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Abstract—Activity recognition using smartphone has great po-
tential in many applications like healthcare, obesity management,
abnormal behavior detection, public safety and security etc.
Typical activity detection systems are built on to recognize a
limited set of activities that are present in the training and
testing environments. However, these systems require similar data
distributions, activity sets and sufficient labeled training data
in both training and testing phases. Therefore, inferring new
activities is challenging in practical scenarios where training and
testing environments are volatile, data distributions are diverge
and testing environment has new set of activities with limited
training samples. The shortage of labeled training data samples
also degrades the activity recognition performance. In this work,
we address these challenges by augmenting the Instance based
Transfer Boost algorithm with k-means clustering. We evaluated
our TransAct model with three public datasets - HAR, MHealth
and DailyAndSports and demonstrated that our TransAct model
outperforms traditional activity recognition approaches. Our
experimental results show that our TransAct model achieves ≈
81% activity detection accuracy on average.

I. INTRODUCTION

Recent progress in machine learning technology, mobile and
wearable computing, and networking provides ample opportu-
nities to handle the evolvability of various diverse context-
aware applications. One of the important event monitoring
application in smart home environments is human activity
recognition. Smart home technologies help capture a multitude
of sensing signals representing various context information of
that environment. These information can easily be extracted by
employing machine learning techniques which help decipher
human behavioral information to develop various smart living
applications.

Ubiquitous computing devices such as computer, smart-
phone, smart watch, smart necklace, tablet in our everyday
living environments contain various in-built sensors such as
accelerometer, gyroscope, light, audio, vision, GPS, heart rate
etc. These miniaturized computing devices have the capability
of sending and receiving data through various wireless medium
such as Bluetooth, WiFi, Zigbee etc. Among these diverse sen-
sors of those devices, accelerometer sensor is most commonly
used for the human activity detection. This activity recognition
helps enable successful implementation of smart living spaces
applications such as monitoring nurses’ activities [1], quality
inspection of car production [2], elderly care activities [3],
and human health. Researchers have devised many techniques

including supervised [4], unsupervised [5], but all of these
traditional machine learning techniques use the same settings
and domain information to learn those activities. Nevertheless,
this require a lot of training and testing data to recognize
meaningful activities. These systems again may not work
well in different environments, settings and in presence of
multiple heterogeneous devices. Inspired by this, we ask a
basic question– is there any technique which can cope up
with this data, device, domain diversity? To address this
cross-cutting diversity, we employ transfer learning technique
to build robust and scalable activity recognition model. Re-
searchers have been designing machine learning methods to
identify and utilize information collected from one setting
(i.e., one home environment to another home environment,
different position of the sensors, different human subjects) and
transfer to another setting to recognize human activities [6].
This information sharing or transfer based activity recognition
helps reduce training time, disparity in model distributions,
and helps reuse existing knowledge and learned model to
recognize seen and unseen activities in new environment.

In this transfer learning setting, researchers have focused
on similar activities in the target environment, particularly
encompassing similar data distributions compared to the
source environment. In this work, we focus on detecting
new activities that may have a different distribution than
the source environment. To recognize these activities, activity
recognition models generally rely further on the users to
gain additional labeled training samples. It is impractical and
cumbersome to assume that the users are able to provide a
lot of labeled samples as labeling is a time-consuming and
cost sensitive task. Therefore, we investigate the feasibility of
our proposed TransAct model which seeks minimal amount of
label information in the target environment to infer human
activity through a practical activity recognition model. We
also analyze the data interoperability from activity recognition
perspectives between two smart devices (smartphone, smart
watch), learn knowledge from one device and employ to
another. We assume homogeneous feature space, sampling rate
and data distribution across two devices.

In this paper, we present a smartphone-based activity recog-
nition system that uses accelerometer signals to accurately
identify a range of daily living activities. To solve the data
distribution divergence, we posit instance based transfer boost-
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ing algorithm and classify the new activity instances by
using k-means clustering approach. Our main contributions
are summarized as follows.
• We study the problem of recognizing activities across

different environments (training and testing) in presence
of limited target domain labeled data. We depict how our
proposed model helps infer new activity that is absent in
the source domain.

• We address the challenges of unknown activity recog-
nition potentially fitting to different data distributions
compared to source sample data distributions by exploit-
ing an anomaly detection approach in conjunction with
clustering.

• We evaluate our model on three public datasets and
present the pros and cons of Instance based transfer
boost algorithm. We also demonstrate how our proposed
TransAct model helps overcome some of the deficiencies
of Instance based transfer boost technique.

II. RELATED WORK

In this section, we review the related work in two major
area: traditional and transfer learning based approach for
activity recognition.

Traditional Approach: Activity recognition is a well-
investigated topic in the smart home environment setting.
Researchers used various types of sensing modalities to sense
human activities, for example, ambient sensors, wearable sen-
sors [7][8][9]. Cameras [10], RFID tags [11], Wi-Fi [12], [13]
and PIR sensors [14] in smart ambient sensing environment.
However, activities can be detected more accurately using
wearable sensors because it can capture intricate movements
of the human body parts. Accelerometer sensors are mostly
used in the wearable sensor setting to keep track of the
various human postural movements and activities [15]. In this
work, we use smartphone’s accelerometer sensor data to infer
human activity. Frequency and time-domain features (such
as statistical, spectral, etc.) are extracted from sensor signals
to train machine learning algorithms for recognizing human
activities [16][15]. However, this traditional machine learning
algorithm warrants big amount of annotated activity data to
establish the hidden correlation between the activity states
and sensor data. We address this problem by revitalizing the
existing annotated data with few number of new annotated
data from the target environment.

Transfer Learning Approach: Researchers are investigat-
ing a way to design activity model that can leverage knowledge
or information from the previous task into the new task that
helps improve the robustness and scalability of the model.
Transfer learning mechanisms can help reduce the training
time and effort to initiate new activity recognition. Transfer
based activity recognition has been applied in various sensor
modalities such as video, ambient, and wearable [17][18][6].
Ambient sensing settings require proper sensor placement
and users to collaborate collectively to gather activity data.
However, in wearable sensing settings, there are less hassle to

face with this deployment scheme. Ambient sensors includes
a wide range of sensors such as pressure, PIR, motion, door,
temperature sensors etc. Instance based learning is the most
common in wearable activity recognition. Kurz et al. [21]
used the concept of learner and teacher model and built
an opportunistic framework that operates in a way such
that newly appeared sensors (learners) get trained from the
existing ones (teachers). In this framework, teachers helped
execute a recognition task by providing activity annotated
class to the newly appeared sensors. It incrementally trained
and calculated QoS parameters estimating “how much newly
arrived information is significant and will contribute in future”.
Krishan [22] proposed computational framework for detecting
gesture and activity by utilizing discriminative classifier that
learns spatio-temporal variations in movement patterns for
detecting gestures. It employed adaptive discriminative thresh-
old model based filter that helps filters irrelevant movement
patterns from continuous sensing signal. Venkatesan [23] has
done the cost estimation of older samples and integrated
that to boosting based classification algorithm to improve the
activity recognition performance. However, these approaches
do handle new activities in the target environment and perform
poor when a new activity introduces is seen in the target
environment. In this work, we used instant based transfer boost
algorithm such that it can handle this situation and boost the
robustness and scalability of the activity recognition model.

III. OVERALL TRANSACT ARCHITECTURE

Feature ExtractionPreprocessing

Anomaly 
Detection

Cluster Modeling Transfer Boost Modeling

Training Data
{ S U T}Anomaly Data

Activity

No

Yes

Input  Signals
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Fig. 1: TransAct Framework

Our TransAct framework consists of following four mod-
ules. i) Data Processing, ii) Anomaly Detection, iii) Cluster
Modeling, and iv) Transfer Boost Modeling. In data process-
ing phase, we filter the raw accelerometer signals using a low-
pass filter and compute the feature vectors from the filtered
signals. In the anomaly detection phase, we train transfer boost
algorithm using similar and dissimilar activities samples as
positive and negative instances from both source and target
environments. The negative or positive instances are detected
during testing and grouped as anomalies. In the clustering
phase, clusters are formed using uncommon activities both
from the source and target environments samples data. We
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assign labels based on the majority voting of data samples
classes to each of the cluster. Next, we compute the distance
for each anomaly instance to each of the cluster and assign
it to the lowest distance cluster. Therefore, transfer boost
model helps enhance the classical instance based transfer boost
algorithm to recognize existing similar activities in the target
environment.

IV. ACTIVITY RECOGNITION METHODOLOGY

In this section, we describe the details methodology to
infer human activity in a new environment. We use instance
based transfer learning technique with clustering to help infer
human activity. Instance based transfer boosting algorithm
performs well where both source and target environment
data distributions and activities are similar. Since labeling
sensor signals is always cost sensitive task, reusing of training
activity samples helps reduce the labeling cost in the target
domain. This sharing of knowledge from old environment’s
activity signals with few labeled samples from the target
environment is known as instance based transfer learning.
Instance based transfer boosting algorithm [24] helps build
an ensemble classifiers to transfer information from source to
target environment.

Assume source activity task is Si = {(xj , yj)}|Si|
j=1 and

target environment activity samples is T = {(xi, yi)}ni=1

where each source activity task Si ∈ {S1, ..., Sk} has nu-
merous labeled training instances. The goal of transfer boost
algorithm is to find the mapping for the target task using
the available source instances from S1, ..., Sk. and reweighs
source and target environment’s activity instances based on
the instance transferability metrics. This reweighing factors
(αt, βt) is defined based on the weighted error [24] of the
classifier as shown in Eqn. 1.

ε =
∑

(xi,yi)∈T

wt(xi)

||wt(T )||1
|h(xi)− yi| (1)

Let εt be the weighted error of hypothesis, ht on target
environment activity dataset T and εit be the weighted error
of hypothesis, hit on the source environment activity task Si
at time t. Transferability [24] is defined as the difference
between these two factors and mathematically, it is represented
as shown in Eqn. 2.

αit = εt − εit (2)

Transfer boost algorithm greedily sets αit and helps transpose
the knowledge from the source task as follows.
• Si posits positive transfer when 1 ≤ exp(αit) ≤ e
• Si asserts no transfer when exp(αit) = 1
• Si posits negative transfer when 1

e ≤ exp(α
i
t) ≤ 1

It trains a model ht : X → Y and reweighs each instance as
follows.
• If (xi, yi) ∈ Sj , then

wt(xi) =
wt(xi)exp(−βtyiht(xi) + αjt )

Zt
(3)

• If (xi, yi) ∈ T , then

wt(xi) =
wt(xi)exp(−βtyiht(xi))

Zt
(4)

where reweighing factor βt is chosen analytically to minimize
the normalization factor βt and Zt as shown in Eqn. 5 and
Eqn. 6, respectively.

βt =
1

2
ln(

1 +
∑
j∈D wt(xj)yjht(xj)

1−
∑
j∈D wt(xj)yjht(xj)

) (5)

Zt =
k∑
i=0

eα
i
t

∑
j∈Si

wt(xj)e
−βtyjht(xj) (6)

We enhance the transfer boost algorithm to recognize unseen
activities by introducing the anomaly detection phase. It marks
the existing activity samples both in the source and target
environment as positive instances and new activity samples as
negative instances and train this classifier with both positive
and negative instances. This trained model helps infer anomaly
when it encounters any negative instances in the target envi-
ronment. We employ semi-supervised clustering algorithm to
assign activity classes to these anomaly instances.

We use k-means clustering algorithm to form clusters from
the labeled unseen activity samples. The basic idea behind this
approach is to partition the whole set of data into k number
of clusters where k is known a-priori. First, we randomly
pick up k number of data samples and calculate euclidean
distance from each of the data samples to other remaining data
samples. If the distance is smaller then the data samples are
classified in the same cluster and the process is continued for
all the data samples. We compute the mean/centroid of each
of the cluster once initial clusters are formed and compare
inter-cluster distance with the cluster centroid. We iterate this
process until none of the data samples of a cluster possesses
minimum distance other than its own cluster. We assign class
labels to each cluster based on the majority number of voted
class given in the data samples. We calculate the centroid
of each cluster, compute the distance between each centroid
and the given data samples, and finally assign associated class
label to the minimal distance cluster for predicting the human
activities.

Algorithm 1 represents our proposed TransAct human ac-
tivity recognition methodology. AnomalyDetector method
takes single instance as an argument and checks whether
it belongs to any existing activity class or not. TransAct
algorithm posits ClusterBasedAnnotator method for each
new activity instance and assigns the appropriate cluster labels
to it. It also invokes TransferBoostAnnotator method to
infer the proper class labels by sharing knowledge from source
to target environment. Finally, annotated activity classes are
appended to provide final activity list for a given set of
target environment instances. Note that AnomalyDetector,
ClusterBasedAnnotator, and TransferBoostAnnotator
methods rely on trained binary transfer boost algorithm, built
clusters and trained multi-class transfer boost algorithm, re-
spectively.
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Algorithm 1 TransAct Algorithm

Input: Few labeled activity samples in the target environment,
DT

Output: Activity label/class
//Create Empty Activity List;
AL = {}
for k = 1, ..., |DT | do

if AnomalyDetector(DT [k]) = TRUE then
clabel = ClusterBasedAnnotator(DT [k])

else
clabel = TransferBoostAnnotator(DT [k])

end if
Append(AL, clabel)

end for
return AL

V. EXPERIMENTAL SETUP AND EVALUATION

In this section, we discuss the detailed evaluation of our
proposed activity recognition model with 3 different datasets.
We evaluate our model while focusing on the following
observations: (i) model’s overall performance, (ii) comparison
of our model with other traditional classifiers, (iii) TransAct’s
performance over training samples.

A. Data and Setup

We use the public HAR [25], DailyAndSports [26] and
MHealth [27] datasets, containing data collected from 30, 8
and 10 users performing 6, 19 and 12 activities, respectively.
These datasets contain exercise activities (i.e. walking on a
treadmill, cycling on a bike etc.) and basic daily activities
(standing, walking etc.).

We consider Java based platform to implement our model.
We segment the accelerometer data using sliding window
based protocol and create frames with 128 sample data points
with 50% overlap from the raw accelerometer signals. We keep
the frame length consistent across all the datasets. We filter raw
accelerometer sensor signals to remove noise using low-pass
filter and provide smooth signals which help improve activity
recognition accuracy. To determine the band for the filter, we
applied FFT on the data and found that most of the high-energy
frequency components lie in between 0-20 Hz. Therefore, we
applied a low-pass filter with a maximum frequency of 20 Hz
and used filtered data to calculate corresponding features.

We extracted and exploited both the time domain and
frequency domain features. Time domain features like mean,
standard deviation etc., and frequency domain features like
energy, entropy etc., of the signals, are calculated using Fast
Fourier Transform (FFT) on each frame. On top of that,
we exploited frequency normalization by applying Hamming
window. Corresponding features of our activity recognition
model are summarized in Table I.

We evaluated and compared the performance of our ac-
tivity recognition model based on the following metrics. i)
Precision = ( TP

TP+FP ), ii) Recall R = ( TP
TP+FN ), iii) F-

1 Score= 2×P×R
P+R and, iv) Accuracy = TP+TN

TP+TN+FP+FN ,

TABLE I: Activity recognition features for classification
Domain Features
Time
Domain

Mean(x̄, ȳ, z̄), Standard Deviation (σx, σy , σz)
Variance (var(x), var(y), var(z))
Corr. Coefficient( Cov(x,y)

σxσy
,
Cov(y,z)
σyσz

,
Cov(x,z)
σxσz

)

Magnitude(
√

(x2 + y2 + z2))

Frequency
Domain

Energy(

n∑
i=1

f2xi

n
,

n∑
i=1

f2yi

n
,

n∑
i=1

f2zi

n
)

Entropy(−
n∑
i=1

pi ln pi), pi = fi
n∑

i=1
fi

where TP, FP, TN, and FN are the number of instances of
true positive, false positive, true negative and false negative,
respectively.

B. TransAct Model’s Performance

We evaluate the performance of our model in two scenarios,
with (i) similar activities in both environments, and (ii) new
activities in the target environment.

(i) Similar activities in both environment: In this setting,
we evaluate the performance of our activity recognition model
both on inter- and intra-dataset. Figure 2 depicts overall per-
formance of our TransAct model. In the intra-dataset settings,
we split the number of subjects randomly to create two
environments and use one as a source and another one as a
target. Figure 2b depicts the performance results of our intra-
environment activity recognition model. In this setting, our
model achieves fairly good accuracy because data distributions
depend only on the subject’s activity performance. We notice
that our model achieves an accuracy of 93% and 82% for
HAR dataset and DailyAndSports dataset, respectively 2b.
It shows lower accuracy for DailyAndSports dataset because
there exists larger variations in speed and amplitude among
inter-subject activity sets.

In the inter-dataset setting, we consider common activities
from both MHealth and DailyAndSports with sensor position
being on chest and torso, respectively. We use one dataset
as source environment and other as target environment. Fig-
ure 2a represents inter-dataset performance of our TransAct
model. Our model achieves 85% and 82% accuracy while we
employ DailyAndSports and MHealth as target environment,
respectively. Note that TransAct model’s performance has been
degraded in this case compared to intra-dataset scenario be-
cause of larger variation in data distributions. The differences
in bias and gain of the sensors and the users’ agility in
performing different activities including their individual age
from both the source and target environments greatly influence
the performance of our proposed activity model.

(ii) New activities in the target environment: In this setting,
we evaluate the performance of our TransAct model for new
activities in the target environment. Figure 3 shows overall
performance of our model. We evaluate our model in two sce-
narios: (i) inter-dataset activity transfer, and (ii) intra-dataset
activity transfer. In the first scenario, we transfer knowledge
from MHealth to DailyAndSports and vice versa. In the target
environment (DailyAndSport dataset), we consider playing
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Fig. 2: TransAct Model Performance for Existing Activities

basketball as a new activity as it is not present in the source
environment (MHealth dataset). We incrementally select and
classify one or more new activities from the target domain
in conjunction with existing common activities as available in
source environment. Figure 3a depicts the overall performance
of our TransAct model in this case. It shows F1 score (0.83),
precision (0.80) and recall (0.86) values. Note that higher
precision and recall values help confirm that our model has
not been overfitted in the context of new and unseen activity
recognition. Figure 3b depicts the efficacy of intra-dataset
activity knowledge transfer for recognizing new activities in
the target environment with 87% accuracy for HAR dataset.
We note that our proposed TransAct model performs better
in case of intra-dataset than inter-dataset activity knowledge
transfer. The less diversified data distributions in this case
compared to inter-dataset and the augmentation of semi-
supervised clustering algorithm to assign new activity instance
in the appropriate cluster help improve the performance.
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Fig. 3: TransAct Model Performance for New Activities

C. TransAct Model vs Training Samples

To better understand the impact of new activities in the
target environment, we further extend our experimentations
with respect to the number of training samples. Figure 4 shows
the precision and recall of our model while recognizing new
activities. We observe that recall drifts substantially while the
number of samples are small but it remains consistent in
presence of the increasing number of training samples. We
also note that the higher recall indicates the effectiveness of

TABLE II: Comparison of Classifiers

Dataset DT RF TB TransAct
HAR 76.73 71.96 75.65 86.49
MHealth 48.02 62.25 66.48 77.43
DailyAndSports 66.67 70.38 72.86 80.73
Avg. Accuracy 63.81 68.20 71.66 81.55

our model for recognizing new activity samples while reducing
the false negative rate.
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Fig. 4: Number of training instance of new activity

D. Comparison of different classifiers

We compare the performance of TransAct model with
existing methodologies such as including Random Forest
(RF), Decision Tree (DT) and Transfer Boost (TB). We use
Weka machine learning algorithms toolkits for RF and DT
implementations and we create our own Java implementation
for TB. We perform the experiments for intra-dataset environ-
ments with varied new activities where activities are chosen
randomly in each run. Table II shows the detail results. Note
that TransAct model achieves an average accuracy ≈ 81%
whereas TB achieves ≈ 72% accuracy. TransAct achieves
higher accuracy compared to the other classifiers because it
handles new unseen activities instances as anomalies and then
assign them into the appropriate clusters which help boost the
classification accuracy.

VI. CONCLUSION

In this work, we proposed a novel activity recognition
model, TransAct which helps recognize activities in the new
environment while accessing and transferring knowledge from
differing source data and activity distributions. Our model is
able to recognize activities with limited training instances in
the target environment. It utilizes source environments labeled
data to learn the activity model for the new environment that
may have few labeled samples and new activities. We ad-
dress this problem by deploying transfer boost algorithm with
clustering mechanism to recognize activities in heterogeneous
environments, activities, devices and data samples settings.
This model is robust enough to spot complex activities also.
In future, we plan to recognize sub-activities with this model
and add sequence recognizer to infer complex activities.
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monitoring system for elderly care using generative and discriminative
models. Personal and ubiquitous computing, 14(6):489–498, 2010.

[4] Sotiris B Kotsiantis. Supervised machine learning: A review of classi-
fication techniques, 2007.

[5] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Unsupervised
learning. Springer, 2009.

[6] Diane Cook, Kyle D Feuz, and Narayanan C Krishnan. Transfer learning
for activity recognition: A survey. Knowledge and information systems,
36(3):537–556, 2013.

[7] Daniel Olguın Olguın and Alex Sandy Pentland. Human activity
recognition: Accuracy across common locations for wearable sensors.
Citeseer.

[8] Koji Yatani and Khai N Truong. Bodyscope: a wearable acoustic sensor
for activity recognition. In Proceedings of the 2012 ACM Conference
on Ubiquitous Computing, pages 341–350. ACM, 2012.

[9] Jungsoo Kim, Jiasheng He, Kent Lyons, and Thad Starner. The gesture
watch: A wireless contact-free gesture based wrist interface. In Wearable
Computers, 2007 11th IEEE International Symposium on, pages 15–22.
IEEE, 2007.

[10] JK Aggarwal and Lu Xia. Human activity recognition from 3d data: A
review. Pattern Recognition Letters, 48:70–80, 2014.

[11] Dany Fortin-Simard, J Bilodeau, Kevin Bouchard, Sebastien Gaboury,
Bruno Bouchard, and Abdenour Bouzouane. Exploiting passive rfid
technology for activity recognition in smart homes. 2015.

[12] Lin Liao. Location-based activity recognition. PhD thesis, University
of Washington, 2006.

[13] Tong Zhang, Jue Wang, Ping Liu, and Jing Hou. Fall detection by
embedding an accelerometer in cellphone and using kfd algorithm. Inter-
national Journal of Computer Science and Network Security, 6(10):277–
284, 2006.

[14] Geetika Singla, Diane J Cook, and Maureen Schmitter-Edgecombe.
Recognizing independent and joint activities among multiple residents
in smart environments. Journal of ambient intelligence and humanized
computing, 1(1):57–63, 2010.

[15] Jennifer R Kwapisz, Gary M Weiss, and Samuel A Moore. Activity
recognition using cell phone accelerometers. ACM SigKDD Explorations
Newsletter, 12(2):74–82, 2011.

[16] U. Maurer, A. Smailagic, D.P. Siewiorek, and M. Deisher. Activity
recognition and monitoring using multiple sensors on different body
positions. In Wearable and Implantable Body Sensor Networks, 2006.
BSN 2006. International Workshop on, pages 4 pp.–116, April 2006.

[17] Lixin Duan, Dong Xu, IW-H Tsang, and Jiebo Luo. Visual event
recognition in videos by learning from web data. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 34(9):1667–1680, 2012.

[18] Ulf Blanke and Bernt Schiele. Remember and transfer what you have
learned-recognizing composite activities based on activity spotting. In
Wearable Computers (ISWC), 2010 International Symposium on, pages
1–8. IEEE, 2010.

[19] TLM Van Kasteren, Gwenn Englebienne, and Ben JA Kröse. Trans-
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