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Tau leaping methods enable efficient simulation of discrete stochastic chemical systems. Stiff
stochastic systems are particularly challenging since implicit methods, which are good for stiffness,
result in noninteger states. The occurrence of negative states is also a common problem in tau leap-
ing. In this paper, we introduce the implicit Minkowski–Weyl tau (IMW-τ ) methods. Two updating
schemes of the IMW-τ methods are presented: implicit Minkowski–Weyl sequential (IMW-S) and
implicit Minkowski–Weyl parallel (IMW-P). The main desirable feature of these methods is that they
are designed for stiff stochastic systems with molecular copy numbers ranging from small to large
and that they produce integer states without rounding. This is accomplished by the use of a split
step where the first part is implicit and computes the mean update while the second part is explicit
and generates a random update with the mean computed in the first part. We illustrate the IMW-S
and IMW-P methods by some numerical examples, and compare them with existing tau methods.
For most cases, the IMW-S and IMW-P methods perform favorably. © 2011 American Institute of
Physics. [doi:10.1063/1.3532768]

I. INTRODUCTION

Chemical reactions occurring at the intracellular level
often involve certain molecular species present only in small
copy numbers. Such systems are best described by a dis-
crete state and continuous in time Markov process model
where the components of the state vector are integers that de-
scribe the nonnegative copy number of the different molecu-
lar species.1–3 Probabilistically correct realizations of sample
paths of such systems can be generated by the stochastic sim-
ulation algorithm (SSA).1, 2 It also follows that the probability
distribution as a function of time satisfies the chemical master
equation (CME).3

When the copy numbers of all the molecular species are
very large, such systems behave nearly deterministically. In
the large copy number limit, the chemical reaction systems
can be modeled by the familiar reaction rate equations (RRE)
which are ordinary differential equations (ODEs). The transi-
tion from the discrete stochastic model to the continuous and
deterministic model is explained in Ref. 4. A rigorous deriva-
tion using the law of large numbers and a correction using
the central limit theorem may be found in Refs. 5 and 6. This
limiting behavior is known as the thermodynamic limit or the
fluid limit.

Numerical simulation of such stochastic chemical sys-
tems falls into two broad categories. One approach is to di-
rectly compute the probabilities via the CME. This is often
prohibitive due to the fact that the number of possible states
grows exponentially with the number of distinct molecular
species. Nevertheless methods have been devised to improve
the efficiency of these computations.7, 8
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The second approach is to generate sample trajectories
via SSA. This approach does not suffer from an exponential
growth in complexity with increase in the number of species.
However, even this approach is computationally intensive in
many practical examples as the reaction events are often too
many. One major reason is stiffness, which is the presence of
multiple time scales. Another reason is the presence of some
species in large copy numbers. Approximate methods have
been devised to speed up SSA. These fall into two classes.
One being the tau leap methods which are analogous to the
time stepping methods such as Runge–Kutta for ODEs and
is the subject of this paper. The second approach is inspired
by singular perturbation techniques. When there is a clear and
vast separation between the time scales of a fast group of re-
actions and those of the other (slow) reactions, these methods
are most appropriate. The slow-scale SSA, partial equilibrium
approach, nested SSA, and the quasi-steady-state approach
belong to this category.9–12 In this context, a comprehensive
rigorous framework utilizing the functional law of large num-
bers and functional central limit theorem to obtain various ap-
proximations may be found in Ref. 13.

The tau leap methods involve advancing the system tra-
jectory by leaping over several reaction events at each time
step. Since the probability distribution for the number of re-
action events is generally not known, this involves utilizing
some criteria to generate suitable approximations. Examples
of tau leap methods in literature include the explicit tau,14 the
implicit tau,15 the trapezoidal implicit tau,16 and the REMM
tau17 to name a few. The explicit tau method uses the sim-
plest approximation criterion in that it freezes the propensities
(probabilistic rates) of all the reaction events over the interval
of the time step, leading to the result that the number of firings
are independent Poissons. In the fluid limit (i.e., in the large
copy number limit), the explicit tau method becomes the well
known explicit Euler method for ODEs. Some variations on
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the explicit tau where Poisson random variables are replaced
by binomial random variables may be found in Refs. 18 and
19. A higher order accurate explicit tau method may be found
in Ref. 20. The implicit and the trapezoidal implicit tau meth-
ods were developed in order to deal with stiff systems which
are ubiquitous in chemical kinetics and in the fluid limit they
become the well known implicit Euler and trapezoidal meth-
ods for ODEs. However, these tau methods suffer from the
fact that they do not produce integer states. The reversible
equivalent monomolecular tau (REMM tau) method was pro-
posed to overcome this difficulty. However, in the fluid limit
the behavior of REMM tau is not fully understood as it yields
an unknown method. Error analysis of tau methods may be
found in Refs. 21–23.

Two common issues with tau leap methods have been the
occurrence of negative or noninteger states. The noninteger
states can be rounded to yield integers, but when the numbers
are small this results in unacceptable errors.17 The negative
states, when they occur, can be reset to suitable nonnegative
states and the error involved depends on the probability of
occurrence of negative states.

In this paper, we propose two variants of a new tau
leap method which takes into account four key issues: stiff-
ness, integrality and nonnegativity of states, and the be-
havior at fluid limit. To obtain desirable behavior for stiff
systems in the fluid limit, we aim to design the tau leap
method to yield the implicit Euler as its fluid limit. This
is accomplished by the use of a split step. The first part
of the step involves an implicit Euler step to compute the
mean update. The second part involves generating random
variables with the mean computed in the first part. To deal
with negativity, we use the Minkowski–Weyl decomposition
to describe the polyhedral region in the reaction count space
that corresponds to the set of feasible reaction counts. We
have not found a method that addresses all the issues in
a completely satisfactory manner while remaining compu-
tationally tractable. The methods we propose in this paper
reflect a compromise among these various issues. Both meth-
ods are called implicit Minkowski–Weyl tau method (IMW-
τ ) and involve partitioning the set of reactions into groups
in such a manner that the Minkowski–Weyl decomposi-
tion is always carried out in a one- or two-dimensional
space. One variant is the implicit Minkowski–Weyl sequen-
tial tau (IMW-S) and the other is the implicit Minkowski–
Weyl Parallel tau (IMW-P). The IMW-S tau method
produces integer and nonnegative states and remains stable
for stiff systems. However, in the fluid limit, it becomes
the sequentially updated implicit Euler, which suffers cer-
tain drawbacks when applied to stiff systems. The IMW-P
tau method also produces integer states and in the fluid limit
becomes implicit Euler. However, it suffers from the fact
that it has nonzero probability of producing negative states
and hence a bounding procedure is used. Additionally both
methods IMW-S and IMW-P are designed to be first order
consistent.

The outline of the paper is as follows. We review
stochastic chemical kinetics and some of the existing tau leap
methods and discuss concerning issues in Sec. II. In Sec. III,
we provide a description of the Minkowski–Weyl decompo-

sition of convex polyhedral regions and motivate the general
approach behind the proposed IMW-τ methods. Section IV
describes all the different types of feasible regions in one and
two dimensions that are relevant for the IMW-τ methods.
The two IMW-τ methods proposed are described in detail in
Sec. V. In Sec. VI, we provide numerical examples to illus-
trate these methods. Conclusions are presented in Sec. VII.

II. OVERVIEW OF STOCHASTIC CHEMICAL SYSTEMS
AND TAU LEAPING METHODS

A. Stochastic chemical model and SSA

Stochastic chemical reaction systems involved with small
number of molecules have a dynamic behavior that is discrete
and stochastic rather than continuous and deterministic. We
describe the standard well-stirred chemical model here,3, 24

which is a Markov process in continuous time with state space
ZN

+ , the set of nonnegative integer vectors.
Suppose there is a well-stirred mixture of N molecular

species {S1, . . . , SN } interacting through M chemical reac-
tion channels {R1, . . . , RM }. The state of the system is de-
scribed by [X1(t), . . . , X N (t)], where Xi (t) is the number of
molecules Si at time t . For each j = 1, . . . , M , a j (x)h + o(h)
is the probability, given X (t) = x , that reaction R j will occur
during (t, t + h], where a j (x) is the propensity function of the
reaction channel R j . Vector ν j for j = 1, . . . , M is the stoi-
chiometric vector, whose i th component νi j is the change in
the number of Si molecules produced by one occurrence of re-
action R j . Since X (t) is a continuous time Markov process on
a multidimensional integer lattice, it can be simulated exactly
by the SSA.1, 2

B. Thermodynamic or fluid limit

When all the molecular species are present in large num-
bers and under certain additional assumptions on the propen-
sity functions, the chemical system is well approximated by
a deterministic ODE model known as the RRE. This equa-
tion can be thought of as a limit in which the system vol-
ume V approaches ∞ with the initial number of species X (0)
also growing proportional to V thus keeping the concentration
X (0)/V fixed.6, 25 This limit is known as the thermodynamic
limit in chemical literature and is also known as the fluid limit
in queuing theory.

We describe the fluid limit in mathematical terms fol-
lowing Ethier and Kurtz.6 Consider a system with initial
state X (0) = x0 ∈ ZN

+ and volume V0. Denote by z0 = x0/V0,
the initial concentration. Let us consider a family of related
systems with different volumes V and initial states XV (0)
= V z0 = (V/V0)x0, so that they have the same initial con-
centration. Let the solution trajectory for system with vol-
ume V be denoted by XV (t). Note that our original system
has a trajectory X (t) = XV0 (t). Thus the concentrations are
ZV (t) = XV (t)/V . Additionally we assume that the propen-
sities a j (x) depend on volume V in such a manner that as
V → ∞, a j (x, V )/V approaches a limit ā j (x), which is true
in the standard model of stochastic chemical kinetics. It is
shown in Ref. 6 (theorem on page 456) that for each fixed
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t ≥ 0, ZV (t) converges with probability 1 to the deterministic
quantity Z̄ (t) which is the unique solution of RRE

˙̄Z (t) =
M∑

j=1

ν j ā j [Z̄ (t)], (1)

with initial condition Z̄ (0) = z0. See Appendix D for more
details.

Since we are considering systems with both large and
small number of molecules in this paper, it is important that
the tau leap methods proposed also have appropriate thermo-
dynamic or fluid limit. In this context the work in Ref. 23
provides an error analysis of certain explicit tau leap methods
in the large volume regime.

C. Tau leaping methods

The SSA is very computationally expensive because it
simulates one reaction event each time. The tau leaping
methods14–17 were proposed to accelerate the chemical reac-
tion simulations. The principle of tau leaping methods is to
propose a time step τ and leap over a number of reactions
with a reasonable loss of accuracy.

Mathematically, the tau leaping methods proceed as fol-
lows. First, a time step τ is chosen. Given X (t) = x , define
R j (x, τ ) to be the (random) number of times that j th reac-
tion channel will fire during the time interval (t, t + τ ], for
j = 1, . . . , M . Then

X (t + τ ) = x +
M∑

j=1

ν j R j (x, τ ). (2)

In general, the distribution of R j (x, τ ) is not known. In a
tau leap method, an approximation K j (x, τ ) of R j (x, τ ) is
computed. The explicit tau method14 chooses K j (x, τ ) for
j = 1, . . . , M to be independent Poisson random variables
with mean a j (x)τ , i.e., K (et)

j (x, τ ) ∼ P(a j (x)τ ), where
P(λ) denotes a Poisson random variable with mean λ.

The implicit tau method15 is given by

X (i t)(t + τ ) = x +
M∑

j=1

ν j {Pj − a j (x)τ + a j [X (i t)(t + τ )]τ },

(3)

where Pj ∼ P(a j (x)τ ) for j = 1, . . . , M are independent.
Thus R j (x, τ ) is approximated by

K (i t)
j (x, τ ) = Pj − a j (x)τ + a j [X (i t)(t + τ )]τ.

Newton’s method is applied to solve Eq. (3). Note
that X (i t)(t + τ ) is not an integer vector any more
and K (i t)

j (x, τ ) is not an integer either. This does not
make physical sense for a chemical reaction system.
One way to avoid noninteger states is by modifying
the implicit tau method, which yields the following
rounded implicit tau method: First, solve X ′ = X (i t)(t + τ )
according to Eq. (3). Then approximate the number of firings
R j (x, τ ) by the integer-valued random variable K (i tr )

j (x, τ ),

defined by K (i tr )
j (x, τ ) = [K (i t)

j (x, τ )] and update

X (i tr )(t + τ ) = x +
M∑

j=1

ν j K (i tr )
j . (4)

Here [z] denotes the nearest nonnegative integer correspond-
ing to a real number z.

The trapezoidal implicit tau method16 generates the up-
date equation by

X (tr )(t+τ )= x+
M∑

j=1

ν j

(
Pj − τ

2
a j (x)+ τ

2
a j [X (tr )(t+τ )]

)
,

(5)

where Pj ∼ P j (a j (x)τ ) are independent. Thus R j (x, τ ) is
approximated by

K (tr )
j (x, τ ) = Pj − τ

2
a j (x) + τ

2
a j [X (tr )(t + τ )].

It still gives noninteger states for both X (tr )(t + τ ) and
K (tr )

j (x, τ ). The rounded trapezoidal implicit tau solves X ′

= X (tr )(t + τ ) from Eq. (5) and approximates the actual num-
ber of firings R j (x, τ ) by K (trr )

j (x, τ ) = [K (tr )
j (x, τ )]. It up-

dates states by

X (t + τ ) = x +
M∑

j=1

ν j K (trr )
j (x, τ ). (6)

The REMM tau17 is an explicit leaping scheme based
on the exact solutions of the two prototypes of reversible
monomolecular reactions S1 ↔ S2 and S ↔ 0. This method
approximates all bimolecular reversible reaction pairs by suit-
able monomolecular reversible reactions and then updates the
system based on the exact solutions of these monomolecular
reversible pairs. The REMM tau is stated in parallel and se-
quential forms, both generate integer-valued states with Pois-
son and binomial random variables. The sequential version of
REMM tau avoids nonnegative states without any bounding
procedures. It has been shown17 that the REMM tau exhibits a
more robust performance than the implicit tau and trapezoidal
tau methods for “small number and stiff” problems because of
the inaccuracies in the latter methods due to rounding.

Ideally a tau leap method should “naturally” produce
nonnegative and integer states while maintaining a robust per-
formance when applied to stiff systems. Additionally in the
thermodynamic or fluid limit, we wish the tau leap method to
behave like a “good stiff” solver for ODEs. In this context, we
note that the fluid limit of the explicit tau is the explicit Euler
while for the implicit tau it is the implicit Euler. The fluid limit
of REMM tau is not a known ODE solver for ODE systems,
and as such its performance in the fluid limit for stiff systems
is yet to be investigated thoroughly. On the other hand, it is ad-
vantageous to devise a tau leap method that has implicit Euler
as its fluid limit since the robust behavior of implicit Euler
for stiff ODE systems is well established. Table I summarizes
some properties of the methods discussed here. In Sec. III, we
propose a new framework and new tau methods motivated by
addressing these issues.
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TABLE I. Comparison of the existing tau leaping methods: explicit tau,
implicit tau, trapezoidal tau, and REMM tau. The star (*) represents that the
fluid limit of REMM tau is not a known ODE solver.

Methods/Issues Fluid limit Integer states Nonnegativity
Explicit tau Explicit Euler YES NO
Implicit tau Implicit Euler NO NO
Trapezoidal tau Trapezoidal Euler NO NO
REMM tau (parallel) * YES NO
REMM tau (sequential) * YES YES

III. GENERAL FRAMEWORK AND MOTIVATIONS

The central decision at each step in a tau leap update is
the choice of a joint distribution for K = (K1, . . . , KM )T . We
would like a distribution that satisfies the following condi-
tions:

1. K j satisfies O(τ ) consistency [meaning errors in one
step are O(τ 2)].

2. K j is integer valued and nonnegative.
3. x + νK ≥ 0 with probability 1.
4. The fluid limit of the resulting method is the implicit

Euler.
5. Generating samples for K should be computationally

tractable.

The first condition is important to ensure that making the
step size smaller guarantees greater accuracy. The second and
third conditions ensure integer and nonnegative states, while
the fourth condition ensures stable behavior at least in the
fluid limit in the case of stiff systems.

Implicit step and the fluid limit of the method: In order
to ensure that the tau method in the fluid limit becomes im-
plicit Euler, we use a split step approach where the first part
involves computing an intermediate state X ′ using the implicit
Euler:

X ′ = x +
M∑

j=1

ν j a j (X ′)τ. (7)

Then we choose an integer-valued distribution for K such that
E(K j ) = a j (X ′)τ . Heuristically, in the fluid limit, since K j

will be nearly deterministic, K j ≈ E(K j ) and the updated
state X ≈ X ′. See Appendix D where this is discussed in
detail.

The Minkowski–Weyl decomposition: The major idea
we propose in dealing with negative states is to have a con-
venient description of the region in K space, i.e., the re-
gion in the reaction count vector space, that corresponds to
nonnegative integer values for the updated states. We use
the Minkowski–Weyl decomposition in the description of this
region.26 Thus we shall use the term Implicit Minkowski–
Weyl tau or IMW-τ in short to describe the family of methods
proposed in this paper.

In a single step of the tau method, the following linear
inequality is obtained by the nonnegativity of the population
state:

X = x + νK ≥ 0, (8)

where x ∈ ZN
+ and ν ∈ ZN×M are given and K ∈ ZM

+ is
the random unknown vector of reaction counts. Note that
throughout this paper we write X ≥ 0 for a vector X to
mean that each component is greater than or equal to 0. Let
P = {K ∈ ZM | K ≥ 0, x + νK ≥ 0} be the set of physically
feasible values of K such that the resulting state X is nonneg-
ative. We wish to have a convenient description of the set P .
Relaxing the domain of the set P from ZM to RM , we ob-
tain F = {K ∈ RM | K ≥ 0, x + νK ≥ 0} which is a convex
polyhedral region.

Two examples are shown here to illustrate the
Minkowski–Weyl decomposition. The first example is the re-
versible monomolecular reaction S1 ↔ S2. Equation (8) gives

x1 − K1 + K2 ≥ 0, x2 + K1 − K2 ≥ 0,

where

(K1, K2)T ≥ 0.

The feasible region of K values are shown by the shaded
region in Fig. 1. We note that the feasible region is a con-
vex polyhedral region and any point in it can be expressed
as the sum of two vectors, one representing a point inside
the triangle with vertices (0, 0)T , (x1, 0)T , (0, x2)T , and the
other a vector that is a positive multiple of (1, 1)T . In gen-
eral, the Minkowski–Weyl theorem states that any point in
a convex polyhedron (in a finite dimensional space) can be
represented as the sum of a point in a convex hull formed
by finite number of points (known as extreme points or ver-
tices) and a vector in a positive cone spanned by finite num-
ber of direction vectors. In this example, the convex hull is
the triangle and the positive cone is the set of all vectors
that are positive multiples of (1, 1)T . Any point inside the

b 1 K 1

b_2

K_2

FIG. 1. Type 1 feasible region of K values are shown by the shaded region,
which consists of a convex hull and a positive cone. The convex hull is the
triangle with vertices (0, 0)T , (b1, 0)T , and (0, b2)T , and the positive cone is
the set of all vectors that are all positive multiples of (1, 1)T .
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triangle is of the form (0, 0)T α0 + (x1, 0)T α1 + (0, x2)T α2

with α0 + α1 + α2 = 1 and αi ≥ 0. Since (0, 0)T α0 is the zero
vector we may omit that term. Thus a point K = (K1, K2)T

in the feasible region can be expressed by(
K1

K2

)
=

(
x1

0

)
α1 +

(
0

x2

)
α2 +

(
1

1

)
β,

where α1 + α2 ≤ 1, α1 ≥ 0, α2 ≥ 0, and β ≥ 0. It must be
noted that the mapping from α and β to K is not one to one.
But it is onto the set of all K values in the feasible region.
We finally observe, that in this two-dimensional example the
Minkowski–Weyl decomposition was easy to obtain from vi-
sual observation.

Next we consider the three-dimensional example 0 → S1

→ S2 → 0. We obtain the following inequalities for K j

x1 + K1 − K2 ≥ 0, x2 + K2 − K3 ≥ 0,

where

(K1, K2, K3)T ≥ 0.

Since the feasible region is a region in three dimensions, un-
like the earlier example, it is harder to visualize. Nevertheless
the Minkowski–Weyl theorem asserts the existence of a sim-
ilar decomposition of the feasible region into the sum of a
convex hull and a positive cone. Additionally, there exists an
algorithm to calculate the vertices of the convex hull and a set
of vectors that span the positive cone.27

In this case this algorithm shows (we do not show this
calculation here as we shall always work in one or two
dimensions) that the convex hull has vertices (0, 0, 0)T ,
(0, x1, 0)T , (0, 0, x2)T , and (0, x1, x1 + x2)T , and the cone
is formed by the positive linear combination of directions
(1, 1, 0)T , (1, 1, 1)T , and (1, 0, 0)T . Thus any feasible
K = (K1, K2, K3)T can be written as⎛

⎜⎝
K1

K2

K3

⎞
⎟⎠ =

⎛
⎜⎝

0

x1

0

⎞
⎟⎠ α1 +

⎛
⎜⎝

0

0

x2

⎞
⎟⎠ α2 +

⎛
⎜⎝

0

x1

x1 + x2

⎞
⎟⎠ α3

+

⎛
⎜⎝

1

1

0

⎞
⎟⎠ β1 +

⎛
⎜⎝

1

1

1

⎞
⎟⎠ β2 +

⎛
⎜⎝

1

0

0

⎞
⎟⎠ β3,

where α1 + α2 + α3 ≤ 1, α1 ≥ 0, α2 ≥ 0, α3 ≥ 0, and
β1 ≥ 0, β2 ≥ 0, β3 ≥ 0.

It is clear from the discussion above that in general, by
virtue of the Minkowski–Weyl theorem there exist matrices
B and D such that, K ∈ F if and only if K can be written in
the form,

K = Bα + Dβ,

where α and β are arbitrary real vectors subject to the con-
ditions α ≥ 0, 1T α ≤ 1, and β ≥ 0, where 1 is the (column)
vector whose components are all 1. The conditions on α take
this particular form because as in the two examples above,
the origin in K space always forms one extreme point of the
convex hull associated with the decomposition. Thus B is the

matrix whose column vectors are the extreme points (except
the origin), and the columns of the matrix D form the extreme
directions that span the positive cone.

Additionally we make an important observation. It can be
proven that if we scale the initial state x by a scalar V > 0,
the feasible region F changes in such a way that the resulting
new convex hull is simply the original convex hull scaled by
V , while the positive cone remains unchanged. Thus under
the scaling of x by V > 0, the matrix B is O(V ) while D is
independent of V .

Unfortunately the complexity of the computation of
Minkowski–Weyl decomposition increases rapidly with the
dimensionality of K . This motivates us to limit our algo-
rithms to only work in one or two dimensions of K space at a
time. This can be done by partitioning the set of reactions into
groups of one or two. We shall provide details of the partition-
ing method in Sec. V and details of one- and two-dimensional
feasible regions in Sec. IV.

Distributions for α and β: Having obtained such a de-
composition for K , our problem is transformed into finding
suitable distributions for α and β. It must be noted that the
number of components of α and β together are in general
more than the number of components of K . However, unlike
the components of K the components of α and β are subject
to the simpler constraints α ≥ 0, 1T α ≤ 1, and β ≥ 0.

Let us denote E(K ) = λ. If K ∈ F with probability 1,

then by convexity of F it follows that E(K ) = λ ∈ F . If
λ ∈ F , then there exist vectors p and q such that λ = Bp
+ Dq with p ≥ 0, 1T p ≤ 1, and q ≥ 0. Additionally, tak-
ing expectations on both sides of the relation K = Bα + Dβ,
we see that p = E(α) and q = E(β). Thus the second step
of the tau method involves finding p and q from λ. Given
λ = E(K ) the choice of (p, q) is not unique. One may im-
pose an additional constraint to make this choice unique. We
shall describe this step in detail in Sec. IV. We have found
that the complexity of the computations involved in finding
p and q also increases rapidly with the dimensionality of K .
This is yet another factor that motivates us to partition the
reactions into groups that result in one- or two-dimensional
regions.

Once p and q are chosen, the next step is to generate
(vector valued) random variables α and β with respective
means E(α) = p and E(β) = q. The conditions on the distri-
bution of K laid down at the beginning of this section imply
that the distribution for α and β must satisfy the following
conditions:

1. The resulting distribution for K must satisfy O(τ ) con-
sistency condition.

2. The values of α and β are such that the resulting values
of K = Bα + Dβ encompass all integer values in F .

3. 1T α ≤ 1, α ≥ 0, and β ≥ 0.
4. Cov(α) → 0 and Cov(β) = O(V ) as V → ∞, when the

initial state x is scaled according to x = V z keeping z
constant. As explained in Appendix D this ensures that
as V → ∞ the updated state X becomes deterministic
and thus equals the implicit Euler solution.

5. Generating a sample from the distribution must be com-
putationally tractable.
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We have not been able to find a “natural family of distri-
butions” for the variables α and β such that Bα + Dβ takes
all the integer values in the convex polyhedron F in arbi-
trary dimensions of K space. If we only look for real valued
distributions taking values in the convex polytope spanned
by columns of B, then there is a natural family of distri-
butions, namely the Dirichlet distributions.28 However, then
K = Bα + Dβ will not be integer any more, and we will
have to round. Rounding results in errors that are difficult to
study in the case of small numbers, and thus we abandon this
approach.

In this paper, we propose two specific tau leap methods
that follow from the above general approach. Both methods
first partition the set of reactions into groups such that the
Minkowski–Weyl decomposition is always carried out in a K
space of dimension two or one. We shall use scaled binomial
distributions for α and Poisson distributions for β. We note
that this choice of these distributions is consistent with the
above five conditions.

In the first method, each group of reactions is updated
in a sequential manner. We call this method as the implicit
Minkowski–Weyl sequential method and is described in detail
in Sec. V A. Since nonnegativity of the intermediate state is
maintained after each group is updated, this method guaran-
tees nonnegativity of the updated next state. The major draw-
back of this method is that in the fluid limit it does not be-
come the implicit Euler, but rather the “sequentially updated
implicit Euler.” This latter scheme (which is almost never
used to solve ODEs) is not as good a method as the implicit
Euler is for stiff systems as we explain later. The second
method attempts to rectify the drawback of the first method
but as a compromise nonnegativity is no longer guaranteed.
This method simultaneously updates each group of reactions
independently of the other groups. This method may lead to
negative states and when a negative state is encountered a
bounding procedure is applied to obtain a “nearby” nonnega-
tive state. This method is called the implicit Minkowski–Weyl
parallel method and is described in Sec. V B.

IV. FEASIBLE REGIONS IN ONE AND TWO
DIMENSIONS

In this section we describe all possible one-dimensional
regions and all possible two-dimensional regions correspond-
ing to (stoichiometrically) reversible pairs of reactions. For
each type of feasible region, we describe the algorithm to
generate a sample for K subject to the constraint E(K ) = λ,
where λ is assumed computed before.

A. One-dimensional feasible regions in K

For one-dimensional feasible region, the linear inequality
condition on K falls into two categories: K is either bounded
between 0 and a positive integer b, or K is unbounded and
nonnegative. Our algorithm proceeds as follows. Let the state
prior to update be x and suppose λ = E(K ) is given. If the
feasible K values are bounded by an integer b, we choose
K ∼ B(b, p), where p = λ/b. If the feasible K values are

unbounded, we choose K ∼ P(λ). We illustrate via some ex-
amples below.

Example 1, S1
c→ S2: The updated state in this example

follows the inequalities:

x1 − K ≥ 0, x2 + K ≥ 0, where K ≥ 0.

Hence, 0 ≤ K ≤ x1. In terms of the Minkowski–Weyl decom-
position, we may write K = x1α with 0 ≤ α ≤ 1.

We choose K to be binomial bounded by b = x1 with
mean λ. Thus K = x1α ∼ B(x1, p), where p = λ/x1.

The feasible region of K in this example is also applica-
ble to the example S1 + S2

c→ S3. In this case K satisfies

x1 − K ≥ 0, x2 − K ≥ 0, x3 + K ≥ 0, where K ≥ 0.

Therefore, 0 ≤ K ≤ b = min{x1, x2}. Thus we may write
K = min{x1, x2}α with 0 ≤ α ≤ 1. We generate K according
to K ∼ B(min{x1, x2}, p), where p = λ/min{x1, x2}.

Example 2, 0
c→ S1: This reaction stands for the produc-

tion of a molecule S1. The inequalities for K are

x1 + K ≥ 0, K ≥ 0.

Here K has no upper bound. We choose K ∼ P(λ).
It can be verified that the method described above satis-

fies O(τ ) consistency. Moreover, it can also be verified that
Cov(K/V ) → 0 to ensure the desired fluid limit. We do not
show these calculations here, but we comment that they fol-
low from reasoning similar to the ones given for the case
of Type 1 region in two dimensions (see Appendix E and
Sec. IV B).

B. Two-dimensional feasible region: Type 1

The Type 1 example of polyhedral region is the shaded
region shown in Fig. 1. This region corresponds to the pair of
inequalities

−b2 ≤ K1 − K2 ≤ b1.

The corresponding convex hull is the triangle with vertices
(0, 0)T , (b1, 0)T , and (0, b2)T , and the corresponding positive
cone is the set of all vectors that are all positive multiples of
(1, 1)T . Here b1 and b2 depend on the initial state x . Thus
the Minkowski–Weyl decomposition for K has the following
form:(

K1

K2

)
=

(
b1 0

0 b2

)
α +

(
1

1

)
β. (9)

Here α = (α1, α2)T , while β is scalar valued.
The simplest example with Type 1 region is the reversible

monomolecular reaction given by S1 ↔ S2. This example was
already discussed in Sec. III and in this case b1 = x1 and
b2 = x2.

Type 1 region generally arises corresponding to re-
versible pairs of reactions where each reaction contributes to
a decrease in at least one species. Here we describe a few
common examples.
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1. S1 + S2 ↔ S3: The constraints on K = (K1, K2)T are
given by

−x3 ≤ K1 − K2 ≤ min{x1, x2}.
Hence b1 = min{x1, x2} and b2 = x3.

2. S1 + S2 ↔ S3 + S4: The constraints on K = (K1, K2)T

are given by

−min{x3, x4} ≤ K1 − K2 ≤ min{x1, x2}.
Therefore, b1 = min{x1, x2}, b2 = min{x3, x4}.

3. 2 S1 ↔ S2: The constraints on K = (K1, K2)T are given
by

−x2 ≤ K1 − K2 ≤ x1/2.

We obtain b1 = x1/2 , b2 = x2. We note that, if we use
b1 = �x1/2� (which denotes the largest integer less than
or equal to x1/2) instead of b1 = x1/2, we obtain a
smaller feasible region. It can be shown that the “lost
region” does not contain any integers and hence we do
not miss any valid points.

4. 2 S1 ↔ 2 S2: The constraints on K = (K1, K2)T are
given by

−x2/2 ≤ K1 − K2 ≤ x1/2.

Here b1 = x1/2, and b2 = x2/2. As explained above, we
may equivalently use b1 = �x1/2� and b2 = �x2/2�.

5. S1 + S2 ↔ S1 + S3: Note that the number of species
S1 remains unchanged. The inequality conditions
for K = (K1, K2)T are given by α = (α1, α2)T , and
p = (p1, p2)T while β and q are scalar valued.

−x3 ≤ K1 − K2 ≤ x2.

Hence, b1 = x2 and b2 = x3.

We note that in each case, b scales with x in the following
way: b(V x) = V b(x) for all V > 0.

We now describe how the IMW-τ method is applied to a
pair of reactions with Type 1 region. Suppose the number of
molecules prior to updating this pair of reactions is x . First
we compute b from x as described by the examples above.
As before we denote E(K ) = λ, E(α) = p, and E(β) = q.
Taking the mean of Eq. (9), we get(

λ1

λ2

)
=

(
b1 0

0 b2

)
p +

(
1

1

)
q. (10)

Here p = (p1, p2)T while q is scalar valued. The condi-
tions on α and β are α1 + α2 ≤ 1, α1 ≥ 0, α2 ≥ 0, and β ≥ 0.
Suppose p1 + p2 = p̄. Combining with Eq. (10), we obtain a
linear system

b1 p1 + q = λ1, b2 p2 + q = λ2, p1 + p2 = p̄.

(11)

The conditions on α and β yield

p̄ ≤ 1, q ≥ 0, p1 ≥ 0, p2 ≥ 0. (12)

Note that this is an underdetermined system of equations
for p1, p2, and q. First let us consider the case where both

b1 and b2 are nonzero. In this case one may verify that the
feasible values of p̄ lie between upper bound p̄U and lower
bound p̄L , given by

p̄U = min

{
1,

λ1

b1
+ λ2

b2

}
,

p̄L = max

{
λ2 − λ1

b2
,
λ1 − λ2

b1

}
. (13)

Our method chooses a combination of p̄U and p̄L given by

p̄ = r p̄L + (1 − r ) p̄U , r = r0[1 − e−(λ1+λ2)], (14)

where we choose r0 = 0.5 in our simulations. The term
1 − e−(λ1+λ2) ensures that r is O(τ ), which in turn ensures
the consistency of the method (see Appendix E).

After p̄ is computed, p1, p2, and q are computed by

q = λ1b2 + λ2b1 − b1b2 p̄

b1 + b2
,

(15)

p1 = λ1 − q

b1
, p2 = λ2 − q

b2
.

Suppose b1 = 0 then Eq. (11) has unique solutions for
p2 and q. One has freedom in the choice of p1, but it will not
be used as b1α1 = 0 regardless of the choice of α1. Similar
comment applies when b2 = 0. If both b1 = b2 = 0, then the
feasible region contains only the diagonal where K1 = K2,
and the updated state is always x .

Having found p1, p2, and q the next step is to choose
appropriate distributions for α1, α2, and β subject to the
constraints that E(αi ) = pi , E(β) = q, αi ≥ 0, β ≥ 0, and
α1 + α2 ≤ 1. Since biαi and β must be integer valued, biαi

is bounded, and β is unbounded, we pick biαi to be bino-
mial with parameters bi and pi , and β to be Poisson with pa-
rameter q. The reason for the choice of these distributions is
motivated by the fact that they are relatively inexpensive to
generate and also that their covariances scale in the appropri-
ate way to provide the correct fluid limit as seen below. It is,
however, difficult to ensure that α1 + α2 ≤ 1. Given the ge-
ometry of the Type 1 region (see Fig. 1), allowing α1, α2 to
be independent and taking values between 0 and 1 still results
in points inside the polyhedral region. Thus, on the whole,
we choose α1, α2, and β to be independent and having distri-
butions given by, b1α1 ∼ B(b1, p1), b2α2 ∼ B(b2, p2), and
β ∼ P(q), where B and P are binomial and Poisson ran-
dom variables with parameters shown inside the parentheses.
Then we set K1 = b1α1 + β, K2 = b2α2 + β, and the system
is updated by X = x + νK .

The proof for O(τ ) consistency of this update method is
shown in Appendix E. In order to see that the fluid limit be-
haves appropriately, we need to verify that Cov(K V /V ) → 0
when V → ∞ as stated in Sec. III and Appendix D. We
set x = V z and let V → ∞ keeping z fixed. By the scal-
ing property of the dependence of b on x , it follows that
b = O(V ). First we note that as V → ∞, the propensity func-
tion a(V, zV ) is O(V ) and hence λ is O(V ). From the ex-
pressions for p̄U , p̄L , and p̄ we can verify that p̄ is O(1).
Furthermore, Eq. (15) gives q = O(V ), p1 = p2 = O(1)
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K 1

K_2

b

FIG. 2. Type 2 feasible region of K values are shown by the shaded region,
which consists of a convex hull and a positive cone. The convex hull is the
line segment joining (0, 0)T and (0, b)T , and the positive cone is the set of all
vectors that are all positive multiples of (1, 1)T and (1, 0)T .

as V → ∞. Hence Var(αi ) = pi (1 − pi )/bi = O(1/V ),

Cov(α) =
(

p1(1−p1)
b1

0
0 p2(1−p2)

b2

)
= O(1/V ),

Var(β) = q = O(V ),

as desired.

C. Two-dimensional feasible region: Type 2

The Type 2 example of polyhedral region is the shaded
region shown in Fig. 2, which corresponds to the inequality
constraint

K2 − K1 ≤ b.

The corresponding convex hull is the line segment joining
(0, b)T and (0, 0)T , and the corresponding positive cone is
the set of all vectors that are positive multiples of (1, 1)T and
(1, 0)T . Here b depends on the initial state x . The Minkowski–
Weyl decomposition has the following form:(

K1

K2

)
=

(
0

b

)
α +

(
1 1

1 0

) (
β1

β2

)
, (16)

where 0 ≤ α ≤ 1, β1 ≥ 0, and β2 ≥ 0. The simplest example
with Type 2 region is the reversible monomolecular reaction
0 ↔ S1, where K = (K1, K2)T satisfies

K2 − K1 ≤ x1.

Thus in this case b = x1. We describe a few more common
examples with Type 2 region.

1. 0 ↔ S1 + S1: The constraint on K = (K1, K2)T is given
by

K2 − K1 ≤ x1/2.

We obtain b = x1/2, and we may equivalently use
b = �x1/2� as explained before.

2. S2 ↔ S1 + S2: The inequality condition for
K = (K1, K2)T is given by

K2 − K1 ≤ x1.

Hence b = x1.

We now describe how the IMW-τ method is applied to
a pair of reactions with Type 2 region. Suppose the number
of molecules prior to updating this pair of reactions is x . First
compute b from x as described by the above examples. We de-
note E(K ) = λ, E(α) = p, and E(β) = q as before. Taking
the mean of Eq. (16), we get(

λ1

λ2

)
=

(
0

b

)
p +

(
1 1

1 0

)(
q1

q2

)
. (17)

We obtain the following linear system from Eq. (17):

q1 + q2 = λ1, bp + q1 = λ2, (18)

with conditions

q1 ≥ 0, q2 ≥ 0, 0 ≤ p ≤ 1,

which follow from the inequality conditions on α and β.
We consider the case when b = 0, and we can find an

upper bound p̄U and a lower bound p̄L for p as

p̄U = min

{
λ2

b
, 1

}
, p̄L = max

{
λ2 − λ1

b
, 0

}
.

We choose

p = r p̄L + (1 − r ) p̄U , r = 0.5[1 − e−(λ1+λ2)].

The choice of r is to ensure consistency as in the Type 1 case.
We obtain that

q1 = λ2 − bp, q2 = λ1 − q1.

For the case b = 0, Eq. (18) has unique solutions for
q1 and q2, and bα = 0.

Having found p, q1, and q2, we choose independent
α, β1, and β2 where bα ∼ B(b, p), β1 ∼ P(q1), and β2

∼ P(q2). We set K1 = β1 + β2, K2 = bα + β1. The system
is updated by X = x + νK .

A calculation similar to the one in Appendix E shows
that O(τ ) consistency is satisfied. For the sake of brevity, we
do not show it in this paper. Moreover, we can verify that
Cov(α) = O(1/V ), and Cov(β) = O(V ) to show that fluid
limit for this example behaves appropriately.

V. THE IMW-τ METHODS

In this section, we describe in detail the implicit
Minkowski–Weyl sequential method (IMW-S) and the implicit
Minkowski–Weyl Parallel method, mentioned in Sec. IV. Both
methods involve partitioning the set of reactions into groups
according to the partitioning criterion which states that two
different reactions are in the same group if and only if their
stoichiometric vectors are either equal or the negative of each
other.
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To understand the rationale behind the partitioning crite-
rion, let us consider the example consisting of three reactions:
(1) S1 → S1 + S3, (2) S2 → S2 + S3, and (3) S3 → 0. Note
that reactions (1) and (2) both have the same stoichiometric
vector (0, 0, 1)T and reaction (3) has the negative of this sto-
ichiometric vector, namely (0, 0,−1)T . Thus stoichiometri-
cally both reactions (1) and (2) can be regarded as the reversal
of the reaction (3). Additionally, since we are only interested
in the updated state, it is adequate to know K1 + K2 without
knowing K1 and K2 separately. If we set K12 = K1 + K2, we
obtain the inequality condition for K12 and K3 given by

K3 − K12 ≤ x3.

In this problem, even though there are three reactions,
there are only two different stoichiometric vectors involved.
Consequently, this becomes a two-dimensional problem. In
fact this group of three reactions can be handled by the Type
2 two-dimensional region.

In general, the above partitioning algorithm results in
groups of reactions where the update problem for each group
can be described by a one- or two-dimensional region of the
type introduced in Sec. IV.

For ease of exposition, we shall assume throughout the
rest of this section that no two reactions have the same stoi-
chiometric vector or equivalently that the reaction counts K j

corresponding to reaction channels with identical stoichio-
metric vectors have been merged into one count K j as in the
example given above. Suppose there are M reactions parti-
tioned into L groups: J1, J2, . . . , JL , and Jl ⊂ {1, 2, . . . , M}.
For j ∈ Jl we denote by ν(l) the matrix with the stoichiometric
vectors ν j as column vectors, denote by a(l) the column vec-
tor with components a j , and denote by K (l) the column vector
with components K j . Thus Jl contains a single reaction or a
(stoichiometrically) reversible pair.

A. Implicit Minkowski–Weyl sequential method

In this section, we describe the implicit Minkowski–Weyl
sequential method, where the reaction groups are updated se-
quentially.

IMW-S algorithm: Suppose the state at time t is x and
we wish to compute the state X corresponding to time t + τ ,
where τ is a chosen step size. We execute the following
algorithm.

1. Set X (0) ← x .
2. For l = 1 : L , execute the following loop.

(a) Compute X ′ from

X ′ = X (l−1) + ν(l)a(l)(X ′)τ.

Let λ(l) = a(l)(X ′)τ .
(b) Generate samples K (l) with mean λ(l), using the meth-

ods in Sec. IV.
(c) Update the states according to

X (l) = X (l−1) + ν(l) K (l).

(1) Set the next state X ← X (L).

It is clear from Step 2 that if X (l−1) ≥ 0 then it follows
that X (l) ≥ 0 as well. Thus, if X (0) = x ≥ 0, by mathematical
induction we see that X = X (L) ≥ 0 as well.

It can be shown that the fluid limit of the IMW-S method
is the sequential implicit Euler method for RRE. We now de-
scribe the difference between implicit Euler and sequential
implicit Euler method applied to RRE as follows.

Recall that one step of the implicit Euler method for solv-
ing the RRE is given by

Yn+1 = Yn + νā(Yn+1)τ.

One step of the sequential implicit Euler method for the RRE
with reactions partitioned as above is given by

Y (0)
n+1 = Yn,

Y (l)
n+1 = Y (l−1)

n+1 + ν(l)ā(l)(Y (l)
n+1)τ, for l = 1, . . . , L ,

Yn+1 = Y (L)
n+1. (19)

The sequential implicit Euler to our knowledge is not used in
solving ODEs. As we explain later, it has some undesirable
properties.

B. Implicit Minkowski–Weyl parallel method

In this section, we describe IMW-P, where we up-
date reaction groups simultaneously and independently.
We denote P = {K ∈ ZM

+ | x + ν K ≥ 0} as before. Let
E(K (l)) = λ(l). We denote K = (K (1), K (2), . . . , K (L))T , and
λ = (λ(1), λ(2), . . . , λ(L))T .

We formulate polyhedral regions P (1),P (2), . . . ,P (L)

with one or two dimensions, defined by

P (l) = {K (l) ∈ ZMl+ | x (l) + ν(l) K (l) ≥ 0},
where Ml = 1 or Ml = 2. Here x (l) ∈ ZN

+ are to be chosen
appropriately.

Note that when K (1), K (2), . . . , K (L) are computed inde-
pendently and if K = (K (1), K (2), . . . , K (L))T , then K ∈ P̂
= P (1) × P (2) . . . × P (L). In general P̂ = P , and nonnegativ-
ity is not guaranteed. However, in order to satisfy E(K ) = λ,
it follows that E(K (l)) = λ(l), and thus λ(l) must be in P (l). We
choose x (l) in the following manner to guarantee this.

Let x (l) = x + y(l)
− , where y(l) = x + ν(l)λ(l). Note that

y(l)
− = max{−y(l), 0} is the negative part of y(l), and y(l)

+
= max{y(l), 0} is the positive part of y(l). It is known
that y(l) = y(l)

+ − y(l)
− , where y(l)

+ and y(l)
− are nonnegative.

By this choice, x (l) + ν(l)λ(l) = x + y(l)
− + (y(l) − x) = y(l)

−
+ y(l) = y(l)

+ ≥ 0.
As P = P̂ in general, the IMW-P method may lead to the

negative states of the updated state X (t + τ ), and a bounding
procedure21 is applied whenever a negative state is encoun-
tered.

IMW-P algorithm: Suppose the state at time t is x and
we wish to compute the state X corresponding to time t + τ ,
where τ is a chosen step size. We execute the following
algorithm.

1. Given current state x and a step size τ , compute X ′ from
X ′ = x + νa(X ′)τ . Let λ = a(X ′)τ .

2. For l = 1 : L , set y(l) ← x + ν(l)λ(l), and x (l) ← x
+ y(l)

− . Generate samples K (l) with mean λ(l)and in
the region P (l) = {K (l) ∈ ZMl+ | x (l) + ν(l) K (l) ≥ 0}, us-
ing methods in Sec. IV.

Downloaded 31 Jan 2011 to 130.85.223.237. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



044129-10 Yang, Rathinam, and Shen J. Chem. Phys. 134, 044129 (2011)

TABLE II. Comparison of the proposed IMW-τ methods: IMW-S and
IMW-P.

Methods/Issues Fluid limit Integer states Nonnegativity
IMW-S Sequential implicit Euler YES YES
IMW-P Implicit Euler YES NO

3. Update the states according to X = x + νK , where K
= (K (1), K (2), . . . , K (L))T .

4. Apply the bounding procedure21 if X is negative.

C. The issues with IMW-τ : Sequential versus parallel
updating schemes

We proposed two different methods IMW-S and IMW-P,
and we compare them in Table II. In Sec. III, we discussed the
conditions that an ideal tau leap method satisfies, one being
that the fluid limit should be a good stiff ODE solver. The

sequential implicit Euler, unfortunately, has some drawbacks
as a stiff ODE solver. First, it does not always preserve the
fixed points of an ODE.

There are special situations under which a fixed point of
the RRE is also a fixed point for the sequential implicit Euler.
This specifically happens if the following holds:

νa(X∗) = 0, iff ν j a j (X∗) = 0,

for each j ∈ Jl . (20)

In other words, when the equilibrium of the overall system is
also an equilibrium within each group of reactions.

Another issue is that the IMW-S is often slower during
the transients than the actual system unless smaller step sizes
are used (see Sec. VI D). This leads to lack of efficiency com-
pared with the IMW-P. The IMW-P, on the other hand, be-
haves like the implicit Euler in the fluid limit and seems to
overcome the above shortcomings of IMW-S. However, neg-
ative states may occur with IMW-P and one has to bound the
negative states and this leads to errors.
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FIG. 3. Test example S2 ↔ S1 ↔ S3: comparison of probability distributions (10 000 sample trajectories) of X1(2) and X2(2) obtained by the SSA (circle),
IMW-S (star), IMW-P (square), trapezoidal tau (triangle), and implicit tau (plus). Here τ = 0.2, T = 2, xT = 5 for (a) and (b) and xT = 50 for (c) and (d).

Downloaded 31 Jan 2011 to 130.85.223.237. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



044129-11 Stiff integral tau methods J. Chem. Phys. 134, 044129 (2011)

0 0.5 1 1.5 2
30

32

34

36

38

40

42

44

46

48

50
Test example: deterministic trajectories of X1(t)

RRE
IMW−S
IMW−P
TRAP

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Test example: deterministic trajectories of X2(t)

RRE
IMW−S
IMW−P
TRAP

0 0.5 1 1.5 2
0

2

4

6

8

10

12

14

16

18
RRE

Test example: deterministic trajectories of X3(t)

IMW−S
IMW−P
TRAP

(a) X1(t), xT = 50, T =2 2(t), xT = 50, T =2 (c) X

(f) X

3(t), xT = 50, T = 2

0 5 10 15 20
30

32

34

36

38

40

42

44

46

48

50
Test example: deterministic trajectories of X1(t)

RRE
IMW−S
IMW−P
TRAP

0 5 10 15 20
0

1

2

3

4

5

6

7

8
Test example: deterministic trajectories of X2(t)

RRE
IMW−S
IMW−P
TRAP

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18
Test example: deterministic trajectories of X3(t)

RRE
IMW−S
IMW−P
TRAP

(d) X1(t), xT = 50, T =20 (e) X

(b) X

2(t), xT = 50, T =20 3(t), xT = 50, T = 20

FIG. 4. Test example S2 ↔ S1 ↔ S3: comparison of deterministic trajectories of Xi (t) (i = 1, 2, 3) obtained by the RRE (blue circle), IMW-S (red star),
IMW-P (black square), and trapezoidal tau (magenta plus). Here T = 2 for (a)–(c) and T = 20 for (d)–(f).

VI. NUMERICAL EXAMPLES

In this section, we illustrate the IMW-S and IMW-P
methods by giving numerical results with several examples.
First is the test example S2 ↔ S1 ↔ S3, and the second is
the test example 0 ↔ S1 → S2 → S3 → 0. The other two are
more complex biological examples which are introduced and
explained later in this section.

We calculate the time scales from the RRE, represented
by the eigenvalues of the Jacobian matrix estimated at the
final time. The large range of eigenvalues exhibits the stiff-
ness of the system. We choose the step size τ to be small

in comparison with the slowest time scale, but large in com-
parison with the fastest time scale. We compared the IMW-
S and IMW-P methods with the exact simulation by SSA,
the implicit tau method, the trapezoidal tau, and the REMM
tau (parallel version) methods. We chose the parameters and
initial conditions so as to obtain a range of copy numbers
from small to medium in order to obtain a comprehensive
analysis. The bounding procedure was applied to the IMW-P
method, implicit tau, trapezoidal tau, and REMM tau meth-
ods when necessary. The IMW-S method naturally preserves
the nonnegative states and does not require the bounding
procedure.
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FIG. 5. Test example 0 ↔ S1 → S2 → S3 → 0: comparison of probability distributions (10 000 sample trajectories) of X1(0.2), X2(0.2), and X3(0.2) obtained
by the SSA (circle), IMW-S (star), IMW-P (square), trapezoidal tau (triangle). Here τ = 0.02, and T = 0.2.
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FIG. 6. Test example 0 ↔ S1 → S2 → S3 → 0: comparison of deterministic trajectories of Xi (t) (i = 1, 2, 3) obtained by the RRE (blue circle), IMW-S (red
star), IMW-P (black square), and trapezoidal tau (magenta plus). Here T = 0.2 for (a)–(c) and T = 5 for (d)–(f).

A. Test example: S2 ↔ S1 ↔ S3

We consider the following linear example Eq. (21)
with two reversible pairs of reactions and they both have
Type 1 Minkowski–Weyl decomposition. For sequential up-
dating, the system contains two groups and each group con-
sists of a reversible pair {(1), (2)} and {(3), (4)}.

(1) S1
c1→ S2, (2) S2

c2→ S1,

(3) S1
c3→ S3, (4) S3

c4→ S1.
(21)

We chose two initial values: X (0) = (5, 0, 0)T and
X (0) = (50, 0, 0)T . The system has a conserved quan-
tity X1(t) + X2(t) + X3(t) = X1(0) + X2(0) + X3(0) = xT ,
where xT = 5 and xT = 50 corresponding to these initial
values. We set c1 = 0.1, c2 = 0.5, c3 = 200, and c4 = 1000.
The eigenvalues of the Jacobian matrix corresponding to
the RRE are (−1200, 0, 0.6)T with the slowest time scale
1/0.6 ≈ 1.667, and the fastest time scale 1/1200 ≈ 0.001.
We chose final time T = 2. The step size was τ = 0.2.

The comparison of the probability distribution in a sim-
ulation of 10 000 trajectories for each method is shown in
Fig. 3. The IMW-S and IMW-P perform better than the im-
plicit tau and trapezoidal tau for xT = 50. The trapezoidal tau
does not capture the correct mean at xT = 50.

One major issue with the trapezoidal tau method is that
it performs poorly for very stiff problems since the transients

of the method decay slower than those of the true solution.
This can be best understood by examining the deterministic
part of this method applied to this example and compare it
against the true solution of the RRE. See Fig. 4 where the
RRE solution is compared with the approximate solutions ob-
tained by applying the deterministic part of the various tau
methods for the case xT = 50. By the deterministic part of
a tau method, we mean that at every time step, we update
the state by the expected value of the update due to the tau
method with no rounding applied. First, we observe that for
a linear propensity system as in this example, applying the
deterministic part of the tau method results in computing the
mean of the tau leap solution at each step. The plots shown
in Fig. 4 indicate that the means computed by IMW-P and
IMW-S methods follow the RRE solution reasonably well
while the mean computed by the trapezoidal tau method os-
cillates about the RRE trajectory for two of the components.
This oscillation is explained by considering the amplification
factor for the mean of the trapezoidal method which is given
by R = (2 + λτ )/(2 − λτ ) for time step τ and an eigenvalue
λ. In this example, the relevant eigenvalue is λ = −1200 and
τ = 0.2. For this choice R = −0.9835 and after ten time
steps R10 ≈ 0.85 which is much larger than the decay fac-
tor e10λτ ≈ 0 of the true solution. Plots in Fig. 4 parts (d) and
(f) show that these oscillations remain even for a larger fi-
nal time of T = 20 at which the system would have reached
stationarity.
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FIG. 7. Genetic circuit example: comparison of probability distributions (10 000 sample trajectories) of X1(5) and X3(5) obtained by the SSA (circle), IMW-S
(star), IMW-P (square), trapezoidal tau (triangle), REMM tau (plus). Here τ = 0.5, and T = 5.

B. Test example: 0 ↔ S1 → S2 → S3 → 0

We consider the following chemical system (22). It con-
tains three species undergoing five chemical reactions. By our
method, we group Reactions (1), (5) together, which form a
Type 2 region. We partition (2), (3), and (4) separately in three
groups.

(1) 0
c1→ S1, (2) S1

c2→ S2,

(3) S2
c3→ S3, (4) S3

c4→ 0, (5) S1
c5→ 0.

(22)

We chose the initial value to be X (0) = (5, 10, 15)T . We set
c1 = 20 000, c2 = 1, c3 = 100, c4 = 5, and c5 = 10 000. The
eigenvalues of the Jacobian matrix corresponding to the RRE
are (−5,−100,−10 001)T and hence the slowest time scale
is 0.2 and the fastest time scale is 1/10001 ≈ 10−4. We set
T = 0.2. We chose τ = 0.02.

The results are shown in Fig. 5 with the comparison
of the probability distributions for X1(0.2), X2(0.2), and
X3(0.2). The trapezoidal tau method performs poorly for
species S1. The amplification factor for the mean of the trape-
zoidal method is R = (2 + λτ )/(2 − λτ ) = −0.98, where
λ = −10 001 and τ = 0.02. Thus R10 ≈ 0.82 after ten time
steps, and it is much larger than the decay factor e10λτ ≈ 0. As
in the test example of the previous section we apply the deter-
ministic part of the tau leap methods to the RRE and compare
with the true solution of RRE. See Fig. 6, where the trape-
zoidal tau method has the oscillation about the RRE solution
for the species S1.

C. Biological example 1: Genetic circuit

We consider the following genetic circuit example in Eq.
(23), which describes a genetic transcription module with im-
portant biological significance.17 Reactions (1) and (2) corre-
spond to the binding and unbinding, respectively, of the pro-
tein A to its own gene promoter S1. When the gene promoter
is naked, it produces A at a rate c3 by reaction (3). When A
is bound to it, the gene promoter produces A at a rate c4 by
reaction (4). Finally A degenerates at a rate c5. In biological
systems, if c3 < c4, it represents a positive feedback loop, and
if c3 > c4, it is a negative feedback loop. Here we consider the
situation of negative feedback loop

(1) S1 + A
c1→ S2, (2) S2

c2→ S1 + A,

(3) S1
c3→ S1 + A, (4) S2

c4→ S2 + A, (5) A
c5→ 0.

(23)

Let X1 = #S1, X2 = #S2, X3 = #A. The reactions (3)
and (4) have the same stoichiometric vector which is the neg-
ative of that of reaction (5). Thus reactions (3), (4), and (5)
form a group, which reduces to a Type 2 region. Thus we may
group reactions (3), (4), and (5) together, resulting in a Type
2 region. We also group reactions (1) and (2) together, which
form a Type 1 region.

We chose the initial value to be X (0) = (3, 0, 14)T ,
and we note that X1(t) + X2(t) = 3 is a conserved quantity.
We chose c1 = 100, c2 = 1000, c3 = 1, c4 = 0.1, c5 = 0.1,
and T = 5. The eigenvalues of the Jacobian at T = 5 are
(−2455, 0,−0.14)T . The fastest time scale is approximately
4 × 10−4, and the slowest time scale is 1/0.14 ≈ 7. Here we
chose τ = 0.5.

TABLE III. Genetic circuit example: sample means and standard deviations of the state X1(5) (the sample size is 10 000) as computed by SSA, IMW-S,
IMW-P, REMM tau, and trapezoidal tau.

X1(5)/Methods SSA IMW-S IMW-P Trapezoidal tau REMM tau
Sample mean 1.2723 1.2966 1.2925 1.3018 1.2555
Standard deviation 0.8504 0.8120 0.8094 0.9829 0.8669
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TABLE IV. Genetic circuit example: sample means and standard deviations of the state X3(5) (the sample size is 10 000) as computed by SSA, IMW-S,
IMW-P, REMM tau, and trapezoidal tau.

X3(5)/Methods SSA IMW-S IMW-P Trapezoidal tau REMM tau
Sample mean 13.1924 13.2558 13.2718 13.2854 14.2235
Standard deviation 2.7156 2.5778 2.3037 3.1997 3.4222

The sample means and standard deviations for each
method are also provided for X1 and X3 at T = 5 for these
methods. It is noted from Fig. 7 and Tables III and IV that the
IMW-S and IMW-P methods capture the stochasticity better
than the trapezoidal tau method.

D. Biological example 2: Genetic positive
feedback loop

A more complex and stiff chemical network is consid-
ered with the example of the genetic positive feedback loop

in Eq. (24). Here x is the protein monomer, y is the protein
dimer, d0 is the regulatory site unbounded to protein dimer,
dr is the regulatory site bounded to protein dimer, and m is
the mRNA. Reactions (1) and (2) describe the reversible reac-
tions involving the dimerization of the protein. Reactions (3)
and (4) are the binding and unbinding processes of the dimer
to the regulatory site. Reactions (5) and (6) are the processes
of transcription, and reaction (7) is the process of translation.
Reactions (8) and (9) are the decays of the protein monomers
and the mRNA. Reactions (1) − (4) have much faster time
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FIG. 8. Genetic loop example: comparison of probability distributions (10 000 sample trajectories) of Xi (50) (i = 1, 2, 3, 5) obtained by the SSA (circle),
IMW-S (star), IMW-P (square), trapezoidal tau (triangle). Here τ = 0.05 and T = 50.
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FIG. 9. Genetic loop example: comparison of probability distributions (10 000 sample trajectories) of Xi (50) (i = 1, 2, 3, 5) obtained by the SSA (circle),
IMW-S (star), IMW-P (square), trapezoidal tau (triangle). Here τ = 1, and T = 50.

scale than reactions (5) − (9).29

(1) x + x
κ+→ y, (2) y

κ−→ x + x, (3) y + d0
k+→ dr ,

(4) dr
k−→ y + d0, (5) d0

α→ d0 + m, (6) dr
β→ dr + m,

(7) m
σ→ m + x, (8) x

γp→ 0, (9) m
γm→ 0. (24)

Let X1 = #x , X2 = #y, X3 = #d0, X4 = #dr , X5 = #m.
The initial value is X (0) = (10, 0, 20, 0, 0)T , and X3(t)
+ X4(t) = 20 is a conserved quantity. The reaction param-
eter values are κ+ = 50, κ− = 1000, k+ = 50, k− = 1000,
α = 1, β = 10, σ = 3, γp = 1, γm = 6. The final time cho-
sen is T = 50. The eigenvalues of the Jacobian corresponding
to RRE at T = 50 are (−9979,−11382,−0.083,−6.02, 0)T .
The fastest and the slowest time scales are 1/11382 ≈ 0.0001
and 1/0.083 = 12, respectively. Following the partition-
ing criterion, we group the reactions as {{(1), (2)},
{(3), (4)}, {(5), (6), (9)}, {(7), (8)}}.

We first chose the step size τ = 0.05. Figure 8 com-
pares the SSA, IMW-S, IMW-P, and trapezoidal tau meth-
ods. First, the performance of IMW-S and IMW-P meth-
ods appear to be similar. Second, we notice that for some
species the IMW-S and IMW-P methods perform better while
the trapezoidal tau performs better for the other species. But
the performance of the IMW-S and IMW-P methods over-
all seems to be more robust than that of the trapezoidal tau
method.

We also compare these distributions by choosing a larger
step size τ = 1. The same initial states and parameter val-
ues described before were used. Figure 9 compares the prob-
ability distribution (at T = 50) for the SSA, IMW-S, IMW-P,
and trapezoidal tau methods. We observe that IMW-S fails to
reach the correct mean values for X1, X2, and X3. This is due
to the fact that the sequential update is slower to catch up dur-
ing the transient. The IMW-P does not suffer from this prob-
lem though it is less accurate than with time step τ = 0.05.
However, the IMW-S performs well for τ = 0.05 as shown
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FIG. 10. Genetic loop example: comparison of trajectories X2(t) obtained by SSA, RRE, IMW-S and IMW-P for T = 300 computed with various τ values.
Here (a) is the RRE vs SSA, (b)–(d) are RRE vs IMW-S corresponding to τ = 0.05, τ = 0.5, and τ = 1, and (e)–(f) are RRE vs IMW-P corresponding to
τ = 0.5 and τ = 1. Three sample trajectories (T1, T2, and T3) are provided for each case in (c)–(f). Note that these individual sample trajectories may not be
compared across different methods as they are chosen independently.

earlier, which is still a step size very large compared with the
fastest time scale.

We explored the methods more by comparing the trajec-
tories of X2 for different τ . Figure 10 depicts the trajectories
of X2(t) with the SSA, IMW-S, and IMW-P methods. Since

the trajectories of SSA and the RRE are close during the tran-
sient, for ease of comparison, we only compare the methods
with RRE in these plots. When τ = 0.05, the IMW-S captures
the transient well. For large step size τ = 0.5, and τ = 1, the
paths of the method are deviated from RRE, with the method
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showing a slower trend to reach the equilibrium states. On the
other hand, the choice of the step size for IMW-P does not
affect the transient approximation and the speed to reach the
equilibrium states.

VII. CONCLUSION

In this paper, we developed two new tau leaping meth-
ods, both generally called IMW-τ , for the simulation of stiff
stochastic chemical reactions. The IMW-τ methods use the
Minkowski–Weyl decomposition to describe the polyhedral
region of reaction count vectors that correspond to nonneg-
ative population states. Additionally, they use a split step
method where the first part involves computing the mean of
the update implicitly and the second part involves generating
random variables with the mean computed in the first part.
The methods are presented in two versions, the sequential
(IMW-S) and parallel (IMW-P) updating schemes, and both
lead to integer valued states without rounding. The IMW-S
method partitions the sets of reactions into groups, and each
group consists of a single reaction or reversible pair. The
method updates states according to these groups in a sequen-
tial manner. It naturally preserves the nonnegative states, and
the fluid limit of IMW-S is the sequential implicit Euler. The
IMW-P method maintains the advantage of IMW-S of work-
ing in one or two dimensions, but it updates the groups of
reactions simultaneously in an independent manner. The fluid
limit of IMW-P is the implicit Euler. It may lead to negative
states, and the bounding procedure is applied whenever a neg-
ative state occurs.

We studied the numerical behavior of the IMW-S and
IMW-P methods through a number of biologically motivated
examples and compared them with the SSA, trapezoidal tau,
and REMM tau (parallel) methods. We demonstrated that
both the IMW-τ methods achieve good approximations for
stiff systems. However, the IMW-P method was better able
to capture the statistics of the trajectories during the transient
(i.e., before reaching stationarity) with larger step sizes when
compared to IMW-S.
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APPENDIX A: FLUID LIMIT

Consider a stochastic chemical system with M reaction
channels and N molecular species. We associate with reaction
channel j nonnegative vectors μ′

j , μ j ∈ ZN
+ , where μ j is the

vector whose i th component counts the number of molecules
of i th species appearing as reactants in the reaction while
μ′

j is the vector whose i th component counts the number

of molecules of i th species appearing as products in the re-
action. For instance if N = 2 and if reaction j is given by
S1 + S1 → S1 + S2 then μ j = (2, 0)T and μ′

j = (1, 1)T . We
denote the reaction propensity constants by c1, . . . , cM and
the system volume by V . Define ν j = μ′

j − μ j to be the stoi-
chiometric vectors. For convenience we define the “combina-
tions” function k : Z+ × Z+ → Z+ by

k(x, y) = x!

y!(x − y)!
, y ≤ x,

k(x, y) = 0, y > x . (A1)

Thus k(x, y) is the number of distinct ways to choose y items
out of x items. Note that k(x, 0) = 1.

1. Volume dependence of propensity function

Suppose the system has the system volume V . The
propensity function a j of reaction j is given by3

a j (x, V ) = c j
1

V |μ j |−1 
N
i=1k(xi , μi j ), (A2)

where |μ j | = μ1 j + . . . + μN j . Note that if reaction j is of
the form 0 → S1 then |μ j | = 0and above equation gives

a j (x, V ) = c j V .

This is a reasonable model since a “pure production” event
has a propensity proportional to the volume V .

We can define the concentration Z (t) = X (t)/V ∈ RN
+

to be the number of species per volume. If we introduce the
change of variable z = x/V in Eq. (A2) and keep z fixed and
let V → ∞ (such that V z remains integer), we get the asymp-
totic form

a j (V z, V ) ∼ V c j

N
i=1

z
μi j

i

μi j !
. (A3)

This follows because if we let V → ∞ (such that V z remains
integer) we obtain

k(V z, m) ∼ V m
m−1
i=0 (z − i

V )

m!
∼ V m zm

m!
.

Note that if m = 0, k(V z, m) = 1.
We define the reaction rate function ā j of reaction j by

ā j (z) = κ j 
N
i=1z

μi j

i , (A4)

where the reaction rate constant κ j is related to the reaction
propensity constant c j by

κ j = c j


N
i=1μi j !

. (A5)

Thus it follows that as V → ∞ such that V z remains
integer, we obtain the asymptotic relationship between the
propensity function and the reaction rate function,

a j (V z, V ) ∼ V ā j (z). (A6)

2. Fluid limit of the tau leap method

As we discussed in Sec. II B, let Z̄ (t) be the unique solu-
tion of the RRE,
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˙̄Z (t) = νā[Z̄ (t)], (A7)

with initial condition Z̄ (0) = z.
Let Z̄ ′ be one step implicit Euler solution of Eq. (A7)

with step size τ ,

Z̄ ′ = z + νā(Z̄ ′)τ. (A8)

Here we consider one step of the tau method with a
fixed step size τ applied to an initial state x = V z, where V
is the system volume and z is the initial concentration. The
resulting updated state X depends on V and thus we shall
use XV to indicate it. We wish the updated concentration
ZV = XV /V to approach a deterministic limit as V → ∞
and we wish this limit to be the result of one step of implicit
Euler with step size τ applied to the corresponding fluid limit
system governed by the RRE. Now let XV be one step leap
approximation

XV = V z + νKV . (A9)

Recall that the first step inside each time step of the tau
method is the computation of the X ′

V given by

X ′
V = V z + νa(X ′

V , V )τ.

Divide by V

X ′
V

V
= z + νa(X ′

V , V )τ

V
.

Let Z ′
V = X ′

V /V and assume that limV →∞ Z ′
V exists. Taking

the limit as V → ∞, we obtain

lim
V →∞

X ′
V

V
= z + νā

(
lim

V →∞
X ′

V

V

)
τ,

and if we assume Eq. (A8) has a unique solution it follows
that

lim
V →∞

Z ′
V = Z̄ ′.

Divide XV by V from Eq. (A9), we get

XV

V
= z + νKV

V
.

Since E(KV ) = a(X ′
V )τ ,

E

(
XV

V

)
= z + νa(X ′

V )τ

V
= X ′

V

V
.

Therefore,

lim
V →∞

E

(
XV

V

)
= lim

V →∞
X ′

V

V
= Z̄ ′.

3. Sufficient conditions on α and β

We use the following lemma to ensure that XV /V → Z̄ ′

weakly.
Lemma 1. Suppose Cov(YV ) → 0 and E(YV ) → y as

V → ∞. Then YV → y weakly as V → ∞.
Since we have already established that E(XV /V ) → Z̄ ′,

it is sufficient to ensure that Cov(XV /V ) → 0. By the re-
lation XV /V = z + νKV /V , it is sufficient to ensure that
Cov(KV /V ) → 0.

Recall that for IMW-τ method, K = Bα + Dβ. We now
find conditions on α and β to satisfy Cov(KV /V ) → 0. First
notice that D is independent of V while B is linear in V . Thus
we can write

KV = BV αV + DβV ,

and

Cov(KV ) = BV Cov(αV )BT
V + DCov(βV )DT .

Therefore,

Cov

(
KV

V

)
= BV Cov(αV )BT

V

V 2
+ DCov(βV )DT

V 2
. (A10)

As V → ∞, we may choose Cov(αV ) → 0 to ensure
BV Cov(αV )BT

V /V 2 → 0, and choose Cov(βV ) to be O(V ),
so that DCov(βV )DT /V 2 → 0. Our choice of distributions
for α and β in the IMW-tau methods presented in this paper
satisfies these conditions and thus the fluid limit of the tau
method is the implicit Euler applied to the RRE.

APPENDIX B: CONSISTENCY OF THE IMW-τ METHOD
FOR TYPE 1

Here we demonstrate O(τ ) consistency of the IMW-τ
method for the two-dimensional Type 1 region mentioned in
Sec. IV B.

Let R(τ ) be the exact number of reactions in (t, t + τ ],
and K (τ ) be the approximated number of reactions for IMW-
τ method in (t, t + τ ]. We shall establish that P{K (τ ) = l}
− P{R(τ ) = l} = O(τ 2) for all l ∈ Z2

+.
When the IMW-τ method is applied to this type, we

have that K1 = b1α1 + β, K2 = b2α2 + β, and we choose
r = r0(1 − e−(λ1+λ2)) = O(τ ). We calculate P{K (τ ) = l}
= P{K1 = l1, K2 = l2}, and write them in terms of ordered
powers of τ . We do not discuss the trivial case when b1

= b2 = 0, since the updated state is always x .
First we shall establish the orders of λ, p1, p2, and q.

Since the implicit Euler solution X ′ of the RRE satisfies X ′

= x + νa(X ′)τ , we can verify that X ′ = x + O(τ ) by the
implicit function theorem. Thus λ j = a j (X ′)τ = a j (x +
O(τ ))τ can be Taylor expanded at x as

λ j = a j (x + O(τ ))τ = a j (x)τ + a′
j (x)o(τ ).

Therefore, when b1 and b2 are both nonzero, all the ele-
ments of x are nonzero, and we can write λ1 = O(τ ) and λ2

= O(τ ). From Eq. (13) we obtain p̄U = O(τ ), p̄L = O(τ ),
and hence from Eq. (14) we obtain p̄ = O(τ ). Moreover,
r = O(τ ), from Eq. (15).

For the case b1 = 0 and b2 = 0, we can verify that
λ1 = O(τ 2) and λ2 = O(τ ). Thus q = λ1 = O(τ 2), and p2
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= λ2 − q/b2 = O(τ ). Likewise, when b1 = 0 and b2 = 0,
q = λ2 = O(τ 2), and p1 = O(τ ). We summarize the orders
of pi and q as follows.

� If b1b2 = 0, p1 = p2 = O(τ ), q = O(τ 2).
� If b1 = 0, b2 = 0, q = O(τ 2), p2 = O(τ ).
� If b2 = 0, b1 = 0, q = O(τ 2), p1 = O(τ ).

We first show that the IMW-τ method is O(τ l1+l2 )
for (b1, b2) = (0, 0)T . Recall that b1α1 ∼ B(b1, p1), b2α2 ∼
B(b2, p2), and β ∼ P(q), where B and P are binomial and
Poisson random variables, and b1α1, b2α2, and β are indepen-
dent.

� If b1b2 = 0, then

P{K1 = l1, K2 = l2}
= ∑min(l1,l2)

l=0 P{β = l, b1α1 = l1 − l, b2α2 = l2 − l}
= ∑min(l1,l2)

l=0 P{β = l}P{b1α1 = l1 − l}
×P{b2α2 = l2 − l}

= ∑min(l1,l2)
l=0

e−q ql

l!
×( b1

l1−l

)
pl1−l

1 (1 − p1)b1−l1+l

×( b2

l2−l

)
pl2−l

2 (1 − p2)b2−l2+l

= ∑min(l1,l2)
l=0 O(τ 2l) × O(τ l1−l) × O(τ l2−l) = O(τ l1+l2 ).

� Similarly, if b1 = 0 and b2 = 0, then P{b1α1 = 0}
= 1, and hence

P{K1 = l1, K2 = l2}
= P{β = l1}P{b2α2 = l2 − l1} = O(τ l1+l2 ).

� Likewise, if b2 = 0, and b1 = 0, then

P{K1 = l1, K2 = l2}
= P{β = l1}P{b1α1 = l2 − l1} = O(τ l1+l2 ).

Thus we have shown that P{K (τ ) = l} = P{K1

= l1, K2 = l2} = O(τ l1+l2 ). It is known that P{R(τ ) = l}
= P{R1 = l1, R2 = l2} = O(τ l1+l2 ).21 Thus when l1 + l2 ≥
2, we can obtain P{K (τ ) = l} − P{R(τ ) = l} = O(τ 2).

For the case l1 + l2 = 1, namely (K1 = 0, K2 = 1) or
(K1 = 1, K2 = 0), in order to guarantee the O(τ 2) con-
sistency for this case, the coefficient of τ of the IMW-τ
method should be the same as the coefficient of τ for
true solution. By definition of propensity function of R2,
P{R1 = 0, R2 = 1} = a2(x)τ + O(τ 2) = λ2 + O(τ 2).
Similarly, P{R1 = 1, R2 = 0} = a1(x)τ + O(τ 2) = λ1 + O
(τ 2). For the IMW-τ method, we have the following results.

� If K1 = 0, K2 = 1, then

P{K1 = 0, K2 = 1}
= P{b2α2 = 1} = b2 p2(1 − p2)b2−1 = λ2 + O(τ 2),

since p2 = (λ2 − q)/b2.
� Similarly, if K1 = 1, K2 = 0,

P{K1 = 1, K2 = 0} = P{b1α1 = 1} = λ1 + O(τ 2).

We obtain the local error formulae below. Thus we reach
the O(τ ) consistency.

1. If 0 < l1 + l2 ≤ 1, P{K1 = l1, K2 = l2} and P{R1 = l1,

R2 = l2} have the same coefficient for τ , so O(τ ) can be
eliminated, then

P{K1 = l1, K2 = l2} − P{R1 = l1, R2 = l2} = O(τ 2).

(B1)

2. If l1 + l2 ≥ 2, then

P{K1 = l1, K2 = l2} − P{R1 = l1, R2 = l2}
= O(τ l1+l2 ). (B2)

3. If l1 + l2 = 0, namely l1 = l2 = 0, we apply the state-
ments (B1) and (B2) to obtain,

P{K1 = 0, K2 = 0} − P{R1 = 0, R2 = 0}
= (1 − ∑

(l1,l2)=(0,0) P{R1 = l1, R2 = l2})
−(1 − ∑

(l1,l2)=(0,0) P{K1 = l1, K2 = l2})
= ∑

(l1,l2)=(0,0)(P{K1 = l1, K2 = l2}
−P{R1 = l1, R2 = l2})

= O(τ 2).
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