Development of an Active Magnetic Attitude Determination and Control System for Picosatellites on highly inclined circular Low Earth Orbits

A thesis submitted in fulfilment of the requirements for the degree Master of Engineering by Research

Jens Gießelmann
Dipl.-Ing. (FH)

School of Aerospace, Mechanical and Manufacturing Engineering
Science, Engineering and Technology Portfolio
RMIT University
June 2006
Declaration

I certify that except where due acknowledgement has been made, the work is that of the author alone; the work has not been submitted previously, in whole or in part, to qualify for any other academic award; the content of the thesis is the result of work which has been carried out since the official commencement date of the approved research program; and, any editorial work, paid or unpaid, carried out by a third party is acknowledged.

Jens Gießelmann
03/28/2006
Abstract

Small satellites are becoming increasingly important to the aerospace industry mainly due to their significantly reduced development and launch cost as well as shorter development time frames. In order to meet the requirements imposed by critically limited resources of very small satellites, e.g. picosatellites, innovative approaches have to be taken in the design of effective subsystem technologies. This thesis presents the design of an active attitude determination and control system for flight testing on-board the picosatellite ‘Compass-1’ of the University of Applied Sciences Aachen, Germany. The spacecraft of the CubeSat class with a net spacecraft mass of only 1kg uses magnetic coils as the only means of actuation in order to satisfy operational requirements imposed by its imagery payload placed on a circular and polar Low Earth Orbit. The control system is capable of autonomously dissipating the tumbling rates of the spacecraft after launch interface separation and aligning the boresight of the payload into the desired nadir direction within a pointing error of approximately 10°. This nadir-pointing control is achieved by a full-state feedback Linear Quadratic Regulator which drives the attitude quaternion and their respective rates of change into the desired reference. The state of the spacecraft is determined by a static statistical QUEST attitude estimator processing readings of a three-axis magnetometer and a set of five sun sensors. Linear Floquet theory is applied to quantify the stability of the controller and a non-linear dynamics simulation is used to confirm that the attitude asymptotically converges to the reference in the absence of environmental disturbances. In the presence of disturbances the system under control suffers from fundamental underactuation typical for purely magnetic attitude control but maintains satisfactory alignment accuracies within operational boundaries.

Keywords: CubeSat, Compass-1, picosatellite, active magnetic attitude control, attitude determination, Linear Quadratic Regulator.
Acknowledgements

I would like to take the opportunity to express my thanks to the people who have made my studies an exciting experience of professional and cultural discovery.

Firstly I would like to thank my senior supervisor Professor S. Abanteriba for his support and for giving me the opportunity to pursue my postgraduate studies at the Royal Melbourne Institute of Technology, Australia.

My appreciation also belongs to the faculty of the aerospace engineering department at my home institution, the University of Applied Sciences Aachen, Germany, for their growing engagement and support and conviction that the ambitious endeavour of University satellite development will result in a measureable success. I extend my special thanks to my second supervisor Prof. Dr. rer. nat. H.-J. Blome for his kind support professionally and personally and to Prof. Dr.-Ing. W. Ley who just as well never hesitated to offer his guidance during my studies.

The grand project of satellite engineering cannot succeed without funding. I would like to thank the German Aerospace Centre for their financial support and for expressing their trust in my skills and the skills of the entire project team.

I appreciate the commitment and the endurance of every student involved in whatever part of the grand project. Thanks to you all for the exciting time we shared.

In particular, I would like to thank my mate and Compass-1 project manager Artur Scholz for his warm leadership and for sharing his vision with me. My thanks also to Alexander Weiß for lending me his competent ears whenever needed.

Last but not least, I want to express my gratitude to my parents. Without their love and support I would not have been able to pursue my passion for challenging the seemingly impossible and choose a career in space engineering. Thank you for believing in and encouraging me. This thesis is dedicated to you.
Contents

Chapter 1 ... 1
1.1 Microsatellites ... 1
1.2 The CubeSat Standard ... 3
1.3 First CubeSat Launch .. 4
1.4 Second CubeSat Launch .. 6
1.5 Australian CubeSat Development: CASSat .. 7
1.6 Introduction to Compass-1 .. 8
1.7 Contributions of this Work ... 12
1.8 Overview over Thesis .. 13

Chapter 2 ... 14
2.1 Spacecraft-Centred Reference System Definition 15
2.2 Attitude Parametrization .. 17
2.2.1 Direction Cosine Matrix .. 17
2.2.2 Euler Angles .. 17
2.2.3 Quaternions .. 19
2.3 Kinematic Equation of Motion .. 20
2.4 Dynamic Equation of Motion ... 22
2.5 Gravity Gradient Torque .. 24
2.6 Gravity Gradient Stability ... 25
2.7 Linear Dynamics .. 29
2.8 Summary .. 35

Chapter 3 ... 36
3.1 Orbit analysis ... 37
3.2 Disturbance Torques ... 39
3.2.1 Aerodynamic Drag Torque .. 39
3.2.2 Solar Radiation Pressure Torque ... 41
3.2.3 Residual Dipole Torque .. 42
3.2.4 Total Disturbance Torque Level ... 44
3.3 Variability of the Geomagnetic Field ... 45
3.3.1 Monitoring Magnetic Storms ... 46
3.3.2 The International Geomagnetic Reference Field 46
3.3.3 Spherical Harmonics Field Modelling .. 47
3.4 Summary ... 52

Chapter 4 ... 53
4.1 Magnetic Actuators ... 55
4.1.1 Origin of magnetic torques .. 57
4.1.2 Magnetorquer Design ... 60
4.1.3 Magnetorquer Validation ... 63
4.1.4 Configuration .. 65
4.1.5 The Magnetorquer as Resistance-Inductance Series 66
4.1.6 Coil Self Inductance .. 66
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Relationship between spacecraft mass and launch cost</td>
</tr>
<tr>
<td>1.2</td>
<td>The Poly Picosatellite Orbital Deployer (P-POD) in exploded view (left) and normal view (right)</td>
</tr>
<tr>
<td>1.3</td>
<td>Artistic impression of the CubeSats of the first launch campaign in 2003; from left to right: AAUSat, CanX-1, XI-IV, CUTE-1, DTUSat, QuakeSat (illustration taken from [10])</td>
</tr>
<tr>
<td>1.4</td>
<td>CAD rendering of Compass-1; the monopole antenna is not shown in full size</td>
</tr>
<tr>
<td>1.5</td>
<td>Three important spacecraft centered frames of reference: The control frame (black) and the body frame (blue) and their relation to the orbit frame (green) and to each other in the left illustration; the right illustration shows the orientation of the orbit frame of reference w.r.t. the inertial frame (‘ECI’)</td>
</tr>
<tr>
<td>2.1</td>
<td>In a central force field, minuscule accelerations acting on all mass elements of a rigid body are directed towards the CG of the primary body, the Earth. This gives rise to a minute torque called ‘gravity gradient torque’</td>
</tr>
<tr>
<td>2.2</td>
<td>Visualization of present CubeSat orbits; generated with STK</td>
</tr>
<tr>
<td>2.3</td>
<td>$\sigma_z - \sigma_z$ plane showing regions of stability and instability; adapted from [14]</td>
</tr>
<tr>
<td>2.4</td>
<td>Conceptual Test setup for measuring the produced magnetic moment of a magnetorquer</td>
</tr>
<tr>
<td>2.5</td>
<td>Magnetorquer configuration within the Compass-1 structure</td>
</tr>
<tr>
<td>2.6</td>
<td>Simulated magnetorquer current (a) and (b) the duty cycle – current relationship for the discrete power stage driver. Note the superimposed AC current in (a) and the non-linearity in (b)</td>
</tr>
<tr>
<td>2.7</td>
<td>Continuous programmable current source; the upper OpAmp sources the current, while the lower provides feedback</td>
</tr>
<tr>
<td>2.8</td>
<td>Current source performance for a parameter sweep in magnetorquer resistance between $R_{c,90} \approx 90\Omega$ and $R_{c,100} \approx 160\Omega$ with fixed input voltage of 1V; in all cases a steady-state current of 10mA is generated</td>
</tr>
<tr>
<td>2.9</td>
<td>Magnetometer design overview</td>
</tr>
<tr>
<td>2.10</td>
<td>Magnetic domain orientations before and after a Set/Reset pulse</td>
</tr>
<tr>
<td>2.11</td>
<td>Photograph of the MOEMS analog two-axis slit sun sensor (centre) mounted on a printed circuit board (taken from [37] with permission)</td>
</tr>
<tr>
<td>3.1</td>
<td>Visualization of present CubeSat orbits; generated with STK</td>
</tr>
<tr>
<td>3.2</td>
<td>Isomagnetic map of the geomagnetic field strength at sea level in Van-der-Grinten projection; contour line spacing is 2000nT</td>
</tr>
<tr>
<td>3.3</td>
<td>map of the secular variations of the geomagnetic field strength at sea level in Van-der-Grinten projection; contour line spacing is 20nT/year</td>
</tr>
<tr>
<td>3.4</td>
<td>Contour Plot of the total geomagnetic flux density in Gauss for an IGRF2005 model of degree and order 13, 700km altitude ($R_E = 6378.135km$) and 01.04.2006; note the south atlantic anomaly</td>
</tr>
<tr>
<td>3.5</td>
<td>Contour Plot of the downward flux density in Gauss for an IGRF2005 model of degree and order 13, 700km altitude ($R_E = 6378.135km$) and 01.04.2006</td>
</tr>
<tr>
<td>3.6</td>
<td>Contour Plot of the eastward flux density in Gauss for an IGRF2005 model of degree and order 13, 700km altitude ($R_E = 6378.135km$) and 01.04.2006</td>
</tr>
<tr>
<td>3.7</td>
<td>Contour Plot of the northward flux density in Gauss for an IGRF2005 model of degree and order 13, 700km altitude ($R_E = 6378.135km$) and 01.04.2006</td>
</tr>
<tr>
<td>3.8</td>
<td>Overall Layout of the Compass-1 ADCS hardware</td>
</tr>
<tr>
<td>3.9</td>
<td>Passive magnetic control aligns a spacecraft axis of choice with the local geomagnetic field vector; this prohibits nadir-pointing attitude control</td>
</tr>
<tr>
<td>3.10</td>
<td>A current-carrying wire segment</td>
</tr>
<tr>
<td>3.11</td>
<td>Lorentz forces on a tilted conducting loop subject to a magnetic field B; note that $\mu = m$</td>
</tr>
<tr>
<td>3.12</td>
<td>Magnetorquer configuration within the Compass-1 structure</td>
</tr>
<tr>
<td>3.13</td>
<td>Simulated magnetorquer current (a) and (b) the duty cycle – current relationship for the discrete power stage driver. Note the superimposed AC current in (a) and the non-linearity in (b)</td>
</tr>
<tr>
<td>3.14</td>
<td>Continuous programmable current source; the upper OpAmp sources the current, while the lower provides feedback</td>
</tr>
<tr>
<td>3.15</td>
<td>Current source performance for a parameter sweep in magnetorquer resistance between $R_{c,90} \approx 90\Omega$ and $R_{c,100} \approx 160\Omega$ with fixed input voltage of 1V; in all cases a steady-state current of 10mA is generated</td>
</tr>
<tr>
<td>3.16</td>
<td>Magnetometer design overview</td>
</tr>
<tr>
<td>3.17</td>
<td>Magnetic domain orientations before and after a Set/Reset pulse</td>
</tr>
<tr>
<td>3.18</td>
<td>Photograph of the MOEMS analog two-axis slit sun sensor (centre) mounted on a printed circuit board (taken from [37] with permission)</td>
</tr>
<tr>
<td>4.1</td>
<td>Overall Layout of the Compass-1 ADCS hardware</td>
</tr>
<tr>
<td>4.2</td>
<td>Passive magnetic control aligns a spacecraft axis of choice with the local geomagnetic field vector; this prohibits nadir-pointing attitude control</td>
</tr>
<tr>
<td>4.3</td>
<td>A current-carrying wire segment</td>
</tr>
<tr>
<td>4.4</td>
<td>Lorentz forces on a tilted conducting loop subject to a magnetic field B; note that $\mu = m$</td>
</tr>
<tr>
<td>4.5</td>
<td>Conceptual Test setup for measuring the produced magnetic moment of a magnetorquer</td>
</tr>
<tr>
<td>4.6</td>
<td>Simulated magnetorquer current (a) and (b) the duty cycle – current relationship for the discrete power stage driver. Note the superimposed AC current in (a) and the non-linearity in (b)</td>
</tr>
<tr>
<td>4.7</td>
<td>Continuous programmable current source; the upper OpAmp sources the current, while the lower provides feedback</td>
</tr>
<tr>
<td>4.8</td>
<td>Current source performance for a parameter sweep in magnetorquer resistance between $R_{c,90} \approx 90\Omega$ and $R_{c,100} \approx 160\Omega$ with fixed input voltage of 1V; in all cases a steady-state current of 10mA is generated</td>
</tr>
<tr>
<td>4.9</td>
<td>Magnetometer design overview</td>
</tr>
<tr>
<td>4.10</td>
<td>Magnetic domain orientations before and after a Set/Reset pulse</td>
</tr>
<tr>
<td>4.11</td>
<td>Photograph of the MOEMS analog two-axis slit sun sensor (centre) mounted on a printed circuit board (taken from [37] with permission)</td>
</tr>
</tbody>
</table>
Figure 4.13: Problem definition for the minimum required FOV; all instances in this figure are located on the unit sphere.

Figure 4.14: Geometry of the sensor gap; all instances in this figure are located on the unit sphere.

Figure 4.16: apparent radius of the Earth as seen from the orbit of Compass-1 (not to scale).

Figure 4.17: geometry of sun angles α and β.

Figure 4.18: Top view of the ADCS flight spare model main board without GPS receiver; the two red plugs provide the interface with the CDHS board. The powerful microcontroller unit is placed in the center of the ADCS board. Interface provisions are three connectors to the magnetorquers (left), the board-to-board connector to the Phoenix GPS receiver (right) and one connector to the master sun sensor (top).

Figure 4.19: Bottom view of the ADCS flight spare model main board with complete component mount. The circuitry on the left is the analog section of the three-axis magnetometer; the three circuits on the right are the coil current drivers.

Figure 5.1: flow chart of the Bdot detumbling controller.

Figure 5.2: first order state variable filter block diagram.

Figure 5.3: Fundamental underactuation: not all degrees of freedom may be manipulated at an instance in time but over a period of time controllability is given.

Figure 5.4: Diagram of the constant gain negative FSF LQR control loop for a linear system with periodic coefficient in G.

Figure 5.5: Diagram of the constant gain negative FSF LQR control loop for the non-linear dynamic system; the mapping function is applied to result in higher control efficiency.

Figure 6.1: flow chart of the attitude determination process.

Figure 6.2: cylindrical shadow model geometry showing the terminator equally dividing the Earth’s surface into a day side and a night side region.

Figure 6.3: base vectors of the orbit frame in relation to the ECI frame in order to obtain the DCM for transformation from ECI to orbit (and vise versa).

Figure 7.1: Results of the continuous detumbling mode with gravity gradient; the plots show (from top to bottom) the kinetic energy and current consumption, the magnetic dipole moment in the body frame, the torque in the body frame and the inertial body rates.

Figure 7.2: time-division-multiplexing of the control/measurement sequence.

Figure 7.3: Results of the discrete detumbling mode under full disturbance environment, multiplexing and consideration of hardware models for magnetorquer and magnetometer; the plots show (from top to bottom) the kinetic energy and current consumption, the magnetic dipole moment in the body frame, the torque in the body frame and the inertial body rates.

Figure 7.4: Results of the discrete worst-case detumbling mode under full disturbance environment, multiplexing and consideration of hardware models for magnetorquer and magnetometer; the plots show (top) the kinetic energy and current consumption, and (bottom) the inertial body rates.

Figure 7.5: Plot of the maximum absolute eigenvalue of the monodromy matrix as a function of the tuning parameter q.

Figure 7.6: Simulation Results of the continuous LQR controller under gravity gradient influence; the plots show (from top to bottom) the attitude euler angles, the orbit body rates, the torque and the magnetic dipole moment in the body frame.

Figure 7.7: Results of the continuous LQR controller under solar pressure, aerodynamic drag and gravity gradient influence; the plots show (from top to bottom) the attitude euler angles, the orbit body rates, the misalignment between the axes of the body frame and the orbit frame and the total environmental disturbance torque in the body frame.

Figure 7.8: Results of the continuous LQR controller with reduced yaw feedback under solar pressure, aerodynamic drag and gravity gradient influence; $CG = (5.0 0 0)^T$ mm.

Figure 7.9: Results of the continuous LQR controller with reduced yaw feedback under solar pressure, aerodynamic drag and gravity gradient influence with altered $\text{RAAN} = 214.62^\circ$; $CG = (5.0 0 0)^T$ mm.

Figure 7.10: Results of the continuous LQR controller with reduced yaw feedback under solar pressure, aerodynamic drag and gravity gradient influence; $CG = (-5.0 0 0)^T$ mm.
Figure 7.11: Results of the continuous LQR controller with reduced yaw feedback under solar pressure, aerodynamic drag and gravity gradient influence; CG = (0 -5 0)\text{mm}.

Figure 7.12: Results of the continuous LQR controller with reduced yaw feedback under solar pressure, aerodynamic drag and gravity gradient influence; CG = (0 0 -5)\text{mm}.

Figure 7.13: Results of the continuous LQR controller with reduced yaw feedback under full disturbance environment; CG = (5 0 0)\text{mm}.

Figure 7.14: Results of the continuous LQR controller for the inverted spacecraft with reduced yaw feedback under full disturbance environment; CG = (5 0 0)\text{mm}.

Figure 7.15: Results of the discrete LQR controller with reduced yaw feedback under full disturbance environment; CG = [5 0 0]\text{mm}.

Figure 7.16: Results of the discrete LQR controller with reduced yaw feedback under full disturbance environment and with consideration of AD outages; CG = [5 0 0]\text{mm}; lack of state information occurs for signal AD Outage = 0.

Figure 7.17: Free attitude motion of the satellite with initial condition of equilibrium at rest under full environmental disturbance for a simulated duration of 20 orbits. The upper plot shows the orbital body rates and the lower plot the total disturbance torque in the body frame.
List of Tables

Table 1.1: Technical Resources allocated to the Attitude Determination and Control System (ADCS) ... 11
Table 2.1: Summary of stability conditions in terms of principal moments of inertia .. 28
Table 3.1: Orbit parameters of the CubeSats launched in June 2003 and October 2005 (as of December 2005) .. 37
Table 3.2: Compass-1 reference orbit parameters .. 38
Table 3.3: ECSS standard atmospheric density, temperature, pressure, molecular weight and scale height at 600, 700 and 800 km altitude and for different levels of solar activity [23] .. 39
Table 3.4: Solar Constant value variation range [23] ... 41
Table 3.5: Summary of the expected worst-case disturbance level .. 44
Table 4.1: Magnetorquer Design Constraints .. 60
Table 4.2: Lead material comparison Copper - Aluminium .. 62
Table 4.3: Magnetorquer Design Results ... 63
Table 4.4: Results of Inductance Experiments (at 10kHz input frequency) ... 66
Table 4.5: Magnetorquer Time constants ... 67
Table 4.6: Combined Magnetorquer/Coil Driver Performance ... 71
Table 4.7: HMC1021/1022 Specifications [35] .. 74
Table 4.8: typical magnetometer model parameters ... 79
Table 7.1: Common simulation scenario parameters (orbit and inertia) .. 126
Table 7.2: Detumbling initial conditions .. 127
Table 7.3: Environmental Disturbance Parameters; the simulation assumes an ideal cubic spacecraft body with identical faces and a CG at (0.005 0 0)‘m ... 131
Table 7.4: Magnetometer Model Implementation Parameters .. 132
Table 7.5: Worst-Case Detumbling Scenario initial conditions ... 134
Table 7.6: Attitude Controller Scenario initial conditions ... 137
Table 7.7: Inverted spacecraft scenario initial conditions ... 146
Table 7.8: Initial conditions for the realistic, discrete LQR scenarios .. 148
Table 7.9: AD outage scenario initial conditions .. 150
Table 7.10: Passive spacecraft initial conditions .. 151