Hwk 1 Solutions:

1. (This question was not graded. This proof is due to Geoffrey Clapp)

We will show that the \(n \) columns of \(B \) are linearly independent by contradiction. Assume not. That is, assume that \(\exists \{y_1, \ldots, y_n\} \) with at least one non-zero element, such that

\[
y_1b_1 + \cdots + y_nb_n = \vec{0},
\]

where \(B = [b_1, \ldots, b_n] \). This can be reexpressed as \(B\vec{y} \), where

\[
\vec{y} = \begin{bmatrix}
y_1 \\
\vdots \\
y_n
\end{bmatrix}.
\]

Now define \(A = [a_1, \ldots, a_n] \). By construction of \(B \), \(A^T A = B \). By substituting \(A^T A \) into \(B\vec{y} = \vec{0} \), we get \(A^T A\vec{y} = \vec{0} \). Also \(\vec{y}^T (A^T A)\vec{y} = \vec{y} \cdot (\vec{0}) = \vec{0} \). If we reposition parentheses we get

\[
(\vec{y}^T A^T) (A\vec{y}) = (A\vec{y})^T (A\vec{y}) = \vec{0}.
\]

Anything multiplied by its transpose can only be zero if it is zero itself. Therefore, \(A\vec{y} = \vec{0} \). But this contradicts that \(\{a_1, \ldots, a_n\} \) are linearly independent since \(A\vec{y} = \vec{0} \) implies

\[
y_1a_1 + y_2a_2 + \cdots + y_na_n = 0.
\]

Therefore the \(n \) columns of \(B \) are linearly independent, and we know that \(B \) is a square matrix, so \(\det B \neq 0 \).

2. write \(A = [A_{11}] \), block form with just one block \(A_{11} = A \). Write

\[
B = [B_{11}, B_{12}, \ldots, B_{1k}]
\]

where the (1, j)-block is \(B_{1j} = b_j \). Then according to the block multiplication rules on pg. 111, the (i, j)-block is

\[
A_{11}B_{1j} = A_{11}b_j.
\]

Therefore

\[
AB = [Ab_1, \ldots, Ab_k].
\]

3. True. Linear independence of \(a_1, \ldots, a_m \) implies that \(Av \neq 0 \), for all \(v \neq 0 \). Suppose that \(\{Ab_1, \ldots, Ab_n\} \) is not linearly independent. Then there must exists \(n \) scalars \(c_1, \ldots, c_n \) not all zero such that

\[
c_1Ab_1 + \cdots + c_nAb_n = 0.
\]

But this equals

\[
A(c_1b_1) + \cdots + A(c_n b_n)
\]

1
\[A(c_1b_1 + \cdots + c_nb_n) \Rightarrow c_1b_1 + \cdots + c_nb_n = 0. \]

But this is not possible since \(\{b_1, \ldots, b_n\} \) are linearly independent.

4. Suppose that the \(a_i \)'s are \(n \times 1 \) column vectors. Block decompose \(A \) as \([a_1, \ldots, a_m] \) where each \(a_i \) is a \(n \times 1 \) block. Similarly block decompose \(A^T \) as

\[
\begin{bmatrix}
 a_1^T \\
 \vdots \\
 a_m^T
\end{bmatrix}.
\]

Then according to block matrix multiplication \(AA^T = \)

\[
[a_1, \ldots, a_m] \begin{bmatrix}
 a_1^T \\
 \vdots \\
 a_m^T
\end{bmatrix} = a_1a_1^T + \cdots + a_na_n^T.
\]

5. \(E_2 = \begin{bmatrix} 1 & 0 \\ 0 & \alpha \end{bmatrix}, \quad E_2A = \begin{bmatrix} a_{11} & a_{12} \\ \alpha a_{11} & \alpha a_{12} \end{bmatrix}, \)

\(E_3 = \begin{bmatrix} 1 & 0 \\ -\alpha & 1 \end{bmatrix}, \quad E_3A = \begin{bmatrix} a_{11} & a_{12} \\ (1-\alpha)a_{11} & (1-\alpha)a_{12} \end{bmatrix}. \)

6. Assume \(A = [a_{ij}] \) is an \(m \times n \) matrix and \(B = [b_{ij}] \) is an \(n \times m \) matrix.

\[
\text{tr}(AB) = \sum_{k=1}^m \left(\sum_{l=1}^n a_{kl}b_{lk} \right).
\]

And

\[
\text{tr}(BA) = \sum_{k=1}^n \left(\sum_{l=1}^m b_{kl}a_{lk} \right) = \sum_{k=1}^n \left(\sum_{l=1}^m a_{lk}b_{kl} \right).
\]

where in the last step we just switched the order of summation. Now just relabel \(k \) as \(l \), and \(l \) as \(k \).

7. True. Assume that \(\{x_1, \ldots, x_n\} \) is linearly dependent. Then there exist \(c_1, \ldots, c_n \) not all zero such that \(c_1x_1 + \cdots + c_nx_n = 0 \). Then

\[
0 = A(c_1x_1 + \cdots + c_nx_n) = c_1Ax_1 + \cdots + c_nAx_n = c_1y_1 + \cdots + c_ny_n.
\]
But the c_i's are not all zero and this contradicts the linear independence of the y_i's. Therefore $\{x_1, \ldots, x_n\}$ is a linearly independent set.

8. False. Here is one counterexample. Let

$$x_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad x_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

Clearly x_1 and x_2 are linearly independent. If $X = [x_1, x_2]$, then

$$X X^T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Clearly this matrix is singular.