
SenseBox: A Low-Cost Smart Home System

Joseph Taylor∗, H M Sajjad Hossain∗, Mohammad Aril Ul Alam∗, Md Abdullah Al Hafiz Khan∗,
Nirmalya Roy∗, Elizabeth Galik†, Aryya Gangopadhyay∗

∗Department of Information Systems, University of Maryland Baltimore County
†University of Maryland School of Nursing

{j.taylor, hmsajja1, alam4, mdkhan1, nroy, gangopad}@umbc.edu, Galik@son.umaryland.edu

Abstract—Smart home technologies are getting ac-
claimed for providing a wide variety of functionalities
- security, appliance control, HVAC control and remote
monitoring. Installation cost and interoperability issues
have restricted the adaptability of these technologies. In
this demo paper, we demonstrate the design of an inter-
operable prototype of our smart home system, SenseBox
using low-cost embedded device as part of an NSF I-Corps
project. We integrated an off-the-shelf commercially avail-
able inexpensive ($12) hardware (PogoPlug). We paired
commercially available PIR sensors, door sensors and
moisture sensors with our smart home system prototype to
monitor human activities. We deployed our prototype and
collected real-time activity data traces from a retirement
community center. We articulated the SenseBox develop-
ment, integration and testing challenges and insights along
with real deployment experience.

I. INTRODUCTION

Activity monitoring using smart home technologies
has enabled a great deal of opportunities in pervasive
and ubiquitous computing environment. Current smart
home technologies lack the ability to recognize human
activities unobtrusively. Activity enabled smart home
systems can provide meaningful insights to develop-
ers and end-users by distinguishing between multiple
individuals in physical spaces and providing context-
specific automated actions like HVAC adjustment, re-
minder of pills intake, or timely commercial advertising.
Remote activity monitoring can also help to enable
profiling functional and behavioral health of those being
monitored longitudinally. Another issue with current
smart home technologies is that they are often pro-
hibitively expensive. In this paper, we demonstrate the
development of a low-cost unobtrusive smart home
system prototype for activity monitoring in a retirement
community environment. Identifying a cost performance
equilibrium was critical for our application. We found
that computational needs were too great for eight and
sixteen-bit micro-controllers, but embedded x86 hard-
ware was too costly. After much experimentations,
we determined that ARM-based hardware may likely
be the best choice. We tested ARMv5 and ARMv6-
based devices, both without any hardware floating-
point capabilities, and postulated either would likely
be adequate, with the former potentially requiring some

more careful optimization to handle tasks that are more
computationally-intensive. We have developed an early
prototype using the Raspberry Pi [1] but we planned to
develop a more resource optimized and low-cost plat-
form. We selected the inexpensive ($12) Cloudengines
PogoPlug [2] as a hub to test our prototype. This
hardware configuration bears some similarities to the
Marvell DreamPlug, which has been used in sensor
network deployments as described in [3]. Table I shows
the properties and cost of different potential devices we
have tested. In this demo, we demonstrate the hardware
and software architecture of SenseBox along with how
our system helps to capture and process data in real
time and detects activities of daily living.

TABLE I. DEVICE PROPERTIES

Device CPU Storage Memory Cost
Lab Workstation 2.9 GHz 1 TB 8GB $ 1200

Raspberry-Pi 900 MHz 256 MB N/A $ 20
PogoPlug 700 MHz 128 MB 128 MB $ 10
Arduino 16 MHz 512B 2-256 KB $ 15

DreamPlug 1.2 GHz 512 MB 4GB $200

II. SYSTEM PROTOCOL

One of our goals in this SenseBox development
project is to address the problem of interoperability
which open source automation software OpenHab [4]
addresses quite intensively. But it appears in our case
that we are too limited in computational resources to
design a complete system like OpenHab. Even in spite
of this, we wanted to make our design easy to integrate
in to other systems. In pursuit of this, we first evaluated
a few protocols that are common in industry in order to
identify a standard way to pass messages from sensors
to other application threads. We planned to do this in
a fairly standard way, using normal IP packets on a
standard IPv4 or IPv6 network. In selecting the protocol,
we evaluated two popular standards: CoAP and MQTT.
From our evaluation, we found that either of these
protocols works fine, but in CoAP the sensors act as
servers instead of clients. This means agents listening
for events (databases, software analyzing events looking
for state changes, etc.) need to be connected to the
sensors. This leads to some limitations in network
architecture that we waned to avoid. MQTT sensors

2017 IEEE International Conference on Pervasive Computing and Communications Demonstrations

978-1-5090-4338-5/17/$31.00 ©2017 IEEE

communicate to a MQTT server (“broker”) and this
traditional architecture is more amenable to things like
NAT. A MQTT server (or “broker”) accepts updates
from sensors, and forwards those updates to clients who
want them. As MQTT forwards and forgets messages
so we implemented a listener and developed a database
to listen and store messages respectively, and retrieve
them later for storage or analysis. We used a MQTT
“wildcard“ listener and a lightweight database like
Berkeley DB for this purpose. Bluetooth messages from
the sensors to our hub were received and forwarded to
the MQTT broker.

A. Hardware

The PogoPlug software is covered under the GNU
General Public License (GPL), and CloudEngines pub-
lishes the build changes to the kernel and userland
software in tarballs on its public website. The PogoPlug
has an exposed USB port (potentially expanded to
many ports by use of a hub,) an internal universal
asynchronous receiver/transmitter (UART) and a gigabit
Ethernet port. An SD slot is present on the device, but
I/O to the device is “bit-banged” so file transfers are
CPU-intensive, and too slow for many applications. For
a general-purpose sensing hub, we required 3 wireless
interfaces: 802.11 wireless, Bluetooth 3, and Z-Wave
wireless. We identified a $20 combined Bluetooth/WiFi
dongle that met the first two requirements without the
use of a USB hub. Z-wave needs were met by a device
that can interface with the internal UART, reducing costs
and eliminating the need for a USB hub which gives a
more integrated appearance.

B. Software

The PogoPlug ships with a Linux 2.6 kernel [5] and
a modified U-Boot bootloader. The device has 128MB
RAM and 128MB flash memory, formatted as UBIFS.
Most userland tools are provided by Busybox, including
init. Some additional packages like Dropbear SSH and
FFMPEG are available on the stock device. Our first
task was to rebuild the kernel to include support for
several devices that were omitted in the stock configu-
ration. The PogoPlug ships without support for 802.11
devices, V4L webcams and NAT/iptables firewalling, all
of which during the prototyping phase required in our
smart home deployment scenario and were frequently
encountered during the prototyping phase.

Remote
Access

Services(SSH)

Configuration
Interface

(PHP, HTTP)

Data
Collection
& Storage

Routing &
NAT(Iptable)

PogoPlug
Linux 2.6802.11

 client

Protected
Ethernet
NAT

Fig. 1. Software architecture

III. IMPLEMENTATION

A toolchain was built using Buildroot, and the
2.6 source distributed by Cloudengines was rebuilt to
support the additional components we required. Some
trimming was necessary to make the kernel fit in the
reserved kernel space; support for File Allocation Table
(FAT) and New Technology File System (NTFS) was
removed along with some other features we did not
require. Some additional miscellaneous tuning was done
to meet the preferences of developers, like changing the
I/O scheduling engine from Completely Fair Queuing
(CFQ) to deadline. Several different software packages
were built and shown to work well, including the
Lighttpd web server, autossh for tunnel maintenance,
and RTL-SDR for collecting RF data from sensors or
the local environment. Some tools in support of the
additional kernel components were also built, includ-
ing the userland components of iptables and tools for
video capture and streaming for ground truth collec-
tion purpose. For machine learning applications, some
additional tools were required. We investigated several
different options and settled on MLPACK [6], which
supports most learning algorithms in the context of
activity discovery and recognition. Additionally, a web-
based interface was built to observe the status of the
device and attached sensors using the Klone web server
[7] and later with Lighttpd+PHP [8]. Tools for remote
access and administration that alleviated NAT issues
were also explored, since NAT is a common issue we
faced when deploying in end-user environments.

IV. DEMO DESCRIPTION

We were able to use our prototype system in a
real-world deployment. We installed our prototype in
20 residents apartments to monitor the activities of
daily living - laundering clothes, using the telephone,
sweeping, taking out trash, drinking water, etc [9] - IRB
(#HP-00064387). The apartments were not equipped
with Ethernet connectivity, offering only Wi-Fi internet
access. We are currently using a proprietary sensor suite,
which requires Ethernet connectivity to communicate
activity data. We utilized our PogoPlug-based system
and custom kernel to create a NAT accessible on the
PogoPlug Ethernet port, and then routed the traffic on
to the wireless network using a USB 802.11 adapter
configured as a client as shown in Figure 1. Once
configured this was observed to be very stable, no
issues were encountered and network connectivity was
not interrupted during any of the 20 test deployments.
During the test deployments, our system was left in the
volunteers residence for 24 hours. Because there was no
observer during the majority of that time, it was critical
of fault-tolerant remote access system in place in case of
remote diagnostics or shutdown, if necessary. Our SSH-
based system allowed us to do remote troubleshooting
and diagnostics, subverting the NAT and providing a

2

2017 IEEE International Conference on Pervasive Computing and Communications Demonstrations

secure, encrypted tunnel with an authentication scheme
that prevents attacks like man-in-the-middle and ren-
ders packet sniffing ineffective. Using this tunnel we
are able to securely run code on the remote device,
and collect information about its current status. While
remote diagnostics were never necessary as the device
remained stable during all deployments, these facilities
were still tested. Logging systems were developed to
automatically notify the group when a node changed
status (e.g., on/offline) while also periodically storing
logs from the remote device.

A. Demo Showcase Plan

In this demo session, we will demonstrate our low-
cost smart home system with some sensors. The sensors
will capture the movement of the participants and the
system frontend will show the detected events. Also we
will log the state (CPU/memory utilization, status of
encrypted tunnel, uptime etc) of our SenseBox system
in the frontend. We will need a small area to setup the
sensors and we will bring our own hardwares.

V. RESULTS

To evaluate our prototype we focus on three speci-
ficities - Memory, CPU and Disk space.

A. Memory

Under normal conditions, memory consumption re-
mains at about 20%, but it deviates a lot. Activities like
diagnostic web page generation or file transfer increase
this marginally, but rarely beyond 30%. When training
or running MLPACK models, memory consumption
increases appreciably. Models and parameters have to
be selected carefully, as we run the risk of memory
exhaustion which will cause undesired behavior.

B. CPU

When not running or training models, the device is
almost entirely idle. When a model is being evaluated,
CPU usage predictably increases to near 100% for the
duration of execution.

C. Disk Space

PogoPlug uses Linux’s memory technology device
(MTD) framework [10] to provide what appears to ap-
plications as a standard disk drive. The stock PogoPlug
device uses UBIFS, and we felt this was a reasonable
choice. While incurring some overhead in usable space,
the wear-leveling provided by UBIFS should increase
the lifespan of our device. The layout of the partitions
in flash are like the following

dev: size erasesize name
mtd0: 00200000 00020000 "u-boot"
mtd1: 00300000 00020000 "uImage"
mtd2: 00300000 00020000 "uImage2"
mtd3: 00800000 00020000 "failsafe"

mtd4: 07000000 00020000 "root"

Additionally, a temporary, in-memory filesystem is
created on boot to store files that are modified fre-
quently, again with the intention of reducing wear to
flash memory. Examples of files stored in the volatile
temporary partition include logs and the on-disk list of
DHCP leases.

VI. CONCLUSIONS

The presence of home automation devices and
sensors are getting more prominent but for efficient
exploitation these systems need to be context aware
which can infer different human contexts on the fly.
In this demo, we described an efficient and optimized
design of an expert smart home system, SenseBox. Data
collected by our prototype has been used in our work
[11] [12] [13]. As of now we have not fully imple-
mented our activity recognition algorithm using the
PogoPlug and MLPACK, but as device prototyping and
base system sotfware testing is complete, implementing
activity recognition is our next goal. Careful tuning of
the model will be required to deal with the limitations
of our platform. We have also found that off-the-shelf
sensors are fairly expensive and do not perform to
our expectations, so we have begun testing our own
Bluetooth Low Energy-based sensors with promising
results.

REFERENCES

[1] Raspberry Pi 2 Model B. https://www.raspberrypi.org/products/
raspberry-pi-2-model-b/.

[2] CloudEngines PogoPlug. https://pogoplug.com/.
[3] P. Dawadi, D. Cook, and M. Schmitter-Edgecombe. Automated

Cognitive Health Assessment from Smart Home-Based Behav-
ior Data. IEEE J Biomed Health Inform, Aug 2015.

[4] Openhab. http://www.openhab.org.
[5] PogoPlug mobile 2.6.31.8 kernel. https://pogoplug.com/

opensource.
[6] MLPACK. http://www.mlpack.org/.
[7] Klone Web Server. http://www.koanlogic.com/klone/.
[8] Lighttpd+PHP. https://wiki.ubuntu.com/Lighttpd%2BPHP.
[9] Umbc-umb partnership awards a catalyst for collaboration:

Research at umbc news feb 17 2015. http://research.umbc.edu/
umbc-research-news/?id=49901.

[10] Memory technology device. http://www.linux-mtd.infradead.
org/doc/general.html.

[11] H M Sajjad Hossain and et al. Active learning enabled activity
recognition. IEEE PerCom, 2016.

[12] Mohammad Arif Ul Alam and et al. CACE: exploiting
behavioral interactions for improved activity recognition in
multi-inhabitant smart homes. In 36th IEEE ICDCS 2016,
Nara, Japan, June 27-30, 2016, pages 539–548, 2016.

[13] M. A. U. Alam, N. Roy, and et al. Automated functional and
behavioral health assessment of older adults with dementia. In
2016 IEEE CHASE, pages 140–149, 2016.

3

2017 IEEE International Conference on Pervasive Computing and Communications Demonstrations

