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Abstract We present a systematic study of homogenization of diffusion in random me-

dia with emphasis on tile-based random microstructures. We give detailed examples of

several such media starting from their physical descriptions, then construct the associated

probability spaces and verify their ergodicity. After a discussion of material symmetries of

random media, we derive criteria for the isotropy of the homogenized limits in tile-based

structures. Furthermore, we study the periodization algorithm for the numerical approxi-

mation of the homogenized diffusion tensor and study the algorithm’s rate of convergence.

For one dimensional tile-based media, we prove a central limit result, giving a concrete rate

of convergence for periodization. We also provide numerical evidence for a similar central

limit behavior in the case of two dimensional tile-based structures.

Key words homogenization; periodization; random media; ergodic dynamical systems;

material symmetry; isotropy

2000 MR Subject Classification 37A05; 37A25; 78M40; 35B27; 78A48

1 Introduction

In this article we present a general theory of homogenization of the steady-state diffusion

equation in tile-based random media; these are defined as microstructures obtained by tiling the

space with tiles of random diffusivities. There is a large body of literature on the homogenization

of random media; cf. [5, 11, 19, 20, 24–26, 29, 36]. These generalize the more common study

of the homogenization of periodic structures; see, e.g. [4, 12, 21, 23, 27].
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In Section 2 we state the homogenization theorem after setting up the basic tools and

terminology. In Section 3 we study symmetry groups of random media and establish conditions

that imply the isotropy of the homogenized limit.

The rest of the article specializes mostly to tile-based media which are introduced in

Section 4. We set up the probability spaces from physical description of such media and show

the ergodicity of the corresponding dynamical systems. Although ergodicity lies in the heart of

the proof of convergence and homogenization, the practical verification of it is often cumbersome

and therefore in the literature on random media it is common to assume, rather than verify

ergodicity. In this article we make a point in verifying the ergodicity. In Section 5 we provide

several examples of tile-based media to show the utility of the abstract theory and in Section 6

we further elaborate on these by examining their isotropy.

The characterization of the homogenized limit provided by the homogenization theorem,

see Section 2, does not readily lend itself to numerical computations directly. Periodization

provides a practical method for computing the homogenized diffusion tensor, the convergence

of which was shown in [22] and [7]. For numerical studies via the method of periodization see [9]

and [10]. Alternative numerical approaches are explored in [14, 15, 33].

In Section 7, after reviewing the general theory of periodization, we provide a self-contained

convergence proof specialized to one-dimension. This helps to bring out the main idea of peri-

odization in the general case, much in the same way that the proof of homogenization in one-

dimensional media motivates the theory in higher dimensions. Specializing to one-dimensional

tile-based media, we prove a Central Limit Theorem showing the rate of convergence of the

sequence of periodized approximations of the diffusion coefficient. We supplement this with

numerical results for illustration. Additionally, we provide computational results that demon-

strate the convergence and a central limit behavior of the periodization in two-dimensions. We

conclude with a conjecture on the rate of convergence. Such central limit behavior has been

observed in numerical experiments reported in [34] in the context of heterogeneous multiscale

methods. The reader may be interested in the article [35] that deals with a central limit type

behavior for the rate of G-convergence of stochastic elliptic operators in dimension 3 or greater,

and the articles [2, 17] that deal with the rate of convergence of discretized stochastic elliptic

equations.

Central limit results for the convergence of solutions of boundary value problem to the

homogenized limit may be found in [3, 6]. In contrast, our central limit results are concerned

with the convergence of the periodized diffusion tensor to the homogenized tensor.

2 Preliminaries

In this section, we summarize notations and definitions that will be used throughout the

remainder of this article.

2.1 Automorphisms

Following [13] we let:

Definition 1 An automorphism of a probability space (Ω,F , μ) is a bijection φ : Ω → Ω

such that for all F ∈ F , φ(F ) and φ−1(F ) belong to F and

μ(F ) = μ
(
φ(F )

)
= μ

(
φ−1(F )

)
.
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We use the notation Aut(Ω) to denote the set of all automorphisms on Ω.

2.2 Notation for matrices

We write Rn×n for the space of n× n matrices. We let:

Rn×n
sym = the subspace of symmetric matrices in Rn×n ,

Rn×n
orth = the orthogonal group of matrices in Rn×n ,

Rn×n
orth+ = the proper orthogonal group of matrices in Rn×n.

For any 0 < ν1 ≤ ν2 we let

E(ν1, ν2) = {A ∈ Rn×n
sym : ν1|ξ|2 ≤ ξ ·Aξ ≤ ν2|ξ|2 ∀ξ ∈ Rn}.

Let (S, Σ) be a measurable space. If A : S → Rn×n
sym is a measurable mapping such that

A(x) ∈ E(ν1, ν2) for all x ∈ S (or almost all x ∈ S if there is a measure on (S, Σ)) then we say

A belongs to E(ν1, ν2, S).

2.3 The Dynamical System

An n-dimensional measure-preserving dynamical system T on Ω is a family of automor-

phisms Tx : Ω → Ω, parametrized by x ∈ Rn, satisfying:

1. Tx+y = Tx ◦ Ty for all x, y ∈ Rn,

2. T0 = I, where I is the identity map on Ω.

3. The dynamical system is jointly measurable on Rn × Ω in the sense that the mapping

(x, ω) �→ Tx(ω) is B(Rn)⊗F/F measurable, where B(Rn) is the Borel σ-algebra on Rn.

A set E ⊂ Ω is said to be invariant under the dynamical system T if T−1
x (E) ⊂ E for all

x ∈ Rn.

Definition 2 The dynamical system T is ergodic if all its invariant sets have measure of

either zero or one.

The dynamical system T is ergodic if and only if for every measurable function f : Ω → R

the following holds [13]:

[
f
(
Tx(ω)

)
= f(ω) for all x and almost all ω

]
⇒ f = constant a.s. (1)

Corresponding to a function f : Ω → X (where X is any set) we define the function

fT : Rn × Ω → X by

fT

(
x, ω

)
= f

(
Tx(ω)

)
, x ∈ Rn, ω ∈ Ω.

For each ω ∈ Ω, the function fT

(·, ω)
: Rn → X is called the realization of f for that ω.

2.4 Solenoidal and Potential Vector Fields

Let (Ω,F , μ) be a probability space with the σ-algebra F and a measure μ. We will write

E{X} for the expected value of the random variable X on Ω. That is, E{X} =
∫
Ω Xdμ.

Let T be an n-dimensional measure-preserving dynamical system on Ω and let L2(Ω;Rn)

be the space of square integrable vector fields f : Ω → Rn. We define:

L2
pot(Ω) = {f ∈ L2(Ω;Rn) : fT (·, ω) is a potential field on Rn for almost all ω ∈ Ω},

L2
sol(Ω) = {f ∈ L2(Ω;Rn) : fT (·, ω) is a solenoidal field on Rn for almost all ω ∈ Ω},

V2
pot(Ω) =

{
f ∈ L2

pot(Ω) : E {f} = 0
}
.

V2
sol(Ω) =

{
f ∈ L2

sol(Ω) : E {f} = 0
}
.
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These spaces induce orthogonal decompositions of L2(Ω;Rn), cf. [19, page 228]:

Theorem 1 (Weyl’s Decomposition) If the dynamical system T is ergodic, then:

L2(Ω;Rn) = V2
pot(Ω)⊕ L2

sol(Ω) = V2
sol(Ω)⊕ L2

pot(Ω). (2)

2.5 Homogenization

Consider a matrix-valued function A : Rn → Rn×n
sym . Assume that A ∈ E(ν1, ν2,R

n) for

some 0 < ν1 ≤ ν2.

For any ε > 0 let Aε(x) = A(x/ε). Then we say that A admits homogenization if there

exists a constant symmetric positive definite matrix A0 such that for any bounded domain

D ⊂ Rn and any f ∈ H−1(D) the solutions uε and u0 of the boundary value problems
⎧⎨
⎩
− div(Aε∇uε) = f on D,

uε = 0 on ∂D
and

⎧⎨
⎩
− div(A0∇u0) = f on D,

u0 = 0 on ∂D
(3)

satisfy, as ε → 0:

uε ⇀ u0 in H1
0 (D),

Aε∇uε ⇀ A0∇u0 in L2(D).

It is a classic result that if A is periodic on Rn then it admits homogenization. The basic

references in [4, 12, 21, 23, 27] represent but a small sample of the vast literature on the subject.

The main focus of our article is on the random case, that is, the boundary value problem:⎧⎨
⎩
− div

(
A
(

x
ε , ω

)∇u(x, ω)
)

= f(x) in D,

u(x, ω) = 0 on ∂D,
(4)

where ω ∈ Ω and (Ω,F , μ) is a probability space.

A fully developed theory exists for the case when A : Rn × Ω → Rn×n
sym is a stationary

and ergodic random field. The early work in the area [20, 24] is greatly expanded upon in

the monograph [19]. In this theory, without loss of generality, one begins with a function A ∈
E(ν1, ν2, Ω) and considers its realizations A(x, ω) = AT (x, ω) with respect to an n-dimensional

ergodic dynamical system T . Concerning this, we have:

Theorem 2 [19, Theorem 7.4] Let A ∈ E(ν1, ν2, Ω) and T be an n-dimensional measure-

preserving ergodic dynamical system on Ω. Then, for almost all ω ∈ Ω, the realization AT (·, ω)

admits a homogenization A0. Moreover, A0 is positive-definite, independent of ω, and is char-

acterized by,

ξ · A0ξ = inf
v∈V2

pot(Ω)

∫
Ω

(ξ + v) · A(ξ + v)dμ, ∀ξ ∈ Rn. (5)

Remark 1 Although Theorem 2 gives a complete characterization of the limiting ho-

mogenized problem, the characterization is not constructive because it involves integrating on

an abstract probability space. The method of periodization [7, 22], described in Section 7,

provides a concrete way of approximating A0 numerically.

2.6 Linear Algebra

Here we collect some observations and results from linear algebra, which will be needed in

our discussions of symmetry and isotropy.
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A subspace V ⊆ Rn is said to be invariant under A ∈ Rn×n if AV ⊆ V .

Definition 3 (Irreducible group [31]) Let G be a matrix group in Rn×n. We call G an

irreducible group if it has the following property: If a subspace V of Rn is invariant under Q

for all Q ∈ G, then V is either {0} or Rn.

As an example of an irreducible group in R2×2 consider the cyclic rotation group of order 4:

G1 = {I, R90, R180, R270}, where Rθ ∈ R2×2 denotes rotation by angle θ about the origin.

Another example of an irreducible group is Rn×n
orth+ . An example of a group which is not

irreducible is G2 = {I, R180} because it leaves any one-dimensional subspace invariant.

The following result is a simple case of Schur’s Lemma [28], (also [16, 18]) which is a basic

result in group representation theory.

Lemma 1 Let G be an irreducible group in Rn×n and suppose A is a symmetric matrix

that commutes with every Q ∈ G. Then A is a scalar multiple of identity.

Proof Let α be an eigenvalue of A, and define the mapping B = A−αI. It follows that,

BQ = QB for all Q ∈ G. Moreover, since α is an eigenvalue of A, Null(B) = Null(A−αI) �= {0}.
Now, if x ∈ Null(B), then BQx = QBx = 0, that is Qx ∈ Null(B). Therefore, Null(B) is

invariant under Q for all Q ∈ G. Since G is irreducible (and Null(B) �= {0}), it follows that

Null(B) = Rn. That is, B = 0, and hence A = αI. �

Let us give an example that shows that the condition of irreducibility in Lemma 1 cannot

be removed. Consider the symmetric 2 × 2 matrix A =

(
a b

b c

)
. Suppose A commutes with

elements of the reducible group G = {I, R} where R =

(
1 0

0 −1

)
. Then AR = RA implies

that b = 0 whence A =

(
a 0

0 c

)
where a and c are arbitrary.

The following two results give conditions under which a matrix is a multiple of identity in

two and three dimensions.

Proposition 1 Let S ∈ R2×2
sym and Q ∈ R2×2

orth+ \ {±I}. Then S commutes with Q if and

only if S = λI.

Proof Suppose SQ = QS. The only subspace of R2 invariant under Q is either {0} or

R2. Hence, the result follows from Lemma 1. The converse implication is trivial. �

Proposition 2 Let u and v be linearly independent vectors in R3. Fix α and β in (0, π).

Suppose S ∈ R3×3
sym commutes with Rα

u and Rβ
v . Then S is a multiple of identity.

Proof We will show that the only subspaces of R3 invariant under both Rα
u and Rβ

v are

{0} and R3; the result would then follow from Lemma 1. Note that the only subspaces of R3

invariant under Rα
u are:

{0}, span{u}, span{u}⊥, R3.

Similarly, the only subspaces of R3 invariant under Rβ
v are:

{0}, span{v}, span{v}⊥, R3.

Since u and v are linearly independent, it follows that {0} and R3 are the only subspaces of

R3 invariant under both Rα
u and Rβ

v . �
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3 Symmetries of Random Media and Questions of Isotropy

In this section we develop an abstract framework and study interesting but nontrivial

conditions on the conductivity matrix AT (x, ω) which imply that the homogenized conductivity

matrix, A0, is a multiple of identity, that is, the homogenized medium is isotropic.

Definition 4 Let Q be an orthogonal matrix and T be a dynamical system. We say that

A ∈ E(ν1, ν2, Ω) is Q-invariant if there exists ζ ∈ Aut(Ω) such that:

AT

(
x, ζ(ω)

)
= QAT (QT x, ω)QT ,

for almost all x ∈ Rn and almost all ω ∈ Ω.

Remark 2 The above definition can be best understood in terms of the commutative

diagram in Figure 1. Let M = E(ν1, ν2,R
n), and let i : Ω →M : ω �→ AT (·, ω); that is, i(ω) is

the conductivity tensor field corresponding to ω ∈ Ω. Given Q ∈ Rn×n
orth , we define Q :M→M

by

(QAT )(x, ω) = QAT (QT x, ω)QT .

From Definition 4, it follows that the diagram in Figure 1 commutes. This means that any

collection M ⊂ M of conductivity tensors and their rotated versions QM are equally likely,

that is, μ
(
i−1(M)

)
= μ

(
i−1(QM)

)
. This follows since,

μ
(
i−1(QM)

)
= μ

(
ζ−1i−1(QM)

)
= μ

(
i−1Q−1Q(M)

)
= μ

(
i−1(M)

)
,

where the first equality holds since ζ is measure preserving, and the second equality holds since

the diagram in Figure 1 commutes.

Ω M

Ω M

i

ζ Q

i

Fig.1 Diagram showing invariance under Q

Proposition 3 SupposeA is Q-invariant for a given Q ∈ Rn×n
orth+ . Then the corresponding

homogenized matrix A0 commutes with Q, that is, A0Q = QA0.

Proof We know by Theorem 2 that AT (x, ω) admits homogenization A0 almost surely.

Moreover, by Q-invariance

AT

(
x, ζ(ω)

)
= QAT (QT x, ω)QT , (6)

where ζ ∈ Aut(Ω). Since ζ is measure preserving, AT

(
x, ζ(ω)

)
admits homogenization A0

almost surely, and using (6), QAT (QT x, ω)QT admits homogenization A0 also. On the other

hand, it is straightforward to see that B(x, ω) = QAT (QT x, ω)QT admits homogenization

QA0QT for almost all ω ∈ Ω (this follows by performing a change of coordinates in the definition

of homogenization). Therefore, A0 = QA0QT , and hence the result. �
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Theorem 3 Suppose A is Q-invariant for all Q ∈ G, where G is an irreducible group.

Then, the corresponding homogenized matrix A0 is isotropic, that is, A0 = λI where λ is a

constant scalar.

Proof By Proposition 3, we know that A0 commutes with all Q ∈ G. The result follows

from Lemma 1. �

Remark 3 The proof of the analogous result for the system of equations of linear elas-

tostatics is substantially more involved. For a comprehensive study of the questions of isotropy

of linearly elastic materials see [1].

3.1 Special Cases of 2D and 3D

Here we give sufficient conditions for isotropy of the homogenized matrix A0 in two and

three dimensions. The case of two dimensions is addressed by the following proposition.

Proposition 4 Suppose A is Q-invariant for a given Q ∈ R2×2
orth+ \ {±I}. Then, the

corresponding homogenized matrix A0 is isotropic; that is A0 = λI where λ is a constant.

Proof The result follows from Proposition 3 and Proposition 1. �

In the case of R3 we can appeal to our linear algebra developments above.

Proposition 5 Suppose A is both Rα
u -invariant and Rβ

v -invariant, where Rα
u and Rβ

v

are as in Proposition 2. Then, the corresponding homogenized matrix A0 is isotropic, that is,

A0 = λI where λ is a constant.

Proof The result follows from Proposition 3 and Proposition 2. �

4 Tile-based Random Media: General Theory

The general theory of random media described in the previous sections is based on char-

acterization of a random medium in terms of an abstract probability space and a dynamical

system acting on it. The physical properties of such a medium are then obtained through the

realization formalism described in Section 2.3.

The more interesting problem, in practice, is the reverse; that is, to construct the proba-

bility space and a dynamical system, starting from the the physical description of the random

medium. Although this process is an essential aspect of the modeling of random media, it is

rarely brought out and analyzed in detail in the literature. It is among our goals in this article

to bring this issue to focus. As we will see in the following sections, the process is not quite

trivial.

In Section 4.1 we introduce the set Y of all possible tiles, and put a probability measure

on it. In the simplest case of a “black-white” checkerboard where the tiles can be only one of

two possibilities, the set Y consists of two elements and the probability measure indicates the

likelihood of occurrence of one or the other tile. Subsequently, we use Y as building blocks for

the sample space of all possible realizations. In Section 4.2 we construct a dynamical system

{Tx}x∈Rn on the probability space which tiles the space with random tiles from the set Y . We

show that the dynamical system is measure preserving and ergodic. In Section 4.3 we start

with the physical description of the conductivity tensor A(y) of each tile y in Y and construct

the overall conductivity tensor AT (x, ω) that enters the boundary value problem (3). The

constructions are rather abstract but they are sufficiently general to include many interesting

applications as illustrated in Section 5.
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4.1 The Probability Space

Let the set Y parametrize the possible choices for a tile and consider the probability space

(Y,FY , μY ), where FY is an appropriate σ-algebra and μY is a probability measure. Form

the product space (S,FS , μS) =
∏

Zn(Y,FY , μY ), where the σ-algebra FS is the product σ-

algebra and μS is the product measure. Finally, to account for translations, define the overall

probability space

(Ω,F , μ) = (S,FS , μS)⊗ (
Torn, B(Torn), Leb

)
, (7)

where Torn = [0, 1)n is the n-dimensional unit cube with the opposite faces identified, B(Torn)

is the Borel σ-algebra on Torn, and Leb is the Lebesgue measure.

4.2 The Dynamical System and Ergodicity

We construct the measure-preserving and ergodic dynamical system T that enters the

definition of the conductivity matrix in the boundary value problem (4). An element s ∈ S has

form

s = {sj}j∈Zn , sj ∈ Y,

and an element ω ∈ Ω has form,

ω = (s, τ) s ∈ S, τ ∈ Torn. (8)

First we define the dynamical system {T̂z}z∈Zn on S by

T̂z

({sj}j∈Zn

)
= {sj+z}j∈Zn .

Let us define the projection operators P1 : Rn → Zn and P2 : Rn → Torn by

P1(x) = �x�, x ∈ Rn,

P2(x) = x− �x�, x ∈ Rn.

Here �x� is the vector whose elements are the greatest integers less or equal to the corresponding

elements in x. Note that each x ∈ Rn has the unique decomposition

x = P1(x) + P2(x).

Next, define the dynamical system {R̂x}x∈Rn on Torn by

R̂x(τ) = P2(x + τ), τ ∈ Torn.

Finally, we define the dynamical system {Tx}x∈Rn on Ω by

Tx(ω) = Tx(s, τ) =
(
T̂P1(x+τ)(s), R̂x(τ)

)
, s ∈ S, τ ∈ Torn. (9)

Let us verify the group property for the dynamical system above. Clearly T0(ω) = ω for

all ω ∈ Ω. Moreover, we show Tx ◦ Ty = Tx+y for all x and y in Rn as follows. Let ω = (s, τ)

be an element of Ω, as described in (8), and note that

Tx+y(ω) = Tx+y({sj}, τ) =
({sj+P1(x+y+τ)}, P2(x + y + τ)

)
. (10)
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On the other hand

Tx

(
Ty(ω)

)
= Tx

(
Ty

({sj}, τ
))

= Tx

(
{sj+P1(y+τ)}, P2(y + τ)

)

=
(
{sj+P1(y+τ)+P1(x+P2(y+τ))}, P2

(
x + P2(y + τ)

))
. (11)

Since u + P1(v) = P1(u + v) for every u ∈ Zn, v ∈ Rn, we have

P1(y + τ) + P1

(
x + P2(y + τ)

)
= P1

(
x + P1(y + τ) + P2(y + τ)

)
= P1(x + y + τ). (12)

Also, since P2(u + v) = P2(v) for every u ∈ Zn and v ∈ Rn, we have,

P2

(
x + P2(y + τ)

)
= P2

(
x + P1(y + τ) + P2(y + τ)

)
= P2(x + y + τ). (13)

Combining (11), (12), and (13) we obtain

Tx

(
Ty(ω)

)
=

({sj+P1(x+y+τ)}, P2(x + y + τ)
)

= Tx+y(ω),

where the last equality follows from (10).

The measure preserving property of the dynamical system {Tx}x∈Rn follows from the

following proposition:

Proposition 6 The dynamical system {Tx}x∈Rn defined in (9) is measure preserving.

Proof Let x ∈ Rn be fixed but arbitrary. It is sufficient so show that μ
(
T−1

x (A×B)
)

=

μ(A × B) for all rectangles A × B ∈ F , where A ∈ FS and B ∈ B(Torn). Note that we can

partition Torn as follows,

Torn =
⊎

j∈Zn

Ej , Ej = {τ ∈ Torn : P1(x + τ) = j},

where
⊎

denotes a disjoint union. Note also that only finitely many of Ej are non-empty. Then,

for a rectangle A×B in F we have

T−1
x (A×B) =

⊎
j

(
T̂−1

j (A)× [
R̂−1

x (B) ∩ Ej

])
.

Since T̂j and R̂x are measure preserving, we conclude that

μ
(
T−1

x (A×B)
)

=
∑

j

μ
(
T̂−1

j (A)× [
R̂−1

x (B) ∩Ej

])
=

∑
j

μS(A) Leb[R̂−1
x (B) ∩ Ej ]

= μS(A)
∑

j

Leb
[
R̂−1

x (B) ∩ Ej

]
= μS(A) Leb

(
R̂−1

x (B)
)

= μS(A) Leb(B) = μ(A×B). (14)

�

What remains to show is ergodicity of the dynamical system Tx. It is well-known that the

dynamical system {T̂z}z∈Zn is ergodic [13, 30]. We use this to prove the following:

Proposition 7 The dynamical system {Tx}x∈Rn defined in (9) is ergodic.

Proof Let f be a measurable function on Ω which is invariant under T , that is,

f
(
Tx(ω)

)
= f(ω) ∀x ∈ Rn, μ-a.s. . (15)
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Recall that ω ∈ Ω has the form ω = (s, τ), with s ∈ S and τ ∈ Torn. Now by (15) we have also

f
(
Tz(ω)

)
= f(ω), for all z ∈ Zn. Since R̂z(τ) = τ for z ∈ Zn,

f(s, τ) = f
(
Tz(s, τ)

)
= f

(
T̂z(s), R̂z(τ)

)
= f

(
T̂z(s), τ

)
.

Letting f τ (s) = f(s, τ), this takes the form

f τ
(
T̂z(s)

)
= f τ (s) ∀z ∈ Zn. (16)

We know f τ (s) is measurable on S. Since {T̂z}z∈Zn is ergodic, then (16) implies that for each

τ , f τ is constant μS-a.s. . Therefore,

f(s, τ) = φ(τ) s ∈ S, τ ∈ Torn. (17)

Next, using (15) again we have

f
(
Tt(ω)

)
= f(ω) ∀t ∈ Torn. (18)

Now, using (17) we have

f
(
Tt(ω)

)
= f

(
T̂P1(t+τ)(s), R̂t(τ)

)
= φ(R̂tτ);

also, f(ω) = f(s, τ) = φ(τ). Therefore, (18) gives that

φ
(
R̂t(τ)

)
= φ(τ) ∀t ∈ Torn, a.e. (19)

Finally, recalling ergodicity of the dynamical system {R̂t}t∈Torn , we get that φ(τ) ≡ const a.e.

and hence, f ≡ const a.e. Thus, the assertion of the proposition follows from (1). �

4.3 The Function A
Each element y in the sample space Y specifies a certain type of tile. Let A(y) : Torn →

Rn×n
sym be the conductivity function associated with that tile. Pick s ∈ S and let’s write s =

{sj}j∈Zn . This defines an infinite sequence of tiles with conductivities {A(sj)}j∈Zn . We define

the random variable A : Ω → Rn×n
sym by

A(ω) = A(s0)(τ), for ω =
({sj}, τ

) ∈ Ω. (20)

From the definition Tx in (9) we see that:

Tx(ω) = Tx

({sj}, τ
)

=
({sj+P1(x+τ)}, P2(x + τ)

)
.

Consequently,

A(
Tx(ω)

)
= A(sσ)

(
P2(x + τ)

)
, where σ = P1(x + τ).

Let us recall that AT (x, ω) = A(
Tx(ω)

)
defines the conductivity matrix of the medium and

appears as a coefficient in the boundary value problem (4).
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5 Tile-based Random Media: Examples

In the following sections we give several examples to illustrate the construction of concrete

probability spaces in terms of the medium’s physical properties. In each case, it suffices to iden-

tify the probability space (Y,FY , μY ) and the tile conductivities A(y) as defined in Section 4.3.

The machinery developed in Section 4 then assigns the appropriate dynamical system and the

conductivity tensor A.

5.1 Checkerboard-like Tilings

For our first example we examine a most basic random structure—an n-dimensional

medium consisting of the n-dimensional cube (0, 1)n and its translations along the integer

lattice Zn in Rn. The cubes/tiles are identified as either gray or white with probabilities p

and 1− p, respectively, where p ∈ (0, 1). Figure 2 depicts representative samples in 1, 2, and 3

dimensions.

Fig.2 Typical realizations of random “checkerboards” in one, two, or three dimensions

Define the space Y of Section 4.1 as the set Y = {gray, white}. On the measurable space

(Y, 2Y ) define the measure μY as

μY

({gray}) = p, μY

({white}) = 1− p.

The squares (or cubes) are characterized by their conductivity matrices A(gray) and A(white),

each of which is a function Torn → Rn×n
sym . In particular, if the tiles are made of homogeneous

materials, then these conductivities are constant functions.

5.2 Randomly Rotated Ellipses

Consider a two-dimensional, two-phase structure consisting of randomly rotated homoge-

neous congruent elliptic grains embedded within homogeneous square tiles. We assume that

the ellipses are centered at the centers of the tiles and are sufficiently small so that they do not

extend beyond tile boundaries. We tile the two-dimensional plane with these, as in Figure 3.

The construction of the probability space for this structure amounts to specifying the state

space (Y,FY , μY ), the rest of the construction remains as before. We let Y = [0, π) represent

the set of rotation angles and we set FY = B(Y ) and μY (E) = 1
π Leb(E), for all E ∈ FY ,

implying that the rotation angles are uniformly distributed on [0, π).
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The conductivity matrix A(θ) : Tor2 → R2×2
sym for each rotation angle θ ∈ Y is defined as

A(θ)(x) =

⎧⎨
⎩

α1I if x ∈ Eθ,

α2I if x �∈ Eθ,

where α1 and α2 are positive constants and Eθ is the interior of the rotated ellipse.

5.3 Variable-size Circular Grains

Consider a two-dimensional, two-phase structure consisting of homogeneous circular grains

of varying sizes embedded within homogeneous square tiles. We assume that the circles are

centered at the centers of the tiles and are sufficiently small so that the do not extend beyond

tile boundaries. We tile the two-dimensional plane with these, as in Figure 4. The circle radii

are distributed randomly in the interval [r0, r1]. Thus we have Y = [r0, r1], FY = B(Y ) and

μY (E) = 1
r1−r0

Leb(E) for all E ∈ FY .

Fig.3 A tile-based medium tiled with Fig.4 A tile-based medium tiled with

randomly rotated ellipses randomly sized and perturbed circles

The conductivity matrix A(r) : Tor2 → R2×2
sym for each r ∈ Y is defined as

A(r)(x) =

⎧⎨
⎩

α1I if x ∈ Cr,

α2I if x �∈ Cr,

where α1 and α2 are positive constants and Cr is the interior of the circle of radius r.

This example may be modified easily to allow random perturbations of the circle centers

relative to the tile. Suppose the centers are disturbed by the amounts δx and δy in the x

and y directions, where δx and δy are distributed uniformly in the intervals [−α, +α] and

[−β, +β], respectively. Also assume that r0, r1, α and β are such that the circles don’t overlap;

see Figure 5. In this case, we have Y = [−α, +α] × [−β, +β] × [r0, r1], FY = B(Y ), and

μY (E) = Leb(E)/
(
4αβ(r1 − r0)

)
for all E ∈ FY . The conductivity matrix may be defined

much in the same way as before.

5.4 Random Honeycomb

Here we construct a two-dimensional two-phase random honeycomb structure. The con-

structions and the arguments are similar to the case of structures based on rectangular lattice

presented in the previous subsection.

Consider a honeycomb structure as depicted in Figure 6, consisting of a regular hexagonal

tiling of the plane, where each hexagon has side-length one and is made of a homogeneous

material chosen randomly from among two possibilities of either gray or white with probabilities
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p and 1− p. The construction of the probability space, the dynamical system, and the function

A is similar to the random checkerboard except for the following two differences: 1) In the

construction of the probability space, we replace Tor2 with H , where H is the hexagon of unit

side-length centered at the origin with its opposite sides identified. 2) In the construction of the

dynamical system T , we redefine the projections P1 and P2. Each hexagon is identified by the

integer pair (m, n) that defines the hexagon’s position through c = mv1 + nv2 where {v1, v2}
is a lattice basis. For example we may let, v1 =

〈√
3, 0

〉
, v2 =

〈√
3/2, 3/2

〉
. Then, given

any x ∈ R2, there is a unique h ∈ H and (m1, m2) ∈ Z2 such that x = h +
[
m1v1 + m2v2

]
.

Accordingly, we define P1(x) = 〈m1, m2〉 and P2(x) = h. The construction of a stationary

and ergodic dynamical system proceeds in the same way as in the case of the checkerboard-like

structures.

Fig.5 A tile-based medium tiled with Fig.6 A random honeycomb structure

randomly sized circles

6 Tile-based Random Media: Isotropy

In this section, we apply the isotropy results of Section 3 to several concrete examples.

6.1 Random Checkerboard

Recall the two-dimensional random checkerboard constructed in Section 5.1. Let us assume

the conductivity matrices A(gray) and A(white) are isotropic, that is A(gray) = a1I and A(white) =

a2I, where a1 and a2 are positive constants and I is the identity matrix. The following result,

which is not new—see [19, page 237] for example—is a consequence of our Proposition 4.

Proposition 8 The homogenized material corresponding to the checkerboard constructed

as above is isotropic, that is, A0 is a multiple of identity.

Proof Let Q be a 90 degree rotation of the plane. Consider the realization A(
TQT x(ω)

)
.

This corresponds to another realization, say A(
Tx(ω′)

)
, for some ω′ ∈ Ω. We let ζ(ω) = ω′.

Note that ζ : Ω → Ω sends the element ω =
({sj}, τ

) ∈ Ω to ω′ =
({sσ(j)}, ρ(τ)

) ∈ Ω,

where
{
σ(j)

}
j∈Z2 is a permutation of

{
j
}

j∈Z2 and ρ is an affine map involving rotations and

translations on Tor2. Both of these are measure preserving maps, therefore ζ is measure

preserving; thus A is Q-invariant and the assertion follows from Proposition 4. �

Remark 4 Proposition 8 remains true if the coefficients a1 and a2 are variable as long

as they are invariant under 90 degree rotations of Tor2.

6.2 Three-dimensional Random “Checkerboard”

Recall the three-dimensional random checkerboard constructed in Section 5.1. Let us
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assume the conductivity matrices A(gray) and A(white) are multiples of identity, that is A(gray) =

a1I and A(white) = a2I, where a1 and a2 are positive constants.

Proposition 9 The homogenized material corresponding to the three-dimensional checker-

board constructed as above is isotropic, that is, A0 is a multiple of identity.

Proof Let R90
x and R90

y be 90 degree rotations about the x and y axes. The result follows

by noting that A is R90
x -invariant and R90

y -invariant and applying Proposition 5. �

6.3 Random Honeycomb

Consider the random honeycomb constructed in Section 5.4. Let us assume the con-

ductivity matrices A(gray) and A(white) are multiples of identity, that is A(gray) = a1I and

A(white) = a2I, where a1 and a2 are positive constants.

Proposition 10 The homogenized material corresponding to the random honeycomb

constructed as above is isotropic, that is, A0 is a multiple of identity.

Proof Let Q be the 2 × 2 matrix of rotation by π/3. The result follows by noting that

A is Q-invariant and applying Proposition 4. �

7 Numerical Computations and Periodization

The homogenized limitA0 of a random medium, characterized by formula (5) in Theorem 2,

involves integration on the abstract probability space Ω. This is not practical for explicit

computations. The method of periodization, introduced in [22], is a practical approximation

scheme for computing homogenized limits of random media. Also see [7] for further work along

these lines and [9, 10] for numerical experiments.

Periodization proceeds by fixing a single realization ω ∈ Ω of the random structure. Then

one cuts a cube Sρ = [0, ρ]n of size ρ from it, then tiles the space periodically with that cube.

Then the homogenized limit Aρ(ω) of the resulting periodic medium is computed in the usual

way; e.g., [4, 27]. It is shown in [22] and [7] that

Aρ(ω)→ A0 almost surely, as ρ →∞, (21)

where A0, given by formula (5), is independent of ω.

The purpose of this section is to place the method of periodization in the context of the

theory of tile-based media that we have developed in the previous sections. In Subsection 7.1

we analyze the periodization process in one-dimensional tile-based media. These computations

are quite explicit since the partial differential equation of equilibrium reduces to an ordinary

differential equation. Although the one-dimensional results are straightforward to derive, there

is no convenient place in the literature for reference, therefore we have seen it appropriate to

gather these results here.

Theorem 4 gives a self-contained proof of the periodization theorem in 1D, via Birkhoff’s

Ergodic Theorem. Theorem 5 establishes a central limit result which provides the rate of

convergence of the diffusion coefficient with successive improvements of the periodization ap-

proximation. In Subsection 7.2.2 we give results of a series of numerical experiments whose

purpose is to illustrate the theory developed up to that point.

Section 7.3 reports the results of numerical experiments for periodization in two dimensions.

We present numerical evidence for central limit behavior similar to the one-dimensional case
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and summarize our results in the form of a conjecture. Such central limit behavior has been

observed in numerical experiments reported in [34] in the context of heterogeneous multiscale

methods.

Central limit results for the convergence of solution uε to the homogenized limit u0 may

be found in [3, 6]. In contrast, our central limit results are concerned with the convergence of

the diffusion tensor Aρ to the homogenized tensor A0.

To solve the periodic homogenization problem for each ρ, we apply periodic boundary

conditions to the unit cell in the traditional way as in [4]. In the context of periodization, other

types of boundary conditions have also been considered for the unit cell problem. E.g., it is

shown in [7] that (21) holds with null Dirichlet or Neumann boundary conditions. Numerical

experiments in [34] in the context of heterogeneous multiscale methods indicate, however, that

in practice the choice of periodic boundary conditions yields faster convergence in periodization.

7.1 Periodization in One-dimensional Media

For ω ∈ Ω consider the one-dimensional version of the boundary value problem (4):⎧⎨
⎩
−(

aT (x, ω)u′(x, ω)
)′

= f(x) in D = (0, 1),

u(0, ω) = u(1, ω) = 0,
(22)

where aT (x, ω) = a
(
Tx(ω)

)
and a is the one-dimensional counterpart of A in Section 2.5.

Specializing Theorem 2 to one dimension, it can be shown that for almost all ω ∈ Ω the

problem (22) admits homogenization with the homogenized coefficient given by

ā =
1

E
{

1
a

} . (23)

To approximate ā numerically we can use the method of periodization as follows. Denote

Sρ = (0, ρ) and let

aρ
per(x, ω) = aT (x mod Sρ, ω) = a

(
Tx mod Sρ

(ω)
)
, x ∈ R, ω ∈ Ω. (24)

For each ρ > 0, ε > 0, and ω ∈ Ω, we consider the periodized problem,⎧⎨
⎩
−(

aρ
per(

x

ε
, ω)u′ρ(x, ω)

)′
= f(x) in D = (0, 1),

uρ(0, ω) = uρ(1, ω) = 0.
(25)

The effective conductivity of this medium as ε → 0 can be computed using the standard

homogenization theory; cf. [4]:

āρ(ω) =
1

1
ρ

∫ ρ

0
1

aρ
per(x,ω)

dx
. (26)

The general convergence result in (21) states that āρ(ω) → ā almost surely as ρ →∞. However,

due to the special nature of the problem in 1D we may produce a simple proof with an explicit

limit.

Theorem 4 For almost all ω ∈ Ω, āρ(ω)→ ā, as ρ →∞ with ā as in (23).

Proof First note that using the change of variable x→ x/ρ in (26) we get

āρ(ω) =
1∫ 1

0
1

aρ
per(ρx,ω)

dx
=

1∫ 1

0
1

aT (ρx,ω)dx
, (27)
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where the second equality follows from the fact that for x ∈ S1,

aρ
per(ρx, ω) = aT (ρx mod Sρ, ω) = aT (ρx, ω). (28)

By Birkhoff’s Ergodic Theorem we conclude that for almost all ω ∈ Ω, as ρ →∞,

1

aT (ρx, ω)
⇀ E

{
1

a

}
in L2(D), (29)

therefore, ∫ 1

0

1

aT (ρx, ω)
dx→ E

{
1

a

}
, as ρ →∞. (30)

But then it follows from (27) that for almost all ω ∈ Ω,

lim
ρ→∞

āρ(ω) = lim
ρ→∞

1∫ 1

0
1

aT (ρx,ω)dx
=

1

E
{

1
a

} . �

7.2 Periodization of Tile-based Media

From this point on, we consider periodization in the context of tile-based random media

which we constructed in Section 4. Recall that in the case of tile-based media, a sample point

ω ∈ Ω is a pair (s, τ) where s ∈ S fixes a random structure and τ ∈ Torn is a shift. We note

that shifting a structure does not change its homogenization property; that is A(s, τ) admits

homogenization A0 if and only if A(s, 0) admits homogenization A0. One may also verify

lim
ρ→∞

Aρ(s, τ) = A0 if and only if lim
ρ→∞

Aρ(s, 0) = A0. Therefore, when discussing numerical

simulations and periodization it suffices to consider only unshifted media. This essentially

amounts to sampling elements from a set of full measure in S.

7.2.1 A Central Limit Theorem for One-dimensional Tile-based Media

We begin this section by considering the one-dimensional version of the tile based random

media introduced in Section 4. Thus the medium consists of an infinite sequence of segments

of unit length whose conductivity profiles is parametrized by the probability space (Y,FY , μY ).

Each y ∈ Y corresponds to a conductivity profile, fy, which is a function (not necessarily

constant) from Tor1 to R. The ellipticity condition is:

0 < ν1 ≤ fy(x) ≤ ν2, for all x ∈ Tor1, for all y ∈ Y.

In the case of 1D tile-based media, the effective conductivity, given in (23), is

1

ā
=

∫
Y

∫ 1

0

1

fy(τ)
dτdμY (y). (31)

We shall establish the rate of convergence of āρ(ω) to ā. Since shifts are immaterial, we

let āρ
0(s) = āρ(s, 0) for s ∈ S. We define the random variable b : Y → R by

b(y) =

∫ 1

0

1

fy(τ)
dτ, y ∈ Y. (32)

Let us recall a few basics from asymptotic theory in probability. Given a sequence of

random variables, {Xn}, we write Xn
D→ X to denote convergence in distribution [32].
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Definition 5 [8, page 209] A sequence {Xn} of random variables is said to be asymp-

totically normal with mean mn and standard deviation σn if σn > 0 for n sufficiently large

and Xn−mn

σn

D→ Z, as n → ∞, with Z ∼ N(0, 1). In this case we use the notation, Xn is

AN(mn, σ2
n) as n →∞.

The following result will be useful in what follows:

Lemma 2 [8, page 210] If Xn is AN(m, σ2
n), where σn → 0 as n → ∞, and if g is a

function differentiable at m with g′(m) �= 0, then g(Xn) is AN
(
g(m), (g′(m))2σ2

n

)
.

The main result of this section is:

Theorem 5 The sequence {āρ
0}ρ∈N is AN

(
1
m , σ2

m4ρ

)
as ρ → ∞, with m = E {b} and

σ2 = Var {b} where b is as in (32).

Proof For ω = (s, 0) =
({sj}, 0

) ∈ Ω, let

bi(s) =

∫ 1

0

1

fsi
(x)

dx,

and note that ∫ ρ

0

1

aρ
per(x, ω)

dx =

ρ∑
i=1

bi(s),

and for each i, E {bi} = E {b} = m and Var {bi} = Var {b} = σ2. Let Xρ = 1
ρ

ρ∑
i=1

bi. Since

bi are i.i.d. with mean m and variance σ2, we have, by the Central Limit Theorem, that as

ρ →∞, Xρ is AN
(
m, σ2

ρ

)
. Applying Lemma 2 with g(X) = 1/X , we obtain,

g(Xρ) is AN
(
g(m),

(
g′(m)

)2
σ2

ρ

)
.

Since āρ
0 = g(Xρ) = 1/Xρ, then as ρ →∞,

āρ
0 is AN

( 1

m
,

σ2

m4ρ

)
. �

Remark 5 The above result suggests that for large ρ, the sequence of periodized ap-

proximations āρ
0 behave as

āρ
0 ∼

1

m
+

1√
ρ
N

(
0,

σ2

m4

)
,

which gives a rate of convergence of ρ−1/2 for periodization in 1D.

7.2.2 Numerical Experiments in 1D

In this section we present the results of simulations of one-dimensional tile-based random

media which serve two purposes: (a) to illustrate the results of the previous sections and (b) to

motivate the more involved two-dimensional setting in the subsequent sections.

We consider a random structure where the conductivity profile for each tile y ∈ Y is the

constant function given by fy(τ) = y for all τ ∈ Tor1, with Y = [1, 2] equipped with the

Lebesgue measure; that is, the conductivity of each tile is a uniform random variable in [1, 2].

Figure 7 depicts the conductivity function for a particular realization of such a medium. The

effective conductivity ā may be computed explicitly using (31):

ā =
(∫ 2

1

∫ 1

0

1

y
dτdy

)−1

=
1

ln 2
.
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The random variable b defined in (32), becomes b(y) = 1/y, and thus, we have E {b} = ln 2 and

Var {b} = E
{
b2
}− (

E {b} )2
= 1/2− (ln 2)2.

0 5 10 15 20 25 30 35 40 45 50
0.5
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Fig.7 A representative conductivity function of a realization of a random

1D tile-based medium with homogeneous segments
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Fig.8 Random 1D tile-based medium with homogeneous segments:

distribution of āρ for different ρ
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We compute āρ(ωj) for ρ = 2i, i = 1, · · · , 6 and for realizations ωj , j = 1, · · · , 10000.

The histograms in Figure 8 show the convergence of the approximation āρ to ā as ρ gets

larger. We note that the distribution of āρ gets more and more centered around the value of

m = 1/ ln 2 ≈ 1.4427, as expected.

The computational results in Table 1 illustrate the asymptotic behavior of āρ. The columns

labeled “Variance”, “ σ2

m4ρ”, and “Ratio”, list the sample variance, the asymptotic variance, and

their ratio, respectively. We see that the ratio approaches 1, as predicted by Theorem 5. Also,

we can see in the log-log plot in Figure 9 the expected asymptotic behavior of āρ as ρ →∞.

Table 1 Random 1D tile-based medium with homogeneous segments: Asymptotic be-

havior of āρ as ρ → ∞. The last column shows the ratio of the sample variance and the

asymptotic variance predicted by Theorem 5.

ρ Mean Variance σ
2

m4ρ
Ratio

2 1.472096 4.367275e-02 4.233972e-02 1.031484

4 1.457368 2.166391e-02 2.116986e-02 1.023337

8 1.450063 1.070949e-02 1.058493e-02 1.011768

16 1.446389 5.362583e-03 5.292465e-03 1.013249

32 1.444506 2.663250e-03 2.646232e-03 1.006431

64 1.443598 1.325444e-03 1.323116e-03 1.001760

2 4 8 16 32 64
10−3
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V
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ia
n
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variance

c/ρ

Fig.9 Random 1D tile-based medium with homogeneous segments: Log-log plot of the

sample variances for āρ. Also shown is the graph of the theoretical convergence rate of

O(1/ρ) for comparison

7.3 Periodization in 2D

We present the results of two sets of computational experiments for estimating the effec-

tive properties of checkerboard-like random media. The setup is similar to that presented in

Section 5.1, that is, the medium is constructed of two different tiles, say “gray” and “white”,

which occur with probabilities p and 1− p and have isotropic conductivities:

A(gray) = f1(x)I and A(white) = f2(x)I,
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with

f1(x) = ek sin πx1 sin πx2 and f2(x) = e−k sin πx1 sin πx2 , (33)

where k = 0.3 and x = (x1, x2) ∈ Tor2. The computations are more complicated than 1D case

because periodization now requires solving a partial differential equation (the unit cell problem)

on Tor2 for each realization. This places limitations, most significantly on computer memory,

on how large the cell of periodicity can be. For practical purposes, we choose the largest

possible ρ consistent with the available memory, then generate a large number of realizations

and compute the periodized coefficients Aρ and monitor the sample means and variances. If

the standard deviation is sufficiently small, then the sample mean is a good estimator of the

desired homogenized coefficient A0.

These numerical experiments clearly show that effective conductivity matrix, Aρ(ω) is

asymptotically normal, however unlike the 1D case, we have no proof at this time. We offer

this as a:

Conjecture 1 For 2D tile-based media we have: Aρ
ij is AN

(A0,
σij

ρ2

)
, as ρ → ∞, for

i, j = 1, 2, where σij does not depend on ρ.

In [7] it is shown that the rate of convergence of of periodization in general random media

is of the form O(ρ−β). The exponent β depends on the mixing properties of the medium and

is difficult to estimate in general. According to our conjecture, β = 2 for 2D tile-based media.

Fig.10 The graph of the conductivity function of a realization of the random

checkerboard, according to equation (33)

7.3.1 Numerical Experiment #1 in 2D

Here we consider the case of p = 1/2. This is rather special because A0 can be determined

explicitly. The following result which we state as a theorem, is shown on page 234 of [19]:

Theorem 6 Let Q be the 2 × 2 matrix of rotation by 90 degrees. Suppose A be Q-

invariant. Additionally, assume that there exists a mapping φ ∈ Aut(Ω) such thatA(
φ(ω)

)A(ω) =

kI for a.a. ω ∈ Ω, and φ−1
(
Tx(ω)

)
= Tx

(
φ−1(ω)

)
. Then A0 =

√
kI.

Let us verify that our random checkerboard satisfies the assumptions of the theorem.

First, note that the conductivity A is Q-invariant because the functions f1 and f2 in (33) are

invariant under 90 degree rotations. Second, the mapping φ in the statement of the theorem

may be chosen as follows. For any ω = (s, τ) ∈ Ω define ω̃ = (s̃, τ) where

s̃j =

⎧⎨
⎩

white if sj = gray,

gray if sj = white.

Then let φ(ω) = ω̃. It is easy to see (due to p = 1/2) that φ ∈ Aut(Ω). Third, from the
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expression (20) for A(ω) it follows that: A(φω)A(ω) = f1(τ)f2(τ)I = I, with f1 and f2 defined

in (33). Therefore by Theorem 6, the homogenized conductivity is A0 = I.

Table 2 lists the outcome of our computations with ρ = 2i, i = 1, · · · , 6 averaged over 1000

realizations. We see that the mean of Aρ → I as ρ → ∞, as expected, and the variance is

O(ρ−2) consistent with the conjecture made above. See also the log-log plot in Figure 11 which

shows that the variance for [Aρ]11 is O(ρ−2). The histograms in Figure 12 show the evolution

of the distribution of [Aρ]11 toward normal as ρ increases. To further bring this to light, we

provide a close-up of the histogram for the ρ = 64 case in Figure 13.

Table 2 Experiment 1 of the random checkerboard: Asymptotic behavior of components

of Aρ as ρ → ∞. The column labeled ‘Ratio’ shows the ratio of two consecutive variances.

The variance shrinks by a factor of four with each doubling of ρ.

[Aρ]11 [Aρ]22

ρ Mean Variance Ratio

2 0.99939138 3.87392708e-03 —

4 0.99900417 8.29923510e-04 4.6678

8 0.99972096 2.15407332e-04 3.8528

16 0.99974253 5.64378707e-05 3.8167

32 1.00003515 1.46838211e-05 3.8435

64 0.99997816 3.62430817e-06 4.0515

ρ Mean Variance Ratio

2 0.99960898 3.87415798e-03 —

4 0.99886380 8.18404811e-04 4.7338

8 0.99971593 2.15090563e-04 3.8049

16 0.99973093 5.63314550e-05 3.8183

32 1.00003600 1.45179876e-05 3.8801

64 0.99997095 3.58908744e-06 4.0450

[Aρ]12 [Aρ]21

ρ Mean Variance Ratio

2 0.00000000 0.00000000e+00 —

4 -0.00001521 5.17427142e-07 0.0000

8 -0.00001938 2.21103369e-07 2.3402

16 -0.00000147 6.44481557e-08 3.4307

32 -0.00000278 1.63013662e-08 3.9535

64 -0.00000056 4.11889874e-09 3.9577

ρ Mean Variance Ratio

2 0.00000000 0.00000000e+00 —

4 -0.00001521 5.17427142e-07 0.0000

8 -0.00001938 2.21103369e-07 2.3402

16 -0.00000147 6.44481557e-08 3.4307

32 -0.00000278 1.63013662e-08 3.9535

64 -0.00000056 4.11889874e-09 3.9577
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Fig.11 Experiment 1 of the random checkerboard: Log-log plot of the sample variances

for [Aρ]
11

. Also shown is the graph of the conjectured convergence rate of O(1/ρ2) for

comparison
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Fig.12 Experiment 1 of the random checkerboard: Distributions of [Aρ]
11

for ρ = 2, 4, 8, 16,

32, 64, generated with 1000 realizations
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Fig.13 Experiment 1 of the random checkerboard: A close-up of the histogram (1000

samples) for the distribution of [Aρ]
11

with ρ = 64. Superimposed is the graph of the

normal distribution with mean and variance equal to the sample mean and variance
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7.3.2 Numerical Experiment #2 in 2D

This set of experiments are identical with those in the previous section except we let

p = 1/4. The effective conductivity, A0, will be isotropic by Remark 4, however there is no

longer an explicit formula for its value.

Table 3 lists the outcome of our computations with ρ = 2i, i = 1, · · · , 6 averaged over

1000 realizations. We see that the mean of Aρ approaches a multiple of identity as ρ →∞, as

expected, and the variance is O(ρ−2) consistent with the conjecture made above. See also the

log-log plot in Figure 14 which shows that the variance for [Aρ]11 is O(ρ−2). The histograms

in Figure 15 show the evolution of the distribution of [Aρ]11 toward normal as ρ increases.

To further bring this to light, we provide a close-up of the histogram for the ρ = 64 case in

Figure 16.

Table 3 Experiment 2 of the random checkerboard: Asymptotic behavior of components

of Aρ as ρ → ∞. The column labeled ‘Ratio’ shows the ratio of two consecutive variances.

The variance shrinks by a factor of four with each doubling of ρ.

[Aρ]11 [Aρ]22

ρ Mean Variance Ratio

2 0.94149083 2.45200172e-03 —

4 0.94089838 5.87271432e-04 4.1752

8 0.94140841 1.49404258e-04 3.9308

16 0.94096033 3.83403355e-05 3.8968

32 0.94107328 9.47318479e-06 4.0472

64 0.94100935 2.55592740e-06 3.7064

ρ Mean Variance Ratio

2 0.94158409 2.46292264e-03 —

4 0.94093164 5.88741898e-04 4.1834

8 0.94137233 1.48839971e-04 3.9555

16 0.94095308 3.82877003e-05 3.8874

32 0.94108655 9.39411259e-06 4.0757

64 0.94101763 2.54854442e-06 3.6861

[Aρ]12 [Aρ]21

ρ Mean Variance Ratio

2 0.00000000 0.00000000e+00 —

4 -0.00001179 2.80617913e-07 0.0000

8 -0.00000886 1.21840925e-07 2.3031

16 0.00000576 2.98058477e-08 4.0878

32 0.00000179 7.23335555e-09 4.1206

64 0.00000003 1.90536287e-09 3.7963

ρ Mean Variance Ratio

2 0.00000000 0.00000000e+00 —

4 -0.00001179 2.80617913e-07 0.0000

8 -0.00000886 1.21840925e-07 2.3031

16 0.00000576 2.98058477e-08 4.0878

32 0.00000179 7.23335555e-09 4.1206

64 0.00000003 1.90536287e-09 3.7963
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Fig.14 Experiment 2 of the random checkerboard: Log-log plot of the sample variances

for [Aρ]
11

. We see the constant slope which indicates the observed rate of convergence.

Also shown is the graph of the conjectured convergence rate of O(1/ρ2) for comparison
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Fig.15 Experiment 2 of the random checkerboard: Distributions of [Aρ]
11

for ρ = 2, 4, 8, 16,

32, 64, generated with 1000 realizations
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Fig.16 Experiment 2 of the random checkerboard: A close-up of the histogram for

Distributions of [Aρ]
11

with ρ = 64
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H Poincaré Probab Statist, 2004, 40(2): 153–165

[8] Brockwell P J, Davis R A. Time Series: Theory and Methods. Springer Series in Statistics. 2nd ed. New

York: Springer-Verlag, 1991

[9] Byström J, Dasht J, Wall P. A numerical study of the convergence in stochastic homogenization. J Anal

Appl, 2004, 2(3): 159–171

[10] Byström J, Engström J, Wall P. Periodic approximation of elastic properties of random media. Adv

Algebra Anal, 2006, 1(2): 103–113

[11] Chechkin G A, Piatnitski A L, Shamaev A S. Homogenization. Volume 234 of Translations of Mathe-

matical Monographs. Methods and Applications, Translated from the 2007 Russian Original by Tamara

Rozhkovskaya. Providence, RI: American Mathematical Society, 2007

[12] Cioranescu D, Donato P. An Introduction to Homogenization. Volume 17 of Oxford Lecture Series in

Mathematics and its Applications. New York: The Clarendon Press Oxford University Press, 1999
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