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1 Differentiability of functions

We first state a lemma about continuity of linear maps between normed
vector spaces.

Lemma 1 Let (Vi, ‖.‖i) be normed vector spaces for i = 1, 2 and let L :
V1 → V2 be linear. Then the following are equivalent:

1. L is continuous on V1.

2. L is continuous at 0.

3. L(S) is bounded where

S = {x ∈ V1 | ‖x‖1 = 1},

is the unit sphere in V1.

4. There exists M such that for all x ∈ V1 it holds that

‖L(x)‖2 ≤M‖x‖1.

Given a continuous linear map L : V1 → V2, its induced norm ‖L‖ is
defined by

‖L‖ = sup{‖L(x)‖2 |x ∈ V1, ‖x‖1 ≤ 1}.
Let (Vi, ‖.‖i) be normed vector spaces. Let U ⊂ V1 be an open set, x ∈ U

and let F : U ⊂ V1 → V2 be a map. We say that F is Frechet differentiable
at x provided there exists a continuous linear map L : V1 → V2 such that

lim
y→0

‖F (x+ y)− F (x)− L(y)‖2
‖y‖1

= 0.
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Intuitively, L provides a linear approximation for the map y 7→ F (x + y) −
F (x) for small y. The above limit states that the error F (x+y)−F (x)−L(y)
in the approximation vanishes faster that ‖y‖1 as y → 0.

With F as above, we state the lemma on the uniqueness of such L when
it exists.

Lemma 2 Suppose L1, L2 : V1 → V2 be both continuous linear maps that
satisfy

lim
y→0

‖F (x+ y)− F (x)− Li(y)‖2
‖y‖1

= 0 i = 1, 2.

Then L1 = L2.

When F is Frechet differentiable at x, the corresponding unique linear
map L in the above definition is said to be the derivative of F at x, and is
denoted by DF (x). Thus DF (x) : V1 → V2 is a continuous linear map.

Given F : U ⊂ V1 → V2 as above, we have the basic lemma.

Lemma 3 Suppose F is differentiable at x. Then F is continuous at x.

Suppose F as above is differentiable at each point on a set A ⊂ U . Then
we say that F is differentiable on A.

Suppose F : U ⊂ V1 → V2 is differentiable on U . Then we have the map
DF : U ⊂ V1 → L(V1, V2), where L(V1, V2) denotes the vector space of all
continuous linear maps from V1 into V2. It is straightforward to verify that
L(V1, V2) is a vector space and we may equip it with the induced norm defined
above. Then, we may define the continuity of DF in the usual manner. If
DF is continuous on U then we say that F is continuously differentiable on
U .

An alternative notion of derivative is that of a directional derivative. With
F as above and x ∈ U , and given v ∈ V1, the directional derivative of F at x
along v is given by

lim
h→0

F (x+ hv)− F (x)

h
,

provided the limit exists. If the directional derivative of F at x ∈ U exists
along all v ∈ V1, then we say that F is Gateaux differentiable at x.

We have the following lemma relating Frechet and Gateaux derivatives.

Lemma 4 Let F be as above and x ∈ U . Suppose F is Frechet differentiable
at x. Then F is Gateaux differentiable at x and the directional derivative at
x along v ∈ V1 is given by DF (x)(v).
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Proof We have that

‖F (x+ hv)− F (x)−DF (x)(hv)‖2
‖hv‖1

→ 0,

as h→ 0. Hence ∥∥∥∥F (x+ hv)− F (x)

h
−DF (x)(v)

∥∥∥∥
2

→ 0,

which implies the result.

Theorem 5 (Chain rule) Let (Vi, ‖.‖i) be normed vector spaces for i =
1, 2, 3. Let F : U ⊂ V1 → V2 and G : W ⊂ V2 → V3 where U,W are open and
F (U) ⊂ W . Suppose F is Frechet differentiable at x ∈ U and G is Frechet
differentiable at F (x). Then G ◦ F : U → V3 is Frechet differentiable at x
and

D(G ◦ F )(x) = DG(F (x)) ◦DF (x).

1.1 Partial derivatives and Frechet differentiability

We take V1 = Rn and V2 = Rm and any norms on both spaces. With F as
before, and writing x = (x1, . . . , xn), we define the partial derivative of F at
x

∂F

∂xi
(x) = lim

h→0

F (x+ hei)− F (x)

h
,

where ei ∈ Rn is the vector with all zero entrees except for a 1 in the ith
component. Thus a partial derivative is simply the directional derivative
along a standard basis direction.

Theorem 6 Suppose F : U ⊂ Rn → Rm and let x0 ∈ U . Suppose that there
exists an open neighborhood V ⊂ U of x0 such that the partial derivatives
∂F
∂xi

(x) exist for all i = 1, . . . , n and are continuous at all x ∈ V . Then F is
Frechet differentiable on V and DF is continuous on V .

Let V be a vector space over R. Given x, y ∈ V we define [x, y] and (x, y)
by

[x, y] = {αy + (1− α)x ∈ V1 |α ∈ [0, 1]},
and

(x, y) = {αy + (1− α)x ∈ V1 |α ∈ (0, 1)}.
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Theorem 7 (Mean Value Theorem) Let (V, ‖.‖) be a normed vector space
(over R) and U ⊂ V be open. Suppose F : U ⊂ V → R be differentiable
on U . Suppose x, y ∈ U and the line segment [x, y] ⊂ U . Then, there exists
z ∈ (x, y) such that

F (x)− F (y) = DF (z)(x− y).

Proof Define φ : [0, 1]→ V by

φ(t) = tx+ (1− t)y,

and noting that φ([0, 1]) ⊂ U , we define g : [0, 1]→ R be defined by g = F ◦φ.
By the chain rule g is differentiable on [0, 1] and g′(t) = DF (φ(t))(x − y).
Hence by the Mean Value Theorem in one dimensional domains, there exists
t0 ∈ (0, 1) such that

g(1)− g(0) = g′(t0).

Setting z = F (φ(t0)) we obtain the result.
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