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Tau-leaping methods have recently been proposed for the acceleration of discrete stochastic
simulation of chemically reacting systems. This paper considers the numerical stability of these
methods. The concept of stochastic absolute stability is defined, discussed, and applied to the
following leaping methods: the explicit tau, implicit tau, and trapezoidal tau. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1823412#

I. INTRODUCTION

Biochemical systems involving small numbers of mol-
ecules of certain species exhibit randomness which may ac-
count for the cell to cell variation and play critical roles in
biological processes.1–4 Simulation by means of the deter-
ministic reaction rate equations~RREs! cannot capture the
stochastic behavior inherent in these systems. Stochastic
simulation methods for chemically reacting systems have
therefore attracted much recent interest.3–11 The stochastic
simulation algorithm~SSA! ~Refs. 5 and 6! has been a stan-
dard method to simulate the time evolution of a well-stirred
chemically reacting system. It takes proper account of the
randomness which is inherent in these systems. A well-
known difficulty of SSA is the computational cost. The com-
puting time tends to be prohibitively long if some of the
reactions fire very frequently and/or if the molecular popula-
tions of some of the reactant species are very large. There are
two main reasons for this, both arising from the multiscale
nature of the underlying problem. The first isstiffness. Some
reactions are much faster than others and quickly reach a
stable state. The dynamics of the system is driven by the
slow reactions. The SSA simulates every reaction and thus
puts a great deal of effort into the more frequently firing fast
reactions, even though they do not contribute much to the
dynamics and stochasticity of the system. In the determinis-
tic regime, this multiscale problem in time is known as
stiffness.12 We emphasize that most chemical systems,
whether considered at a scale appropriate to stochastic or to
deterministic simulation, involve several widely varying time
scales, so such systems arenearly always stiff. The second
reason for the slowness of SSA has to do with the multiscale
population. Some species are present in relatively small
quantities and should be modeled by a discrete stochastic

process, whereas other species are present in larger quantities
and are more efficiently modeled by a deterministic ordinary
differential equation~or at some scale in between!. SSA
treats all of the species as discrete stochastic processes.

Several techniques have been proposed to simulate bio-
chemical systems more efficiently. One set of techniques in-
volves hybrid methods,8,9 which combine the traditional de-
terministic ordinary differential equation~ODE! ~or the
chemical Langevin equation! and SSA. The idea is to split
the system into two regimes: the continuous regime and the
discrete regime. ODEs or algebraic equations are used to
describe the fast reactions between species with large popu-
lations. SSA is used for slow reactions or species with small
populations. The multiscale SSA method10,11generalizes this
idea to the case in which species with small population are
involved in fast reactions. The hybrid methods are efficient,
but so far there is no theoretically justifiable method for au-
tomatically partitioning the system.

Another idea involves the use of leaping methods.
Gillespie7 first proposed the tau-leaping method, which we
call the explicit tau method in this paper. By means of a
Poisson approximation, the tau-leaping method can ‘‘leap
over’’ many reactions. For many problems, the tau-leaping
method can approximate the stochastic behavior of the sys-
tem very well. The tau-leaping method connects the SSA in
the discrete stochastic regime to the explicit Euler method
for the chemical Langevin equation in the continuous sto-
chastic regime and the RRE in the continuous deterministic
regime. It reduces to SSA for sufficiently smallt and to the
Euler method for the chemical Langevin equation~CLE!
whent is large but still satisfies the ‘‘leap condition.’’ When
t is allowed to be sufficiently large, the CLE tends smoothly
to the deterministic RRE and the tau-leaping method reduces
to the explicit Euler formula for the RRE.7 Gillespie’s origi-
nal tau-leaping method offers a promising direction toward
efficient multiscale stochastic simulation methods. But it is
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very inefficient for stiff stochastic problems, just as the ex-
plicit Euler method is very inefficient for stiff ODE systems.
The implicit tau-leaping method, which tends to the implicit
Euler method in the deterministic regime, was proposed re-
cently in Ref. 13 for simulating stiff stochastic chemically
reacting systems. It was demonstrated on some numerical
examples that for stiff stochastic problems, the stepsize of
the explicit tau method is limited by the stiffness, whereas
the implicit tau method can use a much larger stepsize. It was
also observed that the implicit tau method exhibits a damp-
ing effect in the sense that the variance of the solution given
by the implicit tau method is much smaller than that given by
SSA simulation. The variance can be restored by the down-
shifting method proposed in Ref. 13.

Convergence of the explicit tau and implicit tau methods
has been shown in Ref. 14. Both methods are convergent of
order 1 in the mean and the variance. Recently, we have also
studied a trapezoidal tau method.15 This method is consistent
of order 2 for the mean and order 1 for the other moments. In
this paper we will show that it also has numerical stability
properties that may be advantageous. In this paper, we study
the numerical stability of the three leaping methods, based
on a test problem which has been carefully chosen to reveal
the numerical stability properties. Such a test problem has
been traditionally used to study the numerical stability in the
deterministic regime, where

ẏ5ly, ~1!

with l being a complex constant, is used as the test problem.
The numerical stability analysis in the deterministic regime
studies two questions. The first question is: When the step-
sizeh→0, will the numerical solution for Eq.~1! be stable?
This property is known as 0-stability. We have studied it
recently14 with respect to the leaping methods. The second
question is: For a fixed stepsizeh, when tn5nh tends to
infinity, will the numerical solution of Eq.~1! be stable? The
answer to this question yields the property known as absolute
stability.

A detailed study of absolute stability of accelerated dis-
crete stochastic methods such as tau leaping is necessary and
helpful for our understanding of numerical stability and stiff-
ness in this regime. The corresponding stochastic model for
Eq. ~1! is the decay process

S→0, ~2!

where the propensity function isa(x)5lx. This simple
model is not of much interest in the stochastic regime be-
cause all of the moments ofX vanish to zero whenn tends to
infinity. Thus we need to consider a nonvanishing model.
Such a model is given by the reversible isomerization pro-
cess

S1

c2

c1

S2 , ~3!

where the propensity functions are given bya1(x)5c1x1

and a2(x)5c2x2 . The reversible isomerization process has
been well studied in the literature.16 This system has a sta-

tionary state. There is an analytic solution for the distribution
of the stationary state. Thus this model is well suited to serve
as a test problem.

To study the numerical stability in the stochastic regime,
we ask similar questions as in the deterministic regime. In
this paper we will focus on absolute stability. Note that the
numerical solutions are random. Thus we are more con-
cerned with the distribution than with a single trajectory. But
the distribution is hard to study. Instead, we will focus on the
moments. The question we are concerned with is: For a fixed
stepsize, will all the moments of the numerical solution be
stable whenn tends tò ? The answer to this question yields
a concept of absolute stability in the stochastic regime. We
will show that the absolute stability region, as defined in this
manner, is similar to the corresponding ones in the determin-
istic regime. But an important difference is that, although the
moments of a given numerical method may converge, they
may not converge to the corresponding moments of the the-
oretical solution. Thus a further question is: Will the mo-
ments of the numerical solution converge to the correspond-
ing moments of the theoretical distribution of the stationary
state? This paper provides answers to these two questions
and presents a stochastic absolute stability theory.

The outline of this paper is as follows: In Sec. II we
review the background of the SSA, the leaping methods, and
the theoretical distribution for the stationary state of the re-
versible isomerization model. In Sec. III we define the con-
cept of stochastic absolute stability and present results for the
three methods. Finally, in Sec. IV we provide some numeri-
cal experiments illustrating the results.

II. BACKGROUND

A. SSA

Suppose we haveN species$S1 ,...,SN% andM reaction
channels$R1 ,...,RM%. The dynamical state of the system is
denoted byX5@X1(t),...,XN(t)#, whereXi(t) is the number
of Si molecules at timet. For eachj 51,...,M , aj (x) is the
propensity functiondefined by the condition that

aj~x!dt5the probability, givenX~ t !5x, that oneRj

reaction will occur in the next infinitesimal

time interval@ t,t1dt!. ~4!

The vectorsn j , j 51,...,M are the state change vectors,
whosei th component is defined by

n i j 5the change in the number ofSi molecules

produced by oneRj reaction. ~5!

The dynamics of the system obeys thechemical master
equation~CME!

]P~x,tux0 ,t0!

]t
5(

j 51

M

@aj~x2n j !P~x2n j ,tux0 ,t0!

2aj~x!P~x,tux0 ,t0!#, ~6!
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where the functionP(x,tux0 ,t0) denotes the probability that
X(t) will be x given thatX(t0)5x0 . The CME is hard to
solve both theoretically and numerically. An equivalent
simulation method is the SSA,5,6 which produce realizations
of X(t).

The SSA~Refs. 5 and 6! is based on thenext-reaction
density function p(t, j ux,t) which is defined as the probabil-
ity, given X(t)5x, that the next reaction in the system will
occur in the infinitesimal time interval@ t1t,t1t1dt) and
will be a Rj reaction. It follows from Eqs.~4! and ~5! that

p~t, j ux,t !5aj~x!exp@2a0~x!t# ~t>0; j 51,...,M !, ~7!

where a0(x)5( j 51
M aj (x). The SSA generatest and j ac-

cording to Eq.~7! and then advances the system according to

X~ t1t!5X~ t !1n j .

Four different~but mathematically equivalent! ways can be
used to generatet and j from Eq.~7!. Details can be found in
Refs. 5, 6, 17, and 18.

The SSA is exact in the sense that it generates the same
distribution as described by the CME, but it can also be very
time consuming because the simulation proceeds one reac-
tion at a time.

B. Tau-leaping methods

The tau-leaping method7 tries to accelerate the simula-
tion by asking a different question: How many times does
each reaction channel fire in each subinterval? In each step,
the tau-leaping method can proceed with many reactions.
This is achieved at the cost of some accuracy. Define

K j~t;x,t !5the number of times, givenX~ t !5x, that

reaction channelRj will fire in the time

interval @ t,t1t! ~ j 51,...,M !. ~8!

The tau-leaping method assumes the leap condition:Require
t to be small enough that the change in the state during
@ t,t1t) will be so small that no propensity function will
suffer an appreciable change in its value. K j (t;x,t) is ap-
proximated by the Poisson random variableP@aj (x),t#
where P(a,t) denotes the Poisson random variable with
mean and varianceat. The basic tau-leaping method is the
following: Choose a value fort that satisfies the leap condi-
tion. GivenX(t)5x, generate for eachj 51,...,M a sample
value of the Poisson random variableP@aj (x),t# and update
the state

X(et)~ t1t!5x1(
j 51

M

n j P@aj~x!,t#. ~9!

The tau-leaping method tends to the explicit Euler method
for the CLE whenever it is also true thataj (x)t@1 for all
j 51, . . . ,M .19 Numerical experiments7 have shown that the
tau-leaping method can achieve a very substantial speedup
over SSA for some systems. But because it is explicit, it must
take a very smallt for stiff problems. The implicit tau
method.13 has been proposed for discrete stochastic simula-
tion of stiff problems. The formula is given by

X( i t )~ t1t!5x1(
j 51

M

n j$P@aj~x!,t#2aj~x!t

1aj@X( i t )~ t1t!#t%. ~10!

Newton’s method is used to solve Eq.~10!. Note that here
X( i t )(t1t) are floating point values. In the simulation, we
change them to integers by rounding the quantity in brackets
on the right side of Eq.~10! to the nearest integer. But to
simplify the analysis, here we will use Eq.~10! as written. It
has been demonstrated13 that the implicit tau method allows
much larger stepsizes than the explicit tau method when ap-
plied to stiff problems. Convergence proofs for the explicit
and implicit tau leaping methods are given in Ref. 14. Here
we use the word ‘‘leaping methods’’ to represent a class of
tau-leaping-like methods.

We can define another interesting leaping method,
namely, the trapezoidal tau method15

X(tr )~ t1t!5x1(
j 51

M

n j H P@aj~x!,t#2
1

2
aj~x!t

1
1

2
aj@X(tr )~ t1t!#tJ . ~11!

The trapezoidal tau method tends to the trapezoidal method
in the deterministic regime. Although it looks similar to the
implicit tau method, it is one order of accuracy higher for the
mean of the solution. We will show in this paper that it also
has numerical stability properties that may be advantageous
for some problems.

C. The reversible isomerization

Recall the reversible isomerization reaction is

S1

c2

c1

S2 . ~12!

Since the species satisfy the conservation law

X1~ t !1X2~ t !5xT , ~13!

wherexT is a constant, the problem is really a one-variable
problem:

X1~ t !5X~ t !, X2~ t !5xT2X~ t !. ~14!

The system~12! has a stationary state,16 as t→`, which
follows thebinomial distribution

P~X* 5x!5
xT!

x! ~xT2x!!
qx~12q!xT2x, ~15!

whereX* 5X(`)5X1(`), q5 c2 /(c11c2). The mean and
variance ofX* are therefore given by the standard binomial
formulas

E~X* !5xTq5
c2xT

c11c2
, ~16!

Var~X* !5xTq~12q!5
c1c2xT

~c11c2!2 . ~17!
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III. ABSOLUTE STABILITY AND STIFFNESS

To study the effects of stiffness on the test problem~12!,
we apply each formula analytically to the test problem to
generate the propagation equation for the moments. It will be
shown that each moment evolves in discrete timen accord-
ing to a difference equation and that there is a propagation
coefficient that essentially determines whether the moment
grows unboundedly withn or not. For absolute stability, it is
required that the absolute value of the propagation coeffi-
cient be no larger than 1. But even if this numerical stability
condition is satisfied, it does not guarantee that the moments
will converge to that of the theoretical solution.

In the study of absolute stability, we fixt and letn tend
to infinity. We denoteXn5X(t01nt). Here we will first
focus on the stability of the mean and variance. We give
detailed analysis for all three methods. Then we will show
that the absolute stability region for higher moments is the
same as that of the mean.

In our derivation, we will need the following results
about the conditional probability. We first state a lemma on
conditional expectation and conditional variance, see Ref. 20
for proof.

Lemma 3.1. IfX andY are random variables, then

E~Y!5E$E~YuX!%,

Var~Y!5E$Var~YuX!%1Var$E~YuX!%.

A. Explicit tau method

Applying the explicit tau method~9! with a fixed step-
sizet to the test problem~12! we have

Xn11
(et) 5Xn

(et)1P@c2~xT2Xn
(et)!,t#2P~c1Xn

(et) ,t!. ~18!

Conditioning onXn
(et) and applying first part of Lemma 3.1.

we obtain

E~Xn11
(et) !5~12lt!E~Xn

(et)!1c2txT , ~19!

where l5c11c2 . The propagation coefficient is (12lt)
and if u12ltu.1, the solution will blow up whenn→`.
Thus to ensure the stability,t must be chosen to satisfy

u12ltu<1. ~20!

Noting that Eq.~20! is similar to the absolute stability con-
dition in the classic theory of numerical solution of ODEs,
we call it theabsolute stability conditionof the explicit tau
method. The set oflt for which Eq.~20! holds will be called
the region of absolute stabilityof the explicit tau method.

Solving Eq.~20! we obtain

t,2/l. ~21!

Letting n→` and solving forE@X(et)(`)# in Eq. ~19!, we
obtain

E@X(et)~`!#5
c2

c11c2
xT5E~X* !. ~22!

Thus if Eq. ~21! is satisfied, the mean value given by the
explicit tau method converges to the theoretical mean value.

Next let us consider the evolution of the variance. Again
conditioning onXn

(et) and using Lemma 3.1. we obtain

Var~Xn11
(et) !5E$Var~Xn11

(et) uXn
(et)!%1Var$E~Xn11

(et) uXn
(et)!%

5E@c2t~xT2Xn
(et)!1c1tXn

(et)#

1Var$@12~c11c2!t#Xn
(et)%

5~12lt!2Var~Xn
(et)!

1c2txT1~c12c2!tE~Xn
(et)!. ~23!

Note that the propagation coefficient is given by (12lt)2.
Thus the stability region for the variance is also given by Eq.
~20!. Letting n→` in Eq. ~23! and applying Eq.~22!, we
obtain

Var@X(et)~`!#5@12~c11c2!t#2Var@X(et)~`!#1c2txT

1
~c12c2!c2

c11c2
txT . ~24!

Solving Eq.~24! for Var@X(et)(`)#, we obtain

Var@X(et)~`!#5
2

22lt

c1c2xT

~c11c2!2 5
2

22lt
Var~X* !.

~25!

Thus the variance given by the explicit tau method does not
converge to the theoretical value, even if the stability condi-
tion is satisfied. If Eq.~21! is satisfied, Var@Xet(`)# is larger
than Var(X* ).

B. Implicit tau method

Applying the implicit tau method~10! with a fixed step-
sizet to the test problem~12!, we have

Xn11
( i t ) 5Xn

( i t )1P@c2~xT2Xn
( i t )!,t#2P~c1Xn

( i t ) ,t!

1c2t~xT2Xn11
( i t ) !2c1tXn11

( i t ) 2c2t~xT2Xn
( i t )!

1c1tXn
( i t ) . ~26!

Simplifying Eq. ~26!, we obtain

Xn11
( i t ) 5Xn

( i t )1
1

11~c11c2!t
$P@c2~xT2Xn

( i t )!,t#

2P~c1Xn
( i t ) ,t!%. ~27!

Applying Lemma 3.1. as before, we obtain

E~Xn11
( i t ) !5E~Xn

( i t )!1
1

11~c11c2!t
$c2t@xT2E~Xn

( i t )!#

2c1tE~Xn
( i t )!%. ~28!

Thus

E~Xn11
( i t ) !5

1

11~c11c2!t
E~Xn

( i t )!1
c2txT

11~c11c2!t
.

~29!

The propagation coefficient is 1/(11lt), thus the stability
condition for the implicit tau method is
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U 1

11ltU,1. ~30!

In contrast to the situation for the explicit tau method, Eq.
~30! is satisfied for largeultu. Thus the implicit tau method is
stable for stiff problems. Lettingn→` in Eq. ~28!, we obtain
the converged mean value given by the implicit tau method,

E@X( i t )~`!#5
c2

c11c2
xT5E~X* !. ~31!

For the variance,

Var~Xn11
( i t ) !5E@Var~Xn11

( i t ) uXn
( i t )!#1Var@E~Xn11

( i t ) uXn
( i t )!#

5ES 1

@11~c11c2!t#2 c2t~xT2Xn
( i t )!1c1tXn

( i t )D
1VarS 1

11@c11c2#t
Xn

( i t )D
5

1

@11~c11c2!t#2 Var~Xn!1
1

@11~c11c2!t#2

3@c2txT1~c12c2!tE~Xn
( i t )!#. ~32!

Thus the stability condition for variance is the same as Eq.
~30!. Letting n→` in Eq. ~32! and applying Eq.~31!, we
obtain

Var@X( i t )~`!#5
2

21lt
Var~X* !. ~33!

Thus the variance given by the implicit tau method does not
converge to the theoretical value. Var@X( i t )(`)# is smaller
than Var(X* ). This explains the damping effect of the im-
plicit tau method, which was reported in Rathinamet al.13

C. Trapezoidal tau method

Applying the trapezoidal tau method~11! with a fixed
stepsizet to the test problem~12!, we have

Xn11
(tr ) 5Xn

(tr )1P@c2~xT2Xn
(tr )!,t#2P~c1Xn

(tr ) ,t!

1 1
2 @c2t~Xn

(tr )2Xn11
(tr ) !2c1~tXn11

(tr ) 2Xn
(tr )!#.

~34!

Simplifying Eq. ~34!, we obtain

Xn11
(tr ) 5Xn

(tr )1
1

11
~c11c2!t

2

$P@c2~xT2Xn
(tr )!,t#

2P~c1Xn
(tr ) ,t!%. ~35!

Taking expectation we obtain

E~Xn11
(tr ) !5E~Xn

(tr )!1
1

11
~c11c2!t

2

3$c2t@xT2E~Xn
(tr )!#2c1tE~Xn

(tr )!%. ~36!

Thus

E~Xn11
(tr ) !5

22~c11c2!t

21~c11c2!t
E~Xn

(tr )!1
c2txT

11
~c11c2!t

2

.

~37!

The propagation coefficient is (22lt)(21lt). Thus the
stability condition for the trapezoidal tau method is

U22lt

21ltU,1. ~38!

Since Eq.~38! is satisfied for largeultu, the trapezoidal tau
method is also a good candidate for the solution of stiff prob-
lems. Lettingn→` in Eq. ~36!, we obtain the converged
mean value:

E„X(tr )~`!…5
c2

c11c2
xT5E~X* !. ~39!

For the variance,

Var~Xn11
(tr ) !

5E@Var~Xn11
(tr ) uXn

(tr )!#1Var@E~Xn11
(tr ) uXn

(tr )!#

5ES 1

F11
~c11c2!t

2 G2 c2t~xT2Xn
(tr )!1c1tXn

(tr )D
1VarS 12

~c11c2!t

2

11
~c11c2!t

2

Xn
(tr )D

5S 12
~c11c2!t

2

11
~c11c2!t

2

D 2

Var~Xn
(tr )!1

1

S 11
~c11c2!t

2 D 2

3@c2txT1~c12c2!tE~Xn
(tr )!#. ~40!

Thus the stability condition for variance is the same as Eq.
~38!. Letting n→` in Eq. ~40! and applying Eq.~39!, we
obtain the limit of the variance

Var@X(tr )~`!#5Var~X* !. ~41!

Thus the variance given by the trapezoidal tau method con-
verges to the theoretical value. This is an advantage of the
trapezoidal tau method over the explicit and implicit tau
methods.

D. Stability of higher moments

To study the stability region for higher moments, we
need to calculate the propagation coefficient. We will show
that for each of the above three leaping methods, the stability
region for higher moments is the same as the stability region
for the mean. Since the analysis is similar for all three meth-
ods, in the following we show only the analysis for the ex-
plicit tau method. First we need the following Lemma for the
Poisson distribution which is easy to prove and we shall omit
the proof.
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Lemma 3.2. For the Poisson distributionX5P(l),

E~Xk!5lk1 (
j 50

k21

a jl
j , ~42!

wherea j are constants for fixedk.
Applying the explicit tau method to the test problem

~12!, we obtain Eq.~18!. For convenience of presentation,
we omit the superscript and rewrite Eq.~18! as

Xn115Xn1P@c2~xT2Xn!,t#2P~c1Xn ,t!. ~43!

For thekth moment, from Lemma 3.1. we have

E~Xn11
k !5E@E~Xn11

k uXn!#. ~44!

Applying Eq. ~44! to Eq. ~43!, we obtain

E~Xn11
k !5E†E„$Xn1P@c2~xT2Xn!,t#

2P~c1Xn ,t!%kuXn…‡. ~45!

Expanding E„$Xn1P@c2(xT2Xn),t#2P(c1Xn ,t)%kuXn…,
we obtain

E„$Xn1P@c2~xT2Xn!,t#2P~c1Xn ,t!%kuXn…

5 (
i 1 j 1 l 5k

Ci j l Xn
i E„$P@c2~xT2Xn!,t#% j uXn…

3E$@2P~c1Xn ,t!# l uXn%, ~46!

whereCi jl 5k!/ i ! j ! l !. Note that we have used the fact that
conditioned onXn the two Poisson numbers are independent.
Taking expectation of Eq.~46! we may obtain an expression
for E(Xn11

k ) as a linear combination of momentsE(Xn
a)

where a51, . . . ,k. We are interested in the coefficient of
E(Xn

k), i.e., the propagation constant for thekth moment.
For this we only need to count the coefficient forXn

j in
E„$P@c2(xT2Xn),t#% j uXn… and the coefficient forXn

l in
E$@2P(c1Xn ,t)# l uXn%. Applying Eq. ~42!, we have

Ci jl Xn
i E„$P@c2~xT2Xn!,t#% j uXn…E$2@P~c1Xn ,t)# l uXn%

5Ci jl ~2c2t! j~2c1t! lXn
k1(

r ,k
Bi j lr Xn

r , ~47!

whereBi jlr are some constants that depend ont. Substituting
Eq. ~47! into Eq. ~46! and taking expectation we obtain

E~Xn11
k !5@12~c11c2!t#kE~Xn

k!1 (
j 50

k21

Cj
kt jE~Xn

j !,

~48!

whereCj
k are constants. Note that we have used the fact that

(
i 1 j 1 l 5k

Ci j l ~2c2t! j~2c1t! l5~12c1t2c2t!k.

Thus the propagation coefficient is (12lt)k. The stability
region is the set oflt such that

u12ltu<1. ~49!

This is the same as the absolute stability region for the mean
and for the variance.

A similar analysis can be applied to the implicit tau and
trapezoidal tau methods. We know that the variance for the

implicit tau does not converge to the variance of the station-
ary solution, while the variance for the trapezoidal tau
method does. In the following section we shall show that not
all of the higher moments of the trapezoidal method can
converge to that of the stationary solution.

E. Convergence of higher moments
for trapezoidal tau

Provided that the stability condition~38! is satisfied we
know that all the moments of the trapezoidal tau converge.
We have shown that the mean and variance actually converge
to the mean and variance of the stationary distribution~15!
of the reversible isomerization reaction. A natural question is
whether all higher moments also converge to those of the
stationary distribution. Unfortunately the answer is negative.

First we recall the notions of distribution functions and
weak convergence. Given a random variableX, its distribu-
tion functionF ~also known as cumulative distribution func-
tion! is defined by

F~x!5Prob$X<x%, xPR.

A sequence of distributionsFn is said toconverge weaklyto
a distributionF ~asn→`) if

lim
n→`

Fn~x!5F~x!

for eachxPR at whichF is continuous.
Our argument comes down to two facts. One is that the

trapezoidal tau cannot converge weakly to the stationary dis-
tribution described by Eq.~15!. This is because the Poisson
scheme gives unboundedly large possible values. The other
is that since the stationary distribution~15! is uniquely char-
acterized by its moments, convergence of moments implies
weak convergence of the distributions.

Lemma 3.3. The binomial distribution is uniquely char-
acterized by its moments. In other words given the moments
mk , kPN of a binomial distribution, if another distribution
has the same moments then it is the same binomial distribu-
tion.

Proof. We will use Proposition 8.49 of Ref. 21 which
states that ifmkPR, kPN satisfy

lim sup
k

umku1/k

k
,`

then there existsat mostone distribution with momentsmk .
The stationary distribution of the reversible isomeriza-

tion is binomial with parameterN5xT . This meansP(X*
.xT)50, whereX* is a random variable distributed accord-
ing to the stationary distribution. Hence it follows that

mk5E@~X* !k#<xT
k

and thus

umku1/k

k
<

xT

k
→0,

ask→`. Proposition 8.49 of Ref. 21 stated above completes
the proof. j

Lemma 3.4. The stationary binomial distribution~15!
cannot be a stationary distribution for the trapezoidal tau
method. Thus the trapezoidal tau can not converge weakly to
the distribution given by Eq.~15!.
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Proof. SupposeX(tr )(t) has the same distribution asX*
given in Eq.~15!. Then it follows from Eq.~35! that

Prob$X(tr )~ t1t!.xT%.0.

Thus X(tr )(t1t) does not have the same distribution~15!
attributed toX(tr )(t). Hence the distribution~15! cannot be a
stationary distribution for the trapezoidal tau method. j

Lemma 3.5. Not all moments of the trapezoidal tau
method converge to the corresponding moments of the sta-
tionary distribution given by Eq.~15!.

Proof. We will use Theorem 8.48 of Ref. 21. This theo-
rem states that if a sequence of probability distributionsFn ,
nPN, have convergent moments, i.e.,

mk5 lim
n→`

E xkdFn~x!

exist and are finite, and if there isat mostone distribution
function F such that

E xkdF~x!5mk ,

then the sequenceFn converges weakly toF. Thus if all
the moments of the trapezoidal tau converge to those of
the stationary distribution~15! then using Lemma 3.3 we
may conclude that the trapezoidal tau must converge weakly
to the stationary distribution~15!. But this contradicts
Lemma 3.4. j

IV. NUMERICAL COMPARISON

In this section we apply the three methods: explicit tau,
implicit tau and trapezoidal tau to solve two chemically re-

FIG. 1. Histogram~10 000 samples! of X1 solved by
the SSA method~solid line!, explicit tau ~plot with
‘‘ 1’’ !, implicit tau ~plot with ‘‘ * ’’ !, and trapezoidal tau
~plot with ‘‘o’’ ! for test problem~12! with t50.01.

FIG. 2. Histogram~10 000 samples! of X1 solved by
the SSA method~solid line!, explicit tau ~plot with
‘‘ 1’’ !, implicit tau ~plot with ‘‘ * ’’ !, and trapezoidal tau
~plot with ‘‘o’’ ! for test problem~12! with t50.05.
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acting systems. The first is the test problem~12!. The corre-
sponding parameters were chosen asc15c2510, x1(0)
5x2(0)5100 (xT5200). Histograms were plotted from
10 000 realizations from each method at final timeT510.
Figures 1–4 show the corresponding histograms of the
X1(T) obtained with different numerical methods and differ-
ent stepsizest. Whent is small, all three methods generate
histograms close to that of the SSA method. Ast increases,
as predicted by the analysis, the histogram generating from
the explicit tau method is too broad and the histogram given
by the implicit tau is too narrow, while the trapezoidal tau
method generates a histogram very close to the SSA method.
Note that whent>0.1, the explicit tau method is unstable.
Thus there is no plot for the explicit tau method in the cor-
responding figures.

The second example is the Schlo¨gl reaction. This reac-
tion is famous for its bistable distribution. The reactions are
given by

B112X

c2

c1

3X,

~50!
B2


c4

c3

X,

whereB1 and B2 denote buffered species whose respective
molecular populationsN1 and N2 are assumed to remain
essentially constant over the time interval of interest. Let

x~ t !5number ofX molecules in the system at timet. ~51!

The state change vectors aren15n351, n25n4521. The
propensity functions are

FIG. 3. Histogram~10 000 samples! of X1 solved by
the SSA method~solid line!, implicit tau ~plot with
‘‘ * ’’ !, and trapezoidal tau~plot with ‘‘o’’ ! for test prob-
lem ~12! with t50.1. Explicit tau is unstable for this
stepsize.

FIG. 4. Histogram~10 000 samples! of X1 solved by
the SSA method~solid line!, implicit tau ~plot with
‘‘ * ’’ !, and trapezoidal tau~plot with ‘‘o’’ ! for test prob-
lem ~12! with t51. Explicit tau is unstable for this
stepsize.
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a1~x!5
c1

2
N1x~x21!,

a2~x!5
c2

6
x~x21!~x22!,

~52!
a3~x!5c3N2 ,

a4~x!5c4x.

For some parameter values, this model has two stable states.
The parameter set that we used in our simulation has this
property and was given by

c15331027, c251024, c351023, c453.5,
~53!

N1513105, N2523105.

We ran the simulation fromt50, with initial state x(0)
5250, to timet54. The histograms generated from SSA,
explicit tau, implicit tau, and trapezoidal tau with fixed step-
sizest50.4 are shown in Fig. 5. The results are similar to
those obtained for the first problem. The histogram produced
by the trapezoidal tau is close to that produced by the SSA
method, while the histogram produced by the explicit tau
exhibits a broadening of the two peaks, and the histogram
produced by the implicit tau exhibits a sharpening of the
peaks.

V. CONCLUSION

We have presented an analysis of the absolute stability of
the explicit, implicit, and trapezoidal tau methods applied to
the simulation of the reversible isomerization reaction. The
analysis reveals that the stability region for any moment is
the same as the stability region for the first moment for each
of these leaping methods. Further more these stability re-
gions are the same as the stability regions of the explicit
Euler, implicit Euler, and trapezoidal implicit methods ap-
plied to the ODEẏ5ly.

When the stability is maintained, the means of all three
leaping methods converge to the mean of the stationary dis-
tribution of the reversible isomerization reaction. However,
the asymptotic variance of explicit tau is larger than the vari-
ance of the stationary distribution, while that of implicit tau
is smaller. These results agree with the intuition that explicit
tau amplifies noise while implicit tau dampens it. The vari-
ance of trapezoidal tau converges to the variance of the sta-
tionary distribution. Furthermore, we showed that the higher
order moments of trapezoidal tau in general do not converge
to those of the stationary distribution.

We have provided two examples which appear to vali-
date the theoretical results. The first is the reversible isomer-
ization reaction. For this problem, explicit tau broadens the
peak of the histogram and implicit tau sharpens the peak;
trapezoidal tau captures the peak more accurately than the
other two methods. The second example was the Schlo¨gl
reaction, which has a final state histogram with double peaks
~as computed by SSA!. Although our theory does not directly
apply to this reaction, the qualitative effects seem to apply:
explicit tau broadens both peaks, implicit tau sharpens both
peaks, and trapezoidal tau captures the distribution the most
accurately.
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