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Stiffness in stochastic chemically reacting systems:
The implicit tau-leaping method
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We show how stiffness manifests itself in the simulation of chemical reactions at both the
continuous-deterministic level and the discrete-stochastic level. Existing discrete stochastic
simulation methods, such as the stochastic simulation algorithm and the~explicit! tau-leaping
method, are both exceedingly slow for such systems. We propose an implicit tau-leaping method
that can take much larger time steps for many of these problems. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1627296#
al
b
o
y-
th
ll
s

ily
in
o

f

a
le
es

-
th
m
s

fo
tif
ho

s.

is-

of
and
ap-
cies

all
rge
can
e
e in
ose
the

that
lar
u-
ns
ng
dle

e
a
of
at
we

u-
lly,
I. INTRODUCTION

In microscopic systems formed by living cells, the sm
numbers of reactant molecules can result in dynamical
havior that is discrete and stochastic rather than continu
and deterministic.1–4 An analysis tool that respects these d
namical characteristics is the stochastic simulation algori
~SSA!, a numerical simulation procedure that is essentia
exact for chemical systems that are spatially homogeneou
well stirred. Despite recent improvements,5 as a procedure
that simulatesevery reaction event, the SSA is necessar
inefficient for most realistic problems. There are two ma
reasons for this, both arising from the multiscale nature
the underlying problem:~1! stiffness, i.e., the presence o
multiple time scales, the fastest of which are stable; and~2!
the need to include in the simulation both species that
present in relatively small quantities and should be mode
by a discrete stochastic process, and species that are pr
in larger quantities and are more efficiently modeled by
deterministic differential equation~or at some scale in be
tween!. We emphasize that most chemical systems, whe
considered at a scale appropriate to stochastic or to deter
istic simulation, involve several widely varying time scale
so such systems arenearly always stiff.

In this paper we will address the problem of stiffness
discrete stochastic systems. We will demonstrate how s
ness is manifested in stochastic chemical kinetics, and s
how to modify the recently proposed tau-leaping method6 so
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that much longer time steps can be taken for stiff system
The SSA, the tau-leaping method,6 the modified tau-

leaping method that will be introduced here, and determin
tic ordinary differential equation~ODE! simulation are each
most effective in certain situations. When the populations
all reactant species are small, the SSA will be as fast
efficient as one could reasonably wish. The goal of tau le
ing was to speed up the SSA when either all reactant spe
are present in moderately large numbers, or~much more
commonly! when some reactant species are present in sm
or moderate numbers while others are present in very la
numbers. In such situations, significant stochastic effects
still arise, but tracking them with the SSA will be very tim
consuming. These situations can be expected to aris
many cellular systems of interest to biochemists. For th
systems, the exact SSA is usually much too slow, while
deterministic reaction rate equation~RRE!, though fast, fails
to capture the stochastic effects. It was shown in Ref. 6
tau leaping morphs into the SSA when all the molecu
populations are very small, and morphs into the explicit E
ler method for the RRE when all the molecular populatio
are very large. Our present work is aimed at formulati
tau-leaping strategies that accurately and efficiently han
systems ‘‘in between’’ those two extremes.

The outline of this paper is as follows: In Sec. II w
review simulation algorithms for chemical kinetics for
wide range of scales. In Sec. III we outline the problem
stiffness for the simulation of chemical kinetics systems
both the continuous and stochastic scales. In Sec. IV
propose animplicit tau-leaping methodthat overcomes the
step size limitations due to stiffness of the explicit ta
leaping method, and we outline its implementation. Fina
4 © 2003 American Institute of Physics
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in Sec. V we present some numerical experiments dem
strating both the effectiveness and some limitations of
new implicit tau-leaping method.

II. SIMULATION ALGORITHMS
FOR CHEMICAL KINETICS

In a chemically reacting system involvingN molec-
ular species $S1 ,...,SN%, the state vector X(t)
[(X1(t),...,XN(t)), whereXi(t) is the number of molecule
of speciesSi in the system at timet, will evolve stochasti-
cally because of the inherent randomness of thermal mol
lar motion. Stochastic molecular collisions give rise to s
chastic chemical transmutations in accordance with a gi
set ofM reaction channels$R1 ,...,RM%. If the system is well
stirred and in thermal equilibrium, the dynamics of reacti
channelRj will be completely characterized by a propens
function aj and a state-change vectornj5(n1 j ,...,nN j):
aj (x)dt gives the probability that oneRj reaction will occur
in statex during the next infinitesimal time intervaldt, and
n i j gives the change in theSi molecular population induced
by oneRj reaction.7

By appealing to the laws of probability theory, one c
derive a chemical master equation~CME! that governs the
time evolution of the probability density function ofX(t), as
well as a SSA that can generate numerical realizations
X(t). Both the CME and the SSA are exact consequence
the foregoing dynamical assumptions, so in spite of the
ference in their descriptive thrusts, they are logically equi
lent to each other.

The SSA simulates each successive reaction event
occurs in the system. It is a Monte Carlo method wh
proceeds from the fact that, ifX(t)5x, then with
in
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a0~x!,(
j 51

M

aj~x!,

the time t to the next reaction event is an exponentia
distributed random variable with mean 1/a0(x), and the in-
dex j of that next reaction is an integer random variable w
probability aj (x)/a0(x). Because the SSA simulates one r
action at a time, it will be very slow in the commonly occu
ring case that some reactions take place on a very fast
scale. Although exact methods have been proposed5 that
speed up the SSA, by itself it remains much too slow
practical simulation of realistic biological systems.

An approximatescheme calledtau leapinghas recently
been proposed6 to accelerate the SSA. The basic idea of t
leaping is as follows. Given apreselectedtime stept that
encompasses more than one reaction event, if we could
termine how many times each reaction channel fired dur
that time step, we might be able to forego knowing the p
cise instants at which those firings took place. In such
circumstance, we could leap along the system’s history a
from onet subinterval to the next, instead of stepping alo
from one reaction event to the next. It has been shown6 that
this can be doneapproximatelyif t is taken small enough
that the propensity functions remain nearly constant dur
the time step. The tau-leaping simulation method is an
tempt to speed up the SSA by sacrificing some exactn
But, the approximate method must be used with circumsp
tion, since while we are glad to leap over ‘‘unimportan
reaction events, we must take care not to leap over ‘‘imp
tant’’ ones.

To render these ideas more precisely, in tau leaping
tention is focused on the set ofM random variables
K j~t;x,t ![the number of times reaction channelRj fires in @ t,t1t!, given that X~ t !5x ~ j 51,...,M !. ~1!
o
e
we
in

uch
l

ges
the
It follows from the above definitions that if the system is
statex and reactionR1 firesk1 times, and reactionR2 firesk2

times, etc., then the system will change to statex
1( j 51

M kjnj . Therefore, the random variablesK j (t;x,t) de-
fined in~1! completely determine the evolution of the syste
as follows: If X(t)5x, then for anyt.0

X~ t1t!5x1(
j 51

M

K j~t;x,t !nj . ~2!

The simple~explicit! tau-leaping method makes the a
proximation

K j~t;x,t !'Pj~aj~x!,t!,

where thePj are statistically independent Poisson rand
variables.8 This approximation will be justified ift.0 is
small enough that none of the propensity function valu
changes significantly during@ t,t1t). Thus, by~2!, the ex-
plicit tau-leaping algorithm takes the following form:
X(t)5x, then for any sucht
s

X~ t1t!'x1(
j 51

M

njPj~aj~x!,t!. ~3!

It has been shown6 that this tau-leaping method is limited t
the SSA method as the time stept becomes smaller than th
mean time to the next reaction. In a forthcoming paper,
will present an analysis of this tau-leaping method, which
particular shows that the method is first-order accurate int.

At the next coarser scale, suppose conditions are s
that, starting in statex at timet we can leap over an interva
t that spans avery largenumber of firings ofeveryreaction
channel, yet all those firings induce only minuscule chan
in the values of all the propensity functions. Then, since
Poisson random variableP(a,t) will, when at@1, be well
approximated by thenormal random variableN(at,at),9 the
number of firings of channelRj in @ t,t1t) can be approxi-
mated by

K j~t;x,t !'Pj~aj~x!,t!'Nj~aj~x!t,aj~x!t!,

K j~t;x,t !'aj~x!t1~aj~x!t!1/2Nj~0,1!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Substituting this into Eq.~2! yields theLangevin method: If
X(t)5x, then for anyt.0 that is small enough that none o
the propensity function values changes significantly dur
@ t,t1t), but large enough that every reaction channel fi
many more times than one

X~ t1t!'x1t(
j 51

M

njaj~x!1t1/2(
j 51

M

njaj
1/2~x!Nj~0,1!,

~4!

where theNj (0,1) are statistically independent normal ra
dom variables with means 0 and variances 1. Equation~4! is,
in fact, the well-known first-order explicit method for simu
lating thecontinuousMarkov process defined by thechemi-
cal Langevin equation.10,11 A great deal of work in the pas
decade has gone into developing theory and numerical m
ods for equations of this type, which are known in the ma
ematical literature as stochastic differential equatio
~SDEs!. Well-developed theory exists for determining the o
der of convergence of this and higher order methods
SDEs.12 Some recent work has addressed automatic step
selection.13

Finally, in the limit of infinitely large molecular popula
tions of all the reactant species, or more specifically in
thermodynamic limit, each term in the second summation
the right-hand side of Eq.~4! usually becomes vanishingl
small compared to the correspondingly indexed term in
first summation.14 Therefore, in that limit Eq.~4! usually
reduces to, again withX(t)5x

X~ t1t!'x1t(
j 51

M

njaj~x!. ~5!

This will be recognized as theexplicit Euler methodfor the
numerical solution of the deterministic ODE system given
the reaction rate equations~which are more commonly
scaled by the system volume!.

III. STIFFNESS

In deterministicsystems of ODEs, stiffness general
manifests when there are well-separated ‘‘fast’’ and ‘‘slow
time scales present, and the ‘‘fast modes’’ are stable. Bec
of the fast stable modes, all initial conditions result in traje
tories which, after a short and rapid transient, lead to
‘‘stable manifold’’ where the ‘‘slow modes’’ determine th
dynamics and the fast modes have decayed.

In general, a given trajectory of such a system will e
hibit rapid change for a short duration~corresponding to the
fast time scales! called the ‘‘transient,’’ and then evolve
slowly ~corresponding to the slow time scales!. During the
initial transient the problem is said to be nonstiff, where
while the solution is evolving slowly it is said to be stiff. On
would expect that a reasonable numerical scheme shoul
able to take larger time steps once the trajectory has c
sufficiently close to the slow manifold without compromi
ing the accuracy of the computed trajectory. That this is
always the case is well known to numerical analysts, and
general explicit methods are only able to perform well if th
continue to take time steps that are of the order of the fas
time scale. This happens because explicit methods adv
Downloaded 18 Dec 2003 to 130.85.145.94. Redistribution subject to A
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the solution from one time to the next by approximating t
slope of the solution curve at or near the beginning of
time interval. Since any numerical method makes errors
every time step, the numerical solution is never exactly
the stable manifold. Instead, it will be on some trajectory t
approaches the stable manifold very rapidly. Thus, the
proximation to the slope employed by explicit methods w
always be on the order of the fastest time scale of the sys
The very large slope decreases to almost zero in a time
terval of the order of the fastest time scale. If the expli
numerical scheme continues to take small time steps of
order of these fast trajectories, then there is no probl
However, if the explicit method takes a larger time ste
which would seemingly be appropriate for following the tr
jectories on the slow manifold, then the large estimated sl
and the large time step lead to a point on the other side of
slow manifold, which is likely to be further away from i
than was the previous point. This point is likely to have
even larger slope, leading to highly unstable oscillations.

An implicit method, on the other hand, does not appro
mate the slope of the trajectory near the beginning of
interval of a time step. Instead, it gives more weight to t
slope at the unknown point at the end of the time step. T
tends to avoid the above-described instability, but at the
pense of having to solve a nonlinear system of equations
the unknown point at each time step. In fact, implicit me
ods often damp the perturbations off the slow manifo
Once the solution has reached the stable manifold,
damping keeps the solution on the manifold, and is desira
Further details on stiffness in deterministic ODE systems
be found in Ref. 15 and the references therein.

The aim of this paper is to explore the nature of stiffne
in discrete stochastic systems, to propose an implicit vers
of the ~explicit! tau-leaping method discussed in Sec. II, a
to demonstrate the extent to which the implicit method
effective for stiff, discrete stochastic systems.

When stochasticity is introduced into a system with fa
and slow time scales, with fast modes being stable as be
one may still expect a slow manifold corresponding to t
equilibrium of the fast scales. However, the picture chan
in a fundamental way. After an initial rapid transient, whi
the mean trajectory is almost on the slow manifold,any
sample trajectory will still be oscillating at the fast tim
scale in a direction transverse to the slow manifold. In some
cases the size of the fluctuations off the slow manifold w
be practically negligible. In those circumstances, an impl
scheme may take large steps, corresponding to the time s
of the slow mode. However, in other cases, the fluctuati
off the slow manifold willnot be negligible in size. In those
instances, an implicit scheme that takes time steps m
larger than the time scale of the fast dynamics will damp
these fluctuations, and will consequently fail to capture
variance correctly.

We will demonstrate that the implicit tau-leaping meth
can take large time steps for stiff, discrete stochastic syste
producing a solution which is accurate for the slow variab
of the system, and for which the mean of the fast variab
on the slow manifold is accurate. We will also show how t
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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distribution of the fast variables on the slow manifold can
recovered at relatively low cost.

IV. THE IMPLICIT TAU-LEAPING METHOD

The tau-leaping method described by Eq.~3! is an ex-
plicit method because the propensity functionsaj are evalu-
ated at the current known state, so the future unknown
dom stateX(t1t) is given as an explicit function ofX(t).
Throughout the rest of the paper we shall refer to Eq.~3! as
the explicit-taumethod, and write it

X~et!~ t1t!5X~et!~ t !1(
j 51

M

njPj~aj~X~et!~ t !!,t!, ~6!

where the superfix ‘‘et’’ stands for explicit tau. We me
tioned in Sec. III that the explicit Euler method exhibits i
stability for stiff systems with large step sizes. The explic
tau method is essentially an extension of the explicit Eu
method to discrete stochastic systems, and as such it too
poor stability. In this section we motivate and derive an i
plicit tau-leaping method. In Sec. V we will present nume
cal experiments that demonstrate the accuracy and efficie
of this method, as compared to the explicit-tau method
the SSA.

To motivate our formulation of the implicit-tau method
we look again at the explicit-tau method~6!. Here, the incre-
ment in the stateX(et)(t1t)2X(et)(t) is given by a linear
combination of statistically independent Poisson rand
variablesPj (aj ,t), whose parametersaj are evaluated a
X(et)(t). An attempt to completely implicitize the metho
would require generating Poisson random variab
Pj (aj ,t), with theaj evaluated at the unknown random sta
X(t1t) that we are trying to find. Since it is not entire
clear how to interpret and solve such an equation, we
attempt a partial implicitization. To this end, let us rega
each of the random variablesPj as the sum of two parts, on
being the mean valueajt of Pj , and the other being the
zero-mean random variablePj2ajt. We then evaluate the
mean value partajt at the unknown stateX(t1t), and the
zero-mean random partPj2ajt at the known stateX(t).
Thus, we arrive at an implicit method described by

X~ it!~ t1t!5X~ it!~ t !1(
j 51

M

njaj~X~ it!~ t1t!!t

1(
j 51

M

nj~Pj~aj~X~ it!~ t !!,t!2aj~X~ it!~ t !!t!.

~7!

Here, the random variablesPj are, as before, statisticall
independent Poisson random variables. In a forthcoming
per, we will present an analysis of the accuracy and stab
properties of this method, which in particular shows that
method is accurate to first order int.

We note that in the implementation of the method~7!,
the random variablesPj (aj (X

(it) (t)),t) can be generated
without knowing X(it) (t1t). Once thePj (aj (X

(it) (t)),t)
have been generated, the unknown stateX(it) (t1t) depends
on Pj (aj (X

(it) (t)),t) in a deterministic way, even thoug
Downloaded 18 Dec 2003 to 130.85.145.94. Redistribution subject to A
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this dependence is given by an implicit equation. As is do
in the case of deterministic ODE solution by implicit met
ods, X(it) (t1t) can be computed by applying Newton
method for the solution of nonlinear systems of equations
~7! where thePj (aj (X

(it) (t)),t) are all known values.
Just as the explicit-tau method segues to the explicit

ler methods for SDEs and ODEs, the implicit-tau meth
segues to the implicit Euler methods for SDEs and ODEs
the SDE regime we get, approximating Poissons by norm

X~ it!~ t1t!'X~ it!~ t !1t(
j 51

M

njaj~X~ it!~ t1t!!

1t1/2(
j 51

M

njaj~X~ it!~ t !!1/2Nj~0,1!, ~8!

where Nj (0,1) are independent normal random variab
with mean zero and variance 1. This is precisely the impl
Euler version of~4!.12

In the thermodynamic limit14 where random terms in the
above SDE system may be ignored, the implicit-tau meth
becomes the implicit Euler method

X~ t1t!5X~ t !1t(
j 51

M

njaj~X~ t1t!!, ~9!

for the corresponding deterministic reaction rate equation
It is well known that, for stiff ODE systems, the implic

Euler method has a strong damping property. Indeed, i
this property that makes the implicit Euler method so de
able for such systems: Once the solution is close enoug
the slow manifold that the step size can be increased,
method damps out any errors and keeps the solution clos
the slow manifold. The implicit tau-leaping method inher
this damping property, which is still advantageous for taki
large time steps and staying close to the slow manifo
However, as a consequence of this property, the method
also damp out the natural fluctuations of the fast variab
So, while the implicit tau-leaping method computes theslow
variables with their correct distributions, it computes thefast
variables with the correct means but with distributions ab
those means that are too narrow.

We have developed a time-stepping strategy that is
tended torestore the overly damped fluctuations in the fa
variables. The idea is to interlace the implicit tau leaps, e
of which is on the order of the time scale of the slow va
ables and hence ‘‘large,’’ with a sequence of much sma
time steps, each of which is on the order of the time scale
the fast variables. The smaller time steps are to be taken
a duration that is comparable to the ‘‘relaxatio
decorrelation’’ time of the fast variables. These small tim
steps may be executed using either the explicit-tau metho
the implicit-tau method. This sequence of small steps is
tended to ‘‘regenerate’’ the correct statistical distributions
the fast variables, which have been made too narrow by
preceding large implicit tau-leaps. The fact that the unde
ing kinetics is Markovian or ‘‘past-forgetting’’ is important in
being able to apply such a procedure. The optimal interlac
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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strategy and the choice of explicit versus implicit tau for t
small time steps is the subject of further research.

In the next section, our first example will illustrate th
damping of the fluctuations in the fast variables caused
successive large implicit-tau leaps, and then the succes
regeneration of those fluctuations through a sequence o
successive small implicit-tau leaps, all with a very subst
tial net gain in computational efficiency.

Finally, we note that the implicit-tau method~7! has the
property that the state changeX(it) (t1t)2X(it) (t) is gener-
ally not an integer vector. It is possible to avoid noninteg
state changes by modifying the implicit-tau method. It mig
be tempting to do this by simply rounding every compon
of X(it) (t1t) to the nearest integer. But, it is better to ensu
that the state change bestoichiometrically realizable; i.e., not
only should the state change be an integer vector, bu
should also be a sum of the formk1n11¯1kMnM , where
k1 ,...,kM are non-negative integers. This way, the st
change can be interpreted as the result of reaction channRj

firing kj times for j 51,...,M . This yields the following im-
plicit method: First, computeX85X~t1t! according to~7!,
i.e., by using Newton’s method to solve the implicit equati

X85x1(
j 51

M

njaj~X8!t1(
j 51

M

nj~Pj~aj~x!,t!2aj~x!t!,

~10!

wherex is the system’s state at timet. Then, approximate the
number of firingsK j (t;x,t) of the reaction channelRj in the
time interval@ t,t1t# by the integer-valuedrandom variable
K̂ j (t;x,t), defined by

K̂ j~t;x,t !5@aj~X8!t1Pj~aj~x!,t!2aj~x!t#. ~11!

Here, thePj (aj (x),t) for j 51,...,M are thesame numbers
used in Eq.~10!, and @z# denotes the nearest non-negati
integer corresponding to a real numberz. Finally, invoking
~2!, estimate the state at timet1t as

X~ t1t!5x1(
j 51

M

nj K̂ j~t;x,t !. ~12!

Although this modification might be prudent for som
systems, for the simple systems we have studied thus fa
original version of the implicit-tau method has performed
well as this ‘‘rounded’’ version. Therefore, in the remaind
of this paper we will focus on the original ‘‘unrounded
implicit-tau method.

V. NUMERICAL EXPERIMENTS

A. Example 1

This problem, the decaying-dimerizing reaction set st
ied in Ref. 6, consists of three speciesS1 , S2 , andS3 and
four reaction channels

S1→
c1

0,

S11S1→
c2

S2 , ~13!
Downloaded 18 Dec 2003 to 130.85.145.94. Redistribution subject to A
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S2→
c3

S11S1 ,

S2→
c4

S3 .

We chose values for the parameters

c151, c2510, c351000, c450.1,

which will render the problem stiff. The initial condition
x1(0)5400, x2(0)5798, andx3(0)50 were chosen to lie
on the approximate slow manifold given by the equation

x25
5

1000
x1~x121!.

This avoids the inconvenience for the constant-step size
gorithms under study of having to take small steps during
initial transient, and large steps on the slow manifold. T
propensity functions are given by

a15x1 , a255x1~x121!, a351000x2 , a450.1x2 ,

and the problem was solved on the time interval@0,0.2#.
Figure 1 depicts sample trajectories as simulated by

exact SSA. Figure 2 shows the same sample trajectory ofx3 ,
on a more revealing scale for that variable. We note t
while x1 and x2 vary rapidly, x3 varies slowly. All three
variablesx1 , x2 , andx3 exhibit random behavior,x3 being
the most random. Figures 3, 4, and 5 show the histograms
the final state values, comparing SSA with explicit tau lea
ing. Each histogram was obtained by simulating an ensem
of 10 000 trajectories. The explicit tau leaping was p
formed with a constant step size of 231025.

It is evident from Figs. 3, 4, and 5 that the explicit-ta
method captures the statistics of the final states very w
with only 10 000 time steps over the interval, whereas
SSA required on average 310 000 time steps. In terms
computation time, 10 000 simulations using SSA took 56
CPU seconds, while 10 000 simulations using explicit t

FIG. 1. Sample trajectories for example 1, simulated by the exact SSA.
upper curve isx2 , the middle curve isx1 , and the lower curve isx3 .
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with a constant step size of 231025 took 731 CPU seconds
These computations were performed on a 1.4 Ghz Pen
IV Linux workstation.

Figure 6 shows that the explicit-tau method becomes
stable at step sizes roughly equal to or larger than
31024. This is the stability limit that would be predicted b
a linearized stability analysis of the forward Euler meth
applied to the corresponding deterministic ODE model. I
forthcoming paper, we will address stability criteria a
analysis for discrete stochastic systems.

To verify that the implicit-tau method can take muc
larger time steps while maintaining accuracy, we simula
an ensemble of 10 000 trajectories using explicit tau w
constant step size 1024 and implicit tau with constant ste
size 0.01. The step size 1024 for explicit tau was chosen to
be as large as possible without compromising accuracy~it is
near the stability limit of 2.231024). Figures 7–9 compare
the final state relative bin frequencies computed by all th

FIG. 2. Sample trajectoryx3(t) in example 1, simulated by SSA.

FIG. 3. Final state histogram forx1 in example 1, computed by the SS
~stars! and the explicit-tau method~squares!, the latter with constant step
size 231025.
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methods. Tables I and II show the sample means and s
dard deviations for the final states estimated by the th
methods. For the means, we also present the solution f
the ODE solver inMATLAB . The results show that the ODE
solver with automatic step sizing captures the mean q
accurately. However, neither the ODE model nor the sol
gives us any indication of the nontrivial amount of fluctu
tion of the states about their mean values.

It is clear from the histograms that if the goal is to ca
ture the slow statex3 including its randomness~which is
significant!, then implicit tau is far superior to explicit tau
because it achieves comparable accuracy with a factor of
fewer steps. Although the computational effort per step
greater for implicit tau than explicit tau, this is far ou
weighed by implicit tau’s ability to take much larger step
The computation time for 10 000 implicit-tau simulation

FIG. 4. Final state histogram forx2 in example 1, computed by the SS
~stars! and the explicit-tau method~squares!, the latter with constant step
size 231025.

FIG. 5. Final state histogram forx3 in example 1, computed by the SS
~stars! and the explicit-tau method~squares!, the latter with constant step
size 231025.
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was 15 CPU seconds, as compared to 731 CPU second
explicit tau and 5697 CPU seconds for SSA.

On the other hand, if one is interested in capturing
fluctuations of the fast variablesx1 andx2 , then implicit tau
with these large time steps will not be adequate. In orde
capture the distributions ofx1 andx2 , we used the techniqu
described in Sec. IV of interlacing small time steps w
large time steps. In this example, we took the first 19 st
with implicit tau using step size 0.01 as before. Then, i
plicit tau was used to take one step of size 0.0098. For
remaining time of 0.002 we took ten steps of size 231025

using implicit tau. The first 20 steps are the large steps wh
capture themeanvalues of all the state variables, and t
noise in the slow variable, accurately. The last ten small s
recover the distribution information of the fast variablesx1

andx2 . The time period to recover the distribution inform

FIG. 6. Sample trajectories for example 1 as simulated by the explicit
method with step size 2.531024. The trajectories develop unstable oscill
tions, and yield unrealistic negative states beyondt'0.1.

FIG. 7. Final state histogram forx1 in example 1, as computed by the SS
~stars!, the explicit-tau method with step size 131024 ~squares! and the
implicit-tau method with step size 0.01~diamonds!. Note that the explicit-
tau method overestimates the noise while the implicit-tau method unde
timates it.
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tion is roughly the ‘‘relaxation time’’ of the fast variables
The final state histogram for this simulation is compar
with that of the SSA in Figs. 10–12, and shows good agr
ment with SSA for all three variablesx1 , x2 , andx3 . The
computation time for 10 000 simulations using this interlac
method was only 23 CPU seconds~much less compared with
the 731 CPU seconds for the explicit-tau simulations in Fi
3–5 and the 5697 CPU seconds for the SSA simulations
the same problem!. Thus, the interlaced implicit tau is able t
capture the statistics of all the state variables accurately w
significant computational advantage over both SSA and
plicit tau.

In this example, we were able to capture the distributio
of all state variables at the final time with only one recove

u

s-

FIG. 8. Final state histogram forx2 in example 1, as computed by the SS
~stars!, the explicit-tau method with step size 131024 ~squares!, and the
implicit-tau method with step size 0.01~diamonds!. Note that the explicit-
tau method overestimates the noise while the implicit-tau method unde
timates it.

FIG. 9. Final state histogram forx3 in example 1, as computed by the SS
~stars!, the explicit-tau method with step size 131024 ~squares!, and the
implicit-tau method with step size 0.01~diamonds!.
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TABLE I. Sample means~for a sample size ofn510 000) for the final states in example 1 as computed
SSA, explicit-tau, the original implicit-tau, and the interlaced implicit-tau methods, with step sizes as des
in the text. Also shown for comparison purposes are the predictions of the corresponding deterministic

ODE SSA Explicit tau Implicit tau Interlaced implicit tau

Sample mean:x1(0.2) 387.7 387.3 386.2 387.6 387.2
Sample mean:x2(0.2) 749.3 749.5 750.1 749.5 749.4
Sample mean:x3(0.2) 15.47 15.45 15.48 15.42 15.59
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period. In general, it may be necessary to do the recov
steps more often. An optimal strategy for the interlacing p
cedure is a topic for further research.

B. Example 2

In some stiff systems, the fast variables exhibit ne
deterministic behavior while the slow variables still exhib
randomness. In such cases, implicit tau will clearly be
method of choice, as can be demonstrated using the sim
reaction set

R1 : S1→
c1

S3 ,

R2 : S3→
c2

S1 ,

R3 : S11S2→
c3

S11S4 .

Since the total number ofS1 and S3 molecules is constan
~sayxT), and if we don’t care about the by-productS4 , we
can model this system with two variablesx5(x1 ,x2) ~i.e.,
numbers ofS1 andS2 molecules, respectively! and three re-
actions. The propensity functions are

a1~x!5c1x1 ,

a2~x!5c2~xT2x1!,

a3~x!5c3x1x2 .

The stoichiometric vectors aren15(21,0)T, n25(1,0)T,
andn35(0,21)T. We chosec15c25105, c350.0005, and
xT520 000, with initial conditionx(0)5(10 000,100).

Since c15c2 , then x15xT/2 will be an equilibrium
value forx1 . The dynamics ofx1 is independent ofx2 , but
the dynamics ofx2 depends onx1 . Also, note that the reac
tions R1 andR2 are much faster thanR3 .

Since the dynamics ofx1 alone is the same as in th
simple reversible isomerization problem,11 the exact
asymptotic mean and variance can be computed analytic
~see the Appendix!. The equilibrium valuex1510 000 is the
asymptotic mean, and the asymptotic standard deviatio
ec 2003 to 130.85.145.94. Redistribution subject to A
ry
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e
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x1 is given byAc1x` /(c11c2)5A10 000/2570.7 ~here,x`

is the asymptotic mean value, which in our case isxT/2).
This is less than 1% of the equilibrium value. Thus, we m
regard the noise inx1 as negligible. But, as we shall see, th
noise inx2 cannot be regarded as negligible.

We simulated an ensemble of 10 000 trajectories us
all three methods: SSA, explicit tau with constant step s
531026 ~half the size of the maximum value to mainta
stability!, and implicit tau with constant step size 0.005,
to estimate the final state at timeT50.01.

Table III shows the sample means and standard de
tions for the final state ofx2 estimated by the three method
For the means, we also show the solution from the O
solver inMATLAB . Figures 13 and 14 compare the final sta
histograms computed by explicit tau and implicit tau wi
those computed by SSA. The full behavior of the noisy va
ablex2 is adequately reproduced by both tau-leaping me
ods, while the inaccuracies of both methods in the estim
tions of the fluctuations inx1 are inconsequential because
their smallness. The implicit-tau method is superior to t
explicit-tau method, since the former takes two steps for e
trajectory while the latter takes 2000. The explicit-ta
method in turn is superior to the SSA, which takes on av
age 23107 time steps for each trajectory.

Note that in this reaction, one can make the relative s
of the equilibrium noise inx1 arbitrarily small by scaling up
c1 and c2 and x1(0)5xT/2 by the same factor. This leave
the stiffness ratio@2(c11c2)#/c3xT unchanged but make
the noise inx1 as small as we want compared to its equili
rium value. For instance, if we choosec15c25106 and
x(0)5(106,100) then the equilibrium noise ofx1 will have a
standard deviation ofA50 000'224, which is 0.02% of the
equilibrium value 106. Thus, the noise will be less than wh
we obtained with our choice forc1 , c2 , andxT . We did not
choose the valuesc15c25106 andxT5200 000 because th
SSA simulation takes an extremely long time to run and
wanted an example where we could make a quantita
comparison with SSA.
s
sizes
TABLE II. Sample standard deviations~for a sample size ofn510 000) for the final states in example 1 a
computed by SSA, explicit-tau, the original implicit-tau, and the interlaced implicit-tau methods, with step
as described in the text.

SSA Explicit tau Implicit tau Interlaced implicit tau

Sample standard deviation:x1(0.2) 18.42 24.76 3.07 17.74
Sample standard deviation:x2(0.2) 10.49 13.45 5.34 10.24
Sample standard deviation:x3(0.2) 3.91 3.88 3.89 3.91
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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VI. CONCLUSIONS

We have shown how stiffness manifests itself in t
simulation of chemical reactions at both the continuous,
terministic level and the discrete, stochastic level. While
explicit-tau method is an important first step in the efficie
simulation of stochastic chemical systems, it must use a v
small step size when applied to stiff systems.

We have proposed an implicit version of the tau-leap
method. We have demonstrated through numerical sim
tions that the implicit-tau method achieves the same leve
accuracy as the explicit-tau method when the latter is sta
and that the new method overcomes the instability prob
of explicit tau for larger step sizes. For large step sizes,
have seen that the implicit-tau method resolves well the s
stochastic components, and it captures the mean of the
components. We have introduced a method for recove
the distributions of the fast stochastic components based
time-stepping scheme that interlaces several small time s
with several large time steps.

FIG. 10. Final state histogram forx1 in example 1, as computed by the SS
~stars!, and the implicit-tau method~squares! with interlaced stepping.

FIG. 11. Final state histogram forx2 in example 1, as computed by the SS
~stars!, and the implicit-tau method~squares! with interlaced stepping.
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APPENDIX: THE REVERSIBLE
ISOMERIZATION REACTION

The pair of reactionsS1

c2

c1

S2 describes the reversibl

conversion of two isomeric speciesS1 and S2 into each
other. The reaction probability rate constantscj for these
monomolecular channels are numerically equal to the
constantskj that appear in the corresponding determinis
reaction rate equations for the species concentrations.17 The
propensity functions and state-change vectors for these r
tion channels are

a1~x!5c1x1 , a2~x!5c2x2 , ~A1!

n15~21,11!, n25~11,21!. ~A2!

In the absence of any other reaction channels, the t
number of isomersxT will remain constant in time. This
circumstance allows us to eliminate one of the species v
ables, say theS2 variable, in favor of the other

X2~ t !5xT2X1~ t !, ~A3!

and thereby obtain a mathematically simpler univariate pr
lem. In this Appendix, we shall derive exact expressions
the mean and variance ofX1(t)[X(t) for the initial condi-
tion X(t0)5x0 , wherex0 and xT may be any two integers
satisfying 0<x0<xT . We should note that solutions to th
full chemical master equation are known for the special ca
x050 andx05xT .18

FIG. 12. Final state histogram forx3 in example 1, as computed by the SS
~stars!, and the implicit-tau method~squares! with interlaced stepping.
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TABLE III. Sample means and standard deviations~for a sample size ofn510 000) for the final state ofx2 in
example 2 as computed by ODE solver, SSA, explicit-tau, the original implicit-tau, and the interlaced im
tau methods, with step sizes as described in the text.

ODE SSA Explicit tau Implicit tau Interlaced implicit tau

Sample mean:x2(0.01) 95.12 95.10 95.07 95.07 95.05
Standard deviation:x2(0.01) NA 2.15 2.14 2.21 2.18
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The processX(t) evolves according to the following dy
namical rules: IfX(t)5x, then in the next infinitesimal time
dt, X will increase by 1 or decrease by 1 with the respect
probabilitiesW1(x)dt andW2(x)dt, where

W1~x!5c2~xT2x!, W2~x!5c1x. ~A4!

This kind of dynamical behavior identifiesX(t) as a birth–
death-type Markov process with stepping probability r
functions W1(x) and W2(x). Quite generally for such a
process, the time derivatives of the mean and variance
given by19

d^X~ t !&
dt

5^A~X~ t !&, ~A5!

d var$X~ t !%

dt
52~^X~ t !A~X~ t !&2^X~ t !&^A~X~ t !&!

1^D~X~ t !&, ~A6!

where

A~x![W1~x!2W2~x!, D~x![W1~x!1W2~x!. ~A7!

For the stepping functions~A4!, A and D are easily calcu-
lated to be

FIG. 13. Final state histogram forx1 in example 2, as computed by the SS
~stars!, the explicit-tau method with step size 531026 ~squares!, and the
implicit-tau method with step size 531023 ~diamonds!. Note that most of
the variation~as computed by SSA! is within 1% deviation from the mean
value of 104, and thus the noise in this variable may be regarded as ne
gible. The plot of the histogram has been scaled to fit the narrow rang
values ofx1 .
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A~x!5c2xT2~c11c2!x,

D~x!5c2xT1~c12c2!x.

When these forms are substituted into Eqs.~A5! and ~A6!,
we obtain

d^X~ t !&
dt

5c2xT2~c11c2!^X~ t !&, ~A8!

d var$X~ t !%

dt
522~c11c2!var$X~ t !%

1c2xT1~c12c2!^X~ t !&. ~A9!

The time-evolution equation~A8! for the mean^X(t)& is
mathematically identical to the associated deterministic re
tion rate equation, although expressed here in terms of
molecular populations instead of concentrations. This is
so in general, but it is the case whenever the propen
functions are linear in the species variables. Equation~A8!
has the form of the first-order linear differential equati
dy(t)/dt5ky(t)1 f (t), for which the general solution in
quadrature form is

y~ t !5ek~ t2t0!H y~ t0!1E
t0

t

f ~ t8!e2k~ t82t0!dt8J , ~A10!

as may readily be verified by direct differentiation. Evalua
ing this quadrature form for Eq.~A8! using the initial condi-
tion ^X(t0)&5x0 gives

li-
of

FIG. 14. Final state histogram forx2 in example 2, as computed by the SS
~stars!, the explicit-tau method with step size 531026 ~squares!, and the
implicit-tau method with step size 531023 ~diamonds!. In contrast to the
fluctuations inx1 , the fluctuations in this variable are not negligible.
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^X~ t !&5x01~x`2x0!~12e2~c11c2!~ t2t0!!, ~A11!

where

x`[
c2xT

c11c2
. ~A12!

By substituting the result~A11! into Eq.~A9!, we obtain
for the variance a differential equation that is once again
the first-order linear form. When we evaluate the correspo
ing quadrature solution~A10! using the initial condition
var$X(t0)%50, we get

var$X~ t !%5
c1x`

~c11c2!
~12e22~c11c2!~ t2t0!!

1S ~c12c2!~x02x`!

~c11c2! D ~e2~c11c2!~ t2t0!

2e22~c11c2!~ t2t0!!. ~A13!

We note in passing that Eqs.~A11! and~A13! imply the
asymptotic results

^X~`!&5x` and var$X~`!%5
c1x`

~c11c2!
. ~A14!

1H. H. McAdams and A. Arkin, Trends Genet.15, 65 ~1999!.
2H. H. McAdams and A. Arkin, Proc. Natl. Acad. Sci. U.S.A.94, 814
~1997!.

3A. Arkin, J. Ross, and H. H. McAdams, Genetics149, 1633~1998!.
4N. Fedoroff and W. Fontana, Science297, 1129~2002!.
5M. A. Gibson and J. Bruck, J. Phys. Chem.104, 1876~2000!.
6D. T. Gillespie, J. Chem. Phys.115, 1716~2001!.
7As here defined,n i j is the n j i of Refs. 6, 10, 11. The present indexin
corresponds to the commonly accepted definition of thestoichiometric
matrix.

8The Poisson random variableP(a,t) is the integer-valued random vari
Downloaded 18 Dec 2003 to 130.85.145.94. Redistribution subject to A
f
d-

able defined by

Prob$P~a,t!5n%5@e2at~at!n#/n! ~n50,1,...!.

Both the mean and the variance ofP(a,t) are equal toat. P(a,t) can be
interpreted physically as the number of events that will occur in any fin
time t, given that the probability of an event occurring in any futu
infinitesimaltime dt is adt.

9We denote byN(m,s2) the normal~or Gaussian! random variable with
meanm and variances2. This random variable has the useful proper
that N(m,s2)5m1sN(0,1).

10D. T. Gillespie, J. Chem. Phys.113, 297 ~2000!.
11D. T. Gillespie, J. Phys. Chem. A106, 5063~2002!.
12P. F. Kloeden and E. Platen,Numerical Solution of Stochastic Differentia

Equations, 2nd ed.~Springer, Berlin, 1995!.
13P. M. Burrage and K. Burrage, A variable stepsize implementation

stochastic differential equations, SIAM J. Sci. Comput.~USA! 24, 848
~2002!.

14In the thermodynamic limit, the species populationsxi and the system
volumeV divergetogether, andproportionately. It turns out that, in this
limit, all propensity functionsaj (x) divergelinearly with the system size,
because the propensity function for anmth-order reaction will containm
factorsxi along with a factorV2(m21). As a consequence, while the term
under the first summation sign in Eq.~4! are roughly proportional to the
system size, the terms under the second summation sign are roughly
portional to thesquare rootof the system size. So, in the thermodynam
limit, the latter terms typically become negligibly small compared to t
former terms. Of course, real systems, no matter how large, are neces
finite, and in situations where the terms in the first summation in Eq.~4!
add up to practically zero~for instance at equilibrium!, the fluctuating
second sum can become important.

15U. M. Ascher and L. R. Petzold,Computer Methods for Ordinary Differ-
ential Equations and Differential-Algebraic Equations~SIAM, 1998!.

16D. T. Gillespie,Markov Processes: An Introduction for Physical Scientis
~Academic, Philadelphia, PA, 1992!.

17D. T. Gillespie, J. Comput. Phys.22, 403 ~1976!.
18I. G. Curtiss and P. J. Staff, J. Chem. Phys.44, 990 ~1976!.
19See Ref. 16, p. 385, Eqs.~6.1-29! and~6.1-30!, and note that the functions

v(x) anda(x) appearing in those equations are defined in Eqs.~6.1-13! to
be the same as our functionsA(x) andD(x), respectively.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp


