1. Compound Interest.

\[A = P \left(1 + \frac{r}{k}\right)^{txk} = P(1 + \hat{i})^{txk} = P(1 + \hat{i})^n. \]

- \(A \)–return after \(t \) years
- \(P \)–principal
- \(r \)–interest rate
- \(\hat{i} \left(=\frac{r}{k}\right) \)–interest rate per compounding period
- \(t \)–number of years
- \(k \)–number of times per year the interest is compounded
- \(n \left(= t \times k\right) \)–number of compounding periods

2. Saving Plan.

\[A = d \left[\frac{(1 + \hat{i})^n - 1}{\hat{i}}\right]. \]

- \(d \)–deposit
- \(\hat{i}, n \) as above

3. Inflation and Present Value.

\[A = P(1 + r)^n, \text{ present value of a dollar } n \text{ years from now is } \left(1 - \frac{r}{1 + r}\right)^n. \]

- \(r \)–annual inflation rate
- \(P \)–price of an item today
- \(A \)–price of the item \(n \) years later.

4. Depreciation.

\[A = P(1 + i)^n. \]

- \(A \)–value \(n \) years later
- \(P \)–price of an item today
- \(i \)–annual depreciation rate.