Clustering with Bregman Divergences.
Arindam Banerjee, Srujana Merugu, Inderjit S. Dhillon, Joydeep Ghosh

Xiaowei Song
Math 710

Oct 15, 2015
Instructor: Prof. Jacob Kogan
Outline, Banerjee et al. [2005]

1. Bregman Divergence
 - Definition
 - Examples
 - Properties

2. Bregman Hard Clustering
 - Bregman Information
 - Clustering formulation
 - Clustering Algorithm

3. Bijection with Exponential Families
 - Exponential Families
 - Expectation parameters and Legendre duality
 - Exponential Families and Bregman Divergences
 - Bijection with Regular Bregman Divergences
 - Examples

4. Bregman Soft clustering

References
Bregman Divergence Definition

Bregman, 1967; Censor and Zenios, 1998

Definition (Bregman Divergence)

Let \(\Phi : S \mapsto \mathbb{R} \), \(S = \text{dom}(\Phi) \) be a strictly convex function defined on a convex set \(S \subseteq \mathbb{R}^d \) such that \(\Phi \) is differentiable on \(\text{ri}(S) \), assumed to be nonempty. The Bregman divergence \(d_\Phi : S \times \text{ri}(S) \mapsto [0, \infty) \) is defined as:

\[
d_\Phi(x, y) = \Phi(x) - \Phi(y) - \langle x - y, \nabla \Phi(y) \rangle
\]

where \(\nabla \Phi(y) \) represents the gradient vector of \(\Phi \) evaluated at \(y \).
Euclidean distance

\[\Phi(x) = \langle x, x \rangle \text{ strictly convex and differentiable on } \mathbb{R}^d \Rightarrow \]
\[d_\Phi(x, y) = \langle x, x \rangle - \langle y, y \rangle - \langle x - y, 2y \rangle = \|x - y\|^2 \]
\[d_\Phi(x, y) \geq 0 \text{ as long as } \Phi \text{ convex} \]

(http://mark.reid.name/blog/meet-the-bregman-divergences.html)
Experiments about underlying distributions

<table>
<thead>
<tr>
<th>Generative Model</th>
<th>d_{Gaussian}</th>
<th>d_{Poisson}</th>
<th>d_{Binomial}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>0.675 ± 0.032</td>
<td>0.659 ± 0.036</td>
<td>0.668 ± 0.035</td>
</tr>
<tr>
<td>Poisson</td>
<td>0.691 ± 0.036</td>
<td>0.724 ± 0.036</td>
<td>0.716 ± 0.036</td>
</tr>
<tr>
<td>Binomial</td>
<td>0.777 ± 0.038</td>
<td>0.799 ± 0.0345</td>
<td>0.798 ± 0.034</td>
</tr>
</tbody>
</table>

Each of 3 types’ mixed density generated 300 points, were clustered 100 trials. Compared to ground-truth with NMI.

KL-divergence

\[\sum_{j=1}^{d} p_j = 1, \text{ neg-entropy } \Phi(p) = \sum_{j=1}^{d} p_j \log_2 p_j \text{ convex} \]

\[d_{\Phi}(p, q) = \sum_{j=1}^{d} p_j \log_2 p_j - \sum_{j=1}^{d} q_j \log_2 q_j - \langle p - q, \nabla \Phi(q) \rangle \]
\[= \sum_{j=1}^{d} p_j \log_2 p_j - \sum_{j=1}^{d} q_j \log_2 q_j - \sum (p_j - q_j) \left(\log_2 q_j + \log_2 e \right) \]
\[= \sum_{j=1}^{d} p_j \log_2 \left(\frac{p_j}{q_j} \right) - (\log_2 e) \cdot \sum (p_j - q_j) \]
\[= \text{KL}(p\| q) \]

for \(f(p) = p \log_2 p, 0 \leq p \leq 1, \frac{df}{dp} = \log_2 p + \log_2 e \),
\[\frac{d^2 f}{dp^2} = \frac{1}{p} \log_2 e > 0 \Rightarrow f(p) \text{ convex in } [0, 1], \text{ thus } \sum f(p_j) \text{ convex in } 0 \leq p_j \leq 1 \]
Itakura-Saito distance

If $F(e^{j\theta})$ is the power spectrum of a signal $f(t)$, then the functional $\Phi(F) = -\frac{1}{2\pi} \int_{-\pi}^{\pi} \log(F(e^{j\theta})) \, d\theta$ is convex in F and corresponds to the neg-entropy rate of the signal assuming it was generated by a stationary Gaussian process.

$$d_\Phi(F, G) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[-\log\left(F(e^{j\theta})\right) + \log\left(G(e^{j\theta})\right)
ight.$$

$$\left. - \left(F(e^{j\theta}) - G(e^{j\theta})\right) \left(-\frac{1}{G(e^{j\theta})}\right) \right] \, d\theta$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(-\log\left(\frac{F(e^{j\theta})}{G(e^{j\theta})}\right) + \frac{F(e^{j\theta})}{G(e^{j\theta})} - 1 \right) \, d\theta$$
Bregman divergences generated from convex functions

<table>
<thead>
<tr>
<th>Domain</th>
<th>(\Phi(x))</th>
<th>(d_\Phi(x, y))</th>
<th>Divergence</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{R})</td>
<td>(x^2)</td>
<td>((x - y)^2)</td>
<td>Squared loss</td>
</tr>
<tr>
<td>(\mathbb{R}^d)</td>
<td>(|x|^2)</td>
<td>(|x - y|^2)</td>
<td>Squared Euclidean distance</td>
</tr>
<tr>
<td>(\mathbb{R}^d)</td>
<td>(x^T A x)</td>
<td>((x - y)^T A (x - y))</td>
<td>Mahalanobis distance</td>
</tr>
<tr>
<td>(\mathbb{R}^d_+)</td>
<td>(\log x)</td>
<td>(x \log \frac{x}{y} - (x - y))</td>
<td>KL-divergence</td>
</tr>
<tr>
<td>(\mathbb{R}^d_+)</td>
<td>(\sum_{j=1}^d x_j \log_2 x_j)</td>
<td>(\sum_{j=1}^d x_j \log_2 \frac{x_j}{y_j} - \log_2 e \times \left[\sum_{j=1}^d (x_j - y_j) \right])</td>
<td>Generalized I-divergence</td>
</tr>
<tr>
<td>([0,1])</td>
<td>(x \log x + (1 - x) \log(1 - x))</td>
<td>(x \log \frac{x}{y} + (1 - x) \log \frac{1-x}{1-y})</td>
<td>Logistic Loss</td>
</tr>
<tr>
<td>(\mathbb{R}^d_+)</td>
<td>(\sum_{j=1}^d x_j \log x_j)</td>
<td>(\sum_{j=1}^d x_j \log \frac{x_j}{y_j} - \log e \times \left[\sum_{j=1}^d (x_j - y_j) \right])</td>
<td>Itakura-Satio distance</td>
</tr>
</tbody>
</table>

Function Names

<table>
<thead>
<tr>
<th>Function Name</th>
<th>(\varphi(x))</th>
<th>(\text{dom } \varphi)</th>
<th>(D_\varphi(x, y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Squared norm</td>
<td>(\frac{1}{2} x^2)</td>
<td>((-\infty, +\infty))</td>
<td>(\frac{1}{2} (x - y)^2)</td>
</tr>
<tr>
<td>Shannon entropy</td>
<td>(x \log x - x)</td>
<td>([0, +\infty))</td>
<td>(x \log \frac{x}{x+y})</td>
</tr>
<tr>
<td>Bit entropy</td>
<td>(x \log x + (1-x) \log(1-x))</td>
<td>([0,1])</td>
<td>(x \log \frac{x}{x+y} + (1-x) \log \frac{1-x}{1-y})</td>
</tr>
<tr>
<td>Burg entropy</td>
<td>(- \log x)</td>
<td>((0, +\infty))</td>
<td>(- \frac{\log x}{y} - \log \frac{y}{x})</td>
</tr>
<tr>
<td>Hellinger</td>
<td>(- \sqrt{-x^2})</td>
<td>([-1, 1])</td>
<td>((1-xy)(1-y^2)^{-1/2} - (1-x^2)^{1/2})</td>
</tr>
<tr>
<td>(\ell_p) quasi-norm</td>
<td>(- x^p)</td>
<td>((0 < p < 1))</td>
<td>(- x^{p+1} + p x y y^{p-1} - (p-1) y^p)</td>
</tr>
<tr>
<td>(\ell_p) norm</td>
<td>(</td>
<td>x</td>
<td>^p)</td>
</tr>
<tr>
<td>Exponential</td>
<td>(e^x)</td>
<td>((-\infty, +\infty))</td>
<td>(e^x - (x + y + 1) e^y)</td>
</tr>
</tbody>
</table>

Hellinger:
\[
\varphi(x) = -\sqrt{1 - \|x\|^2}
\]
\[
D_\varphi(x, y) = \frac{1-x^T y}{\sqrt{1-\|x\|^2}} - \sqrt{1-\|y\|^2}
\]
Appendix A. Properties

1. Non-negativity. $d_\Phi(x, y) \geq 0, \forall x \in S, y \in ri(S)$, and equality holds IFF $x = y$. (Not a metric: not symmetric and triangle inequality not hold)

2. Convexity. d_Φ is always convex in the 1st argument, but not necessary convex in the 2nd argument. While, Squared Euclidean distance and KL-divergence are convex in both of their arguments.

3. Linearity. Bregman divergence is a linear operator, i.e.,

$$\forall x \in S, y \in ri(S),$$

$$d_{\Phi_1 + \Phi_2}(x, y) = d_{\Phi_1}(x, y) + d_{\Phi_2}(x, y)$$

$$d_{c\Phi}(x, y) = cd_\Phi(x, y), \ c \geq 0$$
Appendix A. Properties

4 Equivalence classes. The Bregman divergences of functions that differ only in affine terms are identical, i.e.,
if \(\Phi(x) = \Phi_0(x) + \langle b, x \rangle + c, b \in \mathbb{R}^d, c \in \mathbb{R} \), then
\(d_\Phi(x, y) = d_{\Phi_0}(x, y), \forall x \in S, y \in ri(S) \). Hence, the set of all strictly convex, differentiable functions on a convex set \(S \) can be partitioned into equivalence classes of the form

\[[\Phi_0] = \{ \Phi | d_\Phi(x, y) = d_{\Phi_0}(x, y), \forall x \in S, y \in ri(S) \} \]

5 Linear separation.

\[d_\Phi(x, \mu_1) = d_\Phi(x, \mu_2) \]

\[\Rightarrow \Phi(x) - \Phi(\mu_1) - \langle x - \mu_1, \nabla \Phi(\mu_1) \rangle = \]

\[\Phi(x) - \Phi(\mu_2) - \langle x - \mu_2, \nabla \Phi(\mu_2) \rangle \]

\[\Rightarrow \langle x, \nabla \Phi(\mu_2) - \nabla \Phi(\mu_1) \rangle = \]

\[(\Phi(\mu_1) - \Phi(\mu_2)) - (\langle \mu_1, \nabla \Phi(\mu_1) \rangle - \langle \mu_2, \nabla \Phi(\mu_2) \rangle) \]
Appendix A. Properties

6 Dual divergences/Conjugate duality: let \(\Psi(\theta) = \Phi^*(\theta) \) be the conjugate of \(\Phi(u) \). Then \(d_\Phi(\mu_1, \mu_2) = d_\Psi(\theta_2, \theta_1) \)

\[
\Psi(\theta) = \Phi^*(\theta) = \sup_u \{ \theta^T u - \Phi(u) \}
\]

Properties of conjugate function:
1). let \(0 = \nabla_u g(\theta, u) = \theta - \nabla \Phi(u^*) \)
2). \(\Phi \) convex \(\Rightarrow \) \(\Psi \) convex
3). \(\Phi \) convex and closed \(\Rightarrow \) \((\Phi^*)^* = \Phi\)
Proof of Conjugate duality

\[d_\Phi(u_1, u_2) = \Phi(u_1) - \Phi(u_2) - (u_1 - u_2)^T \nabla \Phi(u_2) \]

\[= \Phi(u_1) - \Phi(u_2) - (u_1 - u_2)^T \theta_2 + u_1^T \theta_1 - u_1^T \theta_1 \nabla \psi(\theta_1) \]

\[= \Phi(u_1) - \Phi(u_2) - (\theta_2 - \theta_1)^T \nabla \psi(\theta_1) + u_2^T \theta_2 - u_1^T \theta_1 \]

\[= [\theta_2^T u_2 - \Phi(u_2)] - [\theta_1^T u_1 - \Phi(u_1)] - (\theta_2 - \theta_1)^T \nabla \psi(\theta_1) \]

\[= \psi(\theta_2) - \psi(\theta_1) - (\theta_2 - \theta_1)^T \nabla \psi(\theta_1) \]

\[= d_\psi(\theta_2, \theta_1) \]
Let \mathcal{F}_Ψ be an exponential family with Ψ as the cumulant function.

$$KL\left(p_{(\Psi, \theta_1)} \parallel p_{(\Psi, \theta_2)}\right) = d_{\Psi}(\theta_2, \theta_1) = d_{\Phi}(\mu_1, \mu_2)$$

where μ_1, μ_2 are the expectation parameters corresponding to θ_1, θ_2. Further, if $\Psi(0) = 0$, then $p_{(\Psi, 0)}(x) = p_0(x)$ is itself a valid probability density and $KL\left(p_{(\Psi, \theta)} \parallel p_{(\Psi, 0)}\right) = \Phi(\mu)$, where $\mu = \nabla \Psi(\theta)$.
Generalized Pythagoras theorem:
\[\forall x \in \Omega: \ D_\varphi(x, y) \geq D_\varphi(x, P_\Omega(y)) + D_\varphi(P_\Omega(y), y) \]

Opposite to triangle inequality:
"Law of cosine"

Three point property generalizes the "law of cosine":

$$D_\varphi(x, y) = D_\varphi(x, z) + D_\varphi(z, y) - (x - z)^T (\nabla \varphi(y) - \nabla \varphi(z))$$

Euclidean special case:

$$\|x - y\|^2 = \|x - z\|^2 + \|z - y\|^2 - 2 (x - z)^T (y - z)$$
A divergence measure \(d : S \times ri(S) \rightarrow [0, \infty) \) is a Bregman divergence IFF there exists \(a \in ri(S) \) such that the function \(\Phi_a(x) = d(x, a) \) satisfies the following conditions:

1. \(\Phi_a(x) \) is strictly convex on \(S \) and differentiable on \(ri(S) \)
2. \(d(x, y) = d_{\Phi_a}(x, y), \forall x \in S, y \in ri(S) \) where \(d_{\Phi_a} \) is the Bregman divergence associated with \(\Phi_a \)

Proof of necessity: any strictly convex, differentiable function \(\Phi \), the Bregman divergence evaluated with a fixed value for the 2nd argument differs from it only by a linear term, i.e.,

\[
\Phi_a(x) = d_\Phi(x, a) = \Phi(x) - \Phi(a) - \langle x - a, \nabla \Phi(a) \rangle = \Phi(x) - \langle x, \nabla \Phi(a) \rangle - \Phi(a) + \langle a, \nabla \Phi(a) \rangle = \Phi(x) + \langle b, x \rangle + c
\]

where \(b = -\nabla \Phi(a) \), \(c = -\Phi(a) + \langle a, \nabla \Phi(a) \rangle \).
Proved in class by Prof. Kogan.

For the data points above $a_i, 1 \leq i \leq m$, we want to find one point closest to all data points, define cost function: $f(x) = \sum_{i=1}^{m} |x - a_i|^2$, we want to get $\min_{x \in \mathbb{R}^n} f(x)$, then use the found x to represent $a_i, 1 \leq i \leq m$

let $0 = \frac{df(x)}{dx} = \frac{d}{dx} \left[\sum (x - a_i)^2 \right] = 2 \sum (x - a_i) = 2 \sum x - 2 \sum a_i$

$\Rightarrow mx = \sum_{i=1}^{m} a_i \Rightarrow x = \frac{1}{m} \sum_{i=1}^{m} a_i$ which is the mean of all data points.
Proposition 1

Let X be a random variable that takes values in $\mathcal{X} = \{x_i\}_{i=1}^n \subset S \subseteq \mathbb{R}^d$ following a positive probability measure ν such that $E_\nu [x] \in ri(S)$. Given a Bregman divergence $d_\Phi : S \times ri(S) \mapsto [0, \infty)$, the problem

$$\min_{s \in ri(S)} E_\nu [d_\Phi(X, s)]$$

has a unique minimizer given by $s^\dagger = \mu = E_\nu[X]$. Note the minimization is with respect to 2nd argument, surprising since Bregman divergences are not necessarily convex in the 2nd argument.
Proposition 1 - Proof

The function we are trying to minimize is

\[J_\Phi(s) = E_v [d_\Phi(X, s)] = \sum_{i=1}^{n} v_i d_\Phi(x_i, s) \]. Since

\[\mu = E_v [X] \in ri(S) \], the objective function is well-defined at \(\mu \).

Now \(\forall s \in ri(S) \),

\[J_\Phi(s) - J_\Phi(\mu) \]

\[= \sum_{i=1}^{n} v_i d_\Phi(x_i, s) - \sum_{i=1}^{n} v_i d_\Phi(x_i, \mu) \]

\[= \Phi(\mu) - \Phi(s) - \left\langle \sum_{i=1}^{n} v_i x_i - s, \nabla \Phi(s) \right\rangle + \left\langle \sum_{i=1}^{n} v_i x_i - \mu, \nabla \Phi(\mu) \right\rangle \]

\[= \Phi(\mu) - \Phi(s) - \langle \mu - s, \nabla \Phi(s) \rangle \]

\[= d_\Phi(\mu, s) \geq 0 \]

with equality holds only when \(s = \mu \)
Definition (Bregman Information)

Let X be a random variable that takes values in $\mathcal{X} = \{x_i\}_{i=1}^n \subset S$ following a probability measure ν. Let $\mu = E_\nu[X] = \sum_{i=1}^n v_i x_i \in ri(S)$ and let $d_\Phi : S \times ri(S) \mapsto [0, \infty)$ be a Bregman divergence. Then the Bregman Information of X in terms of d_Φ is defined as:

$$I_\Phi(X) = E_\nu[d_\Phi(X, \mu)] = \sum_{i=1}^n v_i d_\Phi(x_i, \mu)$$

Example 5. Variance:

Let $\mathcal{X} = \{x_i\}_{i=1}^n$ be a set in \mathbb{R}^d, and uniform measure $v_i = \frac{1}{n}$ over \mathcal{X}. The Bregman Information of X with squared Euclidean distance as the Bregman divergence is given by:

$$I_\Phi(X) = \sum_{i=1}^n v_i d_\Phi(x_i, \mu),$$

which is sample variance.
Example 6. Mutual information:

By definition, the mutual information $I(U; V)$ between 2 discrete random variables U and V with joint distribution $\{\{p(u_i, v_j)\}_{i=1}^n\}_{j=1}^m$ is given by

$$I(U; V) = \sum_{i=1}^n \sum_{j=1}^m p(u_i, v_j) \log \frac{p(u_i, v_j)}{p(u_i)p(v_j)}$$

$$= \sum_{i=1}^n p(u_i) \sum_{j=1}^m p(v_j \mid u_i) \log \frac{p(v_j \mid u_i)}{p(v_j)}$$

$$= \sum_{i=1}^n p(u_i) KL(p(V \mid u_i) \parallel p(V))$$

Consider RV Z_u taking values in the set of probability distributions $Z_u = \{p(V \mid u_i)\}_{i=1}^n$ following the probability measure $\{v_i\}_{i=1}^n = \{p(u_i)\}_{i=1}^n$ over this set. The mean (distribution) of Z_u is given by:

$$\mu = E_v [p(V \mid u)] = \sum_{i=1}^n p(u_i)p(V \mid u_i) = \sum_{i=1}^n p(u_i, V) = p(V)$$

hence, $I(U, V) = \sum_{i=1}^n v_i d_\phi(p(V \mid u_i), \mu) = I_\phi(Z_u)$, similarly, $I(U; V) = I_\phi(Z_V)$
Jensen’s Inequality and Bregman Information

Given any convex function \(\Phi \), for any random variable \(X \), Jensen’s inequality:

\[
E[\Phi(X)] \geq \Phi(E[X])
\]

\[
E[\Phi(X)] - \Phi(E[X]) = E[\Phi(X)] - \Phi(E[X]) - E[\langle X - E[X], \nabla \Phi(E[X]) \rangle] = E[\Phi(X) - \Phi(E[X]) - \langle X - E[X], \nabla \Phi(E[X]) \rangle] = E[d_\Phi(X, E(X))] = I_\Phi(X) \geq 0
\]
Clustering by Expected Bregman divergence

RV X takes values in $\mathcal{X} = \{x_i\}_{i=1}^n$ following prob measure v. When X has large Bregman information, it may not suffice to encode X using single representative since lower quantization error may be desired.

Split the set \mathcal{X} into k disjoint partitions $\{\mathcal{X}_h\}_{h=1}^k$, each with its own Bregman representative, RV M over the partition representatives as an appropriate quantization of X, which is $\mathcal{M} = \{\mu_h\}_{h=1}^k$, its probability as $\pi_h = \sum_{x_i \in \mathcal{X}_h} v_i$.

The quality of the quantization M can be measured by expected Bregman divergence between X and M, i.e., $E_{X,M}[d_\Phi(X, M)]$. Since M is a deterministic func of X, the expectation is actually over distribution of X,

$$E_X [d_\Phi(X, M)] = \sum_{h=1}^k \sum_{x_i \in \mathcal{X}_h} v_i d_\Phi(x_i, \mu_h)$$

$$= \sum_{h=1}^k \pi_h \sum_{x_i \in \mathcal{X}_h} \frac{v_i}{\pi_h} d_\Phi(x_i, \mu_h)$$

$$= E_\pi [I_\Phi(X_h)]$$
In Information-theoretic clustering, the quality of partitioning is measured in terms of loss in mutual information resulting from the quantization of the original RV X, i.e., $I_{\Phi}(X) - I_{\Phi}(M)$.

Hard clustering problem is defined as finding a partitioning of X, or equivalently, finding the random variable M, such that the loss in Bregman information due to quantization, $L_{\Phi}(M) = I_{\Phi}(X) - I_{\Phi}(M)$ is minimized.

Theorem (Information theoretic clustering)

Let X be a RV that takes values in $\mathcal{X} = \{x_i\}_{i=1}^n \subset S \subseteq \mathbb{R}^d$ following positive probability measure ν. Let $\{\mathcal{X}_h\}_{h=1}^k$ be a partitioning of \mathcal{X} and let $\pi_h = \sum_{x_i \in \mathcal{X}_h} \nu_i$ be the induced measure π on the partitions. Let X_h be the RV that takes values in \mathcal{X}_h following $\frac{\nu_i}{\pi_h}$ for $x_i \in \mathcal{X}_h$, $h = 1, \ldots, k$. Let $\mathcal{M} = \{\mu_h\}_{h=1}^k$ with $\mu_h \in ri(S)$ denote the set of representatives of $\{\mathcal{X}_h\}_{h=1}^k$, and M be a RV that takes values in \mathcal{M} following π. Then

$$L_{\Phi}(M) = I_{\Phi}(X) - I_{\Phi}(M) = E_{\pi} [I_{\Phi}(X_h)] = \sum_{h=1}^k \pi_h \sum_{x_i \in \mathcal{X}_h} \frac{\nu_i}{\pi_h} d_{\Phi}(x_i, \mu_h)$$
Information-theoretic clustering Proof

\[I_\Phi(X) \]

\[= \sum_{i=1}^{n} v_i d_\Phi(x_i, \mu) = \sum_{h=1}^{k} \sum_{x_i \in X_h} v_i d_\Phi(x_i, \mu) = \sum_{h=1}^{k} \sum_{x_i \in X_h} v_i \left\{ \Phi(x_i) - \Phi(\mu) - \langle x_i - \mu, \nabla \Phi(\mu) \rangle \right\} \]

\[= \sum_{h=1}^{k} \sum_{x_i \in X_h} v_i \left\{ \Phi(x_i) - \Phi(\mu_h) - \langle x_i - \mu_h, \nabla \Phi(\mu_h) \rangle + \langle x_i - \mu_h, \nabla \Phi(\mu_h) \rangle \right\} \]

\[+ \Phi(\mu_h) - \Phi(\mu) - \langle (x_i - \mu_h) + (\mu_h - \mu), \nabla \Phi(\mu) \rangle \right\} \]

\[= \sum_{h=1}^{k} \sum_{x_i \in X_h} v_i \left\{ d_\Phi(x_i, \mu_h) + \langle x_i - \mu_h, \nabla \Phi(\mu_h) - \nabla \Phi(\mu) \rangle + d_\Phi(\mu_h, \mu) \right\} \]

\[= \sum_{h=1}^{k} \pi_h \sum_{x_i \in X_h} v_i \left\{ d_\Phi(x_i, \mu_h) + \sum_{h=1}^{k} \sum_{x_i \in X_h} v_i d_\Phi(\mu_h, \mu) + \sum_{h=1}^{k} \pi_h \sum_{x_i \in X_h} v_i \langle x_i - \mu_h, \nabla \Phi(\mu_h) - \nabla \Phi(\mu) \rangle \right\} \]

\[= \sum_{h=1}^{k} \pi_h l_\Phi(X_h) + \sum_{h=1}^{k} \pi_h d_\Phi(\mu_h, \mu) + \sum_{h=1}^{k} \pi_h \left\langle \sum_{x_i \in X_h} v_i x_i - \mu_h, \nabla \Phi(\mu_h) - \nabla \Phi(\mu) \right\rangle \]

\[= E_\pi [l_\Phi(X_h)] + I_\Phi(M) \]
Information-theoretic clustering interpretation

Within/Between cluster interpretation

- **Total Bregman Information** = $I_{\Phi}(X) = L_{\Phi}(M) + I_{\Phi}(M)$
- **Within-cluster Bregman Information**

$$L_{\Phi}(M) = I_{\Phi}(X) - I_{\Phi}(M) = E_{\pi} [I_{\Phi}(X_h)] = \sum_{h=1}^{k} \sum_{x_i \in X_h} v_i d_{\Phi}(x_i, \mu_h)$$

- **Between-cluster Bregman Information** = $I_{\Phi}(M)$

Using the theorem, Bregman clustering problem of minimizing the loss in Bregman information can be written as

$$\min_{M} \left(I_{\Phi}(X) - I_{\Phi}(M) \right) = \min_{M} \left(\sum_{h=1}^{k} \sum_{x_i \in X_h} v_i d_{\Phi}(x_i, \mu_h) \right)$$
Bregman Hard Clustering Algorithm

Input: Set $\mathcal{X} = \{x_i\}_{i=1}^n \subset S \subseteq \mathbb{R}^d$, probability measure ν over \mathcal{X}, Bregman divergence $d_\Phi : S \times ri(S) \mapsto \mathbb{R}$, number of clusters k.

Output: \mathcal{M}^\dagger, local minimizer of $L_\Phi(\mathcal{M}) = \sum_{h=1}^k \sum_{x_i \in \mathcal{X}_h} \nu_i d_\Phi(x_i, \mu_h)$ where $\mathcal{M} = \{\mu_h\}_{h=1}^k$, hard partitioning $\{\mathcal{X}_h\}_{h=1}^k$ of \mathcal{X}.

Method: Initialize $\{\mu_h\}_{h=1}^k$ with $\mu_h \in ri(S)$ (one possible initialization is to choose $\mu_h \in ri(S)$ at random)

repeat
 * The assignment Step
 Set $\mathcal{X}_h \leftarrow \emptyset$, $1 \leq h \leq k$
 for $i=1$ to n do
 $\mathcal{X}_h \leftarrow \mathcal{X}_h \cup \{x_i\}$
 where $h = h^\dagger(x_i) = \arg\min_{h'} d_\Phi(x_i, \mu_h')$
 endfor
 * The Re-estimation Step
 for $h = 1$ to k do
 $\pi_h \leftarrow \sum_{x_i \in \mathcal{X}_h} \nu_i$
 $\mu_h \leftarrow \frac{1}{\pi_h} \sum_{x_i \in \mathcal{X}_h} \nu_i x_i$
 endfor
 until convergence
return $\mathcal{M}^\dagger \leftarrow \{\mu_h\}_{h=1}^k$
Proof: Convergence and terminates in a finite steps at local optimal partition

The Bregman hard clustering algorithm monotonically decreases the loss function
\[\min_M (I_\Phi(X) - I_\Phi(M)) = \min_M \left(\sum_{h=1}^{k} \sum_{x_i \in \mathcal{X}_h} v_id_\Phi(x_i, \mu_h) \right). \]

Let \(\{\mathcal{X}_h^{(t)}\}_{h=1}^{k} \) be the partitioning of \(\mathcal{X} \) after the \(t^{th} \) iteration and let \(\mathcal{M}^{(t)} = \{\mu_h^{(t)}\}_{h=1}^{k} \) be the corresponding set of cluster representatives. Then,

\[
L_\Phi(M^{(t)}) = \sum_{h=1}^{k} \sum_{x_i \in \mathcal{X}_h^{(t)}} v_i d_\Phi(x_i, \mu_h^{(t)})
\]

\[
\geq \sum_{h=1}^{k} \sum_{x_i \in \mathcal{X}_h^{(t)}} v_i d_\Phi(x_i, \mu_h^{(t)}(X_i))
\]

\[
\geq \sum_{h=1}^{k} \sum_{x_i \in \mathcal{X}_h^{(t+1)}} v_i d_\Phi(x_i, \mu_h^{(t+1)}) = L_\Phi(M^{(t)})
\]
Properties of hard clustering

- **Exhaustiveness**: the algorithm works for all Bregman divergences and only for Bregman divergences since the arithmetic mean is the best predictor only for Bregman divergences.

- **Linear Separators**: The locus of points that are equidistant to 2 fixed points μ_1, μ_2 in terms of a Bregman divergence is given by $\mathcal{X} = \{ x | d_\Phi (x, \mu_1) = d_\Phi (x, \mu_2) \}$, i.e., the set of points, $\{x | \langle x, \nabla \Phi (\mu_2) - \nabla \Phi (\mu_1) \rangle = (\Phi (\mu_1) - \Phi (\mu_2)) - (\langle \mu_1, \nabla \Phi (\mu_1) \rangle - \langle \mu_2, \nabla \Phi (\mu_2) \rangle)\}$

- **Scalability**: computational complexity of each iteration is linear in number of data points and number of desired cluster for all Bregman divergences.

- **Applicability to mixed data types**: One can choose different convex functions appropriate and meaningful for different subsets of the features. We can build a convex combination corresponding to Bregman divergence.
Consider a family \mathcal{F} of probability densities on a measurable space (Ω, \mathcal{B}) where \mathcal{B} is a σ-algebra on the set Ω. Suppose every probability density, $p_\theta \in \mathcal{F}$, is parameterized by d real-valued variables $\theta = \{\theta_j\}_{j=1}^d$ so that

$$\mathcal{F} = \{ p_\theta = f(\omega; \theta) \mid \omega \in \mathcal{B}, \theta \in \Gamma \subseteq \mathbb{R}^d \}.$$

Let $H : \mathcal{B} \mapsto \mathcal{G}$ transforms any RV $U : \mathcal{B} \mapsto \mathbb{R}$ to a RV $V : \mathcal{G} \mapsto \mathbb{R}$ with $V = H(U)$. Then given the probability density p_θ of U, H uniquely determines the probability density q_θ governing the RV V.

Definition (sufficient statistic)

If $\forall \omega \in \mathcal{B}$, $p_\theta(\omega)/q_\theta(\omega)$ exists and does not depend on θ, then H is called a sufficient statistic for the model \mathcal{F}.
Exponential families

Definition (exponential family, natural parameter)

If d-dimensional model $\mathcal{F} = \{p_\theta | \theta \in \Gamma\}$ can be expressed in terms of $(d + 1)$-real-valued linearly independent functions $\{C, H_1, \ldots, H_d\}$ on \mathcal{B} and a function Ψ on Γ as $f(\omega; \theta) = \exp \left\{ \sum_{j=1}^{d} \theta_j H_j(\omega) - \psi(\theta) + C(\omega) \right\}$, then \mathcal{F} is called an exponential family, and θ is called its natural parameter.

If $\exists x \in \mathbb{R}^d$ such that $x_j = H_j(\omega)$, then density function $g(x; \theta) = \exp \left\{ \sum_{j=1}^{d} \theta_j x_j - \psi(\theta) - \lambda(x) \right\}$ for a uniquely determined function $\lambda(x)$, is such that $f(\omega; \theta)/g(x; \theta)$ does not depend on θ. Thus x is sufficient statistic for the family.

Definition (exponential family, log-partition/cumulant function)

A multivariate parametric family \mathcal{F}_Ψ of distribution $\{p(\psi, \theta) | \theta \in \Gamma \subseteq \mathbb{R}^d\}$ is called an exponential family if the probability density is of the form: $p(\psi, \theta) = \exp (\langle x, \theta \rangle - \psi(\theta) - \lambda(x))$. The function $\psi(\theta)$ is known as log partition function or the cumulant function and it uniquely determines the exponential family \mathcal{F}_Ψ. Further, given \mathcal{F}_Ψ, ψ is uniquely determined up to a constant additive term. Amari [1995] showed Γ is a convex set in \mathbb{R}^d and ψ is a strictly convex and differentiable function on $\text{int}(\Gamma)$.
Consider a d-dimensional real RV \(X \) following an exponential family density \(p(\psi, \theta) \) specified by natural parameter \(\theta \in \Gamma \). The expectation of \(X \) with respect to \(p(\psi, \theta) \), also called the expectation parameter, is given by:

\[
\mu = \mu(\theta) = E_{p(\psi, \theta)}[X] = \int_{\mathbb{R}^d} x p(\psi, \theta)(x) dx.
\]

Amari [1995] showed that expectation and natural parameters have a one-one correspondence with each other and span spaces that exhibit a dual relationship.

Theorem (Rockafellar, 1970)

Let \(\Psi \) be a real-valued proper closed convex function with conjugate function \(\Psi^* \). Let \(\Theta = \text{int}(\text{dom}(\Psi)) \) and \(\Theta^* = \text{int}(\text{dom}(\Psi^*)) \). If \((\Theta, \Psi)\) is a convex function of Legendre type, then

1. \((\Theta^*, \Psi^*)\) is a convex function of Legendre type.
2. \((\Theta, \Psi)\) and \((\Theta^*, \Psi^*)\) are Legendre duals of each other,
3. The gradient function \(\nabla \Psi : \Theta \mapsto \Theta^* \) is a one-to-one function from the open convex set \(\Theta \) onto the open convex set \(\Theta^* \),
4. The gradient functions \(\nabla \Psi, \nabla \Psi^* \) are continuous, and \(\nabla \Psi^* = (\nabla \Psi)^{-1} \).
Differentiating $1 = \int p(\psi, \theta)(x)dx$ with respect to θ

$0 = \frac{\partial}{\partial \theta} \int \exp (\langle x, \theta \rangle - \psi(\theta) - \lambda(x)) \, dx = \int (x - \nabla \psi(\theta)) \, p(\psi, \theta)(x) \, dx$

$\Leftrightarrow \nabla \psi(\theta) \int p(\psi, \theta)(x) \, dx = \int xp(\psi, \theta)(x) \, dx$

$\Leftrightarrow \nabla \Psi(\theta) = \mu(\theta) = \mu$

Let Φ be defined as the conjugate of Ψ, i.e.,

$\Phi(\mu) = \sup_{\theta \in \Theta} \{ \langle \mu, \theta \rangle - \Psi(\theta) \}$.

Then $\Phi = \Psi^*$ and $\text{int}(\text{dom}(\Phi)) = \Theta^*$, thus by Legendre transformation:

$\mu(\theta) = \nabla \Psi(\theta)$ and $\theta(\mu) = \nabla \Phi(\mu)$,

$\Phi(\mu) = \langle \theta(\mu), \theta \rangle - \Psi(\theta(\mu))$, $\forall \mu \in \text{int}(\text{dom}(\Phi))$
Exponential Families and Bregman Divergences

\[
\log \left(p_{(\psi, \theta)}(x) \right) = \langle x, \theta \rangle - \psi(\theta) - \lambda(x) \\
= [\langle \mu, \theta \rangle - \psi(\theta)] - \lambda(x) + \langle x - \mu, \theta \rangle \\
= \Phi(\mu) + \langle x - \mu, \nabla \Phi(\mu) \rangle - \lambda(x) \\
= [\Phi(\mu) + \langle x - \mu, \nabla \Phi(\mu) \rangle - \Phi(x)] + \Phi(x) - \lambda(x) \\
= -d_\Phi(x, \mu(\theta)) + \Phi(x) - \lambda(x)
\]

Theorem (4. pdf expressed by Bregman Divergence)

Let \(p_{(\psi, \theta)} \) be the pdf of a regular exponential family distribution. Let \(\Phi \) be the conjugate function of \(\Psi \) so that \((\text{int} \ (\text{dom} (\Phi)), \Phi)\) is the Legendre dual of \((\Theta, \Psi)\). Let \(\theta \in \Theta \) be the natural parameter and \(\mu \in \text{int} \ (\text{dom} (\Phi)) \) be the corresponding expectation parameter. Let \(d_\Phi \) be the Bregman divergence derived from \(\Phi \). Then \(p_{(\psi, \theta)} \) can be uniquely expressed as \(p_{(\psi, \theta)}(x) = \exp \left(-d_\Phi(x, \mu) \right) b_\Phi(x), \forall x \in \text{dom} (\Phi) \), where \(b_\Phi: \text{dom} (\Phi) \mapsto \mathbb{R}_+ \) is a uniquely determined function.
Theorem (Devinatz, 1955)

Let $\Theta \in \mathbb{R}^d$ be an open convex set. A necessary and sufficient condition that there exists a unique, bounded, non-negative measure ν such that $f : \Theta \mapsto \mathbb{R}^{++}$ can be represented as $f(\theta) = \int_{x \in \mathbb{R}^d} \exp(\langle x, \theta \rangle) \, d\nu(x)$ is that f is continuous and exponentially convex.

Lemma 2. Let Ψ be the cumulant of an exponential family with base measure P_0 and natural parameter space $\Theta \in \mathbb{R}^d$. Then, if P_0 is concentrated on an affine subspace of \mathbb{R}^d, then Ψ is not strictly convex.

Theorem (Bijection)

There is a bijection between regular exponential families and regular Bregman divergences.
Examples

<table>
<thead>
<tr>
<th>Distribution</th>
<th>$p(x; \theta)$</th>
<th>μ</th>
<th>$\Phi(\mu)$</th>
<th>$d_\Phi(x, \mu)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-D Gaussian</td>
<td>$\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(x-a)^2}{2\sigma^2} \right]$</td>
<td>a</td>
<td>$\frac{1}{2\sigma^2} \mu^2$</td>
<td>$\frac{1}{2\sigma^2} (x - \mu)^2$</td>
</tr>
<tr>
<td>1-D Poisson</td>
<td>$\frac{1}{\sqrt{2\pi\sigma^2}} \lambda^x \exp (-\lambda)$</td>
<td>λ</td>
<td>$\mu \log \mu - \mu$</td>
<td>$x \log \frac{x}{\mu} - (x - \mu)$</td>
</tr>
<tr>
<td>1-D Bernoulli</td>
<td>$q^x (1 - q)^{1-x}$</td>
<td>q</td>
<td>$\mu \log \mu + (1 - \mu) \log (1 - \mu)$</td>
<td>$x \log \frac{x}{\mu} + (1 - x) \log \frac{1-x}{1-\mu}$</td>
</tr>
<tr>
<td>1-D Binomial</td>
<td>$\binom{N}{x} q^x (1 - q)^{N-x}$</td>
<td>Nq</td>
<td>$\mu \log \frac{\mu}{N} + (N - \mu) \log \frac{N-\mu}{N}$</td>
<td>$x \log \frac{x}{\mu} + (N - x) \log \frac{N-x}{N-\mu}$</td>
</tr>
<tr>
<td>1-D Exponential</td>
<td>$\lambda \exp (-\lambda x)$</td>
<td>$\frac{1}{\lambda}$</td>
<td>$-\log \mu - 1$</td>
<td>$\frac{x}{\mu} - \log \frac{x}{\mu} - 1$</td>
</tr>
<tr>
<td>d-D Sph. Gaussian</td>
<td>$\frac{1}{\sqrt{(2\pi\sigma^2)^d}} \exp \left[-\frac{|x-a|^2}{2\sigma^2} \right]$</td>
<td>a</td>
<td>$\frac{1}{2\sigma^2} |\mu|^2$</td>
<td>$\frac{1}{2\sigma^2} |x - \mu|^2$</td>
</tr>
<tr>
<td>d-D multinomial</td>
<td>$\frac{1}{\prod_{j=1}^k x_j!} \prod_{j=1}^d q_{x_j}^{x_j} \left[\binom{N}{x_j} \right]_{j=1}^{d-1}$</td>
<td>$\sum_{j=1}^d \mu_j \log \frac{\mu_j}{N}$</td>
<td>$\sum_{j=1}^d x_j \log \frac{x_j}{\mu_j}$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distribution</th>
<th>θ</th>
<th>$\Psi(\theta)$</th>
<th>$\text{dom}(\Psi)$</th>
<th>$\text{dom}(\Phi)$</th>
<th>h_Ψ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-D Gaussian</td>
<td>$\frac{a}{\sigma^2}$</td>
<td>$\frac{\sigma^2}{2} \theta^2$</td>
<td>\mathbb{R}</td>
<td>\mathbb{R}</td>
<td>\mathbb{R}</td>
</tr>
<tr>
<td>1-D Poisson</td>
<td>$\log \lambda$</td>
<td>$\exp \theta$</td>
<td>\mathbb{R}</td>
<td>\mathbb{R}_+</td>
<td>$[0, 1]$</td>
</tr>
<tr>
<td>1-D Bernoulli</td>
<td>$\log \frac{q}{1-q}$</td>
<td>$\log (1 + \exp \theta)$</td>
<td>\mathbb{R}</td>
<td>\mathbb{R}_+</td>
<td>${0, 1}$</td>
</tr>
<tr>
<td>1-D Binomial</td>
<td>$\log \frac{q}{1-q}$</td>
<td>$N \log (1 + \exp \theta)$</td>
<td>\mathbb{R}</td>
<td>\mathbb{R}_+</td>
<td>${0, 1, \ldots, N}$</td>
</tr>
<tr>
<td>1-D Exponential</td>
<td>$-\lambda$</td>
<td>$-\log (-\theta)$</td>
<td>\mathbb{R}_{--}</td>
<td>\mathbb{R}_{++}</td>
<td>\mathbb{R}_+</td>
</tr>
<tr>
<td>d-D Sph. Gaussian</td>
<td>$\frac{a}{\sigma^2}$</td>
<td>$\frac{\sigma^2}{2} |\theta|^2$</td>
<td>\mathbb{R}^d</td>
<td>\mathbb{R}^d</td>
<td>\mathbb{R}^d</td>
</tr>
<tr>
<td>d-D multinomial</td>
<td>$\left[\log \frac{q_j}{a_j} \right]_{j=1}^{d-1}$</td>
<td>$N \log \left(1 + \sum_{j=1}^{d-1} \exp \theta_j \right)$</td>
<td>\mathbb{R}^{d-1}</td>
<td>${ \mu \in \mathbb{R}_{++}^{d-1},</td>
<td>\mu</td>
</tr>
</tbody>
</table>
Example 9, spherical Gaussian distributions

\[p(x; a) = \frac{1}{\sqrt{(2\pi\sigma^2)^d}} \exp \left(-\frac{1}{2\sigma^2} \|x - a\|^2 \right) \]

\[= \frac{1}{\sqrt{(2\pi\sigma^2)^d}} \exp \left(\langle x, \frac{a}{\sigma^2} \rangle - \frac{\|a\|^2}{2\sigma^2} - \frac{x^2}{2\sigma^2} \right) \]

\[= \exp \left(\langle x, \theta \rangle - \frac{\sigma^2}{2} \|\theta\|^2 \right) \exp \left(-\frac{1}{2\sigma^2} \|x\|^2 \right) \frac{1}{\sqrt{(2\pi\sigma^2)^d}} \]

\[= \exp (\langle x, \theta \rangle - \Psi(\theta)) p_0(x) \]

\[\therefore \mu = \nabla \Psi(\theta) = \nabla \left(\frac{\sigma^2}{2} \|\theta\|^2 \right) = \theta \sigma^2 = a \]

\[\therefore \Phi(\mu) = \langle \mu, \theta \rangle - \Psi(\theta) = \langle \mu, \frac{\mu}{\sigma^2} \rangle - \frac{\sigma^2}{2} \|\theta\|^2 = \frac{\|\mu\|^2}{2\sigma^2} \]

\[\therefore d_\Phi(x, \mu) = \Phi(x) - \Phi(\mu) - \langle x - \mu, \nabla \Phi(\mu) \rangle = \frac{\|x - \mu\|^2}{2\sigma^2} \]

\[b_\Phi(x) = \exp(\Phi(x)) p_0(x) = \exp \left(\frac{\|x\|^2}{2\sigma^2} \right) \frac{1}{\sqrt{(2\pi\sigma^2)^d}} \exp \left(-\frac{\|x\|^2}{2\sigma^2} \right) = \frac{1}{\sqrt{(2\pi\sigma^2)^d}} \]

\[p(\psi, \theta)(x) = \exp(-d_\Phi(x, \mu)) b_\Phi(x) \]
Definition (Bregman Soft clustering problem)

as that of of learning the maximum likelihood parameters
\[\Gamma = \{ \theta_h, \pi_h \}_{h=1}^k \equiv \{ \mu_h, \pi_h \}_{h=1}^k \] of a mixture model of the form

\[p(x|\Gamma) = \sum_{h=1}^{k} \pi_h p_{(\psi, \theta_h)}(x) = \sum_{h=1}^{k} \pi_h \exp(-d_\Phi(x, \mu_h)) b_\Phi(x) \]

By assuming the mixture components from same family, it can be solved by EM algorithm.
EM example of coin flipping

Do and Batzoglou [2008]
Algorithm 2 EM for Mixture Density Estimation [18]

Input: Set $\mathcal{X} = \{x_i\}_{i=1}^n \subset S \subseteq \mathbb{R}^d$, num. of clusters k.

Output: \(\Theta^* \), local maximizer of

\[L_\mathcal{X}(\Theta) = \prod_{i=1}^n \left(\sum_{h=1}^k \pi_h p_h(x_i|\theta_h) \right) \]

where \(\Theta = \{\theta_h, \pi_h\}_{h=1}^k \), soft partitioning \(\{p(h|x_i)\}_{h=1}^k \).

Method:

Initialize \(\{\theta_h, \pi_h\}_{h=1}^k \) with some \(\theta_h \in S \),
\(\pi_h \geq 0 \), \(\sum_{h=1}^k \pi_h = 1 \)

repeat

\{The Expectation Step\}

for \(i = 1 \) to \(n \) do

for \(h = 1 \) to \(k \) do

\[p(h|x_i) \leftarrow \frac{\pi_h p_h(x_i|\theta_h)}{\sum_{h'=1}^k \pi_{h'} p_{h'}(x_i|\theta_{h'})} \]

end for

end for

\{The Maximization Step\}

for \(h = 1 \) to \(k \) do

\[\pi_h \leftarrow \frac{1}{n} \sum_{i=1}^n p(h|x_i) \]

\[\theta_h \leftarrow \arg \max_{\theta} \sum_{i=1}^n \log(p_h(x_i|\theta))p(h|x_i) \]

end for

until convergence

return \(\Theta^* = \{\theta_h, \pi_h\}_{h=1}^k \)

Algorithm 3 Bregman Soft Clustering

Input: Set \(\mathcal{X} = \{x_i\}_{i=1}^n \subset S \subseteq \mathbb{R}^d \), Bregman divergence \(D_\phi \), num. of clusters \(k \).

Output: \(\Theta^* \), local maximizer of

\[\prod_{i=1}^n \left(\sum_{h=1}^k \pi_h f_\phi(x_i) \exp(-D_\phi(x_i, \mu_h)) \right) \]

where \(\Theta = \{\mu_h, \pi_h\}_{h=1}^k \), soft partitioning \(\{p(h|x_i)\}_{h=1}^k \).

Method:

Initialize \(\{\mu_h, \pi_h\}_{h=1}^k \) with some \(\mu_h \in S \), \(\pi_h \geq 0 \), and \(\sum_{h=1}^k \pi_h = 1 \)

repeat

\{The Expectation Step\}

for \(i = 1 \) to \(n \) do

for \(h = 1 \) to \(k \) do

\[p(h|x_i) \leftarrow \frac{\pi_h \exp(-D_\phi(x_i, \mu_h))}{\sum_{h'=1}^k \pi_{h'} \exp(-D_\phi(x_i, \mu_{h'}))} \]

end for

end for

\{The Maximization Step\}

for \(h = 1 \) to \(k \) do

\[\pi_h \leftarrow \frac{1}{n} \sum_{i=1}^n p(h|x_i) \]

\[\mu_h \leftarrow \frac{\sum_{i=1}^n p(h|x_i) x_i}{\sum_{i=1}^n p(h|x_i)} \]

end for

until convergence

return \(\Theta^* = \{\mu_h, \pi_h\}_{h=1}^k \)
Geography faculty at the University of North Carolina like to point out that in 1986, those who graduated with a major in Geography had the highest average starting salaries in the class — $250,000. The punchline to this joke is that basketball legend, Michael Jordan, graduated from UNC with a major in Geography in 1986. In that particular dataset, Michael Jordan is clearly an outlier whose astronomical earnings skew the results and obscure the real market for geography majors. (Ref: http://www.forest2market.com/about/methodology/stumpage-price-database)

Definition (Robustness Check, Liu [2011])

Let \(\bar{x} \) be the true centroid of set \(X = \{ x_1, \ldots, x_n \} \). When \(\epsilon \% \) (\(\epsilon \) small) of outlier \(y \) is mixed into the set \(X \), then the estimation of the centroid would be influenced by the outliers, and denote the estimation as \(\hat{x} = \bar{x} + \epsilon z(y) \), where the \(z(y) \) is called the influence function. For ordinary Bregman divergence, \(z = y \), thus the breakdown point is 0\%.
Definition (Total Bregman divergence (TBD))

TBD\(\delta\) associated with a real valued strictly convex and differentiable function \(f\) defined on a convex set \(X\) between points \(x, y \in X\) is defined as,

\[
\delta_f (x, y) = \frac{f(x) - f(y) - \langle x - y, \nabla f(y) \rangle}{\sqrt{1 + \|\nabla f(y)\|^2}}
\]
Extensions: Symmetry

Definition (Symmetry Extension, Leonenko et al. [2008])

\[D_q(f, g) = \int_{\mathbb{R}^m} \left[g^q(x) + \frac{f^q(x)}{q - 1} - \frac{q}{q - 1} f(x) g^{q-1}(x) \right] dx \]

\[K_q(f, g) = \frac{1}{q} \left[D_q(f, g) + D_q(g, f) \right] \]

\[= \frac{1}{q - 1} \int_{\mathbb{R}^m} \left[f(x) - g(x) \right] \left[f^{q-1}(x) - g^{q-1}(x) \right] dx \]

Acknowledgements

Thanks to:
- Prof. Jacob Kogan, Math 710