CRN �or
CRP� decreased the variance of the estimator especially for
small h. Typically for the CRP as well as CRN methods
when h is sufficiently small, the covariance cov�Y1 ,Y2� is
positive and close to var�Y1� and equivalently var�Y1−Y2� is
close to 0. However for the independent sample SSA when
c0 and c0+h are close var�Y1−Y2� is close to 2var�Y1�.

We shall show that var�Y1−Y2� approaches 0 as h ap-
proaches 0. To see this, first note that in CRN and CRP
methods, for a given fixed set of CRNs, as h→0,
X�T ,c0+h�→X�T ,c0� with probability 1. We shall now show
that E��f�X�T ,c0+h��− f�X�T ,c0���2�→0. Suppose that
E�f�X�T ,c��4� exists and is continuous in c in a closed ball
centered at c0�Rp. Let M be the maximum value of
E�f�X�T ,c��4� in this closed ball. Suppose c0+h belongs to
this ball. Then using the inequality �a−b�4�24�a4+b4� one
obtains that

E��f�X�T,c0 + h�� − f�X�T,c0���4� � 25M .

Let Y�h�= f�X�T ,c0+h��− f�X�T ,c0�� be a family of random
variables indexed by h. It follows the family �Y�h��2 is
bounded in L2 �two norm� and hence is uniformly
integrable.21 Since as h→0, X�T ,c0+h�→X�T ,c0� with
probability 1, it follows that �Y�h��2→0 with probability 1.
By uniform integrability, we obtain that E��Y�h��2�→0,
proving that E��f�X�T ,c+h��− f�X�T ,c���2�→0.
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