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ABSTRACT 

MAGNETIC ATTITUDE ESTIMATION OF A TUMBLING SPACECRAFT 

Erick Jonathan Sturm II 

This thesis is a compilation of the work done to arrive at a ground-based attitude 

estimation routine for a tumbling spacecraft using only data from its magnetometers.  

While the essential component for attitude estimation is the extended Kalman filter, 

development of the supporting components, an orbit propagator and a satellite emulator, 

is also provided in an attempt to provide a comprehensive understanding of the entire 

routine.  Each component was coded in Matlab, which was used to run simulations of the 

entire attitude estimation routine.  The results of each simulation guided the tuning of the 

Kalman filter, ultimately the Kalman filter obtained 100% convergence to the 

spacecraft’s attitude in less than 1.5 orbits to within ±10º. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

1.1.1 CubeSat 

Established as a collaborative effort between the Multidiciplinary Space Technology 

Laboratory (MSTL) of California Polytechnic State University (Cal Poly) and the Space 

Systems Development Laboratory (SSDL) of Stanford University in 1999, the CubeSat 

Project developed a new satellite standard for the design of research and educational 

picosatellites.  The goals of the standard were to reduce development time of a satellite to 

within a student’s college career, as well as the development and launch costs of the 

satellite.  The resulting design concept specified small cubic satellites, 10cm on a side, 

weighing less than a kilogram, to become affectionately know as cubesats.  CubeSat is 

also the developer of the Poly-Picosatellite Orbital Deployer (P-POD).  The P-POD holds 

three cubesats and serves as the interface between them and the launch vehicle.  The P-

POD eliminates the need for cubesat developers to design custom interfaces to the launch 

vehicles, helping CubeSat meet its standard of lower launch costs and shorter 

development timelines. 

1.1.2 PolySat 

Founded in 2000, PolySat is Cal Poly’s cubesat developer and is also based in the MSTL.  

PolySat began in order to better understand cubesat development and to help CubeSat 

better serve other cubesat developers by having one based in their own lab.  Currently, 
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PolySat has built two satellites, CP-1 and CP-2.  Both are awaiting a launch on a Russian 

launch vehicle, and will hopefully be in orbit sometime late 2005 or early 2006.  This 

thesis focuses on the attitude determination system (ADS) of CP-2, and as such, more 

details on CP-2 will be provided in the following section.  

1.1.3 CP-2 

CP-2 is the result of PolySat’s desire to provide a generic cubesat bus that could allocate 

one third of its mass, power, and volume to a nonspecific payload.  The bus is also to 

provide minimal attitude determination and control (ADC) capability for the payload.  

CP-2 seeks to provide this minimal ADC through the use of five two-axis Honeywell 

HMC1052 magnetometers and five magnetorquers; however the magnetorquers are used 

simply to slow the satellites tumble and not as controller actuators.  This thesis is the 

product of an attempt to quantify what “minimal” means from an attitude determination 

stand point, when the spacecraft is tumbling. 

1.2 Thesis Overview 

1.2.1 Thesis Motivation 

In addition to quantifying the attitude determination system of CP-2 by predicting its 

performance, the work presented in this thesis will be used with real flight data for 

attitude determination of CP-2 while in orbit.  Also, keeping the work as generic as 

possible to allow for use in other non-linear, single vector measurement spacecraft 

systems shaped the development of this thesis.  Thus, the attitude estimation routine 

presented herein has been kept as generic as possible. 
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1.2.2 Thesis Framework 

The attitude estimation routine presented herein is ground-based.  CP-2 lacks the 

processing power or the need for on-board real-time attitude information.  The ground-

based routine makes both batch and recursive filtering a possibility for attitude 

estimation, though recursive is chosen here.  Processing power is not a limiting factor in a 

ground-based routine.  Another benefit of having the attitude estimates on the ground is 

that they can be combined with other downloaded data for different subsystem model 

validation. 

All the components of the routine are coded in Matlab.  Matlab is not the most time 

efficient medium in which to run code, yet there is no need for extremely short running 

times with a ground-based system.  Matlab has the benefits of an integrated differential 

equation solver and built-in graphics.  Matlab has also become a fairly universal 

simulation tool in the aerospace industry.  The aerospace engineering students in PolySat 

are also very familiar with Matlab, and writing code that is easier for others in the lab to 

understand is essential to project success.  Spencer Studley goes into more depth on 

essential practices for a successful cubesat development program in his thesis, 

“Development of a Long-Term Student-Run Picosatellite Program.” 

1.2.3 Thesis Flow 

This thesis is a compilation of the work done to arrive at an attitude estimation routine for 

a tumbling spacecraft equipped with magnetometers.  While the essential component of 

attitude estimation is the extended Kalman filter, development of the supporting 

components is also provided in an attempt to provide a deeper understanding of the entire 

routine.  Chapter 2 discusses the different reference frames used in the routine and the 
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matrices necessary to transform from one frame to the next.  From there the chapters try 

to mimic the flow of the actual routine, as pictured in Figure 1.1.  

 

Figure 1.1: Attitude Estimation Routine Flow Chart 

One should note that Figure 1.1 shows the flow for both simulated and real spacecraft 

sensor data.  This thesis uses the “Filter Verification” path for the obvious reasons of 

checking to make sure the components of the routine are functioning properly and the 

fact that CP-2 is not yet in orbit.  Following that path, Chapter 3 covers the development 

of the orbit propagator and the generation of the both the magnetic and solar inertial 

reference vectors, MIRV and SIRV respectively.  Chapter 4 discusses the ADS hardware 



 5

and how it was characterized and modeled in Matlab for use in the satellite emulator.  

Chapter 5 covers the satellite emulator and how it creates the necessary sensor data for 

the extended Kalman filter.  Chapter 6 goes in depth on the theory, development, and 

performance of the extended Kalman filter.  Chapter 7 summarized the work discussed 

and suggests future work that can be done with the routine. 
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CHAPTER 2: REFERENCE FRAME DEFINITIONS 

2.1 Coordinate Frames 

2.1.1 Space-Craft Orbital 

The spacecraft orbital (SCO) frame is formed at the location of the spacecraft with the x-

axis aligned with the radial vector, the z-axis aligned with the orbital angular momentum 

vector, and y-axis formed from the right-hand rule from the x- and z- axes.  Figure 2.1 

shows a drawing of the SCO frame. 

 

Figure 2.1: Spacecraft-Centered Orbital Frame 

2.1.2 Earth-Centered Inertial 

The Earth-Centered Inertial (ECI) frame is centered on the Earth and fixed in inertial 

space.  The x-axis is aligned with the radial vector from the Sun to the Earth on the vernal 
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equinox, also known as the line of Aries.  The z-axis is aligned with the Earth’s orbital 

angular momentum vector.  Again the y-axis is formed from the right-hand rule between 

the x- and z- axes.  Figure 2.2 shows a drawing of the ECI frame. 

 

Figure 2.2: Earth-Centered Inertial Frame 

2.1.3 Earth-Centered Earth-Fixed 

The Earth-Centered Earth-Fixed (ECEF) frame rotates at the sidereal period of the Earth 

with respect to the ECI frame.  The x-axis is aligned with the intersection of the prime 

meridian and the equator, the z-axis is aligned with the North Pole, and the y-axis is 

aligned with the intersection of the equator and 90ºE Longitude.  Figure 2.3 shows a 

drawing of the ECEF frame. 
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Figure 2.3: Earth-Centered Earth-Fixed Frame 

2.1.4 Local North East Down 

The Local North East Down (LNED) frame is fairly self-explanatory.  The x-axis is 

aligned with local north, the y-axis with local east, and the z-axis aligned against the local 

radius vector.  Figure 2.4 shows a drawing of the LNED frame. 
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Figure 2.4: Local North East Down Frame 

2.1.5 Body-Fixed 

The Body-Fixed (Body) frame is aligned geometrically with the spacecraft.  The axes are 

an orthogonal set of unit vectors aligned with three of the unit normals of the sides of CP-

2.  Figure 2.5 shows a drawing of the Body frame. 
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Figure 2.5: Body-Fixed Frame 

2.2 Frame Transformations 

2.2.1 Neighboring Frames 

Neighboring frames are not a technically defined term and are used in this thesis solely as 

a way to more easily understand the different coordinate frames and their relationships to 

each other.  Neighboring frames are defined as two coordinate frames that one can 

transform between without first transforming into another defined coordinate frame.  

Obviously, mathematical technicalities are set aside in this definition as there are an 

infinite number of ways to transform between two frames, thus, while one way of 

transforming goes through an intermediary frame that is defined in the previous section, 
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another way would not.  Neighboring frames are just the frames that are easiest to 

transform into without first transforming into another defined frame.  For example, 

converting from the ECI frame to the LNED frame is most easily done by first converting 

to the ECEF frame; therefore the ECEF frame is a neighbor of the ECI frame as well as 

the LNED frame as can be seen in Figure 2.6. 

 

Figure 2.6: Neighboring Frame Definitions 

Figure 2.6 shows the neighbors of each of the frames as defined in this thesis, any frames 

connected by arrows are neighbors.  In this thesis, transformation matrices are defined for 

each arrow in Figure 2.6, and transforming to a non-neighboring frame is done by simply 

multiplying it by another transformation matrix.  This process eliminated the need to 

derive transformation matrices for all frame transformation combinations, though the end 

result is the same. 
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2.2.2 Transformation Matrices 

Frame transformations are done through the identification of angles of rotation between 

frames and the proper application of trigonometric functions to those angles.  The end 

result is arranged into a 3x3 matrix of sines and cosines that can take a vector expressed 

in one coordinate frame and transform it into another.  The following four sections define 

the angles of rotation to be used for each transformation and derive the corresponding 

transformation matrix.  Though each matrix is derived for transforming a certain 

direction, the reverse direction’s matrix is obtained by simply taking the transpose of the 

original transformation matrix. 

2.2.2.1 ECO to ECI 

Figure 2.1 shows the angles of rotation between the ECO and ECI frames.  Knowing 

these angles, the transformation matrix can be shown to be: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
ECOECI x

icisciss
cisciccsscicssc

sissicccssicscc
x vv

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++
Ω−Ω++Ω+−Ω++Ω+
ΩΩ+−Ω+−Ω+−Ω+

=
ωνων

ωνωνωνων
ωνωνωνων

 

where Ω is the right ascension of the ascending node (RAAN), i is the inclination, ω is 

the argument of perigee, and ν is the true anomaly.  Note that sine and cosine functions 

have been abbreviated as s( ) and c( ), respectively. 

2.2.2.2 ECEF to ECI 

The angle between the line of Aries and 0º Longitude relates the ECI frame to the ECEF 

frame.  This angle can be split into the sum of two angles.  The first angle hUT0θ  is the 
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angle between the vernal equinox and 0º Longitude at midnight UT1.  This angle can be 

found using the equation from the Astronomical Almanac. 

3620 102.6093104.0812866.864018454841.24110 UUU
hUT TTTGMST −×−++=  

where 

( )
36525

0.2451545−
=

JDTU  

The second angle is the product of the time since midnight and the angular rotational rate 

of the earth.  Using these angles the transformation can be written as: 

( ) ( )
( ) ( ) ECEF

hUThUT

hUThUT

ECI xtcts
tstc

x vv

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆+∆+−
∆+∆+

= ⊕⊕

⊕⊕

100
0
0

00

00

ωθωθ
ωθωθ

 

2.2.2.3 LNED to ECEF 

Latitude θ and longitude φ are the rotation angles relating these two frames. 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( )

LNEDECEF x
sc

sccss
ccscs

x vv

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−
−−−

=
θθ
φθφφθ
φθφφθ

0
 

2.2.2.4 ECI to Body 

The Body frame uses quaternions to represent the rotation to the ECI frame.  The 

quaternion is a 4x1 matrix that defines a unit vector in space and the angle to rotate about 

said unit vector to transform from one frame to the other.  The quaternion can be written 

as: 

⎥
⎦

⎤
⎢
⎣

⎡
=

4q
q

q
v

     where     ⎟
⎠
⎞

⎜
⎝
⎛=

2
sinˆ θeqv     and     ⎟

⎠
⎞

⎜
⎝
⎛=

2
cos4

θq  
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In these equations, ê  is the unit vector and θ  is the angle.  The transformation matrix A, 

from the ECI frame to the Body frame, is given by the following expression. 

( ) ( ) [ ]×−+−= × qqqqIqqqA T vvvv
433

22
4 22  
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CHAPTER 3: ORBIT PROPAGATOR 

3.1 Functional Flow 

The orbit propagator is the first step in the attitude estimation routine.  The NASA two 

line elements (TLEs) and a time vector specifying the initial time, sampling time interval, 

and final time are the orbit propagator’s inputs. It reads in the NASA two line elements 

(TLEs) from a text file and propagates the orbit for the time specified in the time vector.  

The orbit is propagated in the ECI frame and the position is stored in those coordinates at 

each sampling time interval.  The position is then converted from the ECI frame to ECEF 

frame and expressed as radius, latitude, and longitude.  These values are used with the 

International Geomagnetic Reference Field (IGRF) model to generate the magnetic 

inertial reference vector (MIRV).  A solar inertial reference vector (SIRV) is also 

calculated in ECI coordinates by using the time since the last vernal equinox.  The orbit 

propagator passes the MIRV and the SIRV to both the satellite emulator and Kalman 

filter, as can be seen in Figure 3.1. 
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Figure 3.1:  Attitude Estimation Routine Flow Chart 

3.2 Orbital Mechanics 

3.2.1 Equations of Motion 

The orbit propagator uses the equations of motion (EOMs) for a body in a gravitational 

field generated by a point mass and expands these equations to include the J2 through J6 

terms to account for the effects of the Earth’s oblateness. 
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3.2.2 NASA Two Line Element Conversion 

The TLEs give the spacecraft’s orbit and its position in that orbit in the SCO frame.  In 

order for the orbit propagator to simulate the orbit, this data is converted into the 

spacecraft’s position and velocity in the ECI frame. 

3.3 Performance 

The only perturbation used in the orbit propagator’s EOMs is the Earth’s oblateness.  

Other perturbations exist that could be modeled to improve the performance of the orbit 

propagator such as: drag forces, 3rd body effects, and solar pressure.  Yet, even with the 

exclusion of these perturbations the orbit propagator appears to be accurate for around 

one week, when compared with others. 

3.4 Magnetic Inertial Reference Vector 

3.4.1 International Geomagnetic Reference Field 

The magnetic inertial reference vectors used in this thesis are calculated from the 10th 

generation Inertial Geomagnetic Reference Field (IGRF-10) model. The IGRF model is 

good for five years and revised every five years.  The current model, IGRF-10, was 

released in 2005 and is valid until 2010.  For 2005 to 2010, the model has a precision of 

0.1 nano-Teslas per year. 

3.4.2 magfd.m 

The IGRF-10 model used in this thesis is stored in several MatLab dat-files and called by 

the magfd m-file.  These files were created by Maurice A. Tivey of the Woods Hole 

Oceanographic Institution. 
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3.4.3 Vector Generation 

The orbit propagator gives the magfd m-file the required inputs: time, altitude, longitude, 

and colatitude (90º-latitude).  Then the magfd m-file uses the dat-file specified by the 

inputted time and generates the magnetic field vector and its magnitude at that location in 

nano-Tesla in the LNED frame, and outputs it in the following format. 

[ ]TDEN bbbb
v

 

The orbit propagator stores the vectors from each time step in a matrix, as shown below. 

T

DEN

DEN

DEN

bbb
bbb
bbb

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

MMM

333

322

111

 

3.4.4 Frame Conversion 

Once the orbit propagator has the magnetic field vector matrix, it puts it through a frame 

transformation to take the vectors from the LNED frame to the ECEF frame and then to 

the ECI frame.  Once in the ECI frame, the matrix is stored as the MIRV matrix and 

passed to the EKF, and, in the case of filter verification, to the satellite emulator. 

3.5 Solar Inertial Reference Vector 

3.5.1 Vector Definition 

The solar inertial reference vector (SIRV) is the unit vector in the direction of the radius 

vector from the sun to the spacecraft expressed in the ECI frame.  Figure 3.2 shows a 

drawing of the SIRV, though the vectors are not drawn to scale. 
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Figure 3.2: The Solar Inertial Reference Vector 

Since the distance from the Earth to the spacecraft is many orders of magnitude smaller 

than the distance from the Sun to the Earth, especially for the satellite in LEO, the SIRV 

can be approximated as the distance vector from the Sun to the Earth. 

3.5.2 Vector Generation 

Throughout the year the SIRV changes in the ECI frame.  Using the mean motion of the 

Earth, the obliquity of the ecliptic, and the time since the last vernal equinox, the SIRV at 

a given time step can be approximated in ECI coordinates. 
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The above expression is only an approximation because the angle from the vernal 

equinox is calculated using time and mean motion, instead of solving the transcendental 

equation: 

( ) tnEeE ∆=− ⊕sin  

and then solving for the θ in the following: 
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This approximation is acceptable because the eccentricity of the Earth’s orbit is near zero, 

setting the eccentricity to zero in the previous two equations yields: 

tnE ∆==θ  

The SIRV, like the MIRV, is calculated at each time step and stored in a matrix. 
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The SIRV matrix is then passed to the satellite emulator.  The SIRV matrix is also passed 

to the EKF; however, not for use as a measurement reference, but instead to be 

transformed into the Body frame by the quaternions estimated by the EKF.  This solar 

body estimated vector (SBEV) matrix is then used to estimate the power produced by 

each solar panel in an attempt to identify if the EKF converged to the wrong state by 

comparison to the solar body reference vector (SBRV) generated by the satellite 

emulator.  The SIRV could be used as a measurement reference; however the power 

produced by the solar panel is affected by more than the angle of the incident solar 

vector.  The temperature, Earth’s albedo, and powered spacecraft components all affect 

the solar panel power production.  All these processes are difficult to characterize, thus 

making it difficult to use solar panels as sun sensors. 
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CHAPTER 4: ATTITUDE SENSORS 

4.1 Magnetometers 

The magnetometers used on CP-2 are Honeywell HMC1052 two-axis magnetometers.  

Figure 4.1 shows the magnetometer’s location on one of the side boards of CP-2. 

 

Figure 4.1:  HMC1052 on a CP-2 Side Board 

Five of the six sides of CP-2 have one magnetometer, resulting in ten magnetometer 

readings.  These ten readings are combined into three measurements along the three axes 

of the spacecraft; therefore, two axes are double redundant and one axis is triple 

redundant. 
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4.1.1 Characterization 

Each magnetometer outputs two 8-bit numbers corresponding to the strength of the 

magnetic field in each direction of the magnetometer’s axes.  The characterization 

process was designed to quantify how these 8-bit numbers related to field strength in 

Gauss, as well as to make the magnetometers behave properly.  Proper behavior means 

that each axis reads near 128 when no field is present and that the strongest field expected 

does not result in magnetometer saturation. 

The characterization process involved taking each side panel and aligning one 

magnetometer axis with magnetic North and recording the 8-bit number generated by 

each axis in this field, as well as recording the value in Gauss as read from a FVM-400 

vector magnetometer.  The process is then repeated for different angles from magnetic 

North.  Figure 4.2 shows the side panel being rotated, the transparency underneath is 

aligned with magnetic North and has markings for the different angles to which to rotate 

the side panel.   
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Figure 4.2:  Magnetometer Characterization Hardware 

The side panel is attached to a piece of acrylic that has two orthogonal lines drawn on it 

that intersect directly below the magnetometer.  These lines make sure that the 

magnetometer does as little translational motion as possible by ensuring that rotation 

takes place about its axis.  The values generated by the above procedure are recorded in 

Excel and plotted on the plot show in Figure 4.3. 
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Figure 4.3:  Magnetometer Characterization Plot 

The axes of the plot are the axes of the magnetometer, ideally the magnetometer would 

produce points that lie on the circle and centered in the diamond in the middle.  The circle 

is sized such that the difference in magnetic field strength on the ground and in orbit is 

taken into account; therefore, a value lying on that circle will not result in saturated 

values during in-orbit operation.  Three resistors can be changed on the side board to 

ensure that the magnetometer behaves as desired.  Two of the resistors adjust the gain of 

the magnetometer’s axes and one adjusts the tare value for the axes.  The resistors are 

changed in a certain order while trying to obtain the ideal behavior because the single 

resistor to change the tare point restricts which magnetometers can be made acceptable.  

The single tare point resistor means that the tare point can only be changed by an equal 

amount on both magnetometer axes.  Thus the tare point can only be moved on a 45º line 

in the positive or negative directions of both axes.  The two parallel lines going from the 

lower left to the upper right represent the bounds that the magnetometer’s tare point must 

be within before any resistor changes, if that magnetometer can be made flight 
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acceptable.  Once a magnetometer is found that it has a tare point within those bounds, 

the tare point resistor is changed to move the tare point to within the diamond created by 

the parallel lines sloping from the upper left to the lower right.  After this change has 

been made the two gain resistors are changed such that the magnetometer outputs points 

that lie on the circle.  Figure 4.4 shows the progression of a typical side board’s 

magnetometer behavior. 

 

Figure 4.4: Magnetometer Behavior Progression 
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The upper left plot of Figure 4.4 shows a magnetometer with a tare point that is 

unacceptable.  The magnetometer is replaced with a new magnetometer that produces the 

orange points in the upper right plot.  This magnetometer has a tare point that can be put 

into the diamond.  The tare point resistor is changed to produce this result, and the 

magnetometer outputs the green points in the lower left plot.  Finally the gain resistors 

are changed to make the diameter of the circle shrink to the ideal circle as can be seen by 

the blue points in the lower right plot.  This entire process is repeated for each side panel 

and the results are stored for eventual reduction of the raw magnetometer data 

downloaded from the satellite. 

4.1.2 Modeling 

The magnetometers are modeled in the satellite emulator as a single three axis 

magnetometer with an 8-bit resolution with noise corruption.  This model assumes that 

the magnetometer data coming out of the satellite has already been reduced, which 

basically means the averaging and conversion to Gauss of the magnetometer readings is 

completed before going to the extended Kalman filter.  A simple algorithm is being 

developed to do the required arithmetic.  But for now, this assumption does not affect the 

performance of the filter, and therefore, is an acceptable one. 

4.2 Solar Panels 

The solar panels can be used as extremely coarse sun sensors, as the power produced by 

each panel varies based on the angle of incident light.  However, the filter presented in 

this thesis does not use the solar panels as an attitude sensor.  The incident light vector 

can be difficult to define in the ECI frame due to corruption of the SIRV from the Earth’s 
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albedo; however, the true difficulty lays in the variation in the maximum solar panel 

power production with temperature, battery voltage, powered spacecraft components, etc.  

During the solar panel characterization process each of those effects was found to be 

significant and have the potential to greatly corrupt the solar panel power production, 

leading to a large noise in the calculated angle.  With all this in mind, using the solar 

panels as attitude sensors is still possible, and would be a fun challenge, but the challenge 

will become significantly less difficult with solar panel flight data and attitude data to 

compare it to.  Also, during eclipse, the spacecraft has no solar panel power production, 

so it would rely solely on magnetometers.  Thus, only using magnetometer’s as sensors is 

not the author’s attempt to shy away from a difficult problem, but can be viewed as a 

necessary portion of the solution to the problem.  Ultimately, an extended Kalman filter 

using both magnetometers and solar panels could produce superior results to a 

magnetometer-only filter.  For now, the solar panels will simply be used to see if a 

pattern can be found between the filter converging to the correct satellite state and the 

solar panel power; thus, in this thesis the solar panels power is presented as a possible 

way to check for filter divergence.  To this end, the solar panel power production was 

characterized with respect to incident light angle.  

4.2.1 Characterization 

The solar panel power characterization used a lamp at varying angles to the solar panel 

normal.  The resulting relationship between power and angle was not clear cut.  While 

most published papers suggested a sine/cosine relationship, these panels are producing a 

cubic sine/cosine relationship.  Also, this relationship is without a highly variable 

temperature or active spacecraft processes.  Thus for this thesis, the cubic cosine function 
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was assumed for the variation of power production with angle.  Even if this particular 

relationship is a bad assumption, which it undoubtedly is, it still shows that if the filter 

converges to the incorrect state the solar panels will know, as will be shown in Chapter 6. 

4.2.2 Modeling 

The five solar panels are each modeled as having a power production that varies with the 

cosine cubed of the angle between the panel normal, defined positive outwards, and the 

incident light.  While this modeling is done in the satellite emulator as a means to check 

for filter divergence, it also serves as a rough prediction of spacecraft power production.  
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CHAPTER 5: SATELLITE EMULATOR 

5.1 Functional Flow 

The satellite emulator is the next step in the routine after the orbit propagator.  The 

emulator’s job is to take its inputs, the MIRV and SIRV matrices, and convert them to its 

outputs, the magnetic body measurement vector (MBMV) matrix and the solar panel 

reference power (SPRP) matrix.  The MIRV and SIRV are converted from the ECI frame 

into the body frame at the different time steps through the quaternions which are 

propagated by the spacecraft attitude equations of motion. 

5.2 Equations of Motion 

The homogeneous form of Euler’s moment equations are used to propagate the angular 

velocity of the spacecraft from one time vector entry to the next.  The equations are 

shown below in vector form as a single equation. 

h
dt
hd vv
v

×−= ω  

In the previous equation, h is the specific angular momentum vector and ω is the angular 

rate vector.  The previous equation can be solved for the first derivative of ω with respect 

to time by using the fact that the specific angular momentum is angular momentum 

vector multiplied by the inertia matrix.  The resulting equation follows, and is used to 

propagate the angular rates from one time step to the next. 

( )ωωω vv&v JJ ×−= −1  
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If the spacecraft body frame is assumed to be the principal axis frame the above equation 

simplifies to the following three equations: 
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The constants made up of the spacecraft inertias are often rewritten as Kx, Ky, and Kz. 

The angular rates are then used to propagate the quaternions in the following kinematic 

equation. 

qq ⊗= ωv&
2
1  

The ⊗ symbol stands for quaternion multiplication.  The above equation can also be 

written as: 

( )qq ωv& Ω=
2
1  

The Ω matrix is defined as: 
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This matrix is the same as the quaternion multiplication matrix except that since the rate 

vector has no fourth component the diagonal terms are set to zero. 
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5.3 Magnetic Body Measured Vector Creation 

The magnetic body measured vector (MBMV) is created from the MIRV matrix.  Each 

row of the MIRV matrix is transposed back to a vector and multiplied by the quaternion 

transformation matrix to create a magnetic body reference vector (MBRV).   

( ) kkk MIRVqAMBRV =  

The MBRV is then transposed to become a row in the MBRV matrix and stored; it is also 

corrupted with white noise and given an 8-bit resolution of one Gauss to behave like the 

magnetometers as characterized in 4.1.1.   
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The round2 function rounds the first entry to the nearest multiple of the second entry.  

This corrupted vector is the MBMV; it is calculated for each step in the time vector and 

stored in the same matrix form as the MIRV as shown below. 
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5.4 Solar Panel Reference Power Production 

The solar panel reference power (SPRP) is created from the SIRV matrix.  Each row of 

the SIRV matrix is transposed back to a vector and multiplied by the quaternion 

transformation matrix to create the solar body reference vector (SBRV) in the same way 

the MBRV is created.  The SBRV is then dotted with the unit normals of each solar panel 

(defined positive outward), at each time step.  Given that the SBRV is a unit vector, the 
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dot product of it and another unit vector produces the cosine of the angle between the two 

vectors.  Thus, the result of this dot product is cubed, in compliance with the 

characterization done in 4.2.1, and then multiplied by the maximum solar panel power 

production, approximately one Watt.   

( )panelk
i

k nSBRVPSPRP omax=  

In this thesis, the hollow circle dot product represents a dot product that is set to zero if 

positive, also referred to as the solar dot product.  The dot product only takes into account 

angle and not direction, only if the two vectors are pointed in opposite directions is the 

SBRV actually incident on the panel, as shown in Figure 5.1. 

 

Figure 5.1:  Solar Panel Normal and Solar Inertial Reference Vector 

The resulting power is the SPRP and is stored at each time step of the time vector.  The 

five SPRPs are combined, each as a column of the single SPRP matrix. 

[ ] [ ]51 SPRPSPRPSPRP L=  
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CHAPTER 6: ATTITUDE ESTIMATION 

6.1 Attitude Determination Methods 

6.1.1 Deterministic Solution 

Deterministic solutions are available whenever the spacecraft can observe two or more 

vectors.  Algorithms such as QUEST, FOAM, or TRIAD can be used to determine the 

Euler angles or quaternions between the ECI and Body frames.  When only vector 

measurement is available, a filtering algorithm must be used to determine the spacecraft 

attitude. 

6.1.2 Batch Filtering 

Batch filtering is non-real-time filtering that looks at a set of data and forms estimates by 

minimizing a cost function.  A common example of batch filtering is the minimum model 

error (MME) approach.  This method of filtering can be used with only one vector 

measurement; however, it can never be made to operate in real-time.  Given that one of 

the eventual goals of this routine is to have it implemented on-board a spacecraft for use 

with magnetic control, a filter that could be used in real time is essential. 

6.1.3 Recursive Filtering 

Recursive filtering can work with one vector measurement and in real-time.  The Kalman 

filter is the most prominent form of a recursive filter.  Recursive filters use the current 

measurement in combination with all past measurements to make an estimate; and 

therefore, do not rely on the knowledge of future measurements.  The Kalman filter was 
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chosen as the basis for the recursive filter developed in this thesis since it uses a state-

space system model and can be implemented in real-time, though that is not done in this 

thesis.  

6.2 Kalman Filter 

6.2.1 Brief History 

In 1960, R.E. Kalman used state space models to answer the minimum mean square error 

(MMSE) filtering problem.  The two primary attributes of the Kalman filter solution are 

vector modeling of the random processes considered and recursive processing of the 

measurement data.  Soon after Kalman published his paper, other papers were published 

with extensions and variations to the filter presented in Kalman’s original paper.  One 

variation described a way to extend the filter to non-linear systems. This variation 

became known as the extended Kalman filter (EKF) and is very prominent in the 

aerospace industry today.  The following describes the original, linear Kalman filter 

equations; the EKF is covered in Section 6.3. 

6.2.2 Equations 

6.2.2.1 System Model Equations 

The system to be modeled must be described in state space form and then discretized.  

The standard state space form is shown below. 
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vvv&v

+=
++=  
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The last term in each equation is the noise vector.  The second term in the dynamic 

equation can be omitted if there aren’t any control or disturbance inputs being modeled.  

The discretized equations are shown below. 

kkk

kkk
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vvv

vvv

+=
+Φ=+1  

The state transition matrix Φ can be found with the following equation. 

( ) sT

Ft
s FTIeT

s
+≈=Φ  

In general, the Φ and H matrices have a subscript k on them; however, most systems 

describe by the linear state space model have non-time-varying Φ and H matrices.  

Knowing the dimension of all the vectors and matrices is very helpful in reducing 

confusion when developing the filter equations. The state vector xv  is an nx1 vector.  The 

state transition matrix Φ is an nxn matrix.  The process noise vector wv  is an nx1 vector.  

The measurement vector zv  is an mx1 vector.  The measurement matrix H is an mxn 

matrix, and the measurement noise vector vv   is an mx1 vector. 

6.2.2.2 Filter Equations 

The following equations are used in the Kalman filter loop.  The first is the Kalman gain 

matrix equation.  The Kalman gain matrix Kk is an nxm matrix defined by the following 

equation. 

( ) 1−−− += RHPHHPK T
k

T
kk  

The R matrix is the mxm measurement noise matrix defined as the variance of the current 

measurement noise vector.  Technically the measurement noise can change in time, if the 
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same sensor is being use to take a measurement at each time step then in general the 

variance of the noise is constant. 

[ ]T
kk vvER =  

This definition means little to an engineer; so here is another, in general the measurement 

noise matrix is a diagonal matrix with each element of the diagonal set to the square of 

the standard deviation, variance, of the measurement vector entry in the corresponding 

row.  The state covariance matrix P is an nxn matrix corresponding to the expected error 

in the state vector.  The superscript minus means signifies an a priori, or before a 

measurement, estimate.  The next equations are the state update equation and the 

covariance update equation. 
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The only new expressions here are the superscript plus, which signifies an updated, a 

posteriori, estimate, and the carat which signifies an estimate.  The P matrix technically is 

not an estimate, it is simply a variable quantifying the accuracy of the current state 

estimate.  The first equation in the previous set can be rewritten as the equation below. 
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The kx̂v∆  term is called the state error vector and it will become useful in the CP2 

extended Kalman filter.  The last equations are the state and covariance propagation 

equations. 
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The process noise matrix Qk is an nxn matrix describing the expected error in the 

dynamic equations being used.    The following equation shows how to calculate Qk. 

( ) ( )

[ ]T
kk

T
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wwEQ

dttQtQ

=

ΦΦ= ∫
0  

The matrix Q is similar to the R matrix except it corresponds to the variance in the first 

derivative of the state vector.  Here the subscript k shows that Q could vary with time; 

however, because it is derived from the state transition matrix, Qk only varies when Φ 

varies. 

6.2.3 Filter Loop 

The equations in the previous section are combined in a loop to estimate the current state 

of the modeled system based on the current and all previous measurements.  Figure 6.1 

shows a typical loop for the original, linear Kalman filter. 
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Figure 6.1: Typical Kalman Filter Loop 

The filter is initialized with the first state vector estimate −
0x̂v  and the first covariance 

matrix −
0P , which corresponds to the estimated variance in the initial state vector 

estimate.  Once initialized, the loop is completed as many times as there are 

measurements; during each loop the updated state vector estimate is saved. 

6.2.4 Inadequacy 

The standard Kalman filter does not work as an attitude estimator for the system 

presented in this thesis because it cannot handle non-linear dynamic systems, caused by a 

tumbling spacecraft, nor can it handle non-linear state-measurement relationships caused 

by not directly measuring the spacecraft state but instead the magnetic field.  For these 

reasons the EKF was necessary. 
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6.3 Extended Kalman Filter 

As mentioned in Section 6.2.1 the EKF can handle non-linear systems.  This section will 

develop the EKF equations and discuss the corresponding changes made in the loop. 

6.3.1 Equations 

A non-linear system can be described by the following equations, neglecting the inputs. 
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If the F and H matrices from the linear Kalman filter are now defined by the following: 
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then the filter is linearized about the current state vector estimate and can be treated as the 

linear Kalman filter.  Now all the linear Kalman filter equations can be used with only 

slight modifications to the loop.  The linearization about the current state estimate 

implicitly assumes that the actual state is close to the current state estimate.  When this is 

true the filter works properly; however, a large error could lead to filter divergence.  This 

assumption leads to the need for filter tuning to prevent divergence.  EKF tuning will be 

discussed in detail in Section 6.4.4. 

6.3.2 Extended Loop 

The EKF loop can be seen in Figure 6.2. 
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Figure 6.2: Typical Extended Kalman Filter Loop 

The purple boxes show the changes to the loop.  The state transition matrix Φ, 

measurement matrix H, and process noise matrix Q are no longer constant during the 

loop.  Therefore, they are recalculated each time through the loop.  Other than those 

calculations the loop is essentially the same.  The next section derives the specific 

equations for the PolySat EKF (PEKF), discusses the modifications to the loop, and 

presents the filter performance. 

6.4 PolySat Extended Kalman Filter 

6.4.1 Functional Flow 

The PolySat extended Kalman filter (PEKF) uses the MBMV from the satellite emulator 

and the MIRV from the orbit propagator to estimate the spacecraft’s attitude at each time 
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step in the time vector.  The PEKF also uses the estimated quaternions to generate a 

magnetic body estimate vector (MBEV) as a check to make sure the updated quaternion 

estimates transform the MIRV into a vector that is similar to the MBRV.  As another 

check, the PEKF takes the SIRV from the orbit propagator and transforms it into the solar 

body estimated vector (SBEV) using the quaternion estimates.  The SBEV is then used to 

find the solar panel estimated power (SPEP).  The SPEP is then compared to the SPRP, 

and the solar panel characterization used to find the SPEP is different than how the solar 

panels actually generate their power, it is assumed that large differences between the 

SPEP and SPRP will be able to be seen and attributed to filter divergence.  In the 

verification mode the filter outputs plots of the error between actual and estimated 

quaternion and rates, as well as the error between the MBRV and the MBEV, and the 

SPRP and the SPEP, all of which will be shown in detail later on in this chapter. 

6.4.2 Equation & Matrix Derivations 

6.4.2.1 State Vector 

The full state vector to be used for the PEKF will be: 
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The system model equations were defined in Section 5.2 and are repeated here for 

convenience. 
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These equations are used to propagate the state vector from one time step to the next in 

the PEKF.  The propagation is done using a numerical differential equation solver in 

Matlab, this is acceptable for a ground-based routine; however, this propagation method 

will have to be changed for this routine to be implemented onboard a satellite.   

6.4.2.2 Body-Fixed (Reduced) State Vector 

A body-fixed state vector is also used in the PEKF in order to remove the built-in 

quaternion redundancy that comes from representing a frame transformation with four 

variables.  The removal of this redundancy eliminates the need to deal with quaternion 

normalization and associated issues with the covariance matrix P in the PEKF.  The 

body-fixed, or reduced, state vector is defined as: 

⎥
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The qvδ vector is the vector component of the error quaternion that transforms the 

estimated full quaternion to the actual quaternion, shown below. 

qqq ˆ⊗= δ  

Assuming the filter is converging, the error quaternion will start to represent a smaller 

and smaller rotation; and as such, the magnitude of the vector component will be less 

than one and will be approaching zero.  Thus, the fourth component of the error 

quaternion can be computed as: 

2
4 1 qq vδδ −=  

 However, during initial convergence the magnitude of the vector component could be 

greater than one, leading to an imaginary fourth quaternion component.  During this 
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situation the error quaternion is calculated by the method developed by Humphreys of 

Utah State University, shown below. 
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A relationship between the reduced state vector and the full state vector can be derived.  

First the quaternion product is expressed as matrix multiplication 
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Knowing that quaternions are normalized, the following can be shown. 

( )qqq T ˆΞ=vδ  

Now the relationship can be shown mathematically as: 
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Using properties of quaternion multiplication, the reduced state dynamic equation is 

found to be: 
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6.4.2.3 State Error Vector 

The state error vector x~∆  is defined as: 
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xxx ~̂~~ −≡∆  

Using the fact 

( ) 0ˆˆ =Ξ qqT  

The state error vector becomes 
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6.4.2.4 State Transition Matrix 

The state transition matrix is approximated as: 

skk TFI +≈Φ  

The linear system dynamics matrix Fk can be found be linearizing the dynamics equations 

in Section 6.4.2.1 about the current state vector estimate.  The linearization results in the 

following matrix. 
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6.4.2.5 Measurement Matrix 

The measurement matrix is derived from the following equation. 

( ) ( )MIRVqAqAb Body ˆδ=
v

 

This equation can be rewritten as: 

( ) Body
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Body
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The transformation matrix ( )qA  can be written as: 
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The rotation created from qδ  is small, and reduces the previous equation to: 

( ) [ ]×−= × qIqA vδδ 233  

Now, using the cross product commutative relationship, ( )xh ~  can be written as: 
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The discrete measurement matrix easily follows from the above equation. 

⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡ ×= ×330ˆ2 Body

kk bH
v

 

6.4.2.6 The Noise Matrices 

The measurement noise matrix is defined as: 

33
2

×= IR ermagnetometk σ  

The constant in front of the identity matrix is the square of the standard deviation of the 

magnetometers. 

The process noise matrix is found from the equation in Section 6.2.2.2 using the 

previously defined state transition matrix. The non-discrete process noise matrix gets 

factored into an identity matrix and scalar as shown below. 

[ ] 66×= QIQ  

Physically the scalar Q is the square of the error of the first derivatives of the state vector.  

This parameter is set during the filter tuning process. 



 46

6.4.2.7 Loop Initialization Equations 

The initial quaternion estimate −
0q̂  is just taken to be aligned with the ECI frame.  The 

initial rate estimate −
0ω̂v  is found be using the first two magnetic field measurements, 

which will be shown below.  The change in the magnetic field measured by the satellite is 

given by the following equation. 

Body
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Body
IGRF

Body
Measured bbb

vv&v&v ×+= ω  

For short sampling times the inertial change of the magnetic field is negligible and the 

measured change can be approximated by the difference between two consecutive 

measurements divided by the sampling time. 
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A pseudo-inverse cross product is then used to yield the initial rate estimate, as shown 

below. 
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The initial covariance estimate −
0P  is defined as the 6x6 identity matrix multiplied by a 

constant. 

660 ×
− = PIP  

The scalar parameter P is set during the filter tuning process along with Q. 
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6.4.3 Modified Loop 

The modified loop for the PEKF is show in Figure 6.3.  The purple boxes are the 

additions to the standard EKF.  This loop is similar to the loop developed by Humphreys 

of Utah State University. 

 

Figure 6.3:  The PolySat Extended Kalman Filter Loop 

The purple block that updates the measurement matrix recalculates Hk with the updated 

state estimate.  This process helps keep the covariance matrix from blowing up and 

causing filter divergence.  The possibility of the covariance matrix exploding still exists, 

which is why the other two purple blocks are implemented in the loop.  The first block 

checks to see if the covariance matrix is growing too large, and if it does, the second 

block resets the quaternion estimate and covariance error and recalculates the rate 

estimate based on the current and previous magnetic field estimate.  This method of 

recalculating the rate estimate is a variation from the loop presented by Humphreys, 

where he simply reset the entire state vector to its initial estimate.  
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6.4.4 Filter Tuning and Performance 

6.4.4.1 Quantifying Performance 

Tuning the PEKF consisted of changing the values of Q and P to improve filter 

performance.  The percentage of the trials that the filter converged, and the residual error 

after convergence, quantified the filter’s performance, the higher the convergence the 

higher the performance.  Convergence time was also considered; however, being a 

ground-based filter, the time to convergence was not as important as convergence itself. 

6.4.4.2 Performance Plot Explanation 

Each performance plot consists of four separate axes, as can be seen in Figure 6.4.  This 

section will explain how each axis is generated.   

 

Figure 6.4: Performance Plot 
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The Attitude Knowledge graph shows a plot of the angle of rotation specified by the error 

quaternion between the estimated and actual quaternions.  The error quaternion is found 

from the following equation. 

( )
q

q
q

q T

T
err ˆ
4 ⎥

⎦
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⎣

⎡Ξ
=  

The angle specified by the error quaternion is found from the fourth component. 

( )errq4
1cos2 −=θ  

The angle θ is taken as the pointing accuracy and plotted at each time step as the attitude 

knowledge. 

The Rate Knowledge plot shows a graph of the arithmetic difference between the actual 

and estimated spacecraft rates. 

ωωω v̂vv −=err  

The Magnetic Field Error graph is a plot of the magnitude of the error between the 

MBEV and the MBRV at each entry in the time vector. 

MBRVMBEVb err −=
v

 

The Solar Panel Power Error graph is a plot of the magnitude of the error between the 

SPEP and the SPRP, a calculation very similar to the Magnetic Field Error graph.  The 

Solar panel Power Error will go to zero when the PEKF converges, simply because the 

SPEP and SPRP are generated using the same solar panel characterization; however, 

when the SPRP is coming from the downloaded data of the satellite, the cosine cubed 

characterization will no longer be a perfect model.  In this case, even when the PEKF 

converges the Solar Panel Power Error will not go to zero; yet, the error should be 
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smaller than when the filter diverges.  For now, this plot is included simply to show that 

the solar panel power error does recognize filter divergence. 

6.4.4.3 Covariance Error Matrix Initialization 

The initialization of the covariance error matrix, P plays a role in the performance of the 

filter.  Mostly, P effects the time to convergence and not the residual error after 

convergence.  Theoretically, if P is initially guessed to small, the filter thinks the system 

is in a state that it’s not actually in and may not pay attention to the first measurement; 

while if P is initially guessed to large the filter has no idea what state the system is in and 

may over compensate with the first measurement.  To tune the filter for P, the process 

noise gain Q was held constant and P was varied to find the optimum filter performance, 

which for P is quantified by settling time.  The series of performance plots below in 

Figure 6.5 to Figure 6.11 show the filter’s response to different initial P values. 

 

Figure 6.5: Tuning P - P = 0 & Q = 3e-10 
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Figure 6.6: Tuning P - P = 1e-10 & Q = 3e-10 

 

Figure 6.7: Tuning P - P = 1e-8 & Q = 3e-10 
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Figure 6.8: Tuning P - P = 1e-6 & Q = 3e-10 

 

Figure 6.9: Tuning P - P = 1e-4 & Q = 3e-10 
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Figure 6.10: Tuning P - P = 1e-2 & Q = 3e-10 

 

Figure 6.11: Tuning P - P = 1 & Q = 3e-10 
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P was varied from 0 to 1, with the best performance occurring at 1e-8.  The above figures 

show that the filter is fairly robust about overcoming small initial guess of P; however, if 

P is guessed to large the filter diverges. 

6.4.4.4 Process Noise Matrix Gain 

The process noise gain, Q, effects both the filter convergence time and the residual error 

value.  The filter was tuned for Q by holding P at its optimum value of 1e-8 and varying 

Q until optimum filter performance was found.  Figure 6.12 to Figure 6.17 show the 

results. 

 

Figure 6.12: Tuning Q - P = 1e-8 & Q = 0 
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Figure 6.13: Tuning Q - P = 1e-8 & Q =3e-12 

 

Figure 6.14: Tuning Q - P = 1e-8 & Q = 1e-11 
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Figure 6.15: Tuning Q - P = 1e-8 & Q = 3e-10 

 

Figure 6.16: Tuning Q - P = 1e-8 & Q = 3e-9 
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Figure 6.17: Tuning Q - P = 1e-8 & Q = 3e-8 

As can be seen from the above figures, when Q is too small the filter cannot converge 

because it assumes it knows the dynamics of the system perfectly; and when Q is to large 

the filter diverges because it changes the dynamics of the system too drastically.  The best 

filter performance occurs when Q is set to 3e-11, here the filter converges within 1.5 

orbits and has a very low residual error value of less than 10º. 

6.4.4.5 Filter Divergence 

With proper tuning the filter can achieve 100% convergence; however, the possibility of 

divergence still exists though it could probably be identified using solar panel data.  

Figure 6.18 shows the filter performance before the state and covariance resets were 

introduced into the filter loop and divergence was not rare. 
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Figure 6.18: Filter Diverges, but Solar Panels Know 

When the filter diverges, the Magnetic Error doesn’t show the divergence.  The solar 

panel error, however, does catch the divergence, suggesting that understanding the solar 

panel response to incident light angle is the way to identify filter divergence. 
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CHAPTER 7: CONCLUSION 

7.1 Summary 

This thesis presented an attitude estimation routine that can provide spacecraft attitude 

from measurements of the Earth’s magnetic field.  An orbit propagator is used to find the 

magnetic inertial reference vector.  A satellite emulator then uses this vector create a 

magnetic body measured vector.  An extended Kalman filter then takes this vector and 

compares it the expected magnetic inertial reference vector in order to estimate the 

spacecraft’s attitude.  Solar panel power production is also estimated by the filter in an 

effort to provide a means of determining filter divergence. 

After tuning the initial covariance error gain and process noise gain the filter can achieve 

100% convergence within 1.5 orbits to a residual error value of less than 10º.  Even if the 

filter were to diverge, the simulation results suggest the divergence could be seen by 

looking at the solar panels data. 

7.2 Recommendations for Future Work 

7.2.1 Orbit Propagator 

Currently, the orbit propagator only takes the Earth’s oblateness into account when 

modeling the orbit.  Expanding the propagator to include more perturbations would 

increase the accuracy of the orbit model when propagated for longer times.  Perturbations 

could include 3rd body effects, drag, and solar pressure.  Further tests of this propagator 
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against a commercial one, such as STK or SOAP, would help to validate the code being 

used. 

7.2.2 Satellite Emulator 

The satellite emulator does not have any disturbance torques in its EOMs.  Adding 

gravity gradient, drag, magnetic, and solar disturbance torques would increase the 

accuracy of the dynamic behavior of the satellite while in orbit.  Also, having the 

emulator output raw sensor data and creating another m-file to reduce the raw data for 

input into the Kalman filter, instead of doing it all in the emulator, would make the 

verification mode of this routine run more like its operational mode.  The satellite 

emulator computes the spacecraft’s angular rates, which could be corrupted with noise to 

model rate gyros fairly easily.  Expansion to include even more sensor models and 

outputs would make the attitude estimation routing even more generic and customizable 

to different spacecraft. 

7.2.3 Kalman Filter 

Expanding the Kalman filter to include estimates of the spacecraft inertia matrix and the 

applied disturbance torques would surely increase the accuracy of the estimated states.  

Also, expanding the measurement matrix to include the solar panels, once some in-orbit 

data has been collected to better characterize them, would decrease convergence time and 

nearly eliminate the possibility of filter divergence. 

7.2.4 Attitude Estimation Routine 

The next steps of this entire routine include: making it less computationally burdensome 

for implementation onboard a satellite and then combining the routine with a magnetic 
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controller for a fully magnetic ADC system.  The ground-based routine can also be 

combined with the simulations of the magnetic controller presented by Daniel Guerrant in 

his paper, “Design and Analysis of Fully Magnetic Control for Picosatellite 

Stabilization.”  Also, once flight data have been downloaded this routine could be used to 

validate spacecraft subsystem models, such as power, thermal, and especially ADC. 
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