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Abstract—Predicting the occupancy related information in an
environment has been investigated to satisfy the myriad require-
ments of various evolving pervasive, ubiquitous, opportunistic and
participatory sensing applications. Infrastructure and ambient
sensors based techniques have been leveraged largely to deter-
mine the occupancy of an environment incurring a significant
deployment and retrofitting costs. In this paper, we advocate
an infrastructure-less zero-configuration multimodal smartphone
sensor-based techniques to detect fine-grained occupancy infor-
mation. We propose to exploit opportunistically smartphones’
acoustic sensors in presence of human conversation and motion
sensors in absence of any conversational data. We develop
a novel speaker estimation algorithm based on unsupervised
clustering of overlapped and non-overlapped conversational data
to determine the number of occupants in a crowded environment.
We also design a hybrid approach combining acoustic sensing
opportunistically with locomotive model to further improve the
occupancy detection accuracy. We evaluate our algorithms in
different contexts; conversational, silence and mixed in presence
of 10 domestic users. Our experimental results on real-life data
traces collected from 10 occupants in natural setting show that
using this hybrid approach we can achieve approximately 0.76
error count distance for occupancy detection accuracy on average.

I. INTRODUCTION

Smartphone based participatory and citizen sensing appli-
cations have attested the promise of microphone sensor based
several audio inference applications. The most obvious benefits
from microphone sensor based applications are assessment
of social interaction and active engagement among a group
of people [1], speaker identification and characterization of
social settings [2][3][4] by leveraging their conversational
contents. Recently speaker counting has been investigated to
enumerate the number of people in conversational episodes
like social gatherings, interactive lecture sessions or in a
restaurant or shopping mall environment [5][6][7]. Most of
the recent studies focus on the conversational data to extract
the high level occupancy information assuming that all the
users are taking turns to speak. This may occur in a controlled
environment (seminar, meeting, classroom etc.) but overlapped
or concurrent speaking is the most frequently occurred event
in our day to day life. On the other hand most of the previous
studies are obtrusive which proposed to use arrays of ambient
microphone sensors, video cameras or motion sensors for
inferring the real time occupancy information [8][9].

Taking turns in conversation is albeit feasible but we move
one step further considering a more naturalistic uncontrolled
environment where people may spontaneously participate in
any conversational phenomenon without any a-priori intuition.

While smartphones’ microphone sensor-based acoustic sensing
approach holds great promises in inferring the number of occu-
pants and promoting scalable infrastructure-less opportunistic
sensing but it fails in absence of any conversational data from
the surrounding environment. Motivated by this we propose to
augment locomotive sensing in absence of any conversational
episode with acoustic sensing being considered as a de facto
audio inference in our model to precisely synthesize the
characteristics of a natural environment and accurately estimate
the occupancy related information. In pursuit of these goals we
propose an opportunistic collaborative sensing system called,
SensePresense, which opportunistically exploits both the audio
and motion data respectively from smartphones’ microphone
and accelerometer sensor to infer the number of people present
in a gathering.

In SensePresence, we opportunistically combine
smartphone-based acoustic and motion sensing to determine
the number of people in a partially conversational and
non-conversational environment. When multiple people are
present and a subset or a group of people are conversing,
how do we identify who are involved in the conversation, or
belonged to a specific conversational clique, and who are not,
i.e., opportunistically exploiting smartphones’ microphone and
motion sensors to infer number of people present therein. Such
hybrid sensing approach could potentially furnish fine-grained
occupancy profiling for better serving many participatory
sensing applications while saving smartphones’ battery power
by advocating a distributed sensing strategy. In this paper, we
propose an adaptive acoustic sensing based linear time people
counting algorithm based on the real-life conversational data.
Our algorithm follows an unified strategy in presence of
both overlapped and non-overlapped conversational data as
naturally evolved from a crowded environment. Our proposed
algorithm relies on a dynamic length of the audio segmented
data compared to a predefined static audio segment length [6].
We investigate a locomotive sensing model and augment it
with our proposed acoustic sensing based people counting
algorithm to make our system work on extreme modality of
either of the data sources, whether it is acoustic or locomotive.

II. RELATED WORK

Smartphones’ microphone sensor has been used extensively
to opportunistically analyze audio for context characterization.
For example, SpeakerSense [4] performs speaker identification
and SoundSense [10] classifies sounds from macro to micro
contexts. All these work have often in common the use of
supervised learning technique. In contrast, SensePresence’s oc-
cupancy counting process is entirely unsupervised. The authors



of [11] used unsupervised techniques to perform speaker
clustering using distances of the feature vectors extracted
from different speakers. However this occupant estimation has
been done only on telephonic conversational data where our
proposed system, SensePresence performs speaker counting
without any staged conversational setup. It collects data from
natural conversation and performs clustering to infer the num-
ber of people. The most closely related research to SensePres-
ence speaker counting is Crowd++ [6] where counting has
been done in a controlled scenario with all the participants
speaking actively. [6] used a fixed length audio segment (3
sec) where each segment corresponds to an individual but we
performed this audio segmentation dynamically to increase the
accuracy of occupancy inference. [6] also classified a few seg-
ments as undetermined but our system never discards segments
as undetermined which is achieved only through employing
dynamic segmentation. Therefore SensePresence tackles a
richer problem, where none of the speakers are discarded for
handling the computational challenges. Crowd++ [6] proposed
to combine pitch with MFCC to compute the number of people
with an average error distance of 1.5 speakers. On the other
hand SensePresence improved average error distance by a
factor of two (0.76 Speakers). Next we briefly discuss some
specific occupancy sensing applications.

Building occupancy monitoring applications rely on the
deployment and installation of a bona fide system or de-
vice inside the building environment necessitating the high
retrofitting and management costs. For example, a wireless
sensor network system consisting of PIR sensor, reed switch
and CC2530 radio has been deployed for collecting real time
occupancy information inside a building environment [12].
Non-intrusive occupancy monitoring algorithm has been pro-
posed to infer binary occupancy from smart meter data in a
home environment [13] which helps detect occupancy using
average and standard deviation of the power usage and power
range. However, ambient and infrastructure sensors have been
deployed there to infer occupancy information and neither of
them used mobile context data for inferring the number of
people in building environment [14]. In this work, we present
an opportunistic infrastructure-less zero-configuration hybrid
system exploiting the ubiquitous availability of smartphone
sensors on the horizon to shift the traditional occupancy mon-
itoring paradigm from an infrastructural device based system
to fluid mobile sensing based system.

III. OVERALL SENSEPRESENCE FRAMEWORK

We envision to develop a minimally invasive and low-cost
mobile system for counting the number of people present in
any environment. We propose an opportunistic collaborative
sensing approach which exploits multiple sensors on smart-
phone - microphone for acoustic sensing and accelerometer for
locomotive sensing. Our system as shown in Fig. 1, comprises
of two subsystems, one deployed on smartphone and other
deployed in server. In the mobile part of our proposed client-
server architecture, sensed data both for the acoustic and
locomotive sensing are being stored in a data sink on the
smartphone itself and transferred to the server in a regular
interval for triggering the opportunistic sensing among the
multiple smartphones and posterior data analysis (sink in Fig
1). Acoustic data from each smartphone is first fed to the filter
to collect Acoustic Fingerprints (AFP), of any conversation

consisting of content based audio. The AFPs being collected
from all the smartphones are sent to the “Estimate Proximity”
module residing on the server- which helps distinguish the au-
dio signals in vicinity and helps approximate opportunistically
the inclusion of a group of smartphones to form single clique.
Finally, “Optimum Node” module elects the clique leader (most
informative smartphone) to record the conversational audio
data and notifies the condition of deactivation to the other
smartphones from capturing the duplicate audio signal. It also
helps in sorting the smartphone list based on their audio signal
strength which is eventually utilized by locomotive “Signature
Collection” module to opportunistically check-on and trigger
the accelerometer sensor on the smartphones [15].

The Occupancy Context Model (OCM) which resides on
the server-side has two main sub-components: i) Acoustic Con-
text Model, and ii) Locomotive Context Model. These models
together form the inference engine consisting of opportunistic
occupancy context module.

A. Acoustic Context Model (ACM)

Our acoustic context model comprises of the following
three logical components.

Pre-processing: This is the most trivial phase for acoustic
signal processing. This module helps to perform the filtering
and select the audio segment length dynamically. It finally
helps remove all the noises, silences and produce smooth con-
versational data which is later passed to the feature extraction
module.

Feature Extraction: This module is the main basis for
extracting all types of features which is utilized in the speaker
estimation module. It has been briefly discussed in section V-C.

Speaker Estimation: This serves as a core processor for
occupancy counting. (Details in IV-A).

B. Locomotive Context Model (LCM)

It consists of i) Signature Collection, ii) Feature Extraction,
and iii) Occupancy Estimation modules. Signature collection
module receives total number of people count from ACM
module and the sorted smartphone list from the optimum
module to opportunistically select microphone sensors. Based
on these two inputs, LCM module makes decision on which
smartphones’ sensors are needed for further occupancy estima-
tion. Feature extraction module calculates accelerometer sensor
magnitude and feeds that into occupancy estimation module,
which helps to infer binary occupancy for each smartphone
sensed data and finally helps count the total number of people
present in a conversational, silent or mixed environment.

IV. DESIGN METHODOLOGY

In this section we describe the details of our SenseP-
resence design framework. We present an acoustic sensing
based algorithm for counting the number of people present
in a conversing environment (such as group meeting, brain
storming session etc).

A. Occupancy Estimation Using Acoustic Signature

In this section, we describe occupancy estimation using our
proposed acoustic sensing model. We look into the specific
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Fig. 1: SensePresence Architectural Overview

cases where all the occupants are conversing. We first attempt
to calculate the number of speakers engaged and consider
three different phases to compute the number of personnel
present. We first propose to create dynamic segments from the
supplied raw audio data and assume that each segment belongs
to an individual person. We attempt to detect every speaker
change point in the entire audio signal spectrum and assign one
segment to one person to increase the counting performance
of our occupancy detection algorithm. Speaker change point
depicts the stopping point of one speaker and starting point
of another speaker. Speaker change point detection algorithms
have been investigated extensively [16][17][18], however, it is
a complex process to detect speaker change point in conversa-
tional speech because utterance lengths can be extremely short,
speaker changes may occur frequently, there may be some
overlaps between the speakers, and surrounding environment
can be noisy.

We first calculated confidence score for the entire supplied
audio which represents the probability of finding pitch within
a segment. We start finding confidence score from a small
segment (32 ms) and increase the step size in the next iteration
(16 ms), and repeat this iteration for up to 10 seconds audio
segment. We calculated the variance of this confidence score
and based on a lower variance associated with a specific
segment we have selected that segment length as one unit of
conversation. If a segment has over 90% confidence, we admit
it or otherwise we reject it. As there are many audio segments
with different segment lengths, we have chosen a segment
length corresponding to a single person unit associated with a
higher confidence score and greater number of audio segments
with lower segment length. Fig. 2 shows various confidence
scores for different segment lengths. We selected 2.72 sec
as segment length instead of 3.36 sec when both have a
confidence score of 1, but first segment length admits greater
number of segments than the latter one. We have calculated
this confidence score using YIN [19] algorithm by using non-
overlapping frames and skipped the best local estimate step.
This help to determine on real time the unit audio segment
which solely depends upon the recorded audio.
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Fig. 2: Confidence Scores for different segment lengths of a sample
audio

Procedure People-Count (input: set of segments (S), total
number of segments(N); output: number of distinct speakers)
1. For (i from 1 : N)
2. Compute MFCC vectors mi = Compute_MFCC(Si);
3. Insert(M,mi);//Insert mi into MFCC set M
4. End-For
5. Sort(M) //sort MFCC set and keep sorted MFCC set

into the same Set M
6. PS = {} //Initialize Persons Set

which contains similar person in sets PSj

7. For (i from 1 : N)
8. For (j from (i+ 1) : N)
9. angle = Cosine_Similarity(Mi,Mj);
10. If (angle < θth) then
11. Insert(PSi,Mj);
12. Else 13. i=j; 14. break;
15. End-If
16. End-For
17. Insert(PS,PSi); // PS denotes person Set
18. End-For
19. NS = Count_Elements(PS);
20. return NS;

Fig. 3: The People Count Algorithm

As human voice ranges approximately 300 Hz to 4000
Hz, we filter each of the segments based on that frequency
range using band pass filter. After filtering the raw audio
we have applied Hamming window to reduce the spectral
leakage while creating audio segments. Consider a segment
which contains m frames and each segment consists of frames
{F1, F2, . . . , Fm}. We calculated MFCC for each frame
where each segment has corresponding MFCC feature vectors
as {M1,M2, ...,Mm}. We also computed pitch for each seg-
ment to apprehend gender in the conversational data. Segment
pitches are represented as {P1, P2, ..., Pm}, where the average
pitch for male falls between 100 to 146 Hz whereas female
pitch is within 188 to 221 Hz, as demonstrated in [20].
Segments which fall within male frequency are marked as male
and similarly for female. These two sets are then passed to our
proposed people counting heuristic algorithm. Before passing
these male and female segments for checking similarity mea-
sures, we calculated intra cosine angle of each segment to sort
out both male and female segments. Next we have checked the
similarity among inter-segments if it falls within our predefined
threshold, θth or not. If these segments have been similar, we
have merged them to make a new segment and continued to
check for the next segment with this newly created segment.
If those segments have been dissimilar then we have moved
forward and picked another segment to check similarity with
the next one. The pseudo code of our proposed people counting
heuristic has been shown in Fig. 3.



B. Occupancy Estimation Using Accelerometer Signature

In this section, we discuss our locomotive sensing model in
absence of any conversational data or in a mixed environment
where a group of people may talk and other listen silently.
If a smartphone is stationary for a significant amount of
time, on-board accelerometer sensor produces steady state
signature which has no variation or spikes in terms of signal
amplitude, whereas if there is a movement it generates a spike
or corresponds to a steady-state signal alteration. To detect this
abrupt changes in locomotive signal amplitude we propose to
use change point detection based technique [21].

Change point detection helps find the abrupt variation in the
movement data stream. Our motivation in this work is to use
change point to find the stray movements by finding abrupt
changes in the accelerometer signals. These changes help
inferring binary people counting (whether people present or
not). We developed and used offline Baysian changepoint [21]
detection based algorithm for inferring occupant’s presence in
O(n2). It has three fold methods. First, we calculate a-priori
probability of two successive change points at a distance d (run
length). We use Gaussian based log-likelihood model [22] to
compute log-likelihood of the data in a sequences [s, d], where
no change point has been detected. Second, we calculate log-
likelihood for the entire signal S[t, n], log-likelihood of data
sequence Ss[t, s] where no changepoint has been occurred
between t and s and π[i, t], the log-likelihood that the i-th
changepoint occurs at time step t. Finally, We calculate the
probability of a changepoint at time step t by summing up the
log-likelihoods for that sequence. Fig. 4 shows the change-
points and their probabilities as being detected successfully.
We filter those changepoints based on empirically determined
threshold probability (δth) and infer presence of the occupant
based on the admitted changepoint sequence. We also count
the number of changepoints in the the data sequence which
indicates movement score that represents how frequent the
person moves. The overall algorithm has been summarized in
Fig. 5.
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Fig. 4: Magnitude of accelerometer signal (Left) and changepoints
with probabilities of that signal (Right) due to a person’s random
movement patterns

V. SYSTEM IMPLEMENTATION AND EVALUATION
RESULTS

We now discuss the detailed implementation and evaluation
of our SensePresence framework.

A. Tools and Resources

We used Google Nexus-5 with built in microphone and
three axes accelerometer sensor for our experiments. Our entire
system comprises of two parts: i) sensing, and ii) classification

Procedure Binary-occupancy-detection (input: samples (data),
total number of data points(n); output: 1 for occupant
present, otherwise 0)
1. For (t from 1 : n)
2. g[i] = log(1/(n+ 1));
3. If i == 0 then G[i] = g[i];
4. Else G[i] = log(exp(G[i-1])+exp(g[i]));
5. End-If
6. End-For
7. P[n-1, n-1] = Gaussian_log_likelihood(data, n-1, n)
8. For (t from n : 1)
9. /* get next changepoint probability by computings
10. joint distribution P (rn, x1:n), recursively using
11.

∑
rn−1

π(rn|rn−1)π(xn|rn−1, x1:n)π(rn−1, x1:n−1) */

12. prob_next_changepoint = Cal_Joint_Dist(data,t,n-1)
13. P[t, n-1] = Gaussian_log_likelihood(data, t, n)
14. Q[t] = log(exp(P_next_run),

exp(P[t, n-1] + 1 - exp(G[n-1-t]))); 15. End-For
16. For (i from 1 : n− 1)
17. changepoint_prob[0, t] = (P[0, i] + Q[i + 1] +

g[i] - Q[0]); 18. End-for
19. num_effective_cp = 0; 20. occupancy = 0;
21. For (i from 1 : n− 1)
22. For (t from i : n− 1)
23. tmp_sum = (changepoint_prob[i-1, i-1:t]

+ P[i:t+1, t] + Q[t + 1] + g[0:t-i+1]
- Q[i:t+1]);

24. changepoint_prob[i, t] = log(sum(exp(tmp_sum)))
25. If (changepoint_prob[i, t] > δth) then
26. num_effective_cp = num_effective_cp + 1; 27. End-If
28. End-For 29. End-For
30. If num_effective_cp > 0 then occupancy = 1; 31. End-If
32. return occupancy;

Fig. 5: The Binary Occupancy Detection Algorithm

and clustering, first one was implemented on Nexus-5 and
latter on the server. Application software was written in
Java which utilizes Android Programming Interface (API) to
sense microphone and accelerometer signals. Classification and
clustering algorithms and our occupancy counting algorithm
have been implemented on the server using python.

B. Data Collection

We implemented the acoustic sensing and collected con-
versational data from different places at different times in nat-
uralistic settings. Conversational data have been collected and
properly anonymized during the spontaneous lab conversation
among the students (without making the occupants aware of
it), lab meeting, and general discussion in the lobby/corridor
in presence of a variety of surrounding noise levels. The
demographic for our conversational data collection was 1-10
persons (with 5 females and 5 males) in age group of 18-50
years. The acoustic data were collected at a mono sampling
rate of 16kHz at 16bit pulse-code modulation (PCM).

C. Acoustic and Locomotive Feature Extraction

We discuss different features relevant to our acoustic and
locomotive sensing techniques in this section.

Acoustic Features: We generated two basic features which
are used in the speaker identification - MFCC and Pitch. Each
feature has been described in details in the following. i) MFCC
is one of the most significant features which is used for acous-
tic processing. We followed the following steps to process it. 1.
Take the Fourier transform of (a windowed excerpt of) a signal,
2. Map the powers of the spectrum obtained above onto the
Mel scale using triangular overlapping windows, 3. Take the



logs of the powers at each of the Mel frequencies, 4. Finally,
take the discrete cosine transform of the list of Mel log powers.
We excluded the first co-efficient of MFCC and then chose 20
coefficients as feature vectors. ii) Pitch is defined as the lowest
frequency of a periodic waveform. It is the discriminative
features between man and woman. Human voice pitch interval
falls within the range 50Hz to 450Hz [20]. We calculated pitch
of different segments using YIN [19] algorithm. We used 32
msec hamming window with 50% overlap for computing the
Pitch and MFCC feature.

Locomotive Features: We calculated the magnitude of
accelerometer data. We considered magnitude in order to
mitigate calibration.

D. Accuracy Metrics Definition

To evaluate and compare the performance of our system,
we computed the average error count as the normalized
predicted occupancy metric represented by |EC−AC|

N , where
EC, AC, N denote the estimated people count, actual people
count and number of samples respectively. We presented only
the absolute value in order to avoid any positive or negative
contribution.

E. Occupancy Counting Results

We evaluated our opportunistic occupancy counting al-
gorithm in four scenarios. i) No conversation among oc-
cupants, ii) All occupants are conversing in a single
clique, iii) Occupants are conversing in multiple cliques,
and iv) Mixed conversing and non-conversing occupants.

For the first scenario, when no occupants are involved in
conversation we used the accelerometer to count the occu-
pancy. Each accelerometer sensor provides binary occupancy
indication based on our change point detection algorithm as
discussed in section IV-B which computes the total number
of people present in the environment. Fig. 6 shows the total
number of people successfully counted using our locomotive
sensing model. We note that our locomotive sensing model
achieves 80% accuracy (8 out of 10 people) in predicting
occupancy when most of the users carry their smartphones
with them.
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Fig. 6: Locomotive Sensing-
based Occupancy Count
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Fig. 7: People Counting perfor-
mance with different cosine mea-
sures

Our opportunistic sensing system plays a critical role when
all occupants have been conversing in a single clique. Our sys-
tem helps activate a single microphone for occupancy counting
and deactivate all other microphone and accelerometer sensors
based on the server feedback (details are omitted due to space
constraints). Fig. 7 depicts the effect of cosine distant similarity

measures on our occupancy counting algorithm as shown in
Fig 3. We notice that similarity distance angle measures (in
degree) play a pivotal role on reducing the error count of occu-
pancy inference. In our experiments with 3 people conversing,
we found that 15 degree similarity measure threshold is an
appropriate choice for consideration to reduce the error count
for our proposed adaptive people counting algorithm.

We also have run experiments in an uncontrolled envi-
ronment (completely in a natural setting) without imposing
any restrictions on smartphones relative positions and distance
from each other or from the server. Fig. 8 reports the average
error count distance ≈ 0.5 with respect to different positions
of the phone. It is noted that when smartphone is placed
on the table and two persons speak the error count becomes
zero, but when three persons start speaking, error count tends
to become slightly higher due to the ambient noise and
overlapped conversation.
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Fig. 8: Occupancy count over
different phone positions
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Fig. 9: People counting depends
on phone distance

Fig. 9 depicts that error count increases as single clique
leader’s distance from other occupants increases. We note that
for a 3 meter distance error count becomes close to two which
confirms that even for a large internal distance separation
among the conversing occupants our acoustic sensing model
performs quite well.
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Fig. 10: Accuracy vs. Number of
People
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Fig. 11: People Counting vs.
Multiple Co-located Group of
Speakers

Fig. 10 presents the performance of our people counting
algorithm where users speak naturally with overlapped con-
versations. It is observed that average error count is 0.1 for 2
people and 1.7 for 10 people when conversing together. Thus
the overall average error count is 0.76 with number of users
present varying from 2 to 10 establishes that our acoustic-
based occupancy counting algorithm performs well even in a
crowded environment.

In our third scenario, where occupants are conversing in
multiple cliques (assume three cliques in our experiment) we



deployed three microphones and accelerometer sensors which
are chosen based on the proximity measure from the server
to infer the occupancy. Fig. 11 shows the intra-group count in
presence of conversational data with distinct clique formation.
In our experiments, first group has 5 occupants (2 men and 3
women), second group has 6 occupants (3 men and 3 women)
and last group has 8 occupants (4 men and 4 women). We
observe that the mean error count is ≈ 1 for even our group
based acoustic sensing model which attests the promise of our
occupancy detection model in different real life scenarios.
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Fig. 12: Locomotive Augmented
Acoustic Occupancy Count

Number of
Speakers

Crowd++
(Error
Count)

Sense
Presence
(Error
Count)

2 0.5 0.167
4 2.33 0.5
6 2.5 0.83
Average 1.78 0.5

TABLE I: Comparison (Average
Errro Count) between Crowd++
and SensePresence

In our last scenario, where some people speak and some people
remain silent arise challenges for estimating total number
of occupants present in that specific place. In this case, we
propose to utilize our hybrid locomotive cum acoustic sensing
model to infer total number of occupants. For example, con-
sider a scenario where six persons are involved in conversation
while four remain silent. For conversing population, we acti-
vate either a single microphone sensor if there is a single clique
or multiple microphone sensors if there are multiple conversing
cliques as determined by our “Estimate Proximity” module
implemented on the server. We use mean error count estimation
to infer the number of people conversing. To estimate the
number of people who are not involved in that conversation,
we utilize our locomotive sensing model which postulates
binary occupancy using change point detection applied on
the accelerometer’s signal and finally infers the total number
of silent people. Fig 12 plots overall occupancy counting
performance based on our hybrid approach. For example, when
there are ten people and 6 persons converse in a single clique
and 4 persons remain silent, our acoustic sensing estimates 5
people out of 6 and locomotive sensing estimates 4 people out
of 4, resulting in total of predicting 9 people out of 10. We
have compared the performance of our SensePresence system
with Crowd++ framework [6] for counting the number of
people. Table I shows that the average error count distance
for Crowd++ is 1.78 where as for SensePresence it is 0.5,
more than a three fold increase in accuracy for inferring the
total number of people.
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VI. CONCLUSIONS

In this paper, we present SensePresence, an innovative
system to infer number of people present in a specific lo-
cation. We exploit opportunistically the smartphone based

accelerometer and microphone sensor for people counting.
We propose an acoustic sensing based unsupervised clustering
algorithm addressing the underpinning challenges evolving
from naturalistic overlapped and sequential conversation to
infer the occupancy of an environment. We posit a change
point detection based locomotive sensing model to infer the
number of people in absence of any conversational episode.
We implement an opportunistic context-aware client-server
based architecture to leverage smartphones’ microphone and
accelerometer sensors and combine our acoustic sensing model
with locomotive to better predict the people counting. Our
experimental results hold promises in a variety of natural
settings with an average error count distance of 0.76 in
presence of 10 users. We will explore if additional modality of
smartphone based sensors such as location information from
magnetometer, or barometer sensor could help improve the
accuracy of our proposed occupancy detection system.
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