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Characterizing the sensitivity to infinitesimally small perturbations in parameters is a powerful tool
for the analysis, modeling, and design of chemical reaction networks. Sensitivity analysis of net-
works modeled using stochastic chemical kinetics, in which a probabilistic description is used to
characterize the inherent randomness of the system, is commonly performed using Monte Carlo
methods. Monte Carlo methods require large numbers of stochastic simulations in order to gen-
erate accurate statistics, which is usually computationally demanding or in some cases altogether
impractical due to the overwhelming computational cost. In this work, we address this problem by
presenting the regularized pathwise derivative method for efficient sensitivity analysis. By consid-
ering a regularized sensitivity problem and using the random time change description for Markov
processes, we are able to construct a sensitivity estimator based on pathwise differentiation (also
known as infinitesimal perturbation analysis) that is valid for many problems in stochastic chemical
kinetics. The theoretical justification for the method is discussed, and a numerical algorithm is pro-
vided to permit straightforward implementation of the method. We show using numerical examples
that the new regularized pathwise derivative method (1) is able to accurately estimate the sensitivi-
ties for many realistic problems and path functionals, and (2) in many cases outperforms alternative
sensitivity methods, including the Girsanov likelihood ratio estimator and common reaction path
finite difference method. In fact, we observe that the variance reduction using the regularized path-
wise derivative method can be as large as ten orders of magnitude in certain cases, permitting much
more efficient sensitivity analysis than is possible using other methods. © 2012 American Institute
of Physics. [doi:10.1063/1.3677230]

I. INTRODUCTION

Stochastic models of chemical reaction networks are crit-
ical to capturing the inherent randomness and discrete nature
in intracellular networks characterized by low molecule copy
numbers. In fact in the presence of nonlinearities, continuous
deterministic models described by reaction rate equations
may not even capture the average behavior of these systems
correctly.1

Chemical reaction models typically depend on a set of ki-
netic parameters whose values are often unknown or fluctuate
due to an uncertain environment. Even small changes to the
parameters may significantly alter the system output, and thus
it is critical to quantify the effects of such changes. Paramet-
ric sensitivity analysis studies the change of system outputs to
variations in kinetic parameters and is an indispensable anal-
ysis technique in the study of kinetic models. It enables one to
elucidate system robustness properties, to pinpoint critical or
rate limiting pathways, and to obtain reduced order models.
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In the biological context, sensitivity analysis can also guide
drug targeting and synthetic parameter design.

Sensitivity analysis methods divide into two different cat-
egories, each being suitable for different applications. These
categories, respectively, quantify the effects of finite or in-
finitesimal perturbations of model parameters (Fig. 1). In fi-
nite perturbation analyses, the parameter of interest is per-
turbed by a typically small, but not vanishingly small, amount.
The difference between the perturbed and nominal models
is then quantified by a finite difference calculation that uses
probability densities solved using the finite state projection
(FSP) method2 or one that uses Monte Carlo simulations.3, 4

Of particular relevance to this paper is the CRP method4

which uses Kurtz’s random time change formula with com-
mon random numbers to achieve sizable reductions in the
estimator variance. The other major sensitivity category is
concerned with infinitesimal perturbations. In this analysis,
the parameter of interest is perturbed by a vanishingly small
amount, i.e., the quantity of interest is the partial derivative
of some system functional with respect to a given param-
eter. The two categories are clearly related in that the in-
finitesimal sensitivity can be thought of as a limit of the finite
sensitivity.

This paper considers the computation of infinitesimal
parameter sensitivities for stochastic chemical reaction net-
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FIG. 1. Monte Carlo approaches to computing sensitivity in stochastic mod-
els of chemical kinetics.

works. The chemical master equation (CME) is a set of lin-
ear ordinary differential equations (ODEs) that describes the
probability densities of the state populations of a chemical
system.1 A system of ODEs that exactly describes the evo-
lution of the infinitesimal sensitivity coefficients can be de-
rived directly from the CME by differentiating the probabil-
ity densities with respect to parameters. Although this system
of ODEs for the CME and sensitivities can be very large (or
even infinite) making direct integration intractable, the finite
state projection (FSP) method can be used to truncate the state
space and solve for the sensitivities to within a guaranteed
level of accuracy for many systems.5 Even for finite systems,
however, the effective size of the state space grows exponen-
tially with the number of chemical species and so FSP can
be unwieldy for larger systems with many species. One must,
therefore, turn to Monte Carlo methods for a computationally
tractable way to compute infinitesimal sensitivities for such
systems.

There are two primary Monte Carlo approaches to com-
puting sensitivities with respect to infinitesimal perturbations
(Fig. 1). The first uses likelihood ratios (LR). Plyasunov and
Arkin recently presented a LR algorithm based on the Gir-
sanov measure transformation for the sensitivity analysis of
discrete stochastic chemical reaction networks.6 The second
approach is that of pathwise differentiation (PD), which is
commonly called infinitesimal perturbation analysis.7, 8 This
approach uses differentiation of sample path functionals to es-
timate the infinitesimal sensitivities with variance that can be
significantly lower than what is possible using LR methods.9

However, the severe drawback of PD is that it is only applica-
ble to a restricted class of problems for which certain regular-
ity conditions are satisfied.

Indeed, the PD method is not directly applicable for many
problems that are of interest when studying stochastic chem-
ical and biochemical reaction networks. In this paper, we
propose the regularized pathwise derivative (RPD) method,
which efficiently estimates parameter sensitivities for discrete
stochastic chemical reaction networks using a suitably modi-
fied form of PD. The RPD algorithm is derived using the ran-
dom time change (RTC) representation of Markov processes10

and is applicable to a large class of sensitivity problems aris-
ing in stochastic chemical kinetics. We show via several nu-

merical examples that this method can achieve significantly
lower variance estimates compared to the existing methods to
compute sensitivities of stochastic chemical kinetics.

The contents of the paper are organized as follows.
Section II provides an overview of stochastic chemical kinet-
ics as well as the problem of infinitesimal sensitivity anal-
ysis. Section III presents the random time change represen-
tation of discrete stochastic chemical systems, which is then
used to formulate the regularized pathwise derivative method.
A numerical algorithm to implement the method is given in
Sec. III A. Several numerical examples in Sec. IV are pro-
vided to demonstrate the new algorithm and to compare its
performance with alternative methods. Issues regarding the
selection of the RPD algorithm parameter, w, are discussed
in Sec. V. We conclude by summarizing our contributions in
Sec. VI.

II. INFINITESIMAL SENSITIVITY ANALYSIS
IN STOCHASTIC CHEMICAL KINETICS

In this section, we briefly review stochastic chemical
kinetics and introduce the general problem formulation for
infinitesimal sensitivity analysis. For general reference on
infinitesimal sensitivity analysis of stochastic systems, see
Refs. 8 and 9.

Consider a chemical reaction network whose dynam-
ics are modeled using stochastic chemical kinetics.1 In this
framework, the network is described by a continuous-time
Markov chain. The populations of n chemical species are dis-
crete values whose elements make up the state vector X(t)
∈ Z

n
+. There are M total reactions in the network, and each

time reaction j ∈ {1, . . . , M} fires, the populations of the
species change by a discrete amount specified by the stoi-
chiometry vector, ν j. Reactions occur randomly in continuous
time, and conditioned on X(t) = x, the probability that the jth
reaction fires during the infinitesimal time interval (t, t + dt]
is given by aj(x)dt, where aj(x) is the propensity function, and
dt is an infinitesimally small time increment. The propensities
are in general dependent on the state of the system and one or
more system parameters, which we will denote by c. For con-
creteness we shall treat c as a scalar in our discussion bearing
in mind that it is easy to extend the results to a vector c of
parameters.

In this study, we are interested in determining the in-
finitesimal sensitivity defined by the partial derivative ∂

∂c
y(c)

of the expected value y(c) of some network “output” Y to in-
finitesimally small perturbations in parameter c. Here, output
Y is in general some scalar function of the system trajectory
and hence is a random variable and y = E(Y). Examples of
y that arise in analyzing chemical reaction networks are the
expected population of a particular species at a specified time
T, the probability of the state being within a specified subset
of the state space at time T, and the expected time of reach-
ing a particular state or subset of states. We note that all of
these quantities can be represented by y = E(Y), where Y is a
function of the path. In this paper, we focus on outputs of the
form Y(ω) = f(X(T, ω)), where T > 0 is some fixed final time,
ω is an underlying random element from the sample space,
and f is a scalar function of the state. This does not include
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outputs that involve random times such as the time it takes to
reach a certain state or the time spent on a certain set of states.
Nevertheless it does cover a large class of outputs of interest.

There are two different viewpoints when it comes to
modeling the dependence on parameter c. One viewpoint re-
gards the sample trajectories of the system to be independent
of the parameters c, while the probabilities of these sample
paths to be dependent on c; the other viewpoint regards the
trajectories to be dependent on parameters c as well as some
underlying random elements ω whose probabilities are inde-
pendent of c. Both viewpoints are quite natural and consistent
and lead to different approaches to compute the sensitivity
∂
∂c

y(c).
To see the first point of view, we fix an interval [0, T] and

write the expected value y(c) of the path function as

y(c) =
∫

x

f (x) p(x; c)dx,

where x denotes a feasible trajectory (over the interval [0, T])
and p(x; c) the corresponding probability density of the trajec-
tory x defined in some suitable sense and the integration is car-
ried over the set of all feasible trajectories. We note here that it
is indeed possible to define the density p(x; c) rigorously and
derive a simple formula to compute it. If the propensities aj

are differentiable with respect to c, then so would be the den-
sity p(x; c). Assuming that differentiation inside the integral
is valid we obtain that

∂

∂c
y(c) =

∫
f (x)

∂

∂c
p(x; c)dx.

In order to apply Monte Carlo methods to perform the above
integration the following mathematical sleight of hand known
as the likelihood ratio method may be used. One writes the
above equation as

∂

∂c
y(c) =

∫
f (x)

∂

∂c
ln p(x; c) p(x; c) dx.

Thus the required sensitivity may be written as

∂

∂c
y(c) = E (f (X) W ) , (1)

where the random (weight) variable W is given by

W = ∂

∂c
ln p(X; c),

where X denotes the random trajectory over the interval
[0, T].

See Appendix A where an analytical formula for the
weight W is given. We shall refer to this particular form of
the likelihood ratio method as the Girsanov likelihood ratio
(GLR) method. Appendix A provides further details as well
as the GLR algorithm. The GLR method was introduced to
the stochastic chemical kinetic setting in Ref. 6. Further de-
tails regarding LR may be found in Refs. 11 and 12.

The second viewpoint can be understood clearly in the
context of stochastic simulation where one uses a stochastic
simulation algorithm (SSA). Here the sample elements ω can
be interpreted as the sequence of random numbers drawn from
a random number generator, for instance, from the uniform

distribution U(0, 1). The probability measure of these random
numbers is obviously independent of any system parameters,
while the sample paths generated via SSA now clearly depend
on c. In this case y(c) can be written as

y(c) = E[Y ] =
∫

ω∈�

f (X(T , ω; c)) P (dω), (2)

where � is the set of all possible random outcomes (for in-
stance, all possible sequences of uniform i.i.d. random num-
bers) and P is the probability measure on these outcomes. If
Y(ω, c) = f(X(T, ω; c)) is differentiable with respect to c and
∂
∂c

Y has an analytically tractable form, then one may seek to
estimate ∂

∂c
y(c) using the following formula obtained by dif-

ferentiating inside the expected value (integral) in (2):

∂

∂c
y(c) = E

[
∂

∂c
Y

]
= E

[
∂

∂c
f (X(T , ω; c))

]
. (3)

The quantity ∂
∂c

Y (ω, c) is the pathwise derivative of the out-
put Y. If the interchange of derivative and expectation is valid
and ∂

∂c
Y (ω, c) has an analytically tractable form, then one

may compute it along with each simulation ω and use the
sample average from an i.i.d. sample as an estimate of the
sensitivity ∂

∂c
y(c). We shall refer to this method as the path-

wise derivative method (PD). This approach is also known as
infinitesimal perturbation analysis (IPA) in the literature.7, 8

We note that the applicability of both LR and PD methods
depend on the validity of differentiation inside certain inte-
grals as well as the existence of tractable analytical formulas
for the weights (in the case of LR) or the pathwise deriva-
tives (in the case of PD). In the context of stochastic chemi-
cal kinetics, analytical formulas for the weights to be used in
the GLR were given in Ref. 6. In this paper, we derive the
relevant analytical formulas for the pathwise derivatives in
Sec. III. Typically, differentiation inside expectation is valid
in the context of LR and not always valid in the context of
PD. The reason for this is that the probabilities or probabil-
ity densities are often very well-behaved functions of c, while
the random output Y(ω, c) is not always well behaved as in
the example of stochastic chemical kinetics. The PD method
has not been applied for sensitivity analysis in the context of
stochastic chemical kinetics and may not be applied directly
for most outputs of interest. In order to apply the PD method
to stochastic chemical kinetics, we regularize the problem in a
suitable way and we refer to the resulting method as the RPD.
This is presented in Sec. III.

We observe that both methods LR and PD lead to Monte
Carlo estimation of sensitivity in the form of the sample mean
of a sensitivity estimator which we denote by Z(c, ω). In the
case of LR,

Z(c, ω) = Y (ω)W (ω, c),

where Y is the output and W is the random weight. In the case
of PD,

Z(c, ω) = ∂

∂c
Y (ω, c).

In both cases E[Z(c)] = ∂
∂c

y(c). The Monte Carlo method
consists of generating a sample of N independent realizations



034115-4 Sheppard, Rathinam, and Khammash J. Chem. Phys. 136, 034115 (2012)

Z1(c), . . . , ZN(c) of Z(c), and then computing the sample aver-
age, 1

N

∑N
i=1 Zi(c, ω).

The efficiency of a sensitivity estimator Z(c) depends on
its variance, with smaller variance resulting in greater effi-
ciency. Two different estimators such as those obtained from
LR and PD methods will differ in their variances. It has been
observed that while PD method is not always applicable,
when applicable it has lower variance than the LR method.9

III. THE REGULARIZED PATHWISE DERIVATIVE
METHOD

The RPD method we introduce in this paper uses the RTC
representation of stochastic chemical kinetics. We briefly re-
produce relevant aspects of the RTC algorithm from Ref. 4.
The RTC description expresses the state X(t) in terms of Pois-
son processes as follows:

X(t, ω, c) = X(0, ω, c) +
M∑

j=1

νjYj (Sj (t, ω, c), ω), (4)

where

Sj (t, ω, c) =
∫ t

0
aj (X(s, ω, c), c)ds, j = 1, . . . , M, (5)

and Yj(., ω), j = 1, . . . , M are independent unit-rate Poissons
associated with each reaction channel. In the RTC equation
(4), we refer to Sj as the (dimensionless) internal time of the
reaction channel j. Recall that ν j and aj(., c) are the stoichiom-
etry vector and propensity function, respectively, for reaction
channel j. Once we have a realization Y1(., ω), . . . , YM(., ω) of
the noise we can use (4) to solve for X(., ω, c) as we now de-
scribe. We start by denoting the random internal jump times
of the Poisson process Yj by I

j

i where j = 1, . . . , M, i = 1,
2, . . . , and

I
j

1 < I
j

2 < I
j

3 . . .

for each j. We will also define the internal time for the next
firing of reaction channel j when regarded at physical time t
by

I
j
+(t) = min

{
I

j

l |I j

l > Sj (t), l = 1, 2, . . .
}
,

for j = 1, . . . , M. Thus the ith firing of the jth reaction channel
will occur at physical time t, if Sj (t, ω, c) = I

j

i (ω).
We can uniquely represent the trajectory X(., ω, c) using

the collection (Ti, Ji) for i = 1, 2, . . . , where Ti(ω, c) is the
physical time of the ith firing of any reaction channel, and
Ji(ω, c) ∈ {1, 2, . . . , M} is the index of the reaction channel
that fires at time Ti. With this notation, we now see that the
internal time Sj(t, ω, c) is piecewise affine in t,

Sj (t, ω, c) = Sj (Ti(ω, c), ω, c) + aj (X(Ti(ω, c),c)

× (t−Ti(ω, c)), (6)

j = 1, . . . ,M

for Ti ≤ t < Ti + 1. This will facilitate easy computation.
Assuming that T1, . . . , Ti and J1, . . . , Ji are known for

some i, we also know X(Ti) and I
j
+(Ti) and can compute Ti + 1

and Ji + 1 as follows. First, we note that when the physical time

is equal to Ti, the internal times of the processes are given
by Sj(Ti), and that the next firing times of the reactions in
their respective internal time frames are given by I

j
+. During

t ∈ [Ti, Ti + 1), the internal times Sj(t) increase at the constant
respective rates aj(X(Ti)), and so the physical time Ti + 1 − Ti

which elapses before the next firing of a reaction is simply the
minimum of (I j

+ − Sj (Ti))/aj (X(Ti)). We then obtain

Ti+1 = Ti + min

{
I

j
+ − Sj (Ti)

aj (X(Ti))

∣∣∣∣ j = 1, . . . ,M

}
. (7)

Here, Ji + 1 is the index of the minimum in Eq. (7) and
is unique for almost all ω, and we note that Ti+1(ω, c)
= I

Ji+1(ω,c)
i+1 .
Assuming aj(x; c) are smooth functions of c, one may

show from Eq. (7) that the times Ti(ω, c) at which reactions
fire are piecewise differentiable in c for each ω . Thus for
each ω we may differentiate Ti to compute ∂Ti

∂c
. In fact from

differentiation of Eq. (7), we obtain the recursive formulas

∂Ti+1

∂c
= ∂Ti

∂c
−I

j∗
+ (Ti)−Sj∗ (Ti)

(aj∗ (X(Ti)))2

∂aj∗

∂c
(X(Ti)) −

dSj∗ (Ti )
dc

aj∗ (X(Ti))
,

(8)
where j* = Ji + 1 is the index of the minimum in Eq. (7). The
derivatives dSj (Ti )

dc
are found by differentiating Eq. (6),

dSj (Ti+1)

dc
= dSj (Ti)

dc
+ ∂aj

∂c
(X(Ti))(Ti+1 − Ti) + aj (X(Ti))

×
(

∂Ti+1

∂c
− ∂Ti

∂c

)
. (9)

In deriving Eqs. (8) and (9), we have used the fact that for any
given nominal value of c, with probability one the quantities
X(Ti) and I

j
+(Ti) are locally constant in c. For each given c

Eqs. (8) and (9) hold for almost all ω, and from these one can
solve recursively for ∂Ti

∂c
for i = 0, 1, 2, . . . , using the initial

conditions

∂T0

∂c
= 0,

dSj (T0)

dc
= 0, j = 1, . . . ,M. (10)

If we are interested in the sensitivity of E(Tn) with respect
to c for some fixed n, then Eqs. (8) and (9) allow us to compute
∂Tn

∂c
path by path and then take the sample average to estimate

∂E(Tn)
∂c

.
But as mentioned earlier, we are interested in the sensi-

tivity of an output Y of the form Y = f(X(T)), where f is some
function of the state and T is some final time: i.e., we seek to
compute the derivative ∂E(f (X(T )))

∂c
.

In this case an analogous approach would require us to
compute ∂f (X(T ))

∂c
path by path and then take sample average.

But unfortunately this will yield zero as for any given T and
c, for almost all ω, there will be no jump at T and hence X(T)
will be constant in a neighborhood of that c and hence ∂f (X(T ))

∂c

= 0. However, ∂E(f (X(T )))
∂c

is typically nonzero, indicating that

E

(
∂f (X(T ))

∂c

)
�= ∂E(f (X(T )))

∂c
,

i.e., the expectation and derivative (with respect to c) do not
commute. Thus the PD method is not applicable.
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To circumvent this issue, we regularize the problem in the
following way. Suppose instead of ∂

∂c
E(f (X(T ))), we seek to

compute the sensitivity

∂

∂c
E

(∫ T +w

T −w

1

2w
f (X(t))dt

)
, (11)

where w > 0 is the half width of the regularizing window. In
this case, we may compute the pathwise sensitivity

∂

∂c

(∫ T +w

T −w

1

2w
f (X(t))dt

)
, (12)

and then take a sample average. The pathwise sensitivity
will not be zero as the probability of a jump in the window
[T − w, T + w] is not zero. It turns out that this results in a fea-
sible method. Even though this modifies the sensitivity prob-
lem, if w is small enough, the difference between the original
and modified sensitivities will be sufficiently small in most
practical settings.

Now we shall derive a formula for the pathwise deriva-
tive (12) in terms of ∂Tn

∂c
for n = 1, 2, . . . . Note that f(X(t, c))

is a piecewise constant function of t with jumps and may be
written as

f (X(t, c)) = f (x0) +
∞∑
i=1

{f (X(Ti(c), c))

− f (X(Ti−1(c), c))} H (t − Ti(c)),

where H is the Heavyside function (step function) and we ob-
serve that for any (finite) t only finitely many of the terms in
the above sum are nonzero. Let us define �i(c) by

�i(c) = f (X(Ti(c), c)) − f (X(Ti−1(c), c). (13)

Let [T − w, T + w] be a fixed interval. Then for c = c0, with
probability 1 none of the Ti(c0) equal T − w or T + w. Sup-
pose that i = il and iu are lowest and highest indices such that
Ti(c0) ∈ (T − w, T + w). Then we obtain

∂

∂h

∣∣∣
h=0

∫ T +w

T −w
f (X(t, c0 + h))dt

=
∞∑
i=1

∂

∂h

∣∣∣
h=0

�i(c0 + h)
∫ T +w

T −w
H (t − Ti(c0 + h))dt.

We make two observations. First with probability 1, �i(c0

+ h) is constant in a neighborhood of h = 0 for any finitely
many of indices i (we shall only care about il ≤ i ≤ iu). Sec-
ond, from the definition of the Heavyside function, it can be
shown that

∂

∂h

∣∣∣
h=0

∫ T +w

T −w
H (t − Ti(c0 + h))dt = −∂Ti

∂c
(c0),

if Ti(c0) ∈ (T − w, T + w) and zero if Ti(c0) < T − w or
Ti(c0) > T + w (the cases Ti(c0) = T − w or Ti(c0) = T
+ w have zero probability and can be omitted). Thus, we ob-
tain the formula for the regularized pathwise sensitivity

1

2w

∂

∂h

∣∣∣
h=0

∫ T +w

T −w
f (X(t, c0 + h))dt

= − 1

2w

iu∑
i=il

�i(c0)
∂Ti

∂c
(c0). (14)

Thus the computation of path by path derivative
∂
∂h

|h=0
∫ T +w
T −w f (X(t, c0 + h))dt is accomplished along with a

RTC SSA simulation by using Eqs. (8), (9), (13), and (14).
In Appendix B, we discuss the validity of differentiation

inside expectation in the context of the RPD method.

A. Algorithm

The numerical algorithm follows the conventions of
Sec. III and, in addition, uses variables τ�Ti + 1 − Ti,
�T � ∂Ti

∂c
− ∂Ti−1

∂c
, �

(i)
f � f (X(Ti)) − f (X(Ti−1)), where

f is the functional whose sensitivity we are interested in
computing, and dF � −∑iu

i=il
�

(i)
f

∂Ti

∂c
. We assume that each

call to the function exprand() returns an independent
random number drawn from the exponential distribution
with rate one. We also assume that the system depends on
a single parameter, c, in order to simplify notation. It is
straightforward to modify this algorithm to simultaneously
compute sensitivities with respect to a vector of parameters,
c = [c1, . . . , cp]′. The regularized pathwise derivative method
can then be written as the following algorithm.

Regularized pathwise derivative (RPD) sensitivity
algorithm

1. Specify x0, Tf, w, N
2. for k = 1 to N do
3. Initialization: Set t = 0, X = x0, f = f(x0), dF = 0,

∂Ti

∂c
= 0; I

j
+ = exprand(), Sj = 0, dSj

dc
= 0 for

j = 1, . . . , M
4. while t < Tf + w do
5. Calculate aj and ∂aj

∂c
, for j = 1, . . . , M

6. Calculate τ = minj {(I j
+ − Sj )/aj }

7. Set j* to the index of the minimum in the above equation
8. Calculate �T = − τ

aj∗
∂aj∗
∂c

− dSj∗
dc

1
aj∗

9. Calculate dSj

dc
= dSj

dc
+ ∂aj

∂c
τ + aj�T for j = 1, . . . , M

10. Update ∂Ti

∂c
← ∂Ti

∂c
+ �T

11. Update Sj ← Sj + ajτ for j = 1, . . . , M
12. Update t ← t + τ and X ← X + νj∗

13. Update I
j∗
+ ← I

j∗
+ + exprand()

14. Calculate f+ = f(X) and set �
(i)
f = f+ − f

15. if Tf − w < t < Tf + w then
16. Update dF ← dF − �

(i)
f

∂Ti

∂c

17. end if
18. Update f ← f+
19. end while
20. return Zk = 1

2wdF

21. end for
22. Compute sensitivity from sample mean ẑ = 1

N

∑N
k=1 Zk

IV. NUMERICAL EXAMPLES

A. Monomolecular birth-death system

We first evaluate the proposed RPD method by estimating
the sensitivities for a simple example whose analytical solu-
tion is available. The single species, two reaction birth-death
process is a basic network in which a chemical species S is
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created and destroyed according to the following reactions:

∅
c1→ S c2x→ ∅. (15)

The propensity functions for the birth and death reactions con-
ditioned on X(t) = x are given by a1(x, c) = c1 and a2(x, c)
= c2x, respectively. All numerical examples hereafter will
consider the system with parameters c1 = 10 and c2 = 0.5.

First, we consider sensitivity analysis of the expected
value at a fixed time for this problem. The random variable
X(t) can be expressed as the sum of independent Binomial
and Poisson random variables, whose expected value at time
t is given by

E[X(t)] = x0e
−c2t + c1

c2
(1 − e−c2t ),

where x0 = X(0) is the initial condition.13 The infinitesimal
sensitivities with respect to the birth and death rates for this
system are readily obtained by taking the partial derivatives

∂

∂c1
E[X(t)] = 1

c2
(1 − e−c2t ), (16)

∂

∂c2
E[X(t)] = −tx0e

−c2t+c1

c2
te−c2t−c1

c2
2

(1−e−c2t ). (17)

With initial state x0 = 0, the analytical sensitivities with
respect to c1 and c2 evolve with time and are shown in
Figs. 2(a) and 2(b) (dashed lines).

Whereas the Girsanov method produces an unbiased es-
timate of the infinitesimal sensitivity, both the RPD and CRP
methods solve approximate problems and do not estimate the
sensitivity directly. As such, each method introduces a bias
and thus there is a tradeoff between bias and variance, which
are both functions of the method parameter. In order to com-
pare the methods in a reasonable fashion, we first specify a
bias (i.e., the error between the direct sensitivity and the fi-
nite difference or regularized sensitivity without considering
any numerical errors due to machine precision) and then use
w and h that, respectively, achieve this bias.

For the computation of the sensitivity with respect to c1

to give a constant 0.1% bias, the RPD method requires a win-
dow size that changes with time (Fig. 2(e)). The centered fi-
nite difference estimator is an unbiased estimator of ∂/∂c1 for
this particular problem, and consequently a very large per-
turbation size can be used to decrease the variance. In this
case h = 9, or 90% of the nominal parameter value of c1, was
used. The CRP estimator is no longer unbiased for the sensi-
tivity with respect to the death rate, c2 and so, such as RPD,
the algorithm parameter h must be varied with time to give a
fixed bias of 0.1%, (Fig. 2(f)). The estimates generated from N
= 104 independent samples at each final time are shown in
Figs. 2(a)–2(d). These results show that the Girsanov estima-
tor is unbiased, but that the variance (and hence efficiency) of
its estimate is significantly worse than either the RPD or CRP
methods at all times. Additionally, its variance increases with
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FIG. 2. Comparison of sensitivity estimates for E[X(T)|x0 = 0] for the birth-death process with parameters c1 = 10, c2 = 0.5 as the final time (T) is varied, with
the method parameters chosen for RPD and CRP to yield a fixed bias of 0.1%. (a) and (b) The sensitivity estimates from each method are compared with the
analytical solutions (dashed line). (c) and (d) The variance of the sensitivity estimators at each time. (e) and (f) The algorithm parameter values (blue triangles:
RPD, red x: CRP) used in each computation. All estimates were computed independently using N = 104 sample paths.
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t, leading to a variance four orders of magnitude higher than
either method at T = 50. Comparing RPD with CRP, with re-
spect to c1 the CRP method has much lower variance for early
t, reaching as much as 20-fold lower variance than the RPD
estimator at T = 8. However as time increases, the variance
of RPD decreases so that by T = 50 the variance of RPD is
less than 2-fold higher than that of CRP. For the sensitivity
with respect to c2, the variance of the CRP estimator grows
significantly as t increases, whereas the variance of RPD de-
creases as t increases while still producing an identical 0.1%
bias. Consequently, CRP quickly loses its initial advantage of
20% lower variance than RPD at T = 1, and by T = 10 CRP
variance is already 10-fold higher than RPD, and by T = 50
there is a 330-fold higher variance.

We next examine sensitivity analysis with respect to
a non-smooth functional for which the Girsanov method
was previously shown to be particularly efficient relative
to FD methods.6 For this case, the functional f (X(T ))
= 1{a≤X(T )≤b} is considered, where 1{} is the indicator
function that takes value 1 when X(T) is in the interval [a,
b], a < b, and zero otherwise. Note that E[f (X(T ))] = P(a
≤ X(T ) ≤ b). This type of functional arises frequently when
one is interested in estimating the sensitivity of the probability
that a chemical species is within a given range, for instance,
a range that specifies some threshold levels. Again, the RPD,
Girsanov, and CRP methods were used to compute the
sensitivity of this functional with respect to c2 for three
different ranges of values at fixed T = 10 (Fig. 3).
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FIG. 3. Sensitivity analysis for E(1{a≤X(T )≤b}) for the birth-death process
with parameters T = 10, c1 = 10, c2 = 0.5, and x0 = 0. (a) The sensitivity
estimates are shown for the methods indicated by color and compared with
the analytical result (black circle). Error bars indicate 95% confidence inter-
vals of the estimates. (b) The variance of the sensitivity estimates is shown,
with the vertical axis in log scale. All estimates were obtained using N = 104

sample paths. For RPD and CRP, w and h were selected to achieve a 0.1%
bias relative to the exact sensitivities (w = 0.978, h = 0.0069 for 15 ≤ X(T)
≤ 16; w = 0.876, h = 0.0098 for 10 ≤ X(T) ≤ 20). For 1 ≤ X(T) ≤ 100 w
= 0.876 and h = 0.0024 were used.

When estimating sensitivities for the narrow interval 15
≤ X(T) ≤ 16, all three methods produce estimates from 104

simulations whose confidence intervals contain the exact sen-
sitivity. However, the RPD estimate is most efficient with
a variance (12.8) three-fold lower than the variance of the
Girsanov estimate (37.3) and over 22-fold lower than CRP
(288.5). When considering a wider interval of 10 ≤ X(T)
≤ 20, the RPD method still produces low variance estimates
(variance 16.8), while the variance of the Girsanov estima-
tor increases nearly five-fold to 155.1. The CRP estimate has
a lower variance (176.3) but is still over 10-fold higher than
RPD. Finally, when considering the interval 1 ≤ X(T) ≤ 100
for which the functional is nearly constant and its sensitivity is
very small (−9 × 10−8), both RPD and CRP compute a sen-
sitivity of zero with no variance, while the Girsanov estimate
is nonzero (–0.292) and has high variance (318.0).

Revisiting the sensitivity of E[X(T)], the analytical for-
mulas show that the sensitivity with respect to c1 is inde-
pendent of the initial state x0 (16), while the sensitivity with
respect to c2 is an affine function of x0 (17). We, therefore,
examined whether the performance of the methods are depen-
dent on the initial condition by considering the conditional
expectation E[X(T)|x0] for this problem. RPD, Giranov, and
CRP were again used to estimate the sensitivity as x0 was var-
ied between 0 and 5000 (Fig. 4).

As in the previous examples, w and h were selected, re-
spectively, so that the RPD and CRP estimates would have
a fixed bias of 0.1% relative to the exact sensitivity. Com-
pared with the CRP method, RPD produces estimates with at
least 20% lower variance for the sensitivity with respect to c2

(Fig. 4(d)). The RPD is again less efficient than CRP with re-
spect to c1 sensitivity estimates (10-fold higher variance) due
to the unbiasedness of the CRP estimator for this particular
problem (Fig. 4(c)).

The results clearly demonstrate that for the sensitivity es-
timates with respect to c1, the variance of the estimates is
independent of x0 when using RPD and CRP, but that the
variance rapidly increases with the Girsanov estimator as x0

is changed (Fig. 4(c)). The variance of the estimates with
respect to c2 increases as x0 increases for all three meth-
ods; however, the variance of the Girsanov estimator is sev-
eral orders of magnitude higher than the other two methods
(Fig. 4(d)). Thus, while the Girsanov method still produces
unbiased estimates for this functional, it has the undesirable
feature that its variance may be adversely affected by changes
in initial conditions in certain problems.

B. Reversible isomerization system

The reversible isomerization system consists of two
species, S1 and S2, which switch between states via the fol-
lowing two reactions:

S1
c1X1−→ S2, (18)

S2
c2X2−→ S1. (19)

In this network, stochastic trajectories fluctuate about the ex-
pected value, the evolution of which undergoes an initial
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FIG. 4. Comparison of sensitivity estimates for E[X(T)|x0] for the birth-death process with parameters T = 3, c1 = 10, c2 = 0.5 as the initial state x0 is varied.
(a) and (b) The sensitivity estimates from each method are compared with the analytical solution (dashed line). (c) and (d) Variance of the sensitivity estimates
from each method. The window lengths (w1 = 0.289, w2 = 0.309) and perturbation sizes (h1 = 9.0, h2 = 0.041) were chosen for RPD and CRP, respectively, to
yield a fixed bias of 0.1% of the exact sensitivity with x0 = 0. All estimates were computed using N = 104 sample paths.

transient before reaching a stationary value (Fig. 5(a)). The
expected value of the population of both species can be com-
puted analytically for this simple example at a fixed time

E[X1(t)] = X1(0) + (1 − e−(c1+c2)t )

c1 + c2
(c2X2(0) − c1X1(0)) ,

(20)

E[X2(t)] = X2(0) − (1 − e−(c1+c2)t )

c1 + c2
(c2X2(0) − c1X1(0)) ,

(21)

where X1(0) and X2(0) are the initial populations of species
S1 and S2. In the numerical examples considered here, we
assume initial conditions of X1(0) = 50 and X2(0) = 0 and
parameters c1 = 0.3, c2 = 0.5. The exact sensitivities are ob-
tained by differentiating the result with respect to each of the
parameters.

We examine the performance of the RPD method rela-
tive to Girsanov and CRP methods by estimating the sensitiv-
ity of E[X1(T)] using 104 independent trajectories at several
choices of w for RPD and finite difference parameters h for
CRP. While the Girsanov estimator is again unbiased, both
RPD and CRP estimates produce a bias which depends on the
algorithm parameters w and h. The algorithm parameters w
and h can be chosen to achieve a specified bias for RPD and
CRP, respectively, for this simple example, and so this permits
comparison between the efficiency (variance) between RPD
and CRP when the accuracy (bias) is fixed. The results exam-
ining the variance for several biases between 10−6 and 10−1

demonstrate that during the transient regime (T = 3), both
RPD and CRP achieve estimates with 5-fold lower variance

or less compared to the Girsanov estimator with bias even as
low as 10−6 (Fig. 5(b), solid lines). When the bias is permitted
to increase, larger w and h can be used to reduce the variance
further.

While at T = 3, the RPD estimator and CRP estima-
tors had similar variance (RPD was 15%–25% lower variance
than CRP for small bias values), the situation changes signifi-
cantly when the estimators are used to evaluate the sensitivity
in the later time regime at T = 40 (Fig. 5(b), dashed lines).
At later times, the expected value has nearly reached station-
arity allowing larger regularization windows to be used for
RPD, whereas for CRP smaller perturbations must be used
to maintain a low variance. At the smallest bias considered
(10−6), CRP has only 1.73 fold-lower variance compared to
the Girsanov estimator, whereas the RPD estimator has a vari-
ance over 6 500-fold lower than Girsanov. As h and w are in-
creased to give a larger relative bias of 10−2, the CRP estimate
has over 500-fold lower variance compared with Girsanov but
is still an order of magnitude higher than the RPD estimate,
whose variance is 42 000-fold lower than Girsanov.

C. Genetic oscillator

Sensitivity analysis can be a particularly valuable tool
when trying to identify which system parameters are the
key regulators of a response in a very complex and high-
dimensional network. Here, we consider a higher dimen-
sional example to demonstrate such a case and compare the
two infinitesimal sensitivity methods. The genetic oscillator,
adapted from Vilar et al.,14 consists of nine genes, mRNAs,
and proteins which interact in a network of 16 biochemical
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FIG. 5. Reversible isomerization process with parameters c1 = 0.3, c2
= 0.2, X1(0) = 50, X2(0) = 0. (a) The evolution of the expected value for
each species (dashed line) is shown and compared with a representative sam-
ple path (solid lines) generated using SSA. (b) Variance and bias of sensitivity
estimates for E[X1(T)] with respect to c1 at T = 3 (solid) and T = 40 (dashed)
obtained from N = 104 independent samples for all methods. Note the Gir-
sanov estimator (green) is unbiased, and its variance from one ensemble of
N = 104 samples is shown for reference only. The RPD estimates (triangles)
and CRP estimates (x) were computed using parameters w and h, respec-
tively, which achieved the identical relative bias indicated on the horizontal
axis. Representative w and h values are labeled.

reactions to produce oscillations. The system reactions and
parameters of the network are listed in Table I. The initial
populations for the gene promoters Pr and Pa were assumed
to be 1, with all other species initialized to 0.

The RPD and Girsanov methods were used to evaluate
the sensitivity of the expected value of the activator protein,
A, at a fixed final time to all system parameters to evaluate the
relative effects of each of the parameters. Because the reaction
rates can vary by several orders of magnitude, we consider the
sensitivities normalized by their respective parameters, i.e.,
∂E(X(T ))

∂ci
ci , to allow direct comparison. The results show that

the RPD estimator significantly outperforms the Girsanov es-
timator for evaluating the sensitivity with respect to each pa-
rameter in the system (Fig. 6). The RPD estimator converges
to the infinitesimal sensitivity with far lower variance than
the Girsanov estimator, as indicated by the very tight confi-
dence intervals. In fact, for this problem the RPD estimator
achieves variance reductions between 1.4 × 104 (with respect
to αA) and 7 × 1011 (with respect to γ C) fold lower compared
with the Girsanov method. These results are consistent when
even larger samples sizes (N = 106) are considered (data not
shown).

TABLE I. Model reactions, propensity functions, and parameters for the
genetic oscillator example.

Reactions Parameter Value

Pa
αA Pa−−−→ Pa + mRNAa αA 50.0

Pa_A
αa αA Pa_A−−−−−−−→ Pa_A + mRNAa αR 0.01

Pr
αR Pr−−−→ Pr + mRNAr βA 50.0

Pr_A
αr αR Pr _A−−−−−−−→ Pr_A + mRNAr βR 5.0

mRNAa
βA mRNAa−−−−−−−→ mRNAa + A γ C 20.0

mRNAr
βR mRNAr−−−−−−−→ mRNAr + R γ A 1.0

A + R
γC A R−−−−→ C θA 50.0

Pa + A
γA Pa A−−−−−⇀↽−−−−−
θA Pa_A

Pa_A γ R 1.0

Pr + A
γR Pr A−−−−−⇀↽−−−−−
θR Pr _A

Pr_A θR 100.0

A
δA A−−−→ ∅ δA 1.0

R
δR R−−−→ ∅ δR 0.2

mRNAa
δMA mRNAa−−−−−−−−→ ∅ δMA 10.0

mRNAr
δMR mRNAr−−−−−−−→ ∅ δMR 0.5

C
δ′
A

C−−−→ R δ′
A 1.0

αa 10.0
αr 5000

An important point to note is that the sensitivities with
respect to all 16 reaction parameters are computed from only
N sample paths using either infinitesimal sensitivity method
(RPD or Girsanov). In contrast, 16 times as many simulations
would be needed for the CRP method with central difference
scheme. More generally in high-dimensional problems with p
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FIG. 6. Sensitivity analysis for E[A(T)] for the genetic oscillator at T = 5 us-
ing N = 104 samples at parameter values listed in Table I. (a) The sensitivity
estimates are shown for the RPD method (w = 0.1) and the Girsanov method.
Error bars indicate the 95% confidence intervals of the sensitivity estimates.
(b) The estimator variance is shown for the respective methods, with the same
coloring as in (a).
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parameters, the computational expense of sensitivity analysis
can be particularly expensive when using finite difference
methods. To state this more precisely, in order to compute the
sensitivities with respect to p parameters using FD from N
samples, one must compute 2Np simulations with a centered
FD scheme, or alternatively N(p + 1) simulations with a
(higher variance) forward FD scheme. In contrast, both RPD
and Girsanov estimators can produce sensitivity estimates
with respect to all p parameters using only N simulations.
Although each simulation becomes more expensive as p
grows, the computational expense scales linearly with p for
both RPD and Girsanov. This additional expense of RPD
and Girsanov is typically much less than FD methods, thus
making either method preferred over FD when computing
sensitivities for large number of parameters.

For this particular example and implementation of the al-
gorithms (code written in C and simulations performed on
a 2 GHz Intel Core i7 laptop with 4GB memory), we ob-
served that a single sensitivity sample for one parameter re-
quires 0.0146 s of computation time using CRP, 0.0112 s us-
ing Girsanov, and 0.0174 s using RPD. However, it takes an
additional 0.0146, 0.0008, and 0.0018 s for each additional
parameter sensitivity sample generated using CRP, Girsanov,
and RPD, respectively. Thus it is evident that when N sam-
ples of only two parameter sensitivities are desired, CRP is
already more expensive than the either two methods, and that
it becomes even more expensive as p increases. From our re-
sults, the Girsanov estimator is the least computationally ex-
pensive algorithm, requiring only 75% − 45% of the simula-
tion time required for the same number of samples generated
using RPD. However in this example (and indeed, all other ex-
amples considered above), this additional computational ex-
pense per sample using RPD is more than compensated by
the significant variance reductions. In other words, although
each simulation takes less time using Girsanov, many more
simulations will be required to generate an estimate of the
same variance as RPD. The comparison between CRP and
RPD is more nuanced due to their dependence on algorithmic
parameters that affect variance and bias, but it is clear from
the previous examples that the combination of reduced com-
putational expense (for p > 1) and lower variance using RPD
can be significant for many problems.

D. Toggle switch

The stochastic genetic toggle switch originally proposed
by Gardner et al.15 models reaction kinetics using rational
propensity functions rather than the affine (in c) propensities
that are obtained from networks consisting entirely of elemen-
tary chemical reactions. The toggle switch consists of two
mutually repressing proteins, U and V , which switches be-
tween two states in which one species has a large population,
while the other has only a few copies present. The populations
of species, U and V are described by the state vector, X(t, c)
= [x1 x2]′. The reaction network consists of the following four
reactions:

∅
a1→ U , U a2→ ∅, ∅

a3→ V, V a4→ ∅,

where the propensity functions aj and stoichiometry vectors
ν j associated with each reaction channel j are given by

a1(x, c) = α1

1 + x
β

2

,

a2(x, c) = x1,

a3(x, c) = α2

1 + x
γ

1

,

a4(x, c) = x2,

ν1 = [1 0]′, ν2 = [−1 0]′, ν3 = [0 1]′, ν4 = [0 − 1]′.

For this example, we analyze the system at the nominal pa-
rameter set c = c0 with values,

α1 = 50, α2 = 16, β = 2.5, γ = 1.

All simulations start at t = 0 with initial conditions x1

= x2 = 0.
We consider sensitivity analysis of the expected value of

species U at a fixed time T. We first bring attention to a limita-
tion of both infinitesimal sensitivity methods that arises in this
problem. Namely, due to the particular form of the propensi-
ties, the partial derivatives ∂a1

∂β
and ∂a3

∂γ
may be singular when-

ever x1 = 0 or x2 = 0, respectively. As these partial derivatives
are used in the numerical RPD algorithm (Sec. III A), the RPD
method fails to accurately estimate the sensitivity with respect
to these parameters for this problem. The Girsanov algorithm
cannot be used either in this case for the same reason (see
Appendix A).

However, there are no apparent limitations in estimat-
ing the sensitivity ∂

∂α1
E[U(T )]. The sensitivity at fixed final

time T = 5 for this example was computed accurately using
the Finite State Projection method.2 The exact result (1.19)
was compared with the results obtained from 105 samples
using the CRP method, the Girsanov method, and the RPD
method at various sizes of the regularizing window (Fig. 7).
The results show that both the Girsanov and CRP approaches
give excellent estimates of the sensitivity with low variances
for this large number of samples. In particular, the Girsanov
method yields an estimate of 1.25 ± 0.09, while the CRP
method yields an estimate of 1.19 ± 0.04. The RPD estimates,
in contrast, have a variance several orders of magnitude larger
than the competing methods even for large w. With the largest
regularization window considered (w = 1.0), the RPD gave a
rather poor estimate of 2.35 ± 1.96, which is over 400-fold
higher than the Girsanov estimator and 2000-fold higher than
the CRP estimator. The results are similar when also consid-
ering the sensitivity with respect to α2. Thus for this problem
both the CRP and Girsanov estimators are better able to pro-
vide accurate sensitivity estimates than the RPD estimator.

V. ON THE SELECTION OF THE PARAMETER w

The performance of the RPD algorithm depends on the
choice of the window-size algorithmic parameter, w. On one
hand, a large w is desirable because it smooths the problem
and leads to reduced variance estimates and hence higher effi-
ciency. On the other hand, choosing larger w solves a problem
further away from the unregularized sensitivity problem,
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FIG. 7. Sensitivity analysis for the toggle switch example, ∂
∂α1

E[U(T )] at

T = 10 using N = 105 samples and parameter values listed in the text. (a)
Sensitivity estimates computed from the RPD, Girsanov, and CRP methods
are compared with the exact result (1.1897), calculated using the finite state
projection. Colored bands indicate the 95% confidence intervals of the point
estimates for each method. RPD was computed using windows of varying
widths between w = 10−4 and 100. A perturbation of size h = 0.01 was used
for the CRP estimates. (b) Variance of the estimates.

potentially introducing a significant error in the estimate.
Therefore, one is faced with the challenge of choosing w that
properly compromises between accuracy and efficiency. A
similar issue exists with the finite difference methods as well
where the perturbation size h plays a role analogous to that
of w. The authors are unaware of any standard practice for
effectively choosing h for stochastic finite difference sen-
sitivity estimators. Although there are some reasonable
guidelines for choosing the parameter to balance Taylor
series truncation error with round-off error in the case of de-
terministic systems,16 this choice is obfuscated in stochastic
sensitivity analysis as smaller perturbations lead to increased
variance and hence larger sampling error. Results deriving
the perturbation size that optimizes asymptotic convergence
in sample size N exist (see, e.g., Chap. VII in Ref. 9, and
references therein), but are of limited value in practice as
they involve constants that are either unknown or require
information about higher order derivatives, which can be
exceedingly expensive computationally.

The numerical results suggest heuristic strategies that
may be used to select w. For example, it was seen that very
large w could be used while maintaining low bias once the
system is near stationarity (Figs. 2 and 5). This is not surpris-
ing since near stationarity, time averages equal ensemble av-
erages. Smaller w must be used, in contrast, when the system
is in highly transient regimes. This suggests that a small num-
ber of pilot trajectories could be generated to evaluate how
f(X(t)) changes within a time interval around the fixed time T,
and to check whether a particular choice of w seems reason-
able. Adaptive methods could also be implemented to adjust
the window size if the sample variances exceed some speci-
fied tolerance.

Under mild regularity assumptions it is easy to show via
Taylor expansions that the bias of the RPD method vanishes
as O(w2) as w → 0. This is analogous to the O(h2) bias when
using central finite differences. Under the assumption that the
bias is O(w2) (or O(h2) for finite differences), one may use
multiple values of w (or h) to estimate and remove the bias
using regression. The authors intend to explore the numerical
efficiency of this idea in a future work.

In some situations the regularized problem (11) may be
of equal or more interest than the unregularized one. For in-
stance, instead of considering the sensitivity of the probability
that a gene is on or off at a single instant T in time, it may be
more natural to consider the sensitivity of the fraction of time
it is turned on during an interval of time [T − w, T + w] that is
of interest biologically. Additionally, experimental constraints
in how precisely time course data can be obtained may actu-
ally make it more useful to consider small intervals of time
that are consistent with the experimental system which is be-
ing modeled than only considering a single time instance.

VI. CONCLUSIONS

In this work, we developed the RPD method as an effi-
cient Monte Carlo estimator for the infinitesimal sensitivity
analysis of discrete stochastic chemical networks. The RPD
sensitivity estimator was constructed by using the random
time change description of continuous-time Markov processes
and by considering a regularized function to make pathwise
differentiation possible for many problems in which a naive
implementation of PD would otherwise not be valid. We dis-
cussed the conditions for commuting differentiation and ex-
pectation and hence assuring validity of PD methods and
showed that the RPD method is expected to satisfy these con-
ditions for many typical problems.

We demonstrated the applicability of RPD using several
numerical examples, and found that RPD accurately and ef-
ficiently estimated the sensitivities of a variety of path func-
tionals of interest.

Comparison of RPD with alternative sensitivity methods
using likelihood ratios (Girsanov) and finite difference quo-
tients (common reaction path) showed that RPD estimates
typically have lower variance, with RPD variances often or-
ders of magnitude lower than alternative methods.

In fact for the particular example of a genetic oscillator,
variance reductions of up to 11 orders of magnitude were ob-
served, indicating that computational expense can be reduced
dramatically by using RPD. We also illustrated some limita-
tions of the RPD estimator by presenting a problem for which
the RPD estimator is not well suited, demonstrating that for
certain problems the RPD estimator is no longer valid and an
alternative method must be used.

Though the RPD method is applicable to a large class of
sensitivity problems, it may not be applicable to typical prob-
lems involving random times, such as the expected time to
reach a certain state. Future work includes developing proper
regularization techniques to deal with random times, and de-
veloping strategies for automated selection of the algorithm
parameter.
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APPENDIX A: LIKELIHOOD RATIO METHOD

In this Appendix, we describe the GLR method in the
context of chemical kinetics. This method was introduced
in the context of chemical kinetics in Ref. 6 for systems,
where propensity functions are affine in parameters. A more
general related formula for the Girsanov transformation that
considers the ratios of the probability densities p(x; c) and
p(x; c′) for two different parameters c and c′ may be found in
Ref. 17; our presentation here does not assume any particular
form for the propensities except that they are continuously
differentiable with respect to the parameter c. An alternative
derivation of the Girsanov method without restrictions on the
form of propensity functions may also be found in Ref. 18.

Recall that the required sensitivity z may be written as

z = E (f (X) W ) , (A1)

where the random (weight) variable W is given by

W = ∂

∂c
ln p(X; c).

It can be shown that the variable W can be written as a sum
W = ∑M

j=1 Wj , where Wj is the random weight correspond-
ing to reaction channel j and Wj is given by

Wj =
∫

[0,T ]

∂aj

∂c
(X(s−))

aj (X(s−))
dRj (s) −

∫ T

0

∂aj

∂c
(X(s)) ds. (A2)

In (A2) Rj(s) is the process that counts the number of firings
of the jth channel during [0, s]. We note that the first integral
is a Lebesgue-Stieltjes integral which simply sums the values
of ∂aj

∂c
(X(s−))/aj (X(s−)) corresponding to the finitely many

values of s at which a firing of the jth reaction occurs. Thus if
t1
j , t2

j , . . . , t
mj

j are the times at which jth reaction fires, then

∫
[0,T ]

∂aj

∂c
(X(s−))

aj (X(s−))
dRj (s) =

mj∑
l=1

∂aj

∂c

(
X

(
t lj − ))

aj

(
X

(
t lj − )) .

In other words, each time the reaction channel j fires, this
integral is increased by the partial derivative of the natural
logarithm of the propensity function of the reaction channel j
evaluated just prior to the firing.

To estimate z via Monte Carlo simulations, one generates
N number of independent trajectories X(i), i = 1, . . . , N and
along with each trajectory computes the corresponding W(i).
Then the sensitivity z is estimated by

ẑ = 1

N

N∑
i=1

f (X(i)) W (i). (A3)

An algorithm for computing sensitivities via the GLR
method is given below. This algorithm uses the Gillespie di-
rect method SSA (Ref. 1) and is nearly identical to that pre-
sented previously by Plyasunov and Arkin.6 However, the fol-
lowing is modified to accommodate propensities which are

not necessarily affine in the parameters. In the following, we
assume that calls to the function rand() return independent
uniform random numbers in the interval (0, 1).

Girsanov likelihood ratio sensitivity algorithm

1. Specify x0, Tf, N
2. for k = 1 to N do
3. Initialization: Set t = 0, X = x0, Wj = 0 for j = 1, . . . , M
4. while t < Tf do
5. Calculate aj and ∂aj

∂c
for j = 1, . . . , M

6. Set a0 = ∑M
j=0 aj

7. Generate u1 = rand() and u2 = rand()
8. Set τ = −ln (u1)/a0

9. Set j* ∈ [1, . . . , M] to the index for which∑j∗−1
j=1 aj < u2a0 ≤ ∑j∗

j=1 aj

10. Set �Wj∗ = ∂aj∗
∂c

1
aj∗ − τ

∂aj∗
∂c

11. For j �= j*, set �Wj = −τ
∂aj

∂c

12. Update Wj ← Wj + �Wj for j = 1, . . . , M
13. Update t ← t + τ , X ← X + νj∗

14. end while
15. Set W = ∑M

j=1 Wj

16. return weighted sensitivity estimate Zk = f(X)W
17. end for
18. Compute sensitivity from sample mean ẑ = 1

N

∑N
k=1 Zk

APPENDIX B: VALIDITY OF DIFFERENTIATION
INSIDE EXPECTATION

In this Appendix, we discuss the validity of differentia-
tion inside expectation. Let Y(c, ω) be a function of the ran-
dom element ω and the parameter c. We state an important
lemma.9

Lemma 1: Let c0 be a specified value of c. Suppose the
following hold:

1. For a set of ω with probability one, Y(c, ω) is differen-
tiable with respect to c at c = c0.

2. There exists an interval (cl, cu) containing c = c0 (in-
dependent of ω) on which Y(c, ω) is Lipschitz (in c) for
a set of ω with probability one, with constant K which
may depend on ω. In other words, for any c1, c2 in the
interval (cl, cu), the following holds:

|Y (c1, ω) − Y (c2, ω)| ≤ K(ω)|c1 − c2|.

3. E(K) is finite.
4. E(|Y(c, ω)|) is finite for all c in (cl, cu).

Then the following commutativity holds:

d

dc

∣∣∣
c=c0

E(Y (c)) = E

(
d

dc
|c=c0Y (c)

)
.

Suppose we are interested in E(f(X(T))), where f is some
function of the state. When using the RPD method, one
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obtains the function Y(c, ω) given by

Y (c) = 1

2w

∫ T +w

T −w
f (X(t, c))dt = 1

2w

∞∑
i=1

�i(c)

×
∫ T +w

T −w
H (t − Ti(c))dt. (B1)

We observe that condition 1 of Lemma 1 holds as explained
earlier and the derivative of F at c = c0 is given by Eq. (14).
We note that condition 1 holds in the nonregularized case Y(c)
= f(X(T; c)) as well.

Now we shall show that the condition 2 of Lemma 1
holds under the following important assumption on the chem-
ical system.

Assumption 1: At every possible state x, if aj(x) > 0 and
ak(x) > 0 for j �= k, then ak(x + ν j) > 0 and aj(x + νk) > 0.

Under assumption 1 it follows that the jump times Ti(c)
are continuous in c.4

First, under assumption 1 we claim that Y(c) given by
(B1) is a continuous function of c for each realization ω.
To see this, first we observe that for each i, the integral∫ T +w
T −w H (t − Ti(c))dt is continuous in c because Ti(c) is con-

tinuous in c. The terms �i(c) are only piecewise continuous
in c for each fixed i. However, a jump discontinuity in �i(c)
occurs when Ti(c) = Ti + 1(c) or Ti(c) = Ti − 1(c), thus two or
more jump times coincide. In this case, two or more jumps
occur at the same time and the sum of �i for these jumps
remains continuous in c. As a result of this crossover phe-
nomenon the sum in the above equation remains continuous
in c. Second, we observe that for a given realization ω, in any
bounded interval of c values, the derivative ∂

∂c
Y (c) exists for

all c except at finitely many points where two or more Ti(c)
crossover (these are the points where ∂Ti

∂c
fail to exist). Third

from the form of Eqs. (8) and (9), we see that for a given re-
alization ω, the derivatives ∂Ti

∂c
and hence ∂

∂c
Y (c) are bounded

functions on any bounded interval of c values bounded away
from c = 0. Thus for any given bounded interval of c values
bounded away from c = 0 and for any realization, with prob-

ability 1, the function Y(c) is a Lipschitz continuous function
whose Lipschitz constant may depend on the realization and
on the interval.

Thus we have established that condition 2 of Lemma 1
holds under assumption 1. In the nonregularized case, we note
that condition 2 does not hold. This is because, given any in-
terval (cl, cu) containing c0, the set of ω (i.e., the set of tra-
jectories) for which Y(c, ω) = f(X(T, ω; c)) does not have a
discontinuity in (cl, cu) is nonzero.

It is harder to prove that conditions 3 and 4 of Lemma
1 hold (especially condition 3 is harder). However, these are
typically expected to hold.
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