Math 600: Real Analysis

Muruhan Rathinam

November 26, 2016

1 Differentiability of functions

We first state a lemma about continuity of linear maps between normed
vector spaces.

Lemma 1 Let (Vj,||.||;) be normed vector spaces for i = 1,2 and let L :
Vi — V5 be linear. Then the following are equivalent:

1. L is continuous on Vj.
2. L is continuous at 0.
3. L(S) is bounded where
S ={zeW||zl =1},
is the unit sphere in V.
4. There exists M such that for all x € V; it holds that
1Ll < Ml

Given a continuous linear map L : Vi — Vb, its induced norm ||L]|| is

defined by
ILI} = sup{|[L(x)[|2 |z € V4, [lz]ly <1}

Let (V;, .]|;) be normed vector spaces. Let U C V; be an open set, z € U
and let I : U C V; — V5 be a map. We say that F is Frechet differentiable
at x provided there exists a continuous linear map L : V; — V5 such that
|F(z+y) — F(z) — Lyl

lim

= 0.
y=0 1yl
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Intuitively, L provides a linear approximation for the map y — F(z 4+ y) —
F(z) for small y. The above limit states that the error F(z+vy)—F(z)— L(y)
in the approximation vanishes faster that ||y||; as y — 0.

With F' as above, we state the lemma on the uniqueness of such L when
it exists.

Lemma 2 Suppose L1, Ly : Vi — V5 be both continuous linear maps that

satisfy

PGt y) = F) = L)l

y=0 1yllx
Then Ll = LQ.

=0i=12

When F' is Frechet differentiable at x, the corresponding unique linear
map L in the above definition is said to be the derivative of F at x, and is
denoted by DF(z). Thus DF(z) : V3 — V5 is a continuous linear map.

Given F : U C Vi, — V5 as above, we have the basic lemma.

Lemma 3 Suppose F is differentiable at . Then F' is continuous at x.

Suppose I as above is differentiable at each point on a set A C U. Then
we say that F' is differentiable on A.

Suppose F : U C Vi — V5 is differentiable on U. Then we have the map
DF : U c V; — L£(V1,V3), where L(V3, V) denotes the vector space of all
continuous linear maps from Vj into V5. It is straightforward to verify that
L(V1,V3) is a vector space and we may equip it with the induced norm defined
above. Then, we may define the continuity of DF' in the usual manner. If
DF is continuous on U then we say that F' is continuously differentiable on
U.

An alternative notion of derivative is that of a directional derivative. With
F as above and z € U, and given v € Vi, the directional derivative of F' at x
along v is given by

lim F(z + hv) —F(x)7
h—0 h
provided the limit exists. If the directional derivative of F' at x € U exists
along all v € V;, then we say that F'is Gateaux differentiable at x.
We have the following lemma relating Frechet and Gateaux derivatives.

Lemma 4 Let F' be as above and x € U. Suppose F'is Frechet differentiable
at . Then F' is Gateaux differentiable at  and the directional derivative at
x along v € V] is given by DF(x)(v).



Proof We have that
|F(x + hv) — F(z) — DF(x)(hv)||2
[hv]l1

— 0,

as h — 0. Hence
HF(w—I—hv)—F(m)
h

— 0,
2

— DF(x)(v)

which implies the result. |

Theorem 5 (Chain rule) Let (V;,].||;) be normed vector spaces for i =
1,2,3. Let F: U CV), = Voand G: W C Vo, — V3 where U, W are open and
F(U) c W. Suppose F is Frechet differentiable at x € U and G is Frechet
differentiable at F(x). Then G o F': U — Vj is Frechet differentiable at x
and

D(G o F)(x) = DG(F(z)) o DF(x).

1.1 Partial derivatives and Frechet differentiability
We take V), = R"™ and V5, = R™ and any norms on both spaces. With F' as

before, and writing x = (z1, ..., x,), we define the partial derivative of F at
x
oF . F(z+ he;) — F(x)

where e; € R" is the vector with all zero entrees except for a 1 in the ¢th
component. Thus a partial derivative is simply the directional derivative
along a standard basis direction.

Theorem 6 Suppose F': U C R* — R™ and let xq € U. Suppose that there
exists an open neighborhood V' C U of zy such that the partial derivatives
9 (z) exist for all i = 1,...,n and are continuous at all z € V. Then F is

Frechet differentiable on V and DF is continuous on V.

Let V' be a vector space over R. Given z,y € V we define [z,y]| and (x,y)
by
[z,y] ={ay + (1 — )z € Vi]a € [0, 1]},
and
(r,y) ={ay+ (1 —a)z € Vi|a € (0,1)}.



Theorem 7 (Mean Value Theorem) Let (V) ||.||) be a normed vector space
(over R) and U C V be open. Suppose F': U C V — R be differentiable
on U. Suppose z,y € U and the line segment [z,y] C U. Then, there exists
z € (x,y) such that

Fx) = Fy) = DF(2)(z — y).
Proof Define ¢ : [0,1] — V by

¢(t) =tz + (1 - 1)y,

and noting that ¢(]0, 1]) C U, we define ¢ : [0, 1] — R be defined by g = Fo¢.
By the chain rule g is differentiable on [0,1] and ¢'(t) = DF(¢(t))(x — y).
Hence by the Mean Value Theorem in one dimensional domains, there exists
to € (0,1) such that

9(1) = g(0) = ¢'(t)-

Setting z = F(¢(to)) we obtain the result. 1



