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Tau-leaping methods have recently been proposed for the acceleration of discrete stochastic
simulation of chemically reacting systems. This paper considers the numerical stability of these
methods. The concept of stochastic absolute stability is defined, discussed, and applied to the
following leaping methods: the explicit tau, implicit tau, and trapezoidal tau20©4 American
Institute of Physics.[DOI: 10.1063/1.1823412

I. INTRODUCTION process, whereas other species are present in larger quantities
and are more efficiently modeled by a deterministic ordinary
Biochemical systems involving small numbers of mol- differential equation(or at some scale in betweenSSA
ecules of certain species exhibit randomness which may agreats all of the species as discrete stochastic processes.
count for the cell to cell variation and play critical roles in Several techniques have been proposed to simulate bio-
biological processes.* Simulation by means of the deter- chemical systems more efficiently. One set of techniques in-
ministic reaction rate equatiof&®RES cannot capture the yolves hybrid method$? which combine the traditional de-
stochastic behavior inherent in these systems. Stochastigiministic ordinary differential equatiofODE) (or the

simulation methods for chemical_ly reacting systems _haV(?:hemicaI Langevin equatiorand SSA. The idea is to split
therefore attracted much recent interest. The stochastic the system into two regimes: the continuous regime and the

simulation algorithm(SSA (Refs. 5 and Bhas been a stan- iscrete regime. ODEs or algebraic equations are used to

dard method to simulate the time evolution of a well-stirred y < 1ibe the fast reactions between species with large popu-

chemically reactl_ng ;ys_tem. It ta_kes proper account of ther'ations. SSAis used for slow reactions or species with small
randomness which is inherent in these systems. A well-

o . . opulations. The multiscale SSA methbd! generalizes this
known difficulty of SSA is the computational cost. The com- bop g

. . e ) i h in which i ith Il lati
puting time tends to be prohibitively long if some of the idea to the case in which species with small population are

; . . involved in fast reactions. The hybrid methods are efficient,
reactions fire very frequently and/or if the molecular popula-

. . but so far there is no theoretically justifiable method for au-
tions of some of the reactant species are very large. There aje

two main reasons for this, both arising from the multiscale omatically pallrtltlon.mg the system. .

nature of the underlying problem. The firstsffness Some . Angthgr idea involves the use. of leaping mgthods.
reactions are much faster than others and quickly reach glllesp|e7 fII’S-t proposed the tgu-lgapmg method, which we
stable state. The dynamics of the system is driven by thgall the explicit tau method in this paper. By means of a
slow reactions. The SSA simulates every reaction and thu§°!SSOn approximation, the tau-leaping method cégmg
puts a great deal of effort into the more frequently firing fastCVe€l" many reactions. For many problems, the tau-leaping
reactions, even though they do not contribute much to th&nethod can approximate the stochastic behavior of the sys-
dynamics and stochasticity of the system. In the deterministém very well. The tau-leaping method connects the SSA in
tic regime, this multiscale problem in time is known as the discrete stochastic regime to the explicit Euler method
stiffnessi? We emphasize that most chemical systems,fOf the chemical Langevin equation in the continuous sto-
whether considered at a scale appropriate to stochastic or fhastic regime and the RRE in the continuous deterministic
deterministic simulation, involve several widely varying time regime. It reduces to SSA for sufficiently smalbnd to the
scales, so such systems arearly always stiff The second Euler method for the chemical Langevin equati(@LE)
reason for the slowness of SSA has to do with the multiscal&vhen 7 is large but still satisfies theléap condition” When
population. Some species are present in relatively smaltis allowed to be sufficiently large, the CLE tends smoothly
quantities and should be modeled by a discrete stochastio the deterministic RRE and the tau-leaping method reduces
to the explicit Euler formula for the RREGillespie’s origi-

dAuthor to whom correspondence should be addressed. Electronic maipa! t_au'leap"_]g method Oﬁe_rs a promsmg direction tOV\_/aI_’d
ycao@cs.ucsb.edu efficient multiscale stochastic simulation methods. But it is
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very inefficient for stiff stochastic problems, just as the ex-tionary state. There is an analytic solution for the distribution
plicit Euler method is very inefficient for stiff ODE systems. of the stationary state. Thus this model is well suited to serve
The implicit tau-leaping method, which tends to the implicit as a test problem.
Euler method in the deterministic regime, was proposed re- To study the numerical stability in the stochastic regime,
cently in Ref. 13 for simulating stiff stochastic chemically we ask similar questions as in the deterministic regime. In
reacting systems. It was demonstrated on some numerictis paper we will focus on absolute stability. Note that the
examples that for stiff stochastic problems, the stepsize ofiumerical solutions are random. Thus we are more con-
the explicit tau method is limited by the stiffness, whereascerned with the distribution than with a single trajectory. But
the implicit tau method can use a much larger stepsize. It wathe distribution is hard to study. Instead, we will focus on the
also observed that the implicit tau method exhibits a dampmoments. The question we are concerned with is: For a fixed
ing effect in the sense that the variance of the solution givestepsize, will all the moments of the numerical solution be
by the implicit tau method is much smaller than that given bystable whem tends to? The answer to this question yields
SSA simulation. The variance can be restored by the downa concept of absolute stability in the stochastic regime. We
shifting method proposed in Ref. 13. will show that the absolute stability region, as defined in this
Convergence of the explicit tau and implicit tau methodsmanner, is similar to the corresponding ones in the determin-
has been shown in Ref. 14. Both methods are convergent dstic regime. But an important difference is that, although the
order 1 in the mean and the variance. Recently, we have alsnoments of a given numerical method may converge, they
studied a trapezoidal tau methttThis method is consistent may not converge to the corresponding moments of the the-
of order 2 for the mean and order 1 for the other moments. loretical solution. Thus a further question is: Will the mo-
this paper we will show that it also has numerical stability ments of the numerical solution converge to the correspond-
properties that may be advantageous. In this paper, we studyg moments of the theoretical distribution of the stationary
the numerical stability of the three leaping methods, basedtate? This paper provides answers to these two questions
on a test problem which has been carefully chosen to reveand presents a stochastic absolute stability theory.
the numerical stability properties. Such a test problem has The outline of this paper is as follows: In Sec. Il we
been traditionally used to study the numerical stability in thereview the background of the SSA, the leaping methods, and

deterministic regime, where the theoretical distribution for the stationary state of the re-
_ versible isomerization model. In Sec. Ill we define the con-
Y=N\y, 1) cept of stochastic absolute stability and present results for the

) . ) three methods. Finally, in Sec. IV we provide some numeri-
with \ being a complex constant, is used as the test problem., experiments illustrating the results.

The numerical stability analysis in the deterministic regime

studies two questions. The first question is: When the step-

sizeh—0, will the numerical solution for Eq1) be stable?

This property is known as O-stability. We have studied it!l. BACKGROUND

recently* with respect to the leaping methods. The secondy ssa

question is: For a fixed stepsid® whent,=nh tends to ) )

infinity, will the numerical solution of Eq(1) be stable? The Suppose we havl speciegS, ,....Sy} andM reaction

answer to this question yields the property known as absolutgh@nnels(Ry, ... ,Ry}. The dynamical state of the system is

stability. denoted b)b(z[xl(t),...,x,\,(t)], Wherexi(t) is the ngmber
A detailed study of absolute stability of accelerated dis-0f S molecules at time. For eachj=1,... M, a;(x) is the

crete stochastic methods such as tau leaping is necessary dgPensity functiordefined by the condition that

helpful for our understanding of numerical stability and stiff-

ness in this regime. The corresponding stochastic model for

Eq. (1) is the decay process reaction will occur in the next infinitesimal

a;(x)dt=the probability, givenX(t) =X, that oneR;

S—0, 2) time interval[t,t+dt). (4)

where the propensity function ia(x)=AXx. This simple
model is not of much interest in the stochastic regime be
cause all of the moments &fvanish to zero when tends to
infinity. Thus we need to consider a nonvanishing model. v;; =the change in the number & molecules
Such a model is given by the reversible isomerization pro-

The vectorsv;,j=1,...M are thestate change vectors
whoseith component is defined by

cess produced by on&; reaction. (5)
o The dynamics of the system obeys ttteemical master
S=S,, (3)  equation(CME)
C2
IP(X,t|X0,to)  —
where the propensity functions are given ay(x)=c;X; T:gl [a;(x— ) P(X—v;,t|X0,t0)
and a,(x)=c,X,. The reversible isomerization process has
been well studied in the literatut& This system has a sta- —aj(x)P(x,t|xo,t0)], (6)
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where the functiorP(x,t|Xq,to) denotes the probability that M

X(t) will be x given thatX(ty)=X,. The CME is hard to XU (t+7)=x+ >, vi{Plaj(x),7]—a;(x) 7

solve both theoretically and numerically. An equivalent =1

simulation method is the SS? which produce realizations +aj[x(”)(t+7)]r}. (10)
of X(t).

The SSA(Refs. 5 and Bis based on thaext-reaction Néwton's method is used to solve EG.0). Note that here
density function pr,j|x,t) which is defined as the probabil- X(O(t+7) are floating point values. In the simulation, we
ity, given X(t)=x, that the next reaction in the system will change them to integers by rounding the quantity in brackets
occur in the infinitesimal time intervdlt+ 7,t+ 7+dt) and ~ ©N the right side of Eq(10) to the nearest integer. But to

will be aR; reaction. It follows from Eqs(4) and (5) that simplify the analysis, here we will use EG.0) as written. It
j . ..
has been demonstratédhat the implicit tau method allows

p(rjlx,H)=aj(x)exd —aop(x)7] (7=0;j=1,...M), (1) much larger stepsizes than the explicit tau method when ap-
where ao(x)=2}"':1aj(x). The SSA generates and j ac- plied to stiff problems. Convergence proofs for the explicit

cording to Eq(7) and then advances the system according t¢nd implicit tau leaping methods are given in Ref. 14. Here
we use the word “leaping methods” to represent a class of

X(t+ ) =X +v;. tau-leaping-like methods.
Four different(but mathematically equivalentvays can be We can define another interesting leaping method,
used to generateand] from Eq.(7). Details can be found in namely, the trapezoidal tau metrdd
Refs. 5, 6, 17, and 18. M

The SSAis exact in the sense that it generates the same X (t+ r)=x+ >, ,,J.{ Plaj(x),7]— Eaj(x)r
distribution as described by the CME, but it can also be very =1 2

time consuming because the simulation proceeds one reac- 1

tion at a time. + Eaj[x(">(t+ r)]rJ : (11

The trapezoidal tau method tends to the trapezoidal method

in the deterministic regime. Although it looks similar to the

implicit tau method, it is one order of accuracy higher for the
The tau-leaping methddries to accelerate the simula- mean of the solution. We will show in this paper that it also

tion by asking a different question: How many times doeshas numerical stability properties that may be advantageous

each reaction channel fire in each subinterval? In each stefpr some problems.

the tau-leaping method can proceed with many reactions.

This is achieved at the cost of some accuracy. Define

B. Tau-leaping methods

K;(7;x,t)=the number of times, giveK(t) =X, that C. The reversible isomerization
reaction channeR; will fire in the time Recall the reversible isomerization reaction is
interval[t,t+7) (j=1,...M). (8) 1
. J , , $1=S;. (12)
The tau-leaping method assumes the leap condiRemuire c2

7 to be small enough that the change in the state durings; .« he species satisfy the conservation law
[t,t+7) will be so small that no propensity function will

suffer an appreciable change in its valug;(7;x,t) is ap- X1 (1) +Xo(1) =X, 13
proximated by the Poisson random varialf¢a;(x),7]
where P(a,7) denotes the Poisson random variable with
mean and variancar. The basic tau-leaping method is the
following: Choose a value for that satisfies the leap condi- X(t)=X(t), Xy(t)=x7—X(1). (14
tion. GivenX(t) =x, generate for each=1,... M a sample
value of the Poisson random varia?ea;(x), 7] and update
the state

wherexy is a constant, the problem is really a one-variable
problem:

The system(12) has a stationary staté ast—o, which
follows the binomial distribution

M X7l
P(X*=x)=————
XE(t+7)=x+ >, v;P[a;(x),7]. (9) ( X (xr—x)! ¥
=1
) : o whereX* = X(w)=X;(«), q= c,/(c1+¢5). The mean and
The tau-leaping method tends to the explicit Euler methodariance ofx* are therefore given by the standard binomial
for the CLE whenever it is also true thaf(x)7>1 for all  formulas
j=1,... M. Numerical experimenfshave shown that the
tau-leaping method can achieve a very substantial speedup E(X*)=x7q= CoXt (16)
over SSA for some systems. But because it is explicit, it must ™ e+c,
take a very smallr for stiff problems. The implicit tau eux
method!® has been proposed for discrete stochastic simula-  \srx*)=x.q(1— )= 1¥27T (17)
tion of stiff problems. The formula is given by (X*)=xra(1-a (ci+cp)”

(=g, (15
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IIl. ABSOLUTE STABILITY AND STIFFNESS Var(X(®9,) = E{Var(X(Y, [X(E9)1 + Var{ E(X (e, | X (e0)1
To study the effects of stiffness on the test probldr®), =E[cpr(xy— XV + ¢, 7X (Y]

we apply each formula analytically to the test problem to )

generate the propagation equation for the moments. It will be +Var{[1—(cy+¢,) 71XV}

shown that each moment evolves in discrete tima&ccord-
ing to a difference equation and that there is a propagation
coefficient that essen.tially determines whether the; moment +CpmXy+ (Cy—Cp) TE(X(EY). (23)
grows unboundedly with or not. For absolute stability, it is
required that the absolute value of the propagation coeffiNote that the propagation coefficient is given by—(17)2.
cient be no larger than 1. But even if this numerical stability Thus the stability region for the variance is also given by Eq.
condition is satisfied, it does not guarantee that the moment®0). Letting n—o0 in Eq. (23) and applying Eq(22), we
will converge to that of the theoretical solution. obtain

In the study of absolute stability, we fixand letn tend ey B ) ey
to infinity. We denoteX,=X(to+n7). Here we will first Var X¥9(00) ] =[1=(Cy+ C) 7]Var XH¥0(o0) ]+ Co Xy
focus on the stability of the mean and variance. We give (C1—Cy)Cy

=(1—-\7)2Var(X{®)

detailed analysis for all three methods. Then we will show cTc X7 . (29
that the absolute stability region for higher moments is the 12
same as that of the mean. Solving Eq.(24) for Va X(¢%()], we obtain

In our derivation, we will need the following results
about the conditional probability. We first state a lemma on (et _ 2 CiCoXT .
conditional expectation and conditional variance, see Ref. 20 Var X () ]= 2—\7(CitCy)? Z_ATVar(X )-
for proof. (25)

Lemma 3.1. IfX andY are random variables, then ) _ o
Thus the variance given by the explicit tau method does not

E(Y)=E{E(Y[X)}, converge to the theoretical value, even if the stability condi-
YRR ST ot ;

Var(Y) = E{Var(Y|X)} + Var{E(Y|X)}. :'r?a”n'svz;"‘&fged' T Eq(21) is satisfied, V™ () s larger

A. Explicit tau method

Applying the explicit tau method9) with a fixed step-
size 7 to the test problenl2) we have B. Implicit tau method

X&) =X+ Plcy(xr— X)), 71— P(c XV, 7). (19 Applying the implicit tau method10) with a fixed step-

o (et ) ) size 7 to the test probleni12), we have
Conditioning onX;”” and applying first part of Lemma 3.1.

we obtain X§i1 =X+ PLea(xr=XE), 71— P(eaX( ,7)
(X)) = (1= A E(X) + cprxr, (19 +Cor(xr—X{Pp) — €y mX(Y) — Cor(xr— X{Y)
Wher_e)\=01+ C,. The prop.agatiqn coefficient is (A\7) +C17X§1it)_ (26)

and if [L—\7|>1, the solution will blow up whem—c.
Thus to ensure the stability,must be chosen to satisfy Simplifying Eqg. (26), we obtain
|[1-\7|<1. (20

X1 =x{0+ {PLea(xr—X{Y), 7]

Noting that Eq.(20) is similar to the absolute stability con- 1+(cy+cy)r
dition in the classic theory of numerical solution of ODEs,
we call it theabsolute stability conditiomf the explicit tau
method. The set of 7 for which Eq.(20) holds will be called
the region of absolute stabilitpf the explicit tau method.

Solving Eq.(20) we obtain

—P(cy XV, 1)} 27)

Applying Lemma 3.1. as before, we obtain

E(XAP)=E(X{")+ T icarx—EOG)]
2

T<2I\. (21) 1+(cy+c
Letting n—< and solving forE[ X(¢9(x)] in Eq. (19), we —cy rE(XU, (28)
obtain

Thus
C2
E[X(€Y(0)]= T Xr=E(X*). (22 i i CoTXT
| o | B )= T v o - ) T (o op)

Thus if Eqg. (21) is satisfied, the mean value given by the (29)

explicit tau method converges to the theoretical mean value.
Next let us consider the evolution of the variance. AgainThe propagation coefficient is 1/¢I\ 7), thus the stability
conditioning onXSft) and using Lemma 3.1. we obtain condition for the implicit tau method is
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1 2_(Cl+C2)T CoTXT
<1 30 EXW)=-— " EXyy ————
‘14—7\7‘ (30 (Xn+1) 2+(ci+cCy) T (0™ 1+(Cl+02)7'
In contrast to the situation for the explicit tau method, Eq. 2 37

(30) is satisfied for largé\ 7. Thus the implicit tau method is

stable for stiff problems. Letting— < in Eq.(28), we obtain

The propagation coefficient is (2\7)(2+\7). Thus the

the converged mean value given by the implicit tau methodstability condition for the trapezoidal tau method is

E[X(D(e0)] = — 2 x; = E(X*) (31) 27Ny (38)
Cl+ CZ T ’ 2+NT '
For the variance, Since Eq.(38) is satisfied for largeé\], the trapezoidal tau
(it) \_ (it) [y (it) (it) [y (it) method is also a good candidate for the solution of stiff prob-
var(Xp1) = E[Var(Xp 1 Xn™) ]+ Var E(Xq 4| Xn™)] lems. Lettingn—oo in Eq. (36), we obtain the converged
. @ mean value:
= — +
E (17 (c, ey P2 Com(Xy— Xi7) +Ce7X}, ) " .
. B ()= o xr=E(X"). (39
it
var 1+[ci+cy]r " For the variance,
Var(X{,
== Var( X))+ >
2 n 2
[1+(Cl+ C2) 7'] [1+(Cl+ Cz) T] :E[Var(x(ntjr)l xgtr))]_i_var[E(xgtKr)l X%tr))]
X[comxr+(c1=C) TE(X|Y)]. (32 o o
(tr tr
Thus the stability condition for variance is the same as Eq. (crtcey)T 2C27(Xr =Xy )+ e rXy
(30). Letting n—« in Eq. (32 and applying Eq(31), we 2
obtain
1 (citcCa)7
(i)(00)]= * 2
Varl Xt ()] = 5o ~—Var(X*). (33 Var X0
(citca)7
Thus the variance given by the implicit tau method does not 2
converge to the theoretical value. VafV ()] is smaller
than Var(X*). This explains the damping effect of the im- _ (citcy)T) ?
plicit tau method, which was reported in Rathinatal 13 2 1
= ————| var(x{")+ 5
(Citcy)T (CitcyT
2 =

C. Trapezoidal tau method

Applying the trapezoidal tau methddl) with a fixed
stepsizer to the test problenil2), we have

X=X+ PLea(xr=X{(7), 7] = P(eaX((” 1)
+ [ Con(XUD = XU ) — ¢, (X, — X)),

(34)
Simplifying Eq. (34), we obtain
tn _ytn,y = ot
Xn+1 Xn + (Cl+CZ)T {P[CZ(XT Xn )17-]
1+ ————
2
—P(eX{7, 1)} (35
Taking expectation we obtain
(tr) y— )y, =
E(Xn+1) E(Xn )+ (C1+C2)T
1+ ——
2
x{eorlxr—E(X{™)]-ci7E(X{)}. (36)

Thus

X[Camxp+(C1—Co) TE(XI™)]. (40)

Thus the stability condition for variance is the same as Eq.
(389). Letting n—x in Eq. (40) and applying Eq(39), we
obtain the limit of the variance

Varf X() () ]=Var(X*). (41)

Thus the variance given by the trapezoidal tau method con-
verges to the theoretical value. This is an advantage of the
trapezoidal tau method over the explicit and implicit tau
methods.

D. Stability of higher moments

To study the stability region for higher moments, we
need to calculate the propagation coefficient. We will show
that for each of the above three leaping methods, the stability
region for higher moments is the same as the stability region
for the mean. Since the analysis is similar for all three meth-
ods, in the following we show only the analysis for the ex-
plicit tau method. First we need the following Lemma for the
Poisson distribution which is easy to prove and we shall omit
the proof.
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Lemma 3.2. For the Poisson distributid= P(\),
k=1

E(X) =N+ D oM, (42)
j=o

whereaj are constants for fixeH.

Cao et al.

implicit tau does not converge to the variance of the station-
ary solution, while the variance for the trapezoidal tau
method does. In the following section we shall show that not
all of the higher moments of the trapezoidal method can
converge to that of the stationary solution.

Applying the explicit tau method to the test problem E. Convergence of higher moments
(12), we obtain Eq.(18). For convenience of presentation, for trapezoidal tau

we omit the superscript and rewrite E4.8) as

Xnt1=Xn+tPlCo(X1—Xp), 7] = P(C1 X, 7). (43
For thekth moment, from Lemma 3.1. we have
E(X 1) =E[E(X§, 1|X0)]. (44)
Applying Eq. (44) to Eq. (43), we obtain
E(Xs: 1) =E[E({Xq+ PlCa(xr—Xn), 7]
—P(c1 Xy, X1 (45

Expanding E({X,+ P[ca(Xxr—Xp), 71— P(C1Xn, 7)1 Xp),
we obtain

E({Xn+ PLCa(Xr—Xp), 71— P(C1Xn, )Y X,)
= >
i+]+l=k

XE{[—P(c1Xn, ][ X0},

Ciji XRE(PLea(xr—Xp), TIH[X)

(46)

Provided that the stability conditiof88) is satisfied we
know that all the moments of the trapezoidal tau converge.
We have shown that the mean and variance actually converge
to the mean and variance of the stationary distributit)
of the reversible isomerization reaction. A natural question is
whether all higher moments also converge to those of the
stationary distribution. Unfortunately the answer is negative.

First we recall the notions of distribution functions and
weak convergence. Given a random variaKleits distribu-
tion functionF (also known as cumulative distribution func-
tion) is defined by

F(x)=Pro X=x},

A sequence of distributions,, is said toconverge weaklyo
a distributionF (asn— ) if

lim F,(x)=F(x)

n—o

xeR.

for eachxe R at whichF is continuous.
Our argument comes down to two facts. One is that the

whereC;; =k!/i!j!I!. Note that we have used the fact that rapezoidal tau cannot converge weakly to the stationary dis-
conditioned orX, the two Poisson numbers are independentyibution described by Eqi15). This is because the Poisson
Taking expectation of Eq46) we may obtain an expression scheme gives unboundedly large possible values. The other

for E(Xﬁﬂ) as a linear combination of momenE(X})

wherea=1,... k. We are interested in the coefficient of

E(Xﬁ), i.e., the propagation constant for théh moment.
For this we only need to count the coefficient f&t, in
E(P[cy(xr—X,),7]H|X,) and the coefficient forx! in
E{[—P(c1 X, 7)1'|X,}. Applying Eq.(42), we have

Ciji XhE(PLCa(xr—Xn), TIH [ X)E{ = [P(c1Xn, ) 1'[Xn}

=Cij|(_CzT)j(_ClT)|XE+;k Bijir Xb» (47)

whereB;;;, are some constants that dependroBubstituting
Eq. (47) into Eq. (46) and taking expectation we obtain
k-1
E(Xq ) =[1- (et &) T E(XD + 2 CITE(X),

(48)

is that since the stationary distributioh5) is uniquely char-
acterized by its moments, convergence of moments implies
weak convergence of the distributions.

Lemma 3.3. The binomial distribution is uniquely char-
acterized by its moments. In other words given the moments
M, ke N of a binomial distribution, if another distribution
has the same moments then it is the same binomial distribu-
tion.

Proof. We will use Proposition 8.49 of Ref. 21 which
states that ifu, € R, ke N satisfy

. | ™

lim sthT<oc
then there existat mostone distribution with momentg,, .

The stationary distribution of the reversible isomeriza-
tion is binomial with parameteN=x;. This meansP(X*
>xr1) =0, whereX* is a random variable distributed accord-

whereC}( are constants. Note that we have used the fact thdfd to the stationary distribution. Hence it follows that

> kcm(—cmw—cm'=(1—clr—czr)k.

i+j+1=
Thus the propagation coefficient is I 7). The stability
region is the set ok 7 such that

[1-N7]<1. (49

This is the same as the absolute stability region for the mean

and for the variance.

= EL(X) ]=x}

and thus
1k
X
| il g?T_)Q
ask—oo. Proposition 8.49 of Ref. 21 stated above completes
the proof. [ |

Lemma 3.4. The stationary binomial distributigh5)
cannot be a stationary distribution for the trapezoidal tau

A similar analysis can be applied to the implicit tau and method. Thus the trapezoidal tau can not converge weakly to
trapezoidal tau methods. We know that the variance for th¢he distribution given by Eq(15).
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8 FIG. 1. Histogram(10 000 samplesof X; solved by
g the SSA method(solid line), explicit tau (plot with
T oosk ] “+"), implicit tau (plot with “*”), and trapezoidal tau
(plot with “0” ) for test problem(12) with 7=0.01.
0.02 .
0.01 .
0 -
70 130

Proof. Suppos&(")(t) has the same distribution && exist and are finite, and if there & mostone distribution
given in Eq.(15). Then it follows from Eq.(35) that function F such that

Pro X" (t+ 7)>x1}>0.

| xaroo= .
Thus Xt)(t+ 7) does not have the same distributi6ib)
attributed toX("")(t). Hence the distributiofl5) cannot be a  then the sequencg, converges weakly td¢=. Thus if all
stationary distribution for the trapezoidal tau method. 8 the moments of the trapezoidal tau converge to those of
Lemma 3.5. Not all moments of the trapezoidal tauthe stationary distributior{15) then using Lemma 3.3 we
method converge to the corresponding moments of the stdnay conclude that the trapezoidal tau must converge weakly

tionary distribution given by Eq.15). to the stationary distribution(15). But this contradicts
Proof. We will use Theorem 8.48 of Ref. 21. This theo-Lemma 3.4. u
rem states that if a sequence of probability distributibps
ne N, have convergent moments, i.e., IV. NUMERICAL COMPARISON
W= lim f xKdF,(X) In this section we apply the three methods: explicit tau,
n—o implicit tau and trapezoidal tau to solve two chemically re-
0.07 T T T T T T T

FIG. 2. Histogram(10 000 samplesof X; solved by
the SSA method(solid line), explicit tau (plot with
“+"), implicit tau (plot with “*”), and trapezoidal tau
(plot with “o0” ) for test problem(12) with 7=0.05.
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0.08}
007}
0.06}
£ 005} FIG. 3. Histogram(10 000 samplesof X; solved by
%, the SSA methodsolid line), implicit tau (plot with
% ool “*m), and trapezoidal ta(plot with “o” ) for test prob-
’ lem (12) with 7=0.1. Explicit tau is unstable for this
stepsize.
0.03}
0.02}
001}
0 o
60 70
acting systems. The first is the test problél®). The corre- The second example is the Sogllaeaction. This reac-

sponding parameters were chosen @s-c,=10, x;(0) tion is famous for its bistable distribution. The reactions are
=X,(0)=100 (x;=200). Histograms were plotted from given by

10000 realizations from each method at final time 10. !

Figures 1-4 show the corresponding histograms of the By+2X=3X,

X1(T) obtained with different numerical methods and differ- cs e (50)
ent stepsizes. When 7 is small, all three methods generate B,=X,

histograms close to that of the SSA method. Aiscreases, cq

as predicted by the analysis, the histogram generating frojyhere B, and B, denote buffered species whose respective
the expllicit Fa.u method is too broad gnd the histogra}m givelnolecular population$\; and N, are assumed to remain
by the implicit tau is too narrow, while the trapezoidal tau essentially constant over the time interval of interest. Let
method generates a histogram very close to the SSA method. . _
Note that whenr=0.1, the explicit tau method is unstable. X(t)=number ofX molecules in the system at time  (51)

Thus there is no plot for the explicit tau method in the cor-The state change vectors arg=v3=1, v,=v,=—1. The

responding figures. propensity functions are
0.2 T T T T T T
0.8} ;’: .
A
! ¥
0.16}F * 1 —
by
! 1
0.14} . ]
! i
! 1
0.2} .
£ if "f FIG. 4. Histogram(10 000 samplesof X; solved by
%’ 01l ) ! i the SSA methodsolid line), implicit tau (plot with
% 1 " “*"), and trapezoidal ta(plot with “o” ) for test prob-
oosl : \ ) lem (12) with 7=1. Explicit tau is unstable for this
’ ) ! stepsize.
rod
1
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FIG. 5. Histogram(10 000 samplesof X; solved by
the SSA method(solid line), explicit tau (plot with
“+"), implicit tau (plot with “*”), and trapezoidal tau
(plot with “0” ) for Schlggl reaction with7=0.4.
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When the stability is maintained, the means of all three
Cq . . )
a;(x)= ?le(x_ 1), Igapmg methods converge to the' mean of thg stationary dis-
tribution of the reversible isomerization reaction. However,
c, the asymptotic variance of explicit tau is larger than the vari-
ay(x)= EX(X_ 1)(x—2), ance of the stationary distribution, while that of implicit tau
is smaller. These results agree with the intuition that explicit
(52) tau amplifies noise while implicit tau dampens it. The vari-
ance of trapezoidal tau converges to the variance of the sta-
a4(X) =CyX. tionary distribution. Furthermore, we showed that the higher

For some parameter values, this model has two stable state¥der moments of trapezoidal tau in general do not converge
The parameter set that we used in our simulation has thit9 those of the stationary distribution.
property and was given by We have provided two examples which appear to vali-
_ - i 3 _ date the theoretical results. The first is the reversible isomer-
C=3x107% ¢=107", ¢=107% ¢,=3.5, ization reaction. For this problem, explicit tau broadens the
Ny;=1x10°, N,=2x1CP. (53 peak of the histogram and implicit tau sharpens the peak;
. ) o trapezoidal tau captures the peak more accurately than the
We ran the simulation front=0, with initial statex(0)  ther two methods. The second example was the “§thlo
=250, to timet=4. The histograms generated from SSA, rgction, which has a final state histogram with double peaks
e?<pI|C|t tau, implicit tau, .and.trapezmdal tau with flxgd.step- (as computed by SSAAIthough our theory does not directly
S|ze37=0.f1 are shownlln Fig. 5. The resglts are similar toapply to this reaction, the qualitative effects seem to apply:
those obtained for the first problem. The histogram producegxpncit tau broadens both peaks, implicit tau sharpens both

by the trapezoidal tau is close to that produced by the SSReaks and trapezoidal tau captures the distribution the most
method, while the histogram produced by the explicit tauaccurately.

exhibits a broadening of the two peaks, and the histogram
produced by the implicit tau exhibits a sharpening of the

peaks. ACKNOWLEDGMENTS

az(x)=c3Ny,

The work of the first two authors was supported in part
V. CONCLUSION by the California Institute of Technology under DARPA
Award No. F30602-01-2-0558, by the U.S. Department of
We have presented an analysis of the absolute stability dEnergy under DOE Award No. DE-FG03-00ER25430, by the
the explicit, implicit, and trapezoidal tau methods applied toNational Science Foundation under NSF Award No. CTS-
the simulation of the reversible isomerization reaction. Thed205584, and by the Institute for Collaborative Biotechnolo-
analysis reveals that the stability region for any moment igjies through Grant No. DAAD19-03-D-0004 from the U.S.
the same as the stability region for the first moment for eaclArmy Research Office. The work of the third author was
of these leaping methods. Further more these stability resupported in part by Grant No. NSF DMS-0309647. The
gions are the same as the stability regions of the explicitesearch of the fourth author was supported in part by the Air
Euler, implicit Euler, and trapezoidal implicit methods ap- Force Office of Scientific Research and the California Insti-
plied to the ODEy=\y. tute of Technology under DARPA Award No. F30602-01-2-

Downloaded 04 Feb 2005 to 130.85.145.94. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



12178  J. Chem. Phys., Vol. 121, No. 24, 22 December 2004 Cao et al.

0558, and in part by the Molecular Sciences Institute undet'y. Cao, D. Gillespie, and L. Petzoldinpublishegl
Contract No. 244725 with Sandia National Laboratories and’K. E. Brenan, S. L. Campbell, and L. R. Petzoktlimerical Solution of

the Department of Energy’s “Genomes to Life” Program. :jneltllr?rl]-i;/alll;: Iig)é)}lsems in Differential-Algebraic EquatioitSIAM, Phila-

M. Rathinam, L. Petzold, Y. Cao, and D. Gillespie, J. Chem. Phys,

1A. Arkin, J. Ross, and H. H. McAdams, Genetit49, 1633(1998. 12784(2003.
2N. Fedoroff and W. Fontana, Scien287, 1129(2002. M. Rathinam, L. Petzold, Y. Cao, and D. Gillespie, J. Chem. Rhyde
3H. H. McAdams and A. Arkin, Proc. Natl. Acad. Sci. U.S.84, 814 published.
(1997). 15y, Cao and L. Petzoldunpublishegl
“H. H. McAdams and A. Arkin, Trends Genéi5, 65 (1999. 16D, Gillespie, J. Phys. Chem. 206, 5063(2002.
5D. Gillespie, J. Comput. Phy€2, 403(1976. M. Gibson and J. Bruck, J. Phys. Chem184, 1876(2000.
5D. Gillespie, J. Phys. Chen81, 2340(1977). 18Y. Cao, H. Li, and L. Petzold, J. Chem. Phyi21, 4059(2004.
’D. Gillespie, J. Chem. Phy415 1716(2002). 19D, Gillespie, J. Chem. Phy413 297 (2000).
8E. Haseltine and J. Rawlings, J. Chem. Phyis/, 6959(2002. 203, Ross,Introduction to Probability Models8th ed. (Academic, New
9T. Mattheyses and M. Simmons, Bioinformati2@, 316 (2004. York, 2002.
10y, Cao, D. Gillespie, and L. Petzold, J. Chem. Phys.be publishel 21|, Breiman, Probability (SIAM, Philadelphia, PA, 1992

Downloaded 04 Feb 2005 to 130.85.145.94. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



