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We show how stiffness manifests itself in the simulation of chemical reactions at both the
continuous-deterministic level and the discrete-stochastic level. Existing discrete stochastic
simulation methods, such as the stochastic simulation algorithm andefpdicit) tau-leaping
method, are both exceedingly slow for such systems. We propose an implicit tau-leaping method
that can take much larger time steps for many of these problem20@ American Institute of
Physics. [DOI: 10.1063/1.1627296

I. INTRODUCTION that much longer time steps can be taken for stiff systems.
_ _ o The SSA, the tau-leaping methBdhe modified tau-

In microscopic systems formed by living cells, the small|eaping method that will be introduced here, and determinis-
numbers of reactant molecules can result in dynamical b&jc ordinary differential equatiofODE) simulation are each
havior that is discrete and stochastic rather than continuous,gst effective in certain situations. When the populations of
and deterministié=* An analysis tool that respects these dy- all reactant species are small, the SSA will be as fast and
namical characteristics is the stochastic simulation algorithnicient as one could reasonably wish. The goal of tau leap-
(SSA), a numerical simulation procedure that is essentiallymg was to speed up the SSA when either all reactant species
exact for chemical systems that are spatially homogeneous qr, present in moderately large numbers,(much more
well s_tlrred. Despite rec_ent improvemefitas a procedure_ commonly when some reactant species are present in small
that simulatesevery reaction event, the SSA is necessarily . qgerate numbers while others are present in very large
inefficient for most reahs_up problems. Thert_—z are two main,, mhers. In such situations, significant stochastic effects can
reasons for. this, both arsing from the multiscale nature o till arise, but tracking them with the SSA will be very time
the underlying problem(1) stifiness i.e., the presence of consuming. These situations can be expected to arise in

multiple time scales, the fastest of which are stable; @ad many cellular systems of interest to biochemists. For those

the need to include in the simulation both species that argystems, the exact SSA is usually much too slow, while the

present in relatively small quantities and should be modelede erministic reaction rate equatigRRE), though fast, fails
by a discrete stochastic process, and species that are pres?n% . ' o
. iy e 0 capture the stochastic effects. It was shown in Ref. 6 that
in larger quantities and are more efficiently modeled by . :

S : . ; au leaping morphs into the SSA when all the molecular
deterministic differential equatiofor at some scale in be- opulations are very small. and morphs into the exolicit Eu-
tween. We emphasize that most chemical systems, whether P y ' b P

considered at a scale appropriate to stochastic or to determify method for the RRE when all the molecular populations

istic simulation, involve several widely varying time scales,are very large. qu present work is aimed gt_formulatmg
so such systems arearly always stitf tau-leaping strategies that accurately and efficiently handle

In this paper we will address the problem of stiffness f0r53/3t$rr]nS |n|_betweferr1]_ those two extrferlr:es. 1n Sec. Il
discrete stochastic systems. We will demonstrate how stiff- e (_)Ut |Ine_ 0 tl's p:;\]per |fs asho O,WS‘I‘ kn ec. ‘ we
ness is manifested in stochastic chemical kinetics, and sho{fV'€W Simu ation algorithms for chemical kinetics for a

how to modify the recently proposed tau-leaping meSheu wide range of scales. In Sec. Ill we outline the problem of
stiffness for the simulation of chemical kinetics systems at

both the continuous and stochastic scales. In Sec. IV we

¥Electronic mail: muruhan@math.umbc.edu : s ;
bElectronic mail- petzold@engineering.ucsb.edu propose arimplicit tau-leaping methodhat overcomes the

9Electronic mail: ycao@engineering.ucsb.edu step size limitations due to stif_fne_ss of the e_xplicit_ tau-
9Electronic mail: gillespiedt@mailaps.org leaping method, and we outline its implementation. Finally,
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in Sec. V we present some numerical experiments demon-
strating both the effectiveness and some limitations of the ao(x)éE a;(x),
new implicit tau-leaping method. =1

the time 7 to the next reaction event is an exponentially
distributed random variable with meanaj(x), and the in-
dex| of that next reaction is an integer random variable with
In a chemically reacting system involvinly molec-  probability a;(x)/aq(x). Because the SSA simulates one re-
ular species {S;,...,.Sy}, the state vector X(t) action at a time, it will be very slow in the commonly occur-
=(X,(1),....Xn(1)), whereX;(t) is the number of molecules ring case that some reactions take place on a very fast time
of speciesS; in the system at time, will evolve stochasti- scale. Although exact methods have been proposealt
cally because of the inherent randomness of thermal molecispeed up the SSA, by itself it remains much too slow for
lar motion. Stochastic molecular collisions give rise to sto-practical simulation of realistic biological systems.
chastic chemical transmutations in accordance with a given An approximatescheme calledau leapinghas recently
set ofM reaction channel§R, ,...,Ry}. If the system is well been proposédo accelerate the SSA. The basic idea of tau
stirred and in thermal equilibrium, the dynamics of reactionleaping is as follows. Given preselectedime stepr that
channelR; will be completely characterized by a propensity encompasses more than one reaction event, if we could de-
function a; and a state-change vectef=(vyj,...,vyj): termine how many times each reaction channel fired during
a;j(x)dt gives the probability that onB; reaction will occur  that time step, we might be able to forego knowing the pre-
in statex during the next infinitesimal time intervalt, and  cise instants at which those firings took place. In such a
v; gives the change in th& molecular population induced circumstance, we could leap along the system’s history axis
by oneR,; reaction’ from oner subinterval to the next, instead of stepping along
By appeallng to the laws of probability theory, one canfrom one reaction event to the next. It has been siawat
derive a chemical master equati@@ME) that governs the this can be donapproximatelyif 7is taken small enough
time evolution of the probability density function &f(t), as  that the propensity functions remain nearly constant during
well as a SSA that can generate numerical realizations dhe time step. The tau-leaping simulation method is an at-
X(t). Both the CME and the SSA are exact consequences démpt to speed up the SSA by sacrificing some exactness.
the foregoing dynamical assumptions, so in spite of the difBut, the approximate method must be used with circumspec-
ference in their descriptive thrusts, they are logically equivation, since while we are glad to leap over “unimportant”
lent to each other. reaction events, we must take care not to leap over “impor-
The SSA simulates each successive reaction event th&nt” ones.
occurs in the system. It is a Monte Carlo method which  To render these ideas more precisely, in tau leaping at-

II. SIMULATION ALGORITHMS
FOR CHEMICAL KINETICS

proceeds from the fact that, ¥(t) =x, then with tention is focused on the set bf random variables
|
K;(7;x,t)=the number of times reaction channB| fires in [t,t+7), given thatX(t)=x (j=1,..M). (1)
|
It follows from the above definitions that if the system is in M
statex and reactiorR; firesk, times, and reactioR, firesk, X(t+ 7)~x+ Z v;Pj(a;(x),7). 3
i=1

times, etc., then the system will change to state

+ 2~ 1kjw; . Therefore, the random variablég(7;x,t) de- It has been showithat this tau-leaping method is limited to
fined in(1) completely determine the evolution of the systemthe SSA method as the time stefpecomes smaller than the

as follows: If X(t) =x, then for anyr>0 mean time to the next reaction. In a forthcoming paper, we
M will present an analysis of this tau-leaping method, which in
X(t+1)=x+ S K (rxt)w @) particular shows that the method is first-order accurate in

At the next coarser scale, suppose conditions are such
that, starting in stat® at timet we can leap over an interval
The simple(explicit) tau-leaping method makes the ap- ; that spans aery largenumber of firings ofeveryreaction
proximation channel, yet all those firings induce only minuscule changes
) _ in the values of all the propensity functions. Then, since the
Ki(mx,D=P;(&j(x), ), Poisson random variabt®(a,t) will, when at>1, be weII
where theP; are statistically independent Poisson random@pproximated by theormalrandom variable\{at, at),” the
variables® This approximation will be justified if=>0 is  number of firings of channd®; in [t,t+ 7) can be approxi-
small enough that none of the propensity function valuegnated by

changes significantly durinft,t+ 7). Thus, by(2), the ex- K (7x,0)~Pi(a (x), 1)~ N (a (x)7a(X)7)
licit tau-leaping algorithm takes the following form: If e R R '

p ping aig g

X(t)=x, then for any suchr Kj(mx,t)~a;(x) 7+ (a;(x) 1) *2N;(0,).
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Substituting this into Eq(2) yields theLangevin methadif the solution from one time to the next by approximating the
X(t)=x, then for any7>0 that is small enough that none of slope of the solution curve at or near the beginning of the
the propensity function values changes significantly duringime interval. Since any numerical method makes errors on
[t,t+ 7), but large enough that every reaction channel firesvery time step, the numerical solution is never exactly on

many more times than one the stable manifold. Instead, it will be on some trajectory that
M M approaches the stable manifold very rapidly. Thus, the ap-
X(t+7)~x+7, v;a(X) + 712 vjajl’z(x)Nj(O,l), proximation to the slope employed by explicit methods will
i=1 i=1

always be on the order of the fastest time scale of the system.
(4 The very large slope decreases to almost zero in a time in-
where theN;(0,1) are statistically independent normal ran-terval of the order of the fastest time scale. If the explicit
dom variables with means 0 and variances 1. Equd#bis,  numerical scheme continues to take small time steps of the
in fact, the well-known first-order explicit method for simu- order of these fast trajectories, then there is no problem.
lating thecontinuousMarkov process defined by tlehemi-  However, if the explicit method takes a larger time step,
cal Langevin equatiof®** A great deal of work in the past which would seemingly be appropriate for following the tra-
decade has gone into developing theory and numerical methectories on the slow manifold, then the large estimated slope
ods for equations of this type, which are known in the math-and the large time step lead to a point on the other side of the
ematical literature as stochastic differential equationssjow manifold, which is likely to be further away from it
(SDEs. Well-developed theory exists for determining the or-than was the previous point. This point is likely to have an
der of convergence of this and higher order methods foeyen larger slope, leading to highly unstable oscillations.
SDEs'? Some recent work has addressed automatic step size an implicit method, on the other hand, does not approxi-
selection’® mate the slope of the trajectory near the beginning of the
Finally, in the limit of infinitely large molecular popula-  jyterval of a time step. Instead, it gives more weight to the

tions of all the reactant species, or more specifically in the;jone at the unknown point at the end of the time step. This
thermodynamic limjteach term in the second summation 0N to avoid the above-described instability, but at the ex-

the right-hand side of Eq4) usually becomes vanishingly henge of having to solve a nonlinear system of equations for
;mall compared4to the Corres.pondlngly.mdexed term in th he unknown point at each time step. In fact, implicit meth-
flrzt sumtmanor?: Thg;e{or_e, in that limit Eq(4) usually ods often damp the perturbations off the slow manifold.
reduces to, again with (t) =x Once the solution has reached the stable manifold, this

M damping keeps the solution on the manifold, and is desirable.
X(t+7)~x+ TZl vjaj(X). (5 Further details on stiffness in deterministic ODE systems can
2 be found in Ref. 15 and the references therein.
This will be recognized as thexplicit Euler methodor the The aim of this paper is to explore the nature of stiffness

numerical solution of the deterministic ODE system given byin discrete stochastic systems, to propose an implicit version
the reaction rate equationswhich are more commonly of the (explicit) tau-leaping method discussed in Sec. Il, and

scaled by the system volume to demonstrate the extent to which the implicit method is
effective for stiff, discrete stochastic systems.
IIl. STIFFNESS When stochasticity is introduced into a system with fast

L . and slow time scales, with fast modes being stable as before,
In deterministicsystems of ODEs, stiffness generally : . ;
. o p » one may still expect a slow manifold corresponding to the
manifests when there are well-separated “fast” and “slow

time scales present, and the “fast modes” are stable. Becau?@u”ibrium of the fast scales. H_ov_v_ever, the pictu_re chan_ges
of the fast stable modes, all initial conditions result in trajec-In a fundamental way. After an initial rapid transient, while

tories which, after a short and rapid transient, lead to théhe mean .trajectory. IS glmost on thg slow ma”'fmy
“stable manifold” where the “slow modes” determine the Sample trajectory will still be oscillating at the fast time

dynamics and the fast modes have decayed. scale in a direction transverse to the slow manifdiidsome
In general, a given trajectory of such a system will ex-Cases the size of the fluctuations off the slow manifold will

hibit rapid change for a short duratigoorresponding to the be practically negligible. In those circumst_ances, an _implicit
fast time scal@scalled the “transient,” and then evolve scheme may take large steps, corresponding to the time scale
slowly (corresponding to the slow time scaleBuring the of the slow mode. However, in other cases, the fluctuations
initial transient the problem is said to be nonstiff, whereasOff the slow manifold willnot be negligible in size. In those
while the solution is evolving slowly it is said to be stiff. One instances, an implicit scheme that takes time steps much
would expect that a reasonable numerical scheme should Barger than the time scale of the fast dynamics will dampen
able to take larger time steps once the trajectory has comf@ese fluctuations, and will consequently fail to capture the
sufficiently close to the slow manifold without compromis- variance correctly.

ing the accuracy of the computed trajectory. That this is not ~We will demonstrate that the implicit tau-leaping method
always the case is well known to numerical analysts, and iitan take large time steps for stiff, discrete stochastic systems,
general explicit methods are only able to perform well if theyproducing a solution which is accurate for the slow variables
continue to take time steps that are of the order of the fastestf the system, and for which the mean of the fast variables
time scale. This happens because explicit methods advanca the slow manifold is accurate. We will also show how the
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distribution of the fast variables on the slow manifold can bethis dependence is given by an implicit equation. As is done
recovered at relatively low cost. in the case of deterministic ODE solution by implicit meth-
ods, XM (t+17) can be computed by applying Newton's
method for the solution of nonlinear systems of equations to
IV. THE IMPLICIT TAU-LEAPING METHOD (7) where ther(aj(X(")(t)),T) are all known values.

The tau-leaping method described by E8). is an ex- Just as the explicit-tau method segues to the explicit Eu-
plicit method because the propensity functiagsare evalu- 1er methods for SDEs and ODEs, the implicit-tau method
ated at the current known state, so the future unknown rars€gues to the implicit Euler methods for SDEs and ODEs. In
dom stateX(t+ 7) is given as an explicit function ok(t).  the SDE regime we get, approximating Poissons by normals
Throughout the rest of the paper we shall refer to Bj.as
the explicit-taumethod, and write it

M

X(t+ 7)=X(1)+ _Zl v Pi(a(X®(1),7), (6
=

M
XO(t+7)=XW(t)+ 7>, va(XW(t+7))
j=1

M
1/2 A y(it) 1277

where the superfix “et” stands for explicit tau. We men- T 121 73 XTD) TN (0.D), ®
tioned in Sec. Il that the explicit Euler method exhibits in-
stability for stiff systems with large step sizes. The explicit-where A;(0,1) are independent normal random variables
tau method is essentially an extension of the explicit Eulekwith mean zero and variance 1. This is precisely the implicit
method to discrete stochastic systems, and as such it too hgsiler version of(4).%?
poor stability. In this section we motivate and derive an im-  |n the thermodynamic limif where random terms in the
plicit tau-leaping method. In Sec. V we will present numeri- above SDE system may be ignored, the implicit-tau method
cal experiments that demonstrate the accuracy and efficiendyecomes the implicit Euler method
of this method, as compared to the explicit-tau method and
the SSA. M

To motivate our formulation of the implicit-tau method, X(t+ 1) =X(t)+ 712, vja(X(t+ 1)), 9)
we look again at the explicit-tau meth@@). Here, the incre- =1
ment in the stateX®(t+7)—X(©(t) is given by a linear
combination of statistically independent Poisson randonfor the corresponding deterministic reaction rate equations.
variablesP;(a;,7), whose parameters; are evaluated at Itis well known that, for stiff ODE systems, the implicit
X©(t). An attempt to completely implicitize the method Euler method has a strong damping property. Indeed, it is
would require generating Poisson random variableghis property that makes the implicit Euler method so desir-
Pi(aj, ), with thea; evaluated at the unknown random state@ble for such systems: Once the solution is close enough to
X(t+7) that we are trying to find. Since it is not entirely the slow manifold that the step size can be increased, the
clear how to interpret and solve such an equation, we willnethod damps out any errors and keeps the solution close to
attempt a partial implicitization. To this end, let us regardthe slow manifold. The implicit tau-leaping method inherits
each of the random variabl@y as the sum of two parts, one this damping property, which is still advantageous for taking
being the mean valua;r of P;, and the other being the large time steps and staying clqse to the slow manlfolq.
zero-mean random variablg,—a;7. We then evaluate the HOwever, as a consequence of this property, the method will
mean value parg; 7 at the unknown statX(t+7), and the also damp out the natural fluctuations of the fast variables.

zero-mean random paff,—a;r at the known stateX(t). So, while the implicit tau-leaping method computes stav
Thus, we arrive at an implicit method described by variables with their correct distributions, it computes thst

variables with the correct means but with distributions about
those means that are too narrow.
We have developed a time-stepping strategy that is in-
tended torestorethe overly damped fluctuations in the fast
. . variables. The idea is to interlace the implicit tau leaps, each
+j21 (Pi(ai(XT(), 1 =2 (X)) ). of which is on the order of the time scale of the slow vari-
ables and hence “large,” with a sequence of much smaller
(7 time steps, each of which is on the order of the time scale of
Here, the random variableB; are, as before, statistically the fast variables. The smaller time steps are to be taken over
independent Poisson random variables. In a forthcoming pa duration that is comparable to the “relaxation/
per, we will present an analysis of the accuracy and stabilitylecorrelation” time of the fast variables. These small time
properties of this method, which in particular shows that thesteps may be executed using either the explicit-tau method or
method is accurate to first order in the implicit-tau method. This sequence of small steps is in-
We note that in the implementation of the meth@dl, tended to “regenerate” the correct statistical distributions of
the random variabIAe§>j(aj(X(")(t)),7-) can be generated the fast variables, which have been made too narrow by the
without knowing X(®(t+ 7). Once theP-(aj(X('t)(t)),T) preceding large implicit tau-leaps. The fact that the underly-
have been generated, the unknown s}dféz(H 7) depends ing kinetics is Markovian or “past-forgetting” is important in
on P;(a;(X™M(t)),7) in a deterministic way, even though being able to apply such a procedure. The optimal interlacing

M
XO(t+7)=X0(t)+ X wa(XW(t+7))7
j=1

M
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strategy and the choice of explicit versus implicit tau for the Sample trajectory simulated by SSA
small time steps is the subject of further research. 900 ' ' ‘

In the next section, our first example will illustrate the ggg i
damping of the fluctuations in the fast variables caused by WWMMWWWWWMWM
successive large implicit-tau leaps, and then the successfl’o0f T
regeneration of those fluctuations through a sequence of te,.|
successive small implicit-tau leaps, all with a very substan-
tial net gain in computational efficiency. 500 1

Finally, we note that the implicit-tau methdd) has the
property that the state chandé?(t+ 7)— X (t) is gener- 4°°MMWMMWWMWWMMWWW
ally not an integer vector. It is possible to avoid noninteger 30
state changes by modifying the implicit-tau method. It might
be tempting to do this by simply rounding every component 200r
of XM (t+ 1) to the nearest integer. But, it is better to ensure
that the state change B&ichiometrically realizablgi.e., not
only should the state change be an integer vector, but it o
should also be a sum of the forkqw;+---+kywvy, where
kq,...,ky are non-negative integers. This way, the stateFIG. 1. Sample trajectories for example 1, simulated by the exact SSA. The
change can be interpreted as the result of reaction ch&nel UPPer curve isc;, the middle curve i, and the lower curve ig;.
firing k; times forj=1,...M. This yields the following im-
plicit method: First, computeX’=X(t+7) according to(7),
i.e., by using Newton’s method to solve the implicit equation cs

M M S,—5+S5;,
xf:x+j§1 ujaj(x/)7+j§1 v(P(a(x),7)—a;(X)7), o
(10) S;— 3.

wherex is the system’s state at tinteThen, approximate the We chose values for the parameters
number of firingsK;(7;x,t) of the reaction chann@; in the
time interval[t,t+ 7] by theinteger-valuedandom variable

Kj(7;x,t), defined by which will render the problem stiff. The initial conditions

e N Ay . e X1(0)=400, x,(0)= 798, andx;(0)=0 were chosen to lie
Kj(mx,t)=[a;(X") 7+ Pj(aj(x),7) — aj(x) 7]. (11) on the approximate slow manifold given by the equation

100+ ]

0.05 0.1 0.15 0.2

Cl:]., szlo, 0321000, C4:O.1,

Here, theP;(a;(x),7) for j=1,...M are thesame numbers
used in Eqg.(10), and[z] denotes the nearest non-negative Xo=———Xq (X1 —
integer corresponding to a real numterFinally, invoking 1000

(2), estimate the state at tinte- 7 as

1).

This avoids the inconvenience for the constant-step size al-
Mo gorithms under study of having to take small steps during the
X(t+ T)=x+_2 viK;(7:x,t). (12)  initial transient, and large steps on the slow manifold. The
=1 propensity functions are given by
Although this modification might be prudent for some _ _ _ _
systems, for the simple systems we have studied thus far tHf&~ 1" 22=5%1(x~ 1), 3;=1000;,  8,=0.1xz,
original version of the implicit-tau method has performed asand the problem was solved on the time intef\@0.2.
well as this “rounded” version. Therefore, in the remainder Figure 1 depicts sample trajectories as simulated by the
of this paper we will focus on the original “unrounded” exact SSA. Figure 2 shows the same sample trajectoxy of
implicit-tau method. on a more revealing scale for that variable. We note that
while x; and x, vary rapidly, x5 varies slowly. All three
variablesx,, X,, andxs exhibit random behaviors being
V. NUMERICAL EXPERIMENTS the most random. Figures 3, 4, and 5 show the histograms for
the final state values, comparing SSA with explicit tau leap-
ing. Each histogram was obtained by simulating an ensemble
This problem, the decaying-dimerizing reaction set stud0f 10000 trajectories. The explicit tau leaping was per-
ied in Ref. 6, consists of three speci®s, S,, andS; and ~ formed with a constant step size oK2.0°.
four reaction channels It is evident from FIgS 3, 4, and 5 that the eXp|iCit—tau
method captures the statistics of the final states very well,
with only 10000 time steps over the interval, whereas the

A. Example 1

C1

S1—0, SSA required on average 310000 time steps. In terms of
c2 computation time, 10 000 simulations using SSA took 5697
Si+S,—S,, (13y  CPU seconds, while 10000 simulations using explicit tau
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N Sample trajectory of x3(t) simulated by SSA Final state x2(0.2) : Normalized frequencies versus bin centers
. . . 0.04 . . - .
16k | 0.0351 « o Explicit tau |
=]
r 1 0.03} ]
ol
12 1 0.025} 1
101 g
0.02f g 1

8r 4

0.0151 ]
6 J

0.01f J

al | ®

0.005- g _
I ' . , . - ,
0 ) . . 900 720 740 760 780 800 820

0 0.05 0.1 0.15 0.2 . . .
FIG. 4. Final state histogram fot, in example 1, computed by the SSA
FIG. 2. Sample trajectorys(t) in example 1, simulated by SSA. (starg and ghe explicit-tau methotsquarey the latter with constant step
size 2x10°°.

with a constant step size 06210 ° took 731 CPU seconds.
These computations were performed on a 1.4 Ghz Pentiumethods. Tables | and Il show the sample means and stan-
IV Linux workstation. dard deviations for the final states estimated by the three
Figure 6 shows that the explicit-tau method becomes unmethods. For the means, we also present the solution from
stable at step sizes roughly equal to or larger than 2.Zhe ODE solver inMATLAB . The results show that the ODE
X107 This is the stability limit that would be predicted by solver with automatic step sizing captures the mean quite
a linearized stability analysis of the forward Euler methodaccurately. However, neither the ODE model nor the solver
applied to the corresponding deterministic ODE model. In agives us any indication of the nontrivial amount of fluctua-
forthcoming paper, we will address stability criteria andtion of the states about their mean values.
analysis for discrete stochastic systems. It is clear from the histograms that if the goal is to cap-
To verify that the implicit-tau method can take much ture the slow statex; including its randomnesgéwhich is
larger time steps while maintaining accuracy, we simulatedignificany, then implicit tau is far superior to explicit tau,
an ensemble of 10000 trajectories using explicit tau withbecause it achieves comparable accuracy with a factor of 100
constant step size 10 and implicit tau with constant step fewer steps. Although the computational effort per step is
size 0.01. The step size 16 for explicit tau was chosen to greater for implicit tau than explicit tau, this is far out-
be as large as possible without compromising accufiéy  weighed by implicit tau’s ability to take much larger steps.

near the stability limit of 2. 10" *). Figures 7—9 compare The computation time for 10000 implicit-tau simulations
the final state relative bin frequencies computed by all three

Final state x1(0.2) : Normalized frequencies vs bin centers oA Flnallstate x3(0l.2) : Norm:lallzed freql‘Jenmes versus bin centers
* SSA -
= Explicit tau 0.09t . ©_Explicit tau
*
0.02F o | 0.08f R
0.07f ]
0.015F | 0.06- . |
o 0.05} |
0.01t ¥ 1 0.041 ]
0.03f E
* 8
0.005 i 0.02f i
a ¥ 0.01f E
*
" ]
Fre 1 5. i 1 1 = s 0 % 1 1 1 1 L Bl
850 300 350 400 450 500 0 5 10 15 20 25 30 35

FIG. 3. Final state histogram fog; in example 1, computed by the SSA FIG. 5. Final state histogram fog; in example 1, computed by the SSA
(starg and the explicit-tau methotsquarep the latter with constant step (starg and the explicit-tau methotsquarey the latter with constant step
size 2x10°5. size 2x10°°.
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Sample trajectory simulated by explicit tau (Stepsize 0.00025) Final state x2(0.2) : Normalized frequencies versus bin centers
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FIG. 6. Sample trajectories for example 1 as simulated by the explicit-talFIG. 8. Final state histogram fot, in example 1, as computed by the SSA
method with step size 2610 *. The trajectories develop unstable oscilla- (starg, the explicit-tau method with step sizex1L0™* (squarey and the
tions, and yield unrealistic negative states beytwd.1. implicit-tau method with step size 0.Q#liamonds. Note that the explicit-
tau method overestimates the noise while the implicit-tau method underes-
timates it.
was 15 CPU seconds, as compared to 731 CPU seconds for
explicit tau and 5697 CPU seconds for SSA.

On the other hand, if one is interested in capturing theion is roughly the “relaxation time” of the fast variables.
fluctuations of the fast variableg andx,, then implicit tau  The final state histogram for this simulation is compared
with these large time steps will not be adequate. In order tqyith that of the SSA in Figs. 10-12, and shows good agree-
capture the distributions of; andx,, we used the technique ment with SSA for all three variables;, x,, andxz. The
described in Sec. IV of interlacing small time steps with computation time for 10 000 simulations using this interlaced
large time steps. In this example, we took the first 19 stepgnethod was only 23 CPU secon@such less compared with
with implicit tau using step size 0.01 as before. Then, im-the 731 CPU seconds for the explicit-tau simulations in Figs.
plicit tau was used to take one step of size 0.0098. For thg_5 and the 5697 CPU seconds for the SSA simulations of
remaining time of 0.002 we took ten steps of size > the same problemThus, the interlaced implicit tau is able to
using implicit tau. The first 20 steps are the large steps whiclgapture the statistics of all the state variables accurately with
capture themeanvalues of all the state variables, and the significant computational advantage over both SSA and ex-
noise in the slow variable, accurately. The last ten small stepgiicit tau.
recover the distribution information of the fast variablgs In this example, we were able to capture the distributions
andx,. The time period to recover the distribution informa- of all state variables at the final time with only one recovery

Final state x1(0.2) : Normalized frequencies versus bin centers

0.05 T T > - SSA oA Final state x3(0.2) : Normalized frequencies versus bin centers
0.045| o Explicit tau || ' ' R ' T SSA
o Implicit tau .09k = o Explicit tau |
0.04- q @ ¢ Implicit tau
0.08 B
0.0351 1
0.03 1 0071 |
0.025 . 0.06r ® |
0.02- * i 0.05 1
0.015} D : 0.041 1
*
0.01} ¥ o ] 0.03} . \ .
[E]
0.005F a a 1 0.02 ]
* *
o B . . = L J
950 300 350 400 450 500 0.0 5 N
$- 1 1 1 L 1 $ 1 &
FIG. 7. Final state histogram fo; in example 1, as computed by the SSA 00 5 10 15 20 25 30 35

(starg, the explicit-tau method with step sizex10~* (squarey and the

implicit-tau method with step size 0.Q#liamond$. Note that the explicit-  FIG. 9. Final state histogram fos; in example 1, as computed by the SSA
tau method overestimates the noise while the implicit-tau method underesstarsg, the explicit-tau method with step sizex110™* (squarey and the
timates it. implicit-tau method with step size 0.q@liamonds.
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TABLE |. Sample meangfor a sample size ofi=10 000) for the final states in example 1 as computed by
SSA, explicit-tau, the original implicit-tau, and the interlaced implicit-tau methods, with step sizes as described
in the text. Also shown for comparison purposes are the predictions of the corresponding deterministic ODE.

ODE SSA Explicit tau Implicit tau Interlaced implicit tau
Sample meanx,(0.2) 387.7 387.3 386.2 387.6 387.2
Sample meanx,(0.2) 749.3 749.5 750.1 749.5 749.4
Sample meanx;(0.2) 15.47 15.45 15.48 15.42 15.59

period. In general, it may be necessary to do the recovery; is given byy/c;X../(c;+c,)=+/10000/2= 70.7 (here,x.,
steps more often. An optimal strategy for the interlacing prodis the asymptotic mean value, which in our casej£2).

cedure is a topic for further research.

B. Example 2

In some stiff systems, the fast variables exhibit near-

This is less than 1% of the equilibrium value. Thus, we may
regard the noise i®; as negligible. But, as we shall see, the
noise inx, cannot be regarded as negligible.

We simulated an ensemble of 10000 trajectories using

deterministic behavior while the slow variables still exhibit &l three methods: SSA, explicit tau with constant step size
randomness. In such cases, implicit tau will clearly be the>*10 " (half the size of the maximum value to maintain
method of choice, as can be demonstrated using the simpgability), and implicit tau with constant step size 0.005, all

reaction set

C1
Ri: S$1—8S;,
C2
R,: $—S,
C3
Ry: S$+S,—-5,+S,.

Since the total number d§;, and S; molecules is constant
(sayx1), and if we don’t care about the by-produst, we
can model this system with two variables- (x4,x,) (i.e.,
numbers ofS; andS, molecules, respectivelyand three re-
actions. The propensity functions are

ai(x)=ciXq,
ap(X) =Ca(XT—Xy),
ag(X) =CgX1Xy.

The stoichiometric vectors are;=(—1,0)", v,=(1,0)T,
andv3=(0,—1)". We chosec,;=c,=10, c;=0.0005, and
X1= 20000, with initial conditionx(0)= (10 000,100).

Since c;=c¢,, then x;=x7/2 will be an equilibrium
value forx,;. The dynamics ok, is independent ok,, but
the dynamics ok, depends orx;. Also, note that the reac-
tionsR; andR, are much faster thaR;.

Since the dynamics o%; alone is the same as in the
simple reversible isomerization probléM, the exact

to estimate the final state at tinfe=0.01.

Table Il shows the sample means and standard devia-
tions for the final state of, estimated by the three methods.
For the means, we also show the solution from the ODE
solver inMATLAB . Figures 13 and 14 compare the final state
histograms computed by explicit tau and implicit tau with
those computed by SSA. The full behavior of the noisy vari-
able x, is adequately reproduced by both tau-leaping meth-
ods, while the inaccuracies of both methods in the estima-
tions of the fluctuations i, are inconsequential because of
their smallness. The implicit-tau method is superior to the
explicit-tau method, since the former takes two steps for each
trajectory while the latter takes 2000. The explicit-tau
method in turn is superior to the SSA, which takes on aver-
age 2x 10’ time steps for each trajectory.

Note that in this reaction, one can make the relative size
of the equilibrium noise i, arbitrarily small by scaling up
¢, andc, andx;(0)=x+/2 by the same factor. This leaves
the stiffness ratig 2(c,+c,)]/c3Xy unchanged but makes
the noise inx; as small as we want compared to its equilib-
rium value. For instance, if we choosg=c,=10° and
x(0)=(10°,100) then the equilibrium noise & will have a
standard deviation of/50 000~ 224, which is 0.02% of the
equilibrium value 18. Thus, the noise will be less than what
we obtained with our choice fary, ¢,, andxy. We did not
choose the values, = c,= 10° andx;= 200 000 because the

asymptotic mean and variance can be computed analyticallfSA simulation takes an extremely long time to run and we

(see the Appendijx The equilibrium valuex;=10000 is the

wanted an example where we could make a quantitative

asymptotic mean, and the asymptotic standard deviation afomparison with SSA.

TABLE Il. Sample standard deviatior{for a sample size ofi=10 000) for the final states in example 1 as
computed by SSA, explicit-tau, the original implicit-tau, and the interlaced implicit-tau methods, with step sizes

as described in the text.

SSA Explicit tau Implicit tau Interlaced implicit tau
Sample standard deviatior;(0.2) 18.42 24.76 3.07 17.74
Sample standard deviatior;(0.2) 10.49 13.45 5.34 10.24
Sample standard deviatior(0.2) 3.91 3.88 3.89 3.91
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Final state x1(0.2) : Normalized frequencies versus bin centers Final state x3(0.2) : Normalized frequencies vs bin centers
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FIG. 10. Final state histogram fag in example 1, as computed by the SSA

(starg, and the implicit-tau methotsquareswith interlaced stepping.

VI. CONCLUSIONS

FIG. 12. Final state histogram fag in example 1, as computed by the SSA
(starg, and the implicit-tau metho@squareswith interlaced stepping.
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of explicit tau for larger step sizes. For large step sizes, wéSOMERIZATION REACTION

have seen that the implicit-tau method resolves well the slow ¢y

stochastic components, and it captures the mean of the fast The pair of reactionsS;=S, describes the reversible

components. We have introduced a method for recoverin% _ . 2 . .

the distributions of the fast stochastic components based on Qnversion of ‘VYO ISomeric _specu—ﬁl and S, into each

time-stepping scheme that interlaces several small time ste[%her' The reaction probability rate ponstangsfor these

with several large time steps. monomolecular channels_ are numerically _equal to the_ rate
constantsk; that appear in the corresponding deterministic

reaction rate equations for the species concentratiofbke

propensity functions and state-change vectors for these reac-

Final state x2(0.2) : Normalized frequencies versus bin centers
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" o Imp Tau (Interlaced) l

0.0851 ] a1(X)=C1X1, Ax(X)=CyXp, (A1)

0.03r o 4 Vlz(_l,+1), 1/2:(+1,_ 1) (AZ)
*

0.0251 | In the absence of any other reaction channels, the total
' number of isomers<y will remain constant in time. This
o0.02} . i circumstance allows us to eliminate one of the species vari-

ables, say thé&, variable, in favor of the other

0.015} 4

Xo(t) =x7=X4(1), (A3)
0.01r 1 and thereby obtain a mathematically simpler univariate prob-

00051 ® lem. In this Appendix, we shall derive exact expressions for
' G ] the mean and variance of;(t)=X(t) for the initial condi-

o - B . , L , tion X(tp) =Xp, Wherex, and x; may be any two integers
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FIG. 11. Final state histogram fap in example 1, as computed by the SSA

(starg, and the implicit-tau metho¢squareswith interlaced stepping.

satisfying O<xy=<xy. We should note that solutions to the
full chemical master equation are known for the special cases
Xo=0 andxo=xy.®
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TABLE lll. Sample means and standard deviati¢fts a sample size afi=10 000) for the final state of, in
example 2 as computed by ODE solver, SSA, explicit-tau, the original implicit-tau, and the interlaced implicit-
tau methods, with step sizes as described in the text.

ODE SSA Explicit tau Implicit tau Interlaced implicit tau

Sample mearx,(0.01) 9512  95.10 95.07 95.07 95.05
Standard deviation,(0.01) NA 2.15 2.14 221 2.18
The proces¥(t) evolves according to the following dy- A(X)=Cx7— (€1t Cp)X,
namica_l rgles: I1X(t) =X, then in the next imfinitesimal timg D(X) = CoX+ (Cq— Co)X.
dt, X will increase by 1 or decrease by 1 with the respective ) )
probabilitiesW, (x)dt andW_(x)dt, where When these forms are substituted into EGs5) and (A6),
W, (%) ( W) (A4 we obtain
+ X :CZ XT_X y _(X :C]_X.
d(X(t))

This kind of dynamical behavior identifie§(t) as a birth— dt
death-type Markov process with stepping probability rate
functions W, (x) and W_(x). Quite generally for such a dvar X(t)}

:szT_(C1+Cz)<X(t)>, (A8)

process, the time derivatives of the mean and variance are — g~ — 2(Cat+Co)varX(t)}
given by®
+ +(cy— .
d(X(1)) CoXr+(C1—Co)(X(1)) (A9)
—ar (AXM), (A5)  The time-evolution equatioA8) for the mean(X(t)) is
mathematically identical to the associated deterministic reac-
dvafgX(t)} tion rate equation, although expressed here in terms of the
dt = 2((XOAX®) = (X)(AX(1))) molecular populations instead of concentrations. This is not
so in general, but it is the case whenever the propensity
+H(D(X(1)), (A6) functions are linear in the species variables. Equatis®)
where has the form of the first-order linear differential equation

dy(t)/dt=ky(t) +f(t), for which the general solution in
A=W, () =W_(x), DO)=W.(X)+W-(X). (A7) giadrature form is
For the stepping function6A4), A andD are easily calcu-

lated to be y(t)=et"to)

y(to) + f:fa')ek“’wdt’}, (A10)

0

as may readily be verified by direct differentiation. Evaluat-
3 Final state x1(0.01) ing this quadrature form for EGA8) using the initial condi-

x10 : :
9 . . . . . tion (X(tg))=Xq gives
SoA (X(to))=%o 9
sl © 4 o Explicit Tau ||
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FIG. 13. Final state histogram fay in example 2, as computed by the SSA ol_s N . . L .
(starg, the explicit-tau method with step sizex8078 (squareys and the 80 " 85 90 95 100

implicit-tau method with step size>510 2 (diamond$. Note that most of

the variation(as computed by SSAs within 1% deviation from the mean FIG. 14. Final state histogram fa in example 2, as computed by the SSA
value of 1@, and thus the noise in this variable may be regarded as negli{stars, the explicit-tau method with step sizexd0 ® (squarel and the
gible. The plot of the histogram has been scaled to fit the narrow range aimplicit-tau method with step size>610™2 (diamonds. In contrast to the
values ofx; . fluctuations inx,, the fluctuations in this variable are not negligible.
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(X(t)>:x0+(xw—xo)(l—e‘<°1+°2)“‘t0)), (A11) able defined by
ProdP(a,7)=n}=[e"®(ar)"]/n! (n=0,1,..).
where H7P(a,7) }.[ (an)"] ( )
Both the mean and the variance7fa, 7) are equal tar. P(a,r) can be
CoXt interpreted physically as the number of events that will occur in any finite
Xo= citc, (A12) time 7, given that the probability of an event occurring in any future
1762

infinitesimaltime dt is adt.

By substituting the resultA1l) into Eq.(A9), we obtain ®We denote byV(m,o?) the normal(or Gaussianrandom variable with
for the variance a differential equation that is once again of meanm and variances?. This random variable has the useful property
the first-order linear form. When we evaluate the correspond- thatAM(m,o?) =m+oM0,1).

. . . .. . 10 H 0
ing quadrature solutiofA10) using the initial condition P T Gilespie, J. Chem. Phy&13 297(2000.
var{X(t )}—O we get D. T. Gillespie, J. Phys. Chem. 206, 5063(2002.
0/5 =4 9 12p F, Kloeden and E. PlateNumerical Solution of Stochastic Differential

C1X Equations 2nd ed.(Springer, Berlin, 1996

var{X(t)}= —w(l—e‘2(°1+02)(t‘t0)) 3p, M. Burrage and K. Burrage, A variable stepsize implementation for
(citcy) stochastic differential equations, SIAM J. Sci. CompuiSA) 24, 848
(2002.
(C1=C2)(Xo—X) (e~ (Ctea)t-to) ¥In the thermodynamic limjtthe species populations and the system
(cq+ Cz) volume () divergetogether and proportionately It turns out that, in this

5 limit, all propensity functions;(x) divergelinearly with the system size,
—e (°1+C2)(t7t0)). (A13) because the propensity function for ath-order reaction will contaim

. . . factorsx; along with a factof) ~(™M~Y). As a consequence, while the terms
We note in passing that Eq@ll) and(A13) imply the under the first summation sign in E@l) are roughly proportional to the

asymptotic results system size, the terms under the second summation sign are roughly pro-
portional to thesquare rootof the system size. So, in the thermodynamic
C1Xe limit, the latter terms typically b ligibly small dto th
<x(oo)>zxoc and vafX(®)}=———. (A14) imit, the latter terms typically become negligibly small compared to the
(citcy) former terms. Of course, real systems, no matter how large, are necessarily

finite, and in situations where the terms in the first summation in(&q.
add up to practically zerdfor instance at equilibrium the fluctuating
second sum can become important.
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corresponds to the commonly accepted definition of stwichiometric - See Ref. 16, p. 385, Eq.1-29 and(6.1-30, and note that the functions
matrix. v(x) anda(x) appearing in those equations are defined in E§4-13 to
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