Question 01: Compute and explain $2 + 4 + \ldots + 198 + 200 = \underline{10100}$

Solution: The sum is based on an arithmetic sequence where

\[S_n = \frac{n}{2} (a_1 + a_n) \]

Where
- \(S_n \) = Sum of Series
- \(n \) = number of terms
- \(a_1 \) = first term in series
- \(a_n \) = last term in series

Now \(n \) can be calculated using

\[a_n = a_1 + (n-1)d \]

Where \(d \) = difference between consecutive terms.

\[200 = 2 + (n-1)2 \]

\[n = 100 \]

Therefore

\[S_n = \frac{100}{2} (2+200) = 10100 \]

Question 02: Find the return \(A \) for the deposit \(P = $1000 \) invested for one year at 5\% compounded quarterly?

Solution:

\[A = P(1 + i)^n \]

\[= 1000 (1 + 0.05)^4 \]

\[= 1050.945 \]

Question 03: Suppose you deposit $10 at the end of each month into a saving account that pays 3\% interest compounded monthly. Find the amount \(A \) that will be in the account after 10 years?
Solution

\[A = \frac{a \left(\frac{(1+i)^n - 1}{i} \right)}{12} \]

\[= \frac{10 \left[(1 + 0.03 \cdot 12)^2 - 1 \right]}{(0.03 \cdot 12)} \]

\[A = 12,664 \]

Question 4: If a new car costs $20,000 and loses value at the rate of 10% per year, what is its value after 5 years?

Solution

\[A = P(1 - r)^n \]

\[= 20,000(1 - 0.10)^5 \]

\[= 11,809.8 \]

Value after 5 yrs = 11,809.8

Question 5: A small bucket of fresh roses will cost $8.95 on February 22, 2011 (a year from now). If the next year inflation rate is 5%, what is a fair value of the bucket on February 22, 2010 (today)?

Solution: Let \(A \) be present cost after a year.

\(P \) be present cost (today).

\(r \) be inflation rate.

\(n \) be time period.

Then

\[A = P(1+r)^n \]

\[8.95 = P(1+0.05)^1 \]

\[p = \frac{8.95}{1.05} = 8.52 \]

Fair value \(V \) of bucket = $8.52