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Abstract. The most common Monte Carlo methods for sensitivity analysis of stochastic reaction networks are
the finite difference (FD), Girsanov transformation (GT), and regularized pathwise derivative (RPD)
methods. It has been numerically observed in the literature that the biased FD and RPD methods
tend to have lower variance than the unbiased GT method and that centering the GT method (CGT)
reduces its variance. We provide a theoretical justification for these observations in terms of system
size asymptotic analysis under what is known as the classical scaling. Our analysis applies to GT,
CGT, and FD and shows that the standard deviations of their estimators when normalized by the
actual sensitivity scale as O(N1/2),O(1), and O(N−1/2), respectively, as system size N → ∞. In
the case of the FD methods, the N → ∞ asymptotics are obtained keeping the finite difference
perturbation h fixed. Our numerical examples verify that our order estimates are sharp and that
the variance of the RPD method scales similarly to the FD methods. We combine our large N
asymptotics with previously known small h asymptotics to obtain the best choice of h in terms of
N and estimate the number Ns of simulations required to achieve a prescribed relative L2 error δ.

This shows that Ns depends on δ and N as δ
−2− γ2

γ1 N−1, δ−2, and Nδ−2 for FD, CGT, and GT,
respectively. Here γ1 > 0, γ2 > 0 depend on the type of FD method used.
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AMS subject classifications. Primary, 60H35, 65C99; Secondary, 92C42, 92C45

DOI. 10.1137/140998111

1. Introduction. Estimation of parametric sensitivities of dynamical systems is an es-
sential part of the modeling and parameter estimation process. For instance, the problem
of finding the set of parameters that best fit some observed data can be formulated as an
optimization problem over the parameter space where the partial derivatives of the objective
function depend on the parametric sensitivities defined as partial derivatives of some system
output with respect to the parameters.

In deterministic dynamical systems governed by ordinary differential equations (ODEs),
the sensitivities defined by the partial derivatives ∂f(X(t))/∂ck of some function f of the
state with respect to the parameters are essentially computed by numerical integration of an
auxiliary system of evolution equations obtained by linearization of the original ODEs. In
contrast, for stochastic dynamical systems, several vastly different approaches exist. We note
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that we shall treat the parameters ck as deterministic and not as random quantities, while the
dynamic behavior of the systems we consider is stochastic.

Our primary focus will be stochastically modeled chemical reaction systems. While the
stochastic chemical kinetic model under the well stirred assumption [10] has been around for
decades, it wasn’t until the late nineties that the importance of stochastic chemical models
in some applications was realized [4, 19]. Especially, intracellular chemical reactions systems
often contain certain molecular species in small copy numbers, and as such, the deterministic
model based on ODEs or partial differential equations (PDEs) for the concentrations of var-
ious molecular species is not appropriate. A more appropriate model, under the well stirred
assumption, consists of a continuous time Markov process X(t) with the nonnegative integer
lattice Zn+ as state space.

While we focus on stochastic chemical kinetics which we describe in the next subsection,
we note that analogous models appear in other fields such as epidemiology and predator-prey
systems.

1.1. Stochastic chemical kinetics. As a simple example, let us consider the chemical
reaction system

(1) S1 + S2 → S3, S3 → S1 + S2,

consisting of three species S1, S2, and S3 undergoing two reaction channels. The state space is
the set Z3

+ of nonnegative three-dimensional integer vectors, where the state x = (x1, x2, x3)
describes the copy numbers x1 of S1, x2 of S2, and x3 of S3. When the first reaction channel
fires, the state changes by ν1 = (−1,−1, 1)T , and when the second reaction channel fires it
changes by ν2 = (1, 1,−1)T . The quantities νj are known as stoichiometric vectors and for
chemical reaction systems the νj are parameters and state independent. The “probabilistic
rate” at which these two reactions occur is given by the intensity functions a1(x, c) and a2(x, c)
(where c is a vector of parameters). The precise meaning of the intensity functions is as follows.
If X(t) = (X1(t), X2(t), X3(t)) is the stochastic process of species counts, then given X(t) = x,
the probability of at least one firing of the jth reaction channel during interval (t, t + h] is
aj(x, c)h+ o(h) as h→ 0+.

Stochastic mass action form. Under the well stirred model of Gillespie [10], the
intensity functions take the stochastic mass action form: a1(x, c) = c1x1x2 and a2(x, c) = c2x3.
The rationale for this specific form is based on the following considerations. The probability
that a given pair of one S1 molecule and one S2 molecule comes together and react during
time interval (t, t+h] is given by c1h+o(h), where c1 is a constant. Given that there are x1x2

different ways to choose the pair, we obtain the probability of c1x1x2h+ o(h) for any pair of
S1 and S2 to react. Likewise, the probability that a given S3 molecule gives rise to an S1 and
an S2 via the second reaction during (t, t+ h] is given by c2h+ o(h), where c2 is a constant.
Given that there are x3 different S3 molecules, we obtain the probability of c2x3h + o(h) for
any of the S3 to react.

General chemical system. More generally, a chemical reaction system consists of m
reaction channels and n chemical species {S1, . . . , Sn}. The n-dimensional state vector X(t)
characterizes the state of the system where each entryXi(t) represents the number of molecules
of the species Si at time t. The firing of a reaction channel j ∈ {1, . . . ,m} at time t causesD
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1290 TING WANG AND MURUHAN RATHINAM

the state to be incremented by the stoichiometric vector νj . We assume that X is càdlàg, i.e.,
paths of X are right continuous with left-hand limits and hence, if reaction channel j fires at
time t, then X(t) = X(t−) + νj . For j = 1, . . . ,m we denote by Rj(t) the number of firings
of the jth reaction channel during (0, t]. Thus X(t) = X(0) + νR(t) for t ≥ 0, where ν is the
stoichiometric matrix whose jth column is νj and R(t) = (R1(t), . . . , Rm(t))T . We note that
R(0) = 0 and Rj(t) − Rj(t−) is either 0 or 1. The process X is assumed to be Markovian,
and associated with each reaction channel is an intensity function (also known as propensity
function in the chemical kinetics literature) aj(x, c), j = 1, . . . ,m, which is such that, given
X(t) = x, the probability of one or more firings of reaction channel j during (t, t + h] is
aj(x, c)h+ o(h) as h→ 0+. Here, c are parameters. Following the terminology of [8], we note
that Rj are counting processes which admit the Ft-predictable intensity process aj(X(t−), c),
where Ft is the filtration generated by X and R.

Random time change representation. Naturally, the probability laws of the stochastic
processes X and R depend on the parameters c. For the purpose of analysis, it proves
convenient to find a way to represent the processes X and R corresponding to different c
values on the same sample space (Ω,F ,P). To this end, we use the random time change
representation [9] to express X via the stochastic equation

(2) X(t, c) = x0 +

m∑
j=1

Yj

(∫ t

0
aj(X(s, c), c)ds

)
νj ,

where Yj are independent unit rate Poisson processes. It follows that

(3) Rj(t, c) = Yj

(∫ t

0
aj(X(s, c), c)ds

)
, j = 1, . . . ,m,

where x0 is the initial state assumed to be deterministic. We note that in this represen-
tation, we have a family of stochastic processes X(t, c) and R(t, c) on the same sample
space (Ω,F ,P) where each element ω ∈ Ω may be identified with a specific trajectory of
Y (t) = (Y1(t), . . . , Ym(t)), the underlying unit rate independent Poissons. We note that the
Yj(t) do not depend on the parameters. See [24] for a detailed explanation of how to compute
X(t, c) once a sample path of Y (t) is generated.

1.2. Parametric sensitivity estimation. We consider parametric sensitivities of the
stochastic process X(t, c) with respect to an output function f : Zn+ → R, defined by the
partial derivatives

∂

∂ck
E(f(X(t, c))),

where ck are scalar parameters, f is some suitable scalar function of the state space, E is the
expectation, and t > 0 is some fixed final time. For simplicity we shall focus on one scalar
parameter c. When the number of species n is large (in several applications it is of the order of
10−100), due to the curse of dimensionality, Monte Carlo approaches are the most viable for
both simulation of the process X as well as estimation of sensitivities. Monte Carlo simulation
of exact sample paths of the process X is feasible and is provided by the well-known SSA or
Gillespie algorithm [10]. In this context several different Monte Carlo approaches exist for the
numerical computation of the parametric sensitivities as well.D
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EFFICIENCY OF THE GIRSANOV TRANSFORMATION APPROACH 1291

We shall use S(t, c) to denote the exact sensitivity

(4) S(t, c) =
∂

∂c
E(f(X(t, c))).

As we will see later in this section, all the Monte Carlo methods for computing the sensitivity
involve the estimation of the expected value E(S(t, c)) of some process S(t, c) at time t > 0,
via independent and identically distributed sample estimation, where S(t, c) can be computed
easily from the knowledge of system parameters, the function f , and the sample path of X
on the time interval [0, t]. In other words, one generates Ns independent copies X(i)(t, c) of
X(t, c) for i = 1, . . . , Ns and then computes the corresponding copies S(i)(t, c) of S(t, c). Then
the sensitivity is estimated by

S̄(t, c) =
1

Ns

Ns∑
i=1

S(i)(t, c).

Since E(S̄(t, c)) = E(S(t, c)) and Var(S̄(t, c)) = Var(S(t, c))/Ns, the accuracy of this estimate
depends on the error (known as bias) E(S(t, c) − S(t, c)), the variance Var(S(t, c)) of the
underlying estimator S(t, c), and the sample size Ns.

One way to quantify the error in estimation is via the mean square error:

(5) E
(
|S̄(t, c)− S(t, c)|2

)
=

Var(S(t, c))

Ns
+ (E(S(t, c)− S(t, c)))2.

If Var(S(t, c)) is large, then one requires a greater number Ns of simulations, resulting in
loss of efficiency. On the other hand if a biased estimator is used, increasing the number of
simulations Ns does not help. It is often useful to consider the relative error (RE) defined by

(6) RE =
√
E
(
|S̄(t, c)− S(t, c)|2

)
/|S(t, c)|,

provided the true sensitivity S(t, c) is nonzero.
Throughout this paper, we shall refer to S(t, c) as the underlying estimator or simply the

estimator and S̄(t, c) as the ultimate estimator. As the properties of the latter depend directly
on that of the former and Ns, the analysis of the variance of the underlying estimator S(t, c)
shall be our focus. We define the relative standard deviation (RSD) and the relative bias (RB)
of the underlying estimator S(t, c) by

(7) RSD =
√

Var(S(t, c))/|S(t, c)|

and

(8) RB = E(S(t, c)− S(t, c))/|S(t, c)|

when S(t, c) 6= 0. We note that the RE is given by

(9) RE =

√
RSD2

Ns
+ RB2.
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1292 TING WANG AND MURUHAN RATHINAM

Now, we turn our attention to the description of some common Monte Carlo sensitivity
estimators. As a general reference on this topic we suggest [5, 12]. The Monte Carlo methods
for sensitivity can broadly be categorized into finite difference (FD) methods [1, 5, 24], path-
wise derivative (PD) methods [5, 26], and likelihood ratio or Girsanov transformation (GT)
methods [5, 20].

The FD methods involve approximation of the partial derivative by the simple finite
difference E[f(X(t, c + h)) − f(X(t, c))]/h or some higher order finite difference. In the case
of the simple finite difference above,

(10) SFD(t, c) = h−1[f(X(t, c+ h))− f(X(t, c))].

Thus, E(SFD(t, c)) 6= ∂
∂cE(f(X(t, c))) in general, and the bias is decreased by decreasing h.

On the other hand,

Var(SFD(t, c)) = h−2 {Var(f(X(t, c+ h))) + Var(f(X(t, c)))− 2Cov (f(X(t, c+ h)), f(X(t, c)))} .

In general the numerator does not vanish as fast as h2 when h → 0, showing that small h
leads to large variance. When f(X(t, c+h)) and f(X(t, c)) are strongly positively correlated,
one may expect the variance to be small. If the processes X(t, c) and X(t, c + h) are taken
to be independent, which is accomplished by the use of two independent streams of random
numbers in the simulation, the resulting FD method is known as the independent random
number (IRN) method. If the processes X(t, c) and X(t, c + h) are strongly coupled, which
is accomplished by the use of a common random number stream, the resulting approach is
known as common random number (CRN) method. In general, the CRN FD methods have
much lower variance than the IRN FD methods. Moreover, different approaches to couple the
processes X(t, c+h) and X(t, c) lead to different covariances and hence different variances for
the FD estimators. See [1, 24] for some approaches.

In the PD method one takes

SPD(t, c) =
∂

∂c
f(X(t, c)),

and the method is applicable provided the derivative exists, analytical computation of the
derivative is possible, and the commutation

(11) E
(
∂

∂c
f(X(t, c))

)
=

∂

∂c
E(f(X(t, c)))

holds. In the context of stochastic chemical kinetics, direct application of the PD method is
not valid as the commutation in (11) does not hold. To see this, note that f(X(t, c, ω)) is
piecewise constant in c for fixed t and ω and hence the derivative is 0, while the sensitivity
∂E(f(X(t, c)))/∂c is in general nonzero, showing that the commutation in (11) is not valid
(see [26] for details). It is possible to regularize the problem by replacing ∂f(X(t, c))/∂c with

(12) SRPD(t, c) =
∂

∂c

(
1

2w

∫ t+w

t−w
f(X(s, c))ds

)
to obtain the regularized pathwise derivative (RPD) estimator for which the commutation
of derivative with expectation holds for a restricted class of examples [26]. This, however,D
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results in a bias which increases with large w. Also see [12] for similar work in the context of
computing the sensitivity of path integrals.

The GT approach may be motivated in different ways. For the purpose of our analysis
based on the random time change representation, it is natural to start with the family of
processes X(t, c) parametrized by c that are all defined on (Ω,F ,P) as mentioned before.
Suppose the sensitivity is required at a specific parameter value c = c0. Under certain regu-
larity conditions, a family of new probability measures P (c) may be constructed on the same
sample space (Ω,F) for a range of c values in a neighborhood of c0 so that P (c0) = P, i.e.,
coincides with the original probability measure (see [8], for instance). Moreover, the proba-
bility measures P (c) are absolutely continuous with respect to P (c0) and the P (c)-law of the
process X(t, c0) is the same as the P (c0)(= P)-law of the process X(t, c). In other words, for
all suitable functions f , ∫

Ω
f(X(t, c))dP (c0) =

∫
Ω
f(X(t, c0)dP (c).

We observe that the left-hand side is E(f(X(t, c))). If we denote by L(t, c, c0) the Radon–
Nikodym derivative dP (c)/dP (c0), then we have

(13)

∂

∂c

∣∣∣∣
c=c0

E(f(X(t, c))) =
∂

∂c

∣∣∣∣
c=c0

∫
Ω
f(X(t, c0))L(t, c, c0)dP (c0)

=

∫
Ω
f(X(t, c0))

∂

∂c

∣∣∣∣
c=c0

L(t, c, c0)dP (c0)

provided the differentiation inside the integral is valid. It turns out that

(14) Z(t, c0) =
∂

∂c

∣∣∣∣
c=c0

L(t, c, c0)

is analytically tractable and the required sensitivity is given by

∂

∂c

∣∣∣∣
c=c0

E(f(X(t, c))) = E[f(X(t, c0))Z(t, c0)],

thus the sensitivity estimator S(t, c0) = f(X(t, c0))Z(t, c0).
In the context of stochastic chemical kinetics, the weight process Z defined by (14) is given

by [20, 26]

Z(t, c) =

m∑
j=1

∫ t

0

∂aj
∂c (X(s−, c), c)
aj(X(s−, c), c)

dRj(s, c)−
m∑
j=1

∫ t

0

∂aj
∂c

(X(s, c), c)ds.(15)

We have dropped c0 in favor of c for notational ease; however, it must be noted that all
computations are carried out at the specific parameter value c at which the sensitivity is
required.

We also investigate a modified GT method inspired by the work in [28], which we call
the centered Girsanov transformation (CGT) method, in which we replace the estimatorD
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1294 TING WANG AND MURUHAN RATHINAM

f(X(t, c))Z(t, c) with (f(X(t, c)) − E(f(X(t, c))))Z(t, c). Since Z(t, c) has zero mean this
new estimator has the same mean as the original one and hence is also unbiased. In practice
E(f(X(t, c))) is not known and needs to be estimated as well. One approach would be to
generate Ns independent copies Xi(t, c) of X(t, c), then use

f(X(t, c)) =
1

Ns

Ns∑
i=1

f(X(i)(t, c))

to estimate E(f(X(t, c))), and then use

S̄CGT =
1

Ns

Ns∑
i=1

(
f(X(i)(t, c))− f(X(t, c))

)
Z(i)(t, c)

as the ultimate estimator. In this case E(S̄CGT) 6= E(f(X(t, c))Z(t, c)) and the estimator is
biased. However, when Ns is large the bias is O(1/Ns). Also

Var(S̄CGT) = Var(SCGT)/Ns +O(1/N2
s ),

where SCGT = (f(X(t, c)) − E(f(X(t, c))))Z(t, c) is the underlying CGT estimator. So it is
adequate to study the variance of (f(X(t, c)) − E(f(X(t, c))))Z(t, c). In the formula used in
[28] for the ultimate estimator, Z(i) above were replaced by Z(i)− Z̄, where Z̄ was the sample
mean of Z(i). When the sample size Ns is large, both ultimate estimators are similar. For the
purpose of analysis, we shall focus on the underlying CGT estimator

(16) SCGT = f(X(t, c))Z(t, c)− E(f(X(t, c)))Z(t, c).

We note that the variances of the GT and CGT estimators are given by the following
formulae:

(17)
Var(SGT) = E((f(X(t, c)))2Z2(t, c))− E2(f(X(t, c))Z(t, c)),

Var(SCGT) = Var(SGT)− 2E(f(X(t, c))Z2(t, c)) + E2(f(X(t, c)))E(Z2(t, c)).

It must be noted that it is not always the case that Var(SGT) is greater than or equal to
Var(SCGT). Thus, one cannot conclude that CGT is always superior to GT. However, it was
observed in [28] as well as in our simulations that CGT tends to have lower variance than GT
in most examples.

Recently introduced methods, the auxiliary path algorithm [14] and the Poisson path
algorithm [15], do not strictly belong to the three categories mentioned above. While they are
closely related to the FD and PD methods, they provide unbiased estimators similar to the
GT. We do not investigate these methods in this paper.

It has been observed that the PD method, when applicable, yields an estimator with lower
variance than the GT estimator, which is applicable in most situations [5, 26]. In the context of
stochastic chemical kinetics, the RPD method is applicable only to a limited class of examples
and results in a biased estimator [26]. The FD methods also result in biased estimators. Both
the FD and RPD methods also involve the use of method parameters, h or w, and the smallerD
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these are the less the bias of these methods. However, decreasing h or w results in an increase
in the variance of the FD or RPD estimators, respectively. The GT estimator, on the other
hand, is unbiased and does not involve method parameters to be determined. However, it has
been observed that in many situations, the GT estimator has much larger variance compared
to the FD and RPD estimators [5, 20, 24, 26]. To our knowledge, no theoretical explanation
has been presented for the large variance of the GT method observed in many applications.
In this paper, we provide a theoretical explanation for the large variance.

Remark 1. If a coefficient cj = 0 in the stochastic mass action form of intensity functions,
then reaction channel j is absent. However, one may want to compute the sensitivity at cj = 0
to see the effect of “turning off” a reaction channel. In this case the GT or CGT method does
not work; in fact the weight process Z is undefined. However, the FD methods work. Given
the dependence of Z on cj , one also expects the variance of Z to approach infinity as cj → 0.
This was numerically examined in [14].

1.3. System size dependence in stochastic mass action. In stochastic chemical kinetics
as well as other population models, there is a “system size parameter” N and in the N →∞
these systems behave deterministically (see Chapter 11 of [9], for instance). Our analysis
shows that the variance of the GT method grows much faster in N than the variances of the
FD methods.

We describe the general stochastic mass action form of intensities that commonly arise in
stochastic chemical kinetics [10] and describe how system size N enters into the model. If we
divide the stoichiometric vector νj into two parts, such that νj = ν ′j − ν ′′j , where

ν ′j = the vector number of molecules of each species that are created in the jth reaction,
ν ′′j = the vector number of molecules of each species that are consumed in the jth reaction,

then the intensity of the jth reaction is

(18) aNj (x, c) =
cj

N |ν
′′
j |−1

n∏
i

(
xi
ν ′′ij

)
,

where |ν ′′j | =
∑n

i=1 ν
′′
ij , N is the volume of the system times Avogadro’s number, and cj is a

constant specifying the rate of the reaction. We note that the term
(
xi
ν′′ij

)
represents the number

of ways to choose ν ′′ij molecules from xi molecules of the ith species. The term 1/N |ν
′′
j |−1 also

plays a critical role. To understand this, let us return to the example in (1). Let us relabel
the parameters as c′1 and c′2. As c′1h + o(h) is the probability that a given pair of S1 and S2

interact during (t, t + h], one expects c′1 to depend on the system volume or equivalently on
system size N in inverse proportion: c′1 = c1/N . Here, the newly defined c1 is independent of
system size N . On the other hand, for the monomolecular reaction, the probability c′2h+o(h)
of a given S3 molecule reacting during (t, t+ h] is independent of system size N . In general,
when |ν ′′j | number of molecules come together to react, the term c′j will depend on system size
N as

(19) c′j = cj/N
|ν′′j |−1.

See [10] for more details. It must be noted that it is often useful to model “pure production”
reactions, represented by an abstract chemical equation as ∅ → S, and the stochastic chemicalD
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1296 TING WANG AND MURUHAN RATHINAM

models in literature often utilize such reactions. In this case, the stochastic mass action form
of intensity function is a constant c′ and it is natural to take its dependence on N to be
proportional: c′ = cN , still satisfying the formula c′j = cj/N

|ν′′j |−1.

Thus the intensity functions aNj depend on N and x in a specific manner, referred to as
density dependence (see Chapter 11 of [9]). This density dependence leads to a deterministic
limiting behavior in the large system size (N →∞) when the initial conditions are also scaled
by N so that the initial species counts per volume (concentration) is held constant. The
relevant theorem from [9] will be restated in the next section.

The parameters c′j and cj. We note that the parameters c′j (which depend on N) are
sometimes referred to as the stochastic parameters, while cj are referred to as the deterministic
parameters. In practice, one works with c′j , and hence the sensitivities with respect to c′j will
be relevant. The sensitivities with respect to cj are related to those with respect to c′j via

(20) Sj(t, c) =
∂

∂cj
E(f(X(t))) =

∂

∂c′j
E(f(X(t)))N1−|ν′′j | = S′j(t, c)N

1−|ν′′j |.

Moreover, if S is a sensitivity estimator for the sensitivity with respect to the deterministic
parameter cj , then S′ = SN |ν

′′
j |−1 is a sensitivity estimator for the sensitivity with respect to

the stochastic parameter c′j . While the variances and biases of the stochastic and deterministic
sensitivity estimators scale differently with system sizeN , the relative quantities RE, RSD, and
RB will scale the same way. Therefore, without loss of generality, in the rest of the paper, we
shall only concern ourselves with sensitivities with respect to the deterministic parameters cj .

Finally, we note that in the stochastic mass action form of intensity functions, there is
precisely one (deterministic) parameter cj for each intensity function aj and the parameters

enter multiplicatively. Hence
∂aj
∂cj
/aj = 1/cj . This leads to the simple form for the weight

process Z(t, c) for the sensitivity with respect to cj

(21) Z(t, c) =
1

cj

(
Rj(t, c)−

∫ t

0
aj(X(s, c))ds

)
.

1.4. An illustrative example. To investigate the estimator variance for the GT, CGT,
and FD methods, we consider the analytically tractable birth death model from population
dynamics, which also appears in gene regulatory networks where mRNA is produced at a
constant probabilistic rate and decays at a rate proportional to the number of mRNA. The
model is described by

(22) ∅ c1−→ S, S
c2−→ ∅.

The intensity functions are aN1 (x, c) = Nc1 and aN2 (x, c) = c2x. We consider the output
function f(x) = x. Denoting by XN the system size dependence of the process, it can be
shown that

(23) E(XN (t, c)) = Nx0e
−c2t +

Nc1

c2
(1− e−c2t),
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where we have chosen a deterministic initial condition XN (0) = Nx0. The sensitivities with
respect to c1 and c2 are given by

∂

∂c1
E(XN (t, c)) =

N

c2
(1− e−c2t),

∂

∂c2
E(XN (t, c)) = −Nx0te

−c2t − Nc1

c2
2

(1− e−c2t) +
Nc1

c2
te−c2t.

We observe that the both sensitivities are O(N) as N → ∞. Also, in terms of t both
sensitivities are O(1) as t→∞.

To study the variance of the GT and CGT estimators, first we consider the sensitivity
∂
∂c1

E(XN (t, c)). The population process XN (t, c) and the weight process ZN (t, c) in this case
can be written as

XN (t, c) = Nx0 −
∫

(0,t]
dRN1 (s, c) +

∫
(0,t]

dRN2 (s, c),

ZN (t, c) =

∫
(0,t]

1

c1
dRN1 (s, c)−N

∫ t

0
ds,

(24)

where RNj and ZN show dependence on N . One can use the Ito formula for processes
driven by finite variation processes (see [25]) to write down the stochastic equations for
(XN )α(t, c)(ZN )β(t, c), for the integer powers 0 ≤ α, β ≤ 2, and then take expectations
to obtain a coupled system of linear ODEs for E((XN )α(t, c)(ZN )β(t, c)). Then the variance
of GT and CGT estimators can be computed by the relations (17) with f(x) = x.

After lengthy calculations with the aid of Maple symbolic software one can show that

Var(SGT) =
Ne−2 c2 t

c1c2
2

(e2 c2 tN2c2
1t+Nc1 tc2 e

2 c2 t + 2 ec2 tN2c1 c2 tx0 + ec2 tc2
2tNx0

+ c2
2tN

2x2
0 − 2 ec2 tN2c2

1t− ec2 tNc1 c2 t− 2N2c1 tc2 x0

−Nx0 tc
2
2 + 3Nc1 e

2 c2 t + e2 c2 tc2 + 2Nx0 e
c2 tc2

+N2c2
1t− 6 ec2 tNc1 − ec2 tc2 − 2Nx0 c2 + 3Nc1)

(25)

and

Var(SCGT) =
Ne−2 c2 t

c1c2
2

(Nc1 tc2 e
2 c2 t + ec2 tc2

2tNx0 − ec2 tNc1 c2 t−Nx0 tc
2
2 +Nc1 e

2 c2 t

+ e2 c2 tc2 − 2 ec2 tNc1 − ec2 tc2 +Nc1).

(26)

We observe that the variance of the GT estimator is O(N3) while that of the CGT estimator
is O(N2), as N → ∞. On the other hand, both estimators have O(t) variance as t → ∞.
Hence, in the N → ∞ limit, the RSD of the GT estimator is O(N1/2) and the RSD of the
CGT estimator is O(1). We can also conclude that in the t→∞ limit, the RSD is O(

√
t) for

both methods.D
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1298 TING WANG AND MURUHAN RATHINAM

Second, we consider the sensitivity ∂
∂c2

E(XN (t, c)). The weight process ZN (t, c) in this
case can be written as

(27) ZN (t, c) =

∫
(0,t]

1

c2
dRN2 (s, c)−

∫ t

0
XN (s, c)ds,

and the analysis, while possible, is more complicated. For simplicity, we choose c1 = 0, so the
process now corresponds to a pure death process. In this case, the variances of GT and CGT
estimators can be shown to be

Var(SGT) =
1

c2
2

(e−2c2tN3x3
0 − 4e−2c2tN2x2

0 + 3e−2c2tNx0 + 3e−2c2tN2x2
0t

2c2
2

− 2e−3c2tNx0 + 3e−3c2tN2x2
0 + e−c2tN2x2

0 − e−c2tNx0

+ e−c2tNx0t
2c2

2 − 4e−2c2tt2c2
2Nx0 − e−3c2tN2x3

0)

(28)

and

Var(SCGT) =
1

c2
2

(−2e−2c2tN2x2
0 + 3e−2c2tNx0 + e−2c2tN2x2

0t
2c2

2

− 2e−3c2tNx0 + e−3c2tN2x2
0 + e−c2tN2x2

0

− e−c2tNx0 + e−c2tNx0t
2c2

2 − 4e−2c2tNx0t
2c2

2).

(29)

When dependence on system size N is concerned, the variance of GT estimator is O(N3)
while that of the CGT estimator is only O(N2). As in the case of the parameter c1, we again
obtain that the RSD of the GT method is O(N1/2) while that of CGT is O(1), as N → ∞.
Finally, we note that large t behavior is uninteresting as the system enters the absorbing state
0 eventually.

Now we consider any FD estimator, and we can bound its variance as

Var(SFD) = h−2Var(XN (t, c+ h)−XN (t, c))

≤ 2h−2
{

Var(XN (t, c+ h)) + Var(XN (t, c))
}
.

(30)

We also note that [23]

(31) Var(XN (t, c)) = Nx0(1− e−c2t)e−c2t +
Nc1

c2
(1− e−c2t).

In our analysis we shall treat the finite difference perturbation h of the parameter as inde-
pendent of system size N so that we consider the variance and bias of the FD estimator as a
function of the two variables h and N . From the above equation, we see that for any fixed h,
the variance of an FD estimator is O(N) and hence the RSD of the FD estimator is O(N−1/2)
as N →∞. Finally, we note that for fixed N , as t→∞, the variance of the FD estimator is
O(1).

We note here that the above upper bound for Var(SFD) is exactly twice the variance of
the IRN FD method. If a CRN FD method is used, the variance is in general much smaller.
Nevertheless, our numerical results show that the asymptotic order in N is sharp even for
CRN.D
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EFFICIENCY OF THE GIRSANOV TRANSFORMATION APPROACH 1299

From the expression for E(XN (t, c)) in (23) it can easily be shown that the RB defined
by (8) of any FD method is O(1) as N → ∞ (with h fixed) when sensitivity of E(XN (t, c))
with respect to c1 or c2 is considered.

To summarize, we note that when computing the sensitivity of E(XN (t, c)) in this example,
with respect to either of the parameters c1 or c2, we observe that the RSDs of the GT, CGT,
and FD estimators scale with system size N as O(N1/2),O(1), and O(N−1/2), respectively.
If N is modestly large (say, 10−100), a significant amount of reduction in the RSD can be
expected using CGT over GT. On the other hand FD methods will have even lower variance
when compared to both GT and CGT as system size increases. However, the FD methods
are biased, and for fixed h the RB remains O(1) as N →∞.

1.5. Contributions of this paper. Our analysis will show that the observations made
about the RSD and the RB of the GT, CGT, and FD estimators in the context of the particular
example of the previous subsection generalize to a large class of stochastic reaction networks.
These general results are provided in section 4. While our analysis does not apply to the
RPD method, our numerical simulations show that RPD has system size dependence similar
to the FD methods. While our RSD analysis in the cases of CGT and CRN FD estimators is
not proven to be sharp, the numerical simulations show that the estimates in terms of large
system size N are sharp.

Our analysis thus provides theoretical evidence that centering (to obtain the CGT method)
significantly improves the efficiency of the GT methods. Since the FD methods are biased
while the GT and CGT methods are not, an efficiency comparison must be based on variance
and bias. In the case of the FD estimators which depend on system size N as well as the
perturbation parameter h, our analysis in section 4 treats h and N as independent variables
and provides the large N behavior for fixed h. The small h behavior of the FD methods (for
fixed N) is well known [5]. In section 6, we combine our large N results with the existing
small h results for the FD methods in order to decide the optimal choice of h as a function
of N , and we provide an estimate of efficiency (as measured by the number Ns of trajectories
needed to achieve a given value δ for the RE) of the GT, CGT, and FD methods.

2. General setup and running assumptions. As mentioned in the previous section, the
system size shall be the key to our analytical explanation for the larger variance of the GT
estimator. In this section we set the stage for the system size analysis and state some assump-
tions that shall be carried throughout the rest of the paper. We shall use the notation |x| for
the norm of a vector (any norm in Rn would do) and ‖ν‖ for the corresponding induced norm
of a matrix.

Remark 2. Our analysis will focus on processes X, R, and Z corresponding to different
system sizes N ; however, the deterministic parameter value c is fixed at a specific value
at which the sensitivity is sought. For notational ease and readability, we shall not show the
dependence of these processes and intensity functions on c and display c only when it explicitly
appears outside these.

We will study the family of processes XN indexed by N ≥ 1 corresponding to the family
of intensity functions aNj that are represented on the same sample space via the stochastic
equation
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1300 TING WANG AND MURUHAN RATHINAM

(32) XN (t) = Nx0 +
m∑
j=1

Yj

(∫ t

0
aNj (XN (s)) ds

)
νj , N ≥ 1,

where Yj are independent unit rate Poisson processes and we have taken XN (0) = Nx0, where
x0 ∈ Rn+ is fixed (deterministic). We also define the corresponding family of vector reaction
count processes RN (t) whose jth component RNj (t) counts the number of reaction events of
type j that occurred during (0, t]. Thus

RNj (t) = Yj

(∫ t

0
aNj (XN (s)) ds

)
, N ≥ 1, j = 1, . . . ,m.

We also define the centered processes MN (t) = (MN
1 (t), . . . ,MN

m (t)) by

MN
j (t) = RNj (t)−

∫ t

0
aNj (XN (s))ds, N ≥ 1, j = 1, . . . ,m.

We shall state five running assumptions under which the rest of the analysis in this paper
is carried out. We note that Assumptions 1–3 are assumptions on the intensity functions
and their dependence on parameters and system size. These assumptions are satisfied by the
stochastic mass action form of intensity functions and are intended to generalize certain key
properties of the stochastic mass action form of intensity functions. Not all stochastic models
of intensity functions in the literature follow the stochastic mass action form. In such cases,
our analysis will still apply provided these assumptions are met.

Assumption 1. We assume the following form of parameter dependence on the intensity
function. For each j = 1, . . . ,m and N ≥ 1,

(33) aNj (x, c) = cjb
N
j (x),

where bNj : Rn → R are such that bNj restricted to ZN+ are nonnegative. This also implies that
there are precisely m parameters, one for each reaction j.

For the analysis in this paper we need not assume the stochastic mass action form but
merely the density dependence which is stated by our Assumption 2.

Assumption 2. We suppose that for each j = 1, . . . ,m and each x ∈ Rn+, the limit
limN→∞ a

N
j (Nx)/N = aj(x) exists and, moreover, for each compact K ⊂ Rn+, the collec-

tion of functions aNj (Nx)−Naj(x) is uniformly bounded for x ∈ K and N ≥ 1. We note that
this implies that for each compact set K ⊂ Rn+ there exists a constant BK > 0 such that

(34)

∣∣∣∣∣aNj (Nx)

N
− aj(x)

∣∣∣∣∣ ≤ BK
N

, x ∈ K, j = 1, . . . ,m, N ≥ 1.

Defining XN (t) = N−1XN (t), we note that XN can be interpreted as the concentration
of molecules at time t for system size N . We note that XN are coupled via the following
stochastic equations:

(35) XN (t) = x0 +

m∑
j=1

N−1Yj

(∫ t

0
aNj (NXN (s)) ds

)
νj .D
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We state the following theorem regarding the limiting behavior of XN (see [9] for details).
The deterministic limit X of XN is also referred to as the fluid limit.

Theorem 1 (Theorem 2.1 of Chapter 11 in [9]). Suppose that Assumption 2 holds. More-
over, assume that for each compact K ⊂ Rn,

m∑
j=1

|νj | sup
x∈K

aj(x) <∞

and that F (x) =
∑m

j=1 νjaj(x) is Lipschitz on K, that is, for each x, y ∈ K, there exists some
constant MK such that

|F (x)− F (y)| ≤MK |x− y|.

Suppose t > 0 is in the forward maximal interval of existence of solution X for the ODE
initial value problem

X(t) = x0 +

∫ t

0
F (X(s))ds.

Then

lim
N

sup
s≤t
|XN (s)−X(s)| = 0 a.s.,

where the deterministic limit X satisfies the ODE above.

Remark 3. We note that with fixed initial condition XN (0) = x0 we want XN (0) = Nx0

to belong to Zn+, which may not hold for all N ≥ 1 but we assume that it holds for a sequence
of N values tending to ∞. For instance, if x0 is rational this is true. This is adequate for our
purposes.

In order to satisfy the conditions stated in Theorem 1 we shall assume the following.

Assumption 3. For each j = 1, . . . ,m, the functions aj(x) : Rn → R are continuously
differentiable. This automatically implies the Lipschitz condition in Theorem 1.

The following assumption is used to facilitate the analysis in this paper. Several, but not
all, examples in applications satisfy this assumption.

Assumption 4. We assume that the sequence of concentration processes XN is uniformly
bounded, that is, there exists a constant Γ such that for all t ≥ 0,

(36) |XN (t)| ≤ Γ a.s.

for all N ≥ 1.

We note that if there exists a strictly positive vector γ ∈ Rm+ so that γT νj ≤ 0 for each
j, then this assumption is satisfied. We note that a form of converse of this statement is also
true [22].

Now we turn our attention to the sensitivity. Given f : Rn → R, we are interested in
computing the sensitivity

∂

∂c
E(f(XN (t))),
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where c ∈ (0,∞) is a parameter. In view of Assumption 1, without loss of generality, we shall
take c = c1. Then we note that the GT sensitivity estimator is f(XN (t))ZN (t) and the CGT
estimator is [f(XN (t)) − E(f(XN (t))]ZN (t), where we note that ZN (t) = MN

1 (t)/c1 in this
case.

As we are concerned with families of processes indexed by N , it makes sense to consider a
corresponding family of functions fN : Rn → R instead of one function f and make reasonable
assumptions on fN and f .

To motivate the assumption we make on fN and f , we note that we shall be concerned
with fN (XN (t)) = fN (NXN (t)) which we wish to compare with f(X(t)). When fN (x) = xi,
one of the components of x, we have

fN (NXN (t))/N = XNi(t)→ Xi(t) = f(X(t))

with f(x) = xi. Alternatively, if fN (x) = xαi for some α > 0 we have

fN (NXN (t))/Nα = (XNi(t))
α → (Xi(t))

α = f(X(t))

with f(x) = xαi . If, however, fN (x) = x2
i + xi, then we have

fN (NXN (t))/N2 = (XNi(t))
2 +XNi(t)/N → (Xi(t))

2 = f(X(t)),

where f(x) = x2
i . In this case we note that fN (Nx)/N2 − f(x) = xi/N , which tends to 0 as

1/N , uniformly for x in a compact set. Motivated by this, we impose the following assumption.

Assumption 5. We assume that there exist a function f and a constant α > 0 such that
for each compact set K ⊂ Rn+,

(37)
∣∣fN (Nx)/Nα − f(x)

∣∣ ≤ LK√
N
, x ∈ K, N ≥ 1,

for some constant LK > 0.

We remark that the O(1/
√
N) behavior is adequate for our proofs.

We note that the running assumptions 1–5 will be assumed throughout the rest of the
paper.

3. Large N behavior. In this section we derive results concerning the N → ∞ limit for
the various relevant processes. Throughout the rest of the paper X(t) will denote the solution
of the equation

(38) X(t) = x0 +
m∑
j=1

νj

∫ t

0
aj(X(s))ds,

where x0 ∈ Rn+ is fixed.

Lemma 2. For each j = 1, . . . ,m, there exists Aj > 0 such that, for all t > 0,

aNj (NXN (t))

N
≤ Aj a.s.

for all N ≥ 1.D
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Proof. By Assumption 4, the processes XN are contained in a compact set of Rn, say, K;
therefore, for each j we have the estimation

sup
t≥0

aNj (NXN (t))

N
≤ sup

x∈K

aNj (Nx)

N
.

Since N−1aNj (Nx) converges uniformly to aj(x) for x ∈ K by (34) in Assumption 2, it is appar-

ent that supx∈K N
−1aNj (Nx) is bounded by continuity of aj . Hence supt≥0N

−1aNj (NXN (t))
is bounded by a constant Aj .

Lemma 3. For each j = 1, . . . ,m, and t > 0, we have

sup
s≤t

∣∣∣∣∣aNj (NXN (s))

N
− aj(X(s))

∣∣∣∣∣→ 0 a.s.

as N →∞.

Proof. We may write∣∣∣∣∣aNj (NXN (s))

N
− aj(X(s))

∣∣∣∣∣
≤

∣∣∣∣∣aNj (NXN (s))

N
− aj(XN (s))

∣∣∣∣∣+ |aj(XN (s))− aj(X(s))| .

The first part on the right-hand side converges to zero uniformly for s in [0, t] because of
Assumptions 2 and 4. To see that the second part on the right-hand side converges uniformly
to 0 on [0, t], note that by Assumptions 3 and 4, aj is Lipschitz continuous on the compact
set K (which contains XN and X); hence the result follows by Theorem 1.

We define a family of scaled reaction count processes RN (t) by RN (t) = RN (t)/N .

Lemma 4. For each j = 1, 2, . . . ,m and t > 0,

sup
s≤t

∣∣∣∣RNj(s)− ∫ s

0
aj(X(u))du

∣∣∣∣→ 0 a.s.

as N →∞.

Proof. Recall that RNj (t) = Yj(
∫ t

0 a
N
j (NXN (s))ds). For each j = 1, . . . ,m,

sup
s≤t

∣∣∣∣ 1

N
Yj

(∫ s

0
aNj (NXN (u))du

)
−
∫ s

0
aj(X(u))du

∣∣∣∣
≤ sup

s≤t

∣∣∣∣ 1

N
Yj

(∫ s

0
aNj (NXN (u))du

)
− 1

N

∫ s

0
aNj (NXN (u))du

∣∣∣∣
+

∫ t

0

∣∣∣∣ 1

N
aNj (NXN (u))− aj(X(u))

∣∣∣∣ du.
The second term on the right-hand side converges to zero by Lemma 3. Setting Ỹ (t) = Y (t)−t,
the first term on the right can be written and then bounded asD
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1304 TING WANG AND MURUHAN RATHINAM

sup
s≤t

∣∣∣∣ 1

N
Ỹj

(∫ s

0
aNj (NXN (u))du

)∣∣∣∣ ≤ sup
s≤t

∣∣∣∣ 1

N
Ỹj (NAjs)

∣∣∣∣ a.s.,

where the last term converges to zero by the law of large numbers for Poisson processes (see
Theorem 1.2 in [3]).

Lemma 5. For a given t > 0, suppose that f is continuous at X(t). Then

(39) lim
N→∞

|fN (NXN (t))/Nα − f(X(t))| = 0 a.s.

Proof. Write∣∣fN (NXN (t))/Nα − f(X(t))
∣∣ ≤ ∣∣fN (NXN (t))/Nα − f(XN (t))

∣∣
+ |f(XN (t))− f(X(t))| .

The first term converges to zero almost surely by Assumption 4 and (37) in Assumption 5.
The second term converges to zero by the continuity assumption on f since XN (t) converges
to X(t) almost surely.

Recall the definition of MN ,

MN (t) = RN (t)−
∫ t

0
aN (NXN (s))ds.

Note that in general, MN (t) is an m-dimensional local martingale (see [21, 16] for a definition)
for each N , but by Lemma 2 it follows that E[RNj (t)] ≤ NAjt for all t > 0, which makes MN (t)

a martingale. We define the scaled processes MN = N−1MN and ZN = N−1ZN . We note
that ZN (t) = MN

1 (t)/c1 and ZN (t) = MN 1(t)/c1.
Let us denote by Dm[0,∞) the space of càdlàg functions mapping from [0,∞) into Rm,

endowed with the Skorohod topology (see [7] for definitions). We provide a lemma on the
weak convergence of MN .

Lemma 6. Let C(t) = (cij(t)) be the m×m matrix-valued function, where

(40) cij(t) =

{ ∫ t
0 aj(X(s))ds, i = j,

0, i 6= j.

Then
√
NMN ⇒ M̄ on Dm[0,∞), where M̄(t) is an m-dimensional Gaussian process with

independent increments, having mean vector and covariance matrix

(41) E[M̄(t)] = (0, . . . , 0), E[M̄(t)M̄(t)T ] = C(t).

In particular, the scaled Girsanov sensitivity (or weight) process
√
NZN ⇒ U on D[0,∞),

where

(42) U(t) =
1

c1
M̄1(t).

Also since U has continuous sample paths, for each t > 0, we have
√
NZN (t)⇒ U(t).D
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Proof. The proof relies on the martingale functional central limit theorem (FCLT) proved
in [29]. Note that each jump of

√
NMN has size 1/

√
N ; therefore,

lim
N→∞

E
[
sup
s≤t

∣∣∣√NMN (s)−
√
NMN (s−)

∣∣∣] = 0.

Also, for each pair (i, j) with i, j = 1, . . . ,m, and each t > 0, since the jump size for MNj is
always N−1 and there are no simultaneous jumps, we have the following quadratic covariation:

(43)
[√

NMNi,
√
NMNj

]
(t) =

{
RNj , i = j,

0, i 6= j.

By Lemma 4, RNj(t) converges almost surely to cjj(t) =
∫ t

0 aj(X(s))ds. Then, for each pair
(i, j), [√

NMNi,
√
NMNj

]
(t)→ cij(t)

almost surely and hence in probability. Thus, the weak convergence of MN follows from the
martingale FCLT.

Lemma 7. For each p ≥ 1, there exists a constant β(p) such that for all t > 0

(44) lim sup
N

E
(

sup
s≤t

∣∣∣√NMN (s)
∣∣∣)p ≤ β(p)tp/2.

Proof. Observe that the quadratic variation (see [21] for a definition) of
√
NMN is

[√
NMN ,

√
NMN

]
(t) = N−1

m∑
j=1

Yj

(∫ t

0
aNj (NXN (s))ds

)
.

By the Burkholder–Davis–Gundy inequality (see [21]), there exists a constant C(p) (de-
pends on p) such that

E
(

sup
s≤t

∣∣∣√NMN (s)
∣∣∣)p ≤ C(p)E

 1

N

m∑
j=1

Yj

(∫ t

0
aNj (NXN (s))ds

)p/2

≤ C(p)E

 1

N

m∑
j=1

Yj (NAjt)

p/2

≤ C(p)N−p/2

E

 m∑
j=1

Yj(NAjt)

p1/2

,

where we have used Lemma 2.D
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1306 TING WANG AND MURUHAN RATHINAM

Hence,

lim sup
N

E
(

sup
s≤t

∣∣∣√NMN (s)
∣∣∣)p ≤ lim sup

N
C(p)N−p/2

E

 m∑
j=1

Yj(NAjt)

p1/2

.

First we observe that for j = 1, . . . ,m, the pth moment of the Poisson random variable
Yj(NAjt) is a polynomial of degree p in NAjt. Also, noting that Yj are independent, we
obtain that the right-hand side is bounded by a term β(p)tp/2, where β(p) is a constant.

Since ZN (t) = c1
−1MN

1 (t), we immediately have the following property regarding the
process ZN .

Lemma 8. For each p ≥ 1, there exists a constant γ(p) such that for all t > 0,

(45) lim sup
N

E
(

sup
s≤t

√
N |ZN (s)|

)p
≤ γ(p)tp/2.

Define the process VN (t) =
√
N(XN (t)−X(t)). Let us consider the moment of this process

on a compact time interval.

Lemma 9. For each p ≥ 1, there exist constants β̄(p),K(p) such that for all t > 0

lim sup
N

sup
s≤t

E (|VN (s)|p) ≤ β̄(p)tp/2eK(p)tp .

Proof. Recall that
XN (s) = x0 + νRN (s)

and

X(s) = x0 +

∫ s

0
νa(X(u))du,

where ν is the n by m dimensional stoichiometric matrix. One can write VN as

VN (s) =
√
NνRN (s)−

√
N

∫ s

0
νa(X(u))du

=
√
Nν

(
RN (s)−

∫ s

0

aN (NXN (u))

N
du

)
+
√
Nν

(∫ s

0

aN (NXN (u))

N
− a(X(u))du

)
.

Note that we denote MN (s) = RN (s)−
∫ s

0 N
−1aN (NXN (u))du, and hence

|VN (s)| ≤ ‖ν‖
∣∣∣√NMN (s)

∣∣∣+ ‖ν‖
∫ s

0

√
N

∣∣∣∣aN (NXN (u))

N
− a(X(u))

∣∣∣∣ du.
To estimate the second term on the right-hand side of the last inequality, we note that

√
N

∣∣∣∣aN (NXN (u))

N
− a(X(u))

∣∣∣∣ ≤ √N ∣∣∣∣aN (NXN (u))

N
− a(XN (u))

∣∣∣∣
+
√
N |a(XN (u))− a(X(u))| .
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Since XN lies in a compact set K according to Assumption 4, we have for all u > 0,∣∣∣∣aN (NXN (u))

N
− a(XN (u))

∣∣∣∣ ≤ B̃K
N

,

where we have used Assumption 2 and B̃K is related to BK from (34).
On the other hand, for each j = 1, . . . ,m, by Assumption 3, aj is continuously differ-

entiable and hence it is Lipschitz continuous on the compact set K. Hence, there exists a
Lipschitz constant Cj such that for all u > 0,

|aj(XN (u))− aj(X(u))| ≤ Cj |XN (u)−X(u)| .

It follows that there exists a constant C such that

|a(XN (u))− a(X(u))| ≤ C |XN (u)−X(u)| ,

where ||̇ can be norm on Rm. Therefore,

|VN (s)| ≤ ‖ν‖
(∣∣∣√NMN (s)

∣∣∣+N−1/2B̃Ks+ C

∫ s

0

√
N |XN (u)−X(u)| du

)
= ‖ν‖

(∣∣∣√NMN (s)
∣∣∣+N−1/2B̃Ks+ C

∫ s

0
|VN (u)| du

)
.

In virtue of the inequality (a+ b+ c)p ≤ 3p(ap + bp + cp) and the Holder’s inequality, we
obtain

|VN (s)|p ≤ (3‖ν‖)p
(∣∣∣√NMN (s)

∣∣∣p +N−p/2(B̃Ks)
p + Cpsp−1

∫ s

0
|VN (u)|pdu

)
.

Taking expected value of both sides, for s ∈ [0, t],

E|VN (s)|p ≤ (3‖ν‖)p
(
E
∣∣∣√NMN (s)

∣∣∣p +N−p/2(B̃Kt)
p
)

+ (3‖ν‖)pCpsp−1

(∫ s

0
E|VN (u)|pdu

)
.

To estimate the first term of the right-hand side, recall that in the proof of Lemma 7,

E
(

sup
s≤t

∣∣∣√NMN (s)
∣∣∣)p ≤ C(p)N−p/2

E

 m∑
j=1

Yj(NAjt)

p1/2

.

For convenience, let us denote

ΦN (t) = C(p)N−p/2

E

 m∑
j=1

Yj(NAjt)

p1/2

.
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1308 TING WANG AND MURUHAN RATHINAM

Therefore,

E|VN (s)|p ≤ (3‖ν‖)p
(

ΦN (t) +N−p/2(B̃Kt)
p + Cpsp−1

(∫ s

0
E|VN (u)|pdu

))
.

We note that E|VN (s)|p is continuous in s, and applying the Gronwall inequality, we obtain
that, for s ≤ t,

E|VN (s)|p ≤ (3‖ν‖)p
(

ΦN (t) +N−p/2(B̃Kt)
p
)
e(3‖ν‖)pCptp .

Taking supremum over s ∈ [0, t] and then taking lim supN , the result follows from the same
considerations as in the proof of Lemma 7.

4. Scaling of sensitivity, estimator bias, and estimator variance. In this section, we
study the system size dependence of the sensitivity

SN =
∂

∂c
E(fN (XN (t)))

and the biases as well as the variances of the GT, CGT, and FD estimators. In the case of the
FD estimators, the parameter perturbation h is fixed when N →∞. As mentioned earlier, the
difference between the sensitivity with respect to the stochastic parameter and with respect
to the deterministic parameter is merely a scaling factor N |ν

′′
j |−1 and hence the RSD, RB,

and RE are unchanged regardless of whether one considers the sensitivity with respect to the
stochastic parameter or the deterministic parameter. From an analytical point of view, it is
convenient to study the sensitivity with respect to the deterministic parameter.

Recall that the sensitivity estimator of the GT method is

fN (XN (t, c))ZN (t, c),

where fN : Rn → R. We remind the reader that fN satisfies Assumption 5, that is, there
exist a function f and a constant α such that∣∣∣∣fN (Nx)

Nα
− f(x)

∣∣∣∣ ≤ LK√
N
.

Theorem 10. In addition to our running assumptions, we assume that f in (37) is contin-
uously differentiable. Then for each t ≥ 0

sup
s≤t

E(fN (XN (s))ZN (s)) = O(Nα).

That is, the true sensitivity is asymptotically O(Nα) uniformly on [0, t].

Proof. It is sufficient to show that sups≤t E(fN (XN (s))ZN (s))/Nα is bounded in N . In-
stead of working with E(fN (XN (s))ZN (s))/Nα, we use

E
(
fN (XN (s))

Nα
ZN (s)− f(X(s))ZN (s)

)
because they are equal but the latter is easier to work with.D
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Note that f is continuously differentiable hence Lipschitz on the compact set K corre-
sponding to Assumption 4. Denote by CK the Lipschitz constant for f . Using the assumptions
on fN and f and writing XN in terms of VN as

XN (s) = NX(s) +
√
NVN (s),

which leads to ∣∣∣∣∣fN (NX(s) +
√
NVN (s))

Nα
− f(X(s))

∣∣∣∣∣ |ZN (s)|

≤

∣∣∣∣∣fN (NX(s) +
√
NVN (s))

Nα
− f

(
X(s) +

VN (s)√
N

)

)∣∣∣∣∣ |ZN (s)|

+

∣∣∣∣f (X(s) +
VN (s)√
N

)
− f(X(s))

∣∣∣∣ |ZN (s)|

≤ LK√
N
|ZN (s)|+ CK |VN (s)| |Z

N (s)|√
N

≤ LK
√
N |ZN (s)|+ 1

2
CK

(
|VN (s)|2 +N |ZN (s)|2

)
,

where LK is as defined in Assumption 5. Taking expectation on both sides, the result follows
from Lemmas 8 and 9.

Remark 4. While the proof above does not show that the order O(Nα) is sharp, it can
be shown to be sharp if, under the Nα scaling, the sensitivity of the stochastic process is
shown to limit to the sensitivity of the deterministic limit f(X(t)) as N →∞. In fact, under
additional assumptions, this limit can be shown [13]. Our numerical results in section 5 also
show O(Nα) behavior.

Recall that the FD estimator is defined in (10) as

SNFD(t, c) = h−1[fN (XN (t, c+ h))− fN (XN (t, c))].

Based on the last theorem, with a little more effort we conclude the following corollary re-
garding the bias of FD estimator.

Corollary 11. In addition to the running assumptions, if we assume that f is continuously
differentiable, then for each t > 0, we have

E(SNFD(t)− SN (t)) = O(Nα),

where SN (t) represents the true sensitivity at t. That is, the bias of FD estimator is asymp-
totically O(Nα).

Proof. Since we have shown that the true sensitivity scales like O(Nα), it suffices to
show that E(fN (XN (t, c))) is asymptotically of order O(Nα) for any c. In fact, by Lemma
5, fN (XN (t))/Nα converges almost surely to f(X(t)). To apply the dominate convergence
theorem, note that Assumption 5 implies

|fN (XN (t))|
Nα

≤ |f(XN (t))|+ LK√
N
.
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1310 TING WANG AND MURUHAN RATHINAM

By virtue of Assumption 4, the right-hand side of the above equality is bounded in N and
hence it is integrable. Finally, the dominate convergence theorem gives the result.

Next, we investigate the variance of the GT estimator in terms of the system size N . The
following lemma concerning the weak convergence of joint distribution is crucial for the proof
of Theorem 13.

Lemma 12. Let Xn and Yn be Rm valued and Rk valued sequences of random variables,
respectively. Suppose Xn converges to X in probability (where X is deterministic) and Yn ⇒ Y .
Then (Xn, Yn)⇒ (X,Y ) in Rm+k.

Proof. Let x ∈ Rm be such that X = x almost surely. First we show that (X,Yn) ⇒
(X,Y ). If f : Rm+k → R is bounded and continuous, then so is g : Rk → R defined by
g(y) = f(x, y). Since Yn ⇒ Y we have that

E(f(X,Yn)) = E(g(Yn))→ E(g(Y )) = E(f(X,Y )).

Now ‖(Xn, Yn) − (X,Yn)‖ = ‖Xn −X‖ and since Xn → X in probability, ‖Xn −X‖ → 0 in
probability (implies convergence in distribution). Thus by Theorem 3.1 in [7] we have that
(Xn, Yn)⇒ (X,Y ).

Theorem 13. In addition to our running assumptions, we assume that f in (37) is bounded
on every compact set and for a given t > 0, f is continuous at X(t). Then we have

(46) N−1−2αE
{

(fN (XN (t)))2(ZN (t))2
}
→ (f(X(t)))2 1

c1

∫ t

0
a1(X(s))ds

as N →∞. Furthermore, for each t > 0,

sup
s≤t

E
(
(fN (XN (s)))ZN (s)

)2
= O(N2α+1).

Proof. Lemma 8 implies the uniformly integrability of N−1(ZN (t))2. By Assumption 4
and (37) we have that (fN (XN (t)))2/N2α is a uniformly bounded sequence. Thus N−1−2α

(fN (XN (t)))2(ZN (t))2 is uniformly integrable.
By Lemma 5 we have that N−2α(fN (XN (t)))2 converges to (f(X(t)))2 almost surely. We

also have that N−1/2ZN (t) converges weakly to U(t). Thus by Lemma 12 and the continuous
mapping theorem we have that

N−1−2α(fN (XN (t)))2(ZN (t))2 ⇒ (f(X(t)))2U2(t).

By Theorem 3.5 from [7], we note that if a uniformly integrable sequence converges weakly,
then it converges in the mean, and hence the result (46) follows.

Also, recall that (fN (XN (t)))2/N2α is uniformly bounded, hence

N−2α−1 sup
s≤t

E
(
(fN (XN (s)))ZN (s)

)2 ≤ C̃E(sup
s≤t

√
N |ZN (s)|)2.

Taking lim supN and applying Lemma 8 yields the second result.D
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Note that the above theorem does not assume f is continuously differentiable. However, to
state the result regarding the estimator variance for the GT method, we still need to assume
continuous differentiability on f so that we can use Theorem 10.

Corollary 14. In addition to our running assumptions, we assume that f in (37) is con-
tinuously differentiable. Then for given t > 0, the estimator variance of the GT method is
asymptotically O(N2α+1) uniformly on [0, t].

Next, we will explore the variance of the centered GT approach.

Theorem 15. In addition to our running assumptions, we assume that f in (37) is contin-
uously differentiable. Then for each t > 0,

sup
s≤t

E
[
(fN (XN (s))− E[fN (XN (s))])ZN (s)

]2
= O(N2α).

Proof. Write

E

(∣∣∣∣fN (XN (s))

Nα
− E

(
fN (XN (s))

Nα

)∣∣∣∣2 (ZN (s))2

)

≤ 2E

(∣∣∣∣fN (XN (s))

Nα
− f(X(s))

∣∣∣∣2 (ZN (s))2

)

+ 2E

(∣∣∣∣f(X(s))− E
(
fN (XN (s))

Nα

)∣∣∣∣2 (ZN (s))2

)

≤ 2E

(∣∣∣∣fN (XN (s))

Nα
− f(X(s))

∣∣∣∣2 (ZN (s))2

)

+ 2E

(∣∣∣∣fN (XN (s))

Nα
− f(X(s))

∣∣∣∣2
)
E(ZN (s))2,

where the last inequality is true due to the fact that f(X(s)) is deterministic. Using a similar
argument as in the proof of Theorem 10, the first term on the right-hand side can be bounded
by

4L2
KE

(
|
√
NZN (s)|

)2
+ 4C2

KE
(
|VN (s)|

√
N |ZN (s)|

)2
.

Similarly, the second term on the right-hand side can be bounded by

4L2
KE

(√
N |ZN (s)|

)2
+ 4C2

KE|VN (s)|2E
(√

N |ZN (s)|
)2
.

Both of the above terms are bounded in N uniformly on [0, t] by Lemmas 8 and 9.

Combining this result with Theorem 10, the following corollary is immediate.

Corollary 16. For any given t > 0, the estimator variance of the CGT method is asymp-
totically O(N2α) uniformly on [0, t].D
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1312 TING WANG AND MURUHAN RATHINAM

Theorem 17. In addition to our running assumptions, we assume that f in (37) is contin-
uously differentiable. Then for each t > 0 and h > 0,

sup
s≤t

Var
(
fN (XN (s, c+ h))− fN (XN (s, c))

)
= O(N2α−1).

That is, the estimator variance of the FD method is asymptotically O(N2α−1).

Proof. Note that

Var
(
fN (XN (s, c+ h))− fN (XN (s, c))

)
≤ 2Var

(
fN (XN (s, c+ h))

)
+ 2Var

(
fN (XN (s, c))

)
.

Hence it is sufficient to show that Var
(
fN (XN (t, c))

)
= O(N2α−1) for any c. We write

1

N2α−1
Var

(
fN (XN (s, c))

)
= NE

(∣∣∣∣fN (XN (s, c))

Nα
− E

(
fN (XN (s, c))

Nα

)∣∣∣∣2
)
.

One can estimate the right-hand side by using the same argument as in Theorem 15 to obtain
an upper bound 8L2

K +8C2
KE (|VN (s)|)2, which is bounded in N uniformly on [0, t] by Lemma

9.

Remark 5. Based on Theorem 10, Corollary 14, Corollary 16, and Theorem 17, we may
expect the RSDs of the GT, CGT, and FD methods to scale as O(N1/2), O(1) and O(N−1/2),
respectively. Since in Theorem 10 we do not have an exact limit for the sensitivity itself, this
conclusion is not rigorously proven. As mentioned in Remark 4, under additional assumptions,
this conclusion will be true. Our numerical results in the next section also support this
statement. Moreover, we note that the O(N2α+1) estimates in Theorem 13 and Corollary 14
are sharp.

5. Numerical examples. We illustrate the dependence of RSD of various sensitivity es-
timators (with respect to the deterministic parameter) on the system size N via numerical
examples. When comparing the GT or CGT method with the FD or RPD method, we must
bear in mind that while GT and CGT do not have method parameters, the FD method has a
perturbation parameter h and the RPD method has a window size parameter w, making the
comparison not straightforward. Moreover, the FD and RPD methods are biased. A proper
practical comparison involves choosing parameters h and w to obtain an acceptable bias. We
do not pursue such a detailed comparison here as we are focused solely on the dependence
on system size N . In the case of FD or RPD methods, we fix h or w, respectively, and vary
N . We also use the CRN FD method instead of the IRN FD, as that is the more commonly
used approach. Moreover, since our variance estimates for FD methods were derived based
on an upper bound which is twice that of the IRN FD method, it is important to compare
the performance of CRN FD to see if the order estimate O(N−1/2) for the RSD is sharp.

We note that in the very large system size limit, the stochastic system behaves nearly
deterministically and hence none of these stochastic sensitivity methods are needed; traditional
ODE sensitivity methods would do. However, when the system size N is modestly large, say,
N = 100, the system may not be approximated by the ODE and our asymptotic analysis may
be relevant in this regime. Our numerical results below show this.D
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5.1. Numerical example 1. The reversible isomerization model consists of two species S1

and S2 and involves the following two reactions:

(47) S1
c1−→ S2, S2

c2−→ S1.

In the model with system size N , the intensity functions for processes RN1 and RN2 are

aN1 (XN (t), c) = c1X
N
1 (t),

aN2 (XN (t), c) = c2X
N
2 (t),

respectively. The stoichiometric vectors are ν1 = [−1, 1]T and ν2 = [1,−1]T .
In this example, the expectation of the population of species at a fixed time t can be

computed analytically:

(48) E[XN
1 (t)] = XN

1 (0) +
1− e−(c1+c2)t

c1 + c2
(c2X

N
2 (0)− c1X

N
1 (0)),

(49) E[XN
2 (t)] = XN

2 (0)− 1− e−(c1+c2)t

c1 + c2
(c2X

N
2 (0)− c1X

N
1 (0)),

whereXN
1 (0) andXN

2 (0) are assumed to be deterministic. One can compute the exact sensitiv-
ities by differentiating (48) and (49) with respect to parameters. In the numerical tests consid-
ered here, we choose parameters c1 = 0.3 and c2 = 0.2 and the initial population XN

1 (0) = N
and XN

2 (0) = N , where N is the system size parameter. We set the terminal time T = 10
and compute the sensitivity for N = 1, 2, 5, 10, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900,
and 1000. We use four different methods here, namely, GT, CGT, CRN FD, and RPD. We
note that by CRN FD, we mean the common random number and one-sided finite difference
method in conjunction with Gillespie’s SSA [24]. The perturbation parameter for the CRN
FD method is h = 0.01 for parameter c1 and the window size parameter w = 1.0 for the RPD
method for terminal time T = 10. The number of trajectories for simulation is Ns = 106 for
each system size N . We consider sensitivities with respect to c1 of the expected values of four
different output functions.

The first output function we consider here is fN (x) = x1 for all N , that is, we compute the
sensitivity of E(XN

1 (T )) with respect to parameter c1. Obviously, conditions in Assumption
5 are satisfied with α = 1 and f(x) = x1. We examine the growth of sensitivity of E(XN

1 (T ))
with respect to c1 in terms of N using 106 independent trajectories. The computed sensitivity
and the error in the sensitivity estimate are shown in Figure 1(a), and Figure 1(b) shows the
loglog plot of RSD of all four methods.

The second output function we use for testing is fN (x) = x2
1 for all N . By (37), f(x) = x2

1

and α = 2 in Assumption 5. Similar to the case of output function fN (x) = x1, the exact
sensitivity in this case can be calculated and hence we show the error in the sensitivity estimate
as an inset plot. See Figure 2 for sensitivity and RSD. The third output function we consider
is fN (x) = sin(x1/N) and so f(x) = sinx1. It can be seen that for this case, α = 0 in
Assumption 5. The plot for the numerical result is shown in Figure 3.D
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(a) Sensitivity
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Figure 1. Estimated sensitivity (left) and error in the sensitivity estimate (inset) of E(XN
1 (T )) with respect

to c1 and RSD (right) at terminal time T = 10 for the reversible isomerization model.

System Size N
0 200 400 600 800 1000

E
st

im
at

ed
 S

en
si

tiv
ity

×106

-3

-2.5

-2

-1.5

-1

-0.5

0
GT CGT CRN RPD

0 500 1000

×104

0

5

10

15
Estimation Error

(a) Sensitivity

System Size N
100 101 102 103

R
S

D

10 -1

100

101

102

GT CGT CRN RPD

(b) RSD

Figure 2. Estimated sensitivity (left) and error in the sensitivity estimate (inset) of E(XN
1 (T ))2 with respect

to c1 and RSD (right) at terminal time T = 10 for the reversible isomerization model.
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Figure 3. Estimated sensitivity of E(sin(XN
1 (T )/N)) with respect to c1 (left) and RSD (right) at terminal

time T = 10 for the reversible isomerization model.D
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System Size N
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Figure 4. Estimated sensitivity of P(XN
1 (T ) ≤ XN

2 (T )) with respect to c1 (left) and variance (right) at
terminal time T = 10 for the reversible isomerization model.

Table 1
Observed slopes (via regression for large N) for the loglog plots of RSD for reversible isomerization model,

that is, R1, R2, and R3 are the observed asymptotic order of the estimator RSD (as a power of N) for E(XN
1 (T )),

E(XN
1 (T ))2, and E(sin(XN

1 (T )/N)), respectively.

R1 R2 R3

GT 0.4992 0.4895 0.5724

CGT -0.0004 -0.0008 0.0009

CRN FD -0.5156 -0.5160 -0.5162

RPD -0.5005 -0.5000 -0.5000

The last output function we consider here is the indicator function fN (x) = 1{x1≤x2}(x),
which does not satisfy the conditions in our theorems since f = 1{x1≤x2} is not continuously
differentiable. However, numerical tests still show similar behavior as indicated by our theo-
rems. Note that the sensitivity approaches zero as N increases to ∞ and hence RSD is not
well defined for large N . Instead, we plot the estimator variance against N in Figure 4(b).

Additionally, Table 1 summarizes the rate of growth (as a power of N) of the numerically
estimated RSD for the different estimators considered above. The results are in agreement
with the theory.

5.2. Numerical example 2. As a second numerical example, let us consider the decaying-
dimerizing model [11]

(50) S1
c1−→ ∅, 2S1

c2−→ S2, S2
c3−→ 2S1, S2

c4−→ S3.

The stoichiometric vectors are ν1 = [−1, 0, 0]T , ν2 = [−2, 1, 0]T , ν3 = [2,−1, 0]T , and
ν4 = [0,−1, 1]T . We set the initial population to be XN

1 (0) = 10N,XN
2 (0) = 0, XN

3 (0) = 0.
Using the stochastic mass action form (18), the intensity for processes RN1 , RN2 , RN3 , and RN4 isD
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Figure 5. Estimated sensitivity of E[XN
1 (T )] with respect to c1 and RSD at terminal time T = 5 for the

decaying-dimerizing model.

aN1 (XN (t), c) = c1X
N
1 (t),

aN2 (XN (t), c) =
c2

2N
XN

1 (t)(XN
1 (t)− 1),

aN3 (XN (t), c) = c3X
N
2 (t),

aN4 (XN (t), c) = c4X
N
2 (t).

We set the parameters as follows: c1 = 1.0, c2 = 0.002, c3 = 0.5, and c4 = 0.04. Note
that the intensity for the second reaction is not linear, hence an analytical formula for the
sensitivity is not attainable. We test the sensitivity and RSD for E[fN (XN

1 )] with respect to
c1. For the CRN FD method, we use the one-sided FD scheme and perturb the parameter
c1 by h = 0.01. Note that RPD is not applicable for this example since the firing of the
first reaction will prevent the second reaction from happening when the population of S1 is
1 (see [26]). Therefore, we only examine the RSDs of GT, CGT, and CRN FD here. For
each system size N , the number of trajectories we use for simulation is Ns = 106. Plots of
the sensitivity and RSD are shown in Figures 5, 6, and 7 for E(XN

1 (T )), E(XN
1 (T ))2, and

E(sin(XN
1 (T )/N)), respectively. The rate of growth (as a power of N) of the numerically

estimated RSD is summarized in Table 2.

5.3. Numerical example 3. In this numerical example, we revisit the reversible isomer-
ization network to illustrate the asymptotic behavior of various estimators in terms of the
terminal time T . Note that in this example, the deterministic parameters cj and the stochas-
tic parameters c′j are the same. For ease of notation, we suppress N because we fix N = 10 and
only let T change in this simulation. The initial population is X1(0) = 10 and X2(0) = 10. Pa-
rameters are taken to be c1 = 0.3 and c2 = 0.2 as before. In this case, the exact sensitivity can
be obtained by taking derivative with respect to c1 for (48). Figure 8(a) shows the sensitivities
estimated by GT, CGT, and CRN FD against the true sensitivity as a function of T . Figure
8(b) shows the estimator variances as a function of T . It can be seen that all three estimators
show a variance that grows linearly in T for the range of values of T considered here.D
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Figure 6. Estimated sensitivity of E(XN
1 (T ))2 with respect to c1 and RSD at terminal time T = 5 for the

decaying-dimerizing model.
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Figure 7. Estimated sensitivity of E(sin(XN
1 (T )/N)) with respect to c1 and RSD at terminal time T = 5

for the decaying-dimerizing model.

Table 2
Observed slopes (via regression) for the loglog plots for RSD for the decaying-dimerizing model, that is,

R1, R2, and R3 are the observed asymptotic order of the estimator RSD (as a power of N) for E(XN
1 (T )),

E(XN
1 (T ))2, and E(sin(XN

1 (T )/N)), respectively.

R1 R2 R2

GT 0.4689 0.4100 0.4737

CGT -0.0040 -0.0257 -0.0008

CRN FD -0.6022 -0.6068 -0.6009

In fact, this observation can be justified for the GT and CGT methods as follows. Recall
the definition of the centered processes Mj(t) = Rj(t) −

∫ t
0 aj(X(s))ds, j = 1, . . . ,m. Since

Xj(t) are bounded in this network, one can show that

EM2
j (t) = E([Mj ,Mj ](t)) = ERj(t) = cj

∫ t

0
EXj(s)ds = O(t),
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Figure 8. Estimated and true sensitivities (left) of EX1(t) with respect to c1 and the estimator variances
(right) for the reversible isomerization model. The terminal time T (x-axis) ranges from 1 to 20.

where the first equality holds since Mj(t), j = 1, 2, is a L2-bounded martingale (see [21]).
Therefore, we conclude that EZ2(t) = O(t) because in this case Z(t) = c−1

1 M1(t) and hence
the variances of both GT and CGT are of O(t).

As for the variance of the FD estimator, the observed growth is approximately linear in t
in the range of 10 to 20. However, from the upper bound used in the proof of Theorem 17, it
is easy to see that the estimator variance remains bounded as t→∞.

6. Discussion and concluding remarks. Our primary goal in this paper was to provide
an analytical explanation of the phenomenon of larger estimator variance of the GT method
compared to the FD (as well as RPD in the context of chemical kinetics) methods reported
frequently in the literature [5, 20, 24, 26]. This was accomplished by our analysis in terms
of system size N . The system size N was taken to be proportional to system volume in the
context of stochastic chemical kinetics. Our analysis showed that the RSD (see (7) for a
definition) of the GT, CGT, and FD sensitivity estimators is O(N1/2), O(1), and O(N−1/2),
respectively, as N → ∞. The numerical examples provided also illustrate this point. Ad-
ditionally, our numerical examples suggested that the RSD of the RPD method also scales
as O(N−1/2). We also showed that the RB (see (8) for a definition) of any FD method was
asymptotically O(1) as N →∞. We note that in our analysis of the FD methods, we kept h
fixed and considered N →∞ limit. Now we discuss, at least in theory, how h may be chosen
in terms of system size N to obtain the best performance for the FD methods.

Number of simulations required to achieve a given RE. Since the FD methods
are biased while the GT and CGT methods are not, we shall use the RE to compare the
efficiencies of the GT, CGT, and FD estimators. More precisely, we shall estimate the number
of trajectory simulations Ns required to achieve a given tolerance δ for the RE in the mean
square sense, which includes RB and RSD (see (6) for the exact definition).

Our analysis for the FD methods was carried out so that large N behavior for fixed h was
obtained. We may combine our large N analysis with small h behavior of the FD methods
already studied in the literature [5]. In general, the bias of the one-sided FD estimator is O(h)
as h → 0, so we may expect the RB of an FD estimator to be given by RB ≈ C2h for smallD
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h and large N , where C2 does not depend on N or h. If higher order FD is used, then one
expects RB ≈ C2h

γ1 , where γ1 ≥ 1 in general. For instance, for the two-sided FD estimator
we have that γ1 = 2.

Moreover, when using the IRN FD method, the variance is O(1/h2) as h → 0, which
is similar to behavior of the upper bound used in our proof of Theorem 17. However, when
using CRN FD methods, one may typically expect O(1/h) dependence [5, 24]. This is because
Cov(f(X(t, c + h)), f(X(t, c))) is typically O(h) as h → 0. Hence we may write RSD2 ≈
C1/(Nh

γ2) for small h and large N , where typically γ2 = 1 or 2 depending on whether CRN
or IRN is used, and C1 is independent of h and N . Combining the bias and the variance, and
using (9), we expect that for an FD method

(51) RE2 =
RSD2

Ns
+ RB2 ≈ C1

NsNhγ2
+ C2

2h
2γ1 .

At this point, we must remark that in order for the above approximation to hold rigorously,
one must establish the joint limit as (N,h) → (∞, 0). We believe that this could be done
under additional regularity assumptions, but we shall not pursue this in this paper.

Extending the idea in [5] to include system size N , we look for the optimal choice of h
(the one that minimizes RE), for a given system size N and number of simulations Ns. With
some effort, one can see that the optimal h is given by

h ∝ N
−1

2γ1+γ2N
−1

2γ1+γ2
s ,

and hence the minimal square RE for an FD method has the proportionality

(52) RE2 ∝ N
−2γ1

2γ1+γ2N
−2γ1

2γ1+γ2
s .

On the other hand, for the CGT method, RE2 = RSD2/Ns = C3/Ns for large N , where
C3 is independent of N and Ns. Likewise, for the GT method, RE2 = RSD2/Ns = C4N/Ns

for large N , where C4 is independent of N and Ns. Hence, for a specified value of δ for RE
and a given system size N , the numbers of simulations required for the different methods are
given by

(53) NFD
s ∝ δ−2− γ2

γ1N−1, NCGT
s ∝ δ−2, NGT

s ∝ Nδ−2.

We note that, as observed in [5], the optimal dependence of Ns on δ is δ−2, which is achieved
for an unbiased method. The biased FD methods have suboptimal dependence on δ, unless
γ2 = 0, which is typically not the case in the context of discrete state systems, as γ2 = 0
implies the validity of the (unregularized) PD method [5]. However, when N is much larger
than δ−γ2/γ1 , we expect the FD method to be more efficient than the CGT or GT. For instance,
for δ = 0.01, if N � 10, say, N = 50, for instance, we may expect the two-sided CRN FD
(γ1 = 2, γ2 = 1) to be more efficient than CGT, which will be more efficient than GT. If
one-sided CRN FD is used (γ1 = γ2 = 1) or two-sided IRN FD is used (γ1 = γ2 = 2), we
expect FD to be more efficient when N � 100, say, N = 500. If one-sided IRN FD is used
(γ1 = 1, γ2 = 2) we expect FD to be more efficient than CGT only for N � 104.D
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Since the constants of proportionality that appear in the above discussion are not known
in practice and are typically harder to estimate than the sensitivity itself, one may not expect
to choose h in a straightforward manner based on the above discussion. Nevertheless, the
above discussion provides some idea of the optimal efficiency that could be expected.

We also note that the comparison of an unbiased estimator with a biased one is more
nuanced and qualitative. This is because, while one can estimate the variance of an estimator
from the simulation, its bias cannot be estimated reliably unless one knows the exact quantity
to be estimated! As a consequence, an unbiased estimator is preferable to a biased one, unless
the unbiased estimator has exceedingly larger variance compared to the biased one. In this
context, we mention that multilevel Monte Carlo approaches (see [2], for instance) may be
used to combine a biased low variance estimator with an unbiased high variance estimator to
obtain an efficient and unbiased estimator.

Factors other than system size that affect the RSD. We note that factors other than
system size also affect the RSD of an estimator. One factor to study will be the dependence
on t as t→∞. Our numerical simulations showed linear growth in t behavior for GT, CGT,
and even FD methods for a practical range of t values (up to a few multiples of the time to
stationarity). However, from a simple upper bound for the variance of the FD methods, we
expect this growth to reach a finite maximum for systems that are ergodic. The O(t) behavior
(as t → ∞) for the variance of the GT and CGT methods can be justified theoretically, as
explained in section 5.3. Thus, dependence on time does not explain the greater variance of
GT compared to CGT.

Extension of the variance analysis. Our analysis made special use of the deterministic
limit in the large system size under what is known as the classical scaling which was used by
Ethier and Kurtz [9]. In other words, after suitable scaling, fN (XN (t)) converges to the
deterministic limit f(X(t)) almost surely. However, the scaled weight processes ZN (t)/

√
N

converge weakly to a Gaussian process U(t). Our analysis combined the two limits to obtain
the desired results. Our results were proven under Assumptions 1–5 stated in section 2. The
first assumption assumes that the parameters enter multiplicatively: aj(x, c) = cjbj(x). This
is satisfied by the stochastic mass action form of intensities. In some literature on chemical
kinetics, there are some other forms of intensity functions that are used. Relaxing Assumption
1 to a general form will make the weight process ZN more complicated, and it will be given
by a stochastic integral where both the integrand and the integrator are stochastic processes
indexed by N . To obtain convergence of N−1−2αE[(fN (XN (t)))2(ZN (t))2] one may need the
result from [18] which analyzes the limit of a sequence of stochastic integrals. We speculate
that Assumption 4 may be relaxed using stopping time arguments and sufficient integrability
assumptions on the process.

In many practical systems some species are present in small numbers while others are
present in large numbers, and some reaction parameters are much larger than the others,
making the system “stiff.” The classical scaling studied here does not capture this. The more
general scaling proposed in [6, 17] (again by Kurtz and collaborators) involves introducing
a parameter N which appears with different exponents in both the stochastic parameters c′j
and the scaling of species and time itself. These analyses often provide stochastic limits to
the scaled processes XN . One could extend our current analysis along these lines to explore
more subtle dependencies of the estimator variances. A related earlier work which scales allD
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“species” by the same factor ε, and scales time differently ε−α, in the context of processes
driven by Levy measure can be found in [27].
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