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Independence and simple random experiment

A. N. Kolmogorov wrote (1933, Foundations of the Theory of Probability):

”The concept of mutual independence of two or more experiments holds,
in a certain sense, a central position in the theory of Probability.”

P(AB) = P(A)P(B) (1)

1. Let us consider the following simple random experiment: first we flip a
fair coin and then we toss a fair die. Our sample space consists of 12
outcomes each having a probability of 1/12. This experiment is used in
many textbooks as an illustration of the concept of independent events.

Question 1. How many different pairs (A,B) of independent events are
there ?
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Answer

And the answer is

K1 = 888, 888

Of course, most of these pairs and tuples are isomorphic and can be
obtained in a small number of different ways or patterns.

888, 888 = 4 ∗ n1 + 2 ∗ n2 + 2 ∗ n3 + n4, n1 = 12!/(1!2!3!4!),

n2 = 12!/(1!1!5!5!), n3 = 12!/(2!2!4!4!), n4 = 12!/(3!3!3!3!).

Let us suppose now that a coin and a die are slightly biased. Then, it is
easy to check that for almost all biased coins and dice the number K1 is
reduced to the more ”normal” looking number
124 = (22 − 2) · (26 − 2) = 2 · 62.

In all cases we count only proper pairs (A,B), that is when none of the
sets is the empty set or the whole sample space.

What is the difference between these two groups of events ?
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Not all pairs of independent events are created equal

These 124 pairs are ”stable”, i.e. they are not affected by the changes in
probabilities for coin and die, the probabilities of ”random generators ”,
(RGs).

For a fair die and a fair coin the overwhelming majority (99.99%) of
independent pairs are ” unstable ”, i.e. they disappear no matter how
small the bias is.

This seems to suggest that not all pairs of independent events are created
equal.

The sample space, with 12 equally likely points can be represented also as
a product of 3-die (a die with three sides) and 4-die, or as a product of
two coins and a 3-die. The the number of stable pairs will be even smaller,
(23 − 2) · (24 − 2) = 84 and 2 · 2 · (23 − 2) = 24.
And, of course, all independent pairs may disappear if we change, ever
slightly, the probabilities of 12 outcomes in the sample space.

...i.e. we have to consider stability with respect to RGs.
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More Problems

2. Let us recall the famous example of S. Bernstein, or any other
equivalent example, about tetrahedron with four symmetric sides of
different colors (G ,B,R, (GBR)), producing three events A,B, and C ,
such that they are dependent but pairwise independent. Do ”real”
tetrahedrons of such kind exist ?

No ! This example is strongly unstable !

Theorem. There is no partial independence.
...i.e. always unstable. This Theorem confirms what Feller said in his
famous book, after the definition of independence. ” There is no practical
cases of indep. events which are pairwise indep. but not indep.”

3. Every finite sample space is either indecomposable or can be
represented as the direct product of indecomposable sample spaces. Is
such a decomposition unique ? No !

Example 1. Let N = 6 and the probability mass function is given as
follows: {1, 2, 4, 8, 16, 32} ∗ 1

63 . Then it has two distinct representation as
a product of a coin and a die with three sides. Open problem:...

Example 2. Let N = 5 and the probability mass function is given as
follows: {1, 2, 3, 3, 3} ∗ 1

12 . Five signals from outer space. Are they from
one, or two or three sources ? Hints: Open Problems:...
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Kolmogorov again

Another citation from A. N. Kolmogorov (1933) at the end of a subsection
on independence, which gives a hint that Kolmogorov may have foreseen
the subtle difference between the formal definition of independence and its
more ”physical ” interpretation :

”In consequence, one of the most important problems in the philosophy of
the natural sciences is - in addition to the well-known one regarding the
essence of the concept of probability itself - to make precise the premises
which would make it possible to regard any given real events as
independent. This question, however, is beyond the scope of this book. ”

Italics my.

Kolmogorov A.N., 1956. Foundations of the Theory of Probability.
NY, Chelsea Publ. Company. (appeared in 1933)

(Isaac M. Sonin, Independent Events in a Simple Random Experiment and
the Meaning of Independence, 2006, 2012, arXiv:1204.6731).
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Markov Chains

The classical Kolmogorov-Doeblin results describing the asymptotic
behavior of MCs can be found in most advanced books on probability
theory.
According to these results the state space S can be decomposed into the
set of nonessential states and the classes of essential communicating
states. Furthermore, the following are true:

(A) With probability one, each trajectory of a MC Z from U0 will reach
one of these classes and never leave it.
Each class can be decomposed into cyclical subclasses. If the number of
subclasses is equal to one (an aperiodic class), then

(B) every MC Z from U0 has a mixing property inside such a class, i.e.
there exists a limit distribution π which does not depend on the initial
distribution µ and such that π is invariant with respect to the matrix P.

What is a nonhomogeneous MC ? Replace matrix P by a sequence (Pn).
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Decomposition-Separation Theorem

A pair M = (S ,P), where S is a state space and P is a stochastic matrix
is called a Markov model. (Zn) Markov chain (MC). Classical
Kolmogorov-Doeblin decomposition of S into ...

The ”natural” question is: what happens with this theory and with this
decomposition if we replace a stochastic matrix P by a sequence of
stochastic matrices (Pn) ?

There are no assumptions about the sequence (Pn) !

The answer is given by the Decomposition-Separation (DS) Theorem.

Kolmogoroff A. N. (1936), Blackwell D. (1945), Cohn H. (...,1976, 1989),

Sonin I. (1987, 1996, 2008 IMS, v.4.)
The Decomposition-Separation Theorem for Finite Nonhomogeneous
Markov Chains and Related Problems, IMS Collections, Markov Processes
and Related Topics: A Festschrift for Thomas G. Kurtz Vol. 4 (2008),
1-15. 9 / 30



Nonhomogeneous Markov Chains as Colored Flows

The following simple physical model and physical interpretation of the DS
Theorem was introduced by I. Sonin in..1987. Given a sequence (Mn), let
Mn represent a set of “cups” containing a “liquid ” - tea, schnapps, vodka
etc. A cup i ∈ Mn is characterized at moment n by a volume of liquid in
this cup, mn(i). The matrix Pn describes the redistribution of liquid from
the cups Mn to the (initially empty) cups Mn+1 at the time of the n-th
transition, i.e. pn(i , j) is the proportion of liquid transferred from cup i to
cup j . The sequence (mn),mn = (mn(i), i ∈ Mn), n ∈ N, satisfies the
relations

mn+1 = mnPn,m3 = m0P0P1P2, (2)

where mn is a stochastic row vector. Let us assume additionally that each
cup contains some material (substance, color) and let us denote
αn(i), 0 ≤ α ≤ 1, a ”concentration” of this material at cup i at moment
n. The sequence (mn, αn) = (mn(i), αn(i)), i ∈ Mn, n ∈ N), for the sake of
brevity is called (discrete) colored flow.
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Concentrations are Martingales in Reverse Time

Concentrations obviously satisfy the relations

αn+1(j) =
∑
i

mn(i)αn(i)pn(i , j)/mn+1(j). (3)

Note that we can replace the notion of concentration by temperature
since it follows the same formula. One more interpretation...
A random sequence (Yn) specified by

Yn = αn(Zn), n ∈ N, (4)

where αn(i) s’ are given by ..., is a (sub)martingale in reverse time. This
simple fact is the bridge between the DS theorem and the Theorem about
the existence of barriers.
One of the most remarkable and widely used results in the theory of
stochastic processes is the theorem of Doob about the existence of the
limits of trajectories of bounded (sub)martingale when time tends to
infinity. This theorem is based on Doob’s upcrossing lemma.
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Doob’s Lemma and its modification

Doob’s upcrossing lemma. If Y = (Yn) is a bounded (sub)martingale
then the expected number of intersections of every fixed interval a, b) by
the trajectories of Y is finite on the infinite time interval.
The width of the interval (b − a) is in the denominator of the
corresponding estimate so Doob’s lemma does not imply for example that
inside the interval there exists alevel such that the expected number of
intersections of this level is finite.
If (Yn) takes values in (Mn), then Doob’s lemma can be substantially
strengthened. Let us call a nonrandom sequence (dn) a barrier for the
random sequence Y = (Yn) if the expected number of intersections of
(dn) by the trajectories of X is finite, i.e...
Theorem in Sonin (1987) about the existence of barriers for processes with
finite variation and which take only a bounded number of values implies
the Separation part of the DS Theorem.
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DS Theorem. The elementary (deterministic) formulation

Let a sequence of disjoint sets (Mn), satisfying condition |Mn| ≤ N and
a sequence of stochastic matrices (Pn) be given. Then there an integer
c , 1 ≤ c ≤ N, and there exists a decomposition of the sequence (Mn)
into disjoint jets J0, J1, ..., Jc , Jk = (Jkn ), such that for any colored flow
(mn, αn,On)
(a) the stabilization of volume and concentration take place inside of any
jet Jk , k = 1, ..., c ,
i.e. limn→∞

∑
i∈Jkn m(i) = mk

∗ ; limn→∞ α(in) = αk
∗ , in ∈ Jkn ;

the concentration in jet J0 may oscillate; the total volume in this jet
tends to zero, i.e. limn→∞

∑
i∈J0n m(i) = 0;

(b) the total amount of liquid transferred between any two different jets is
finite on the infinite time interval, i.e. V (Jk , Js |m) <∞, s 6= k .
(c) this decomposition is unique up to jets (Jn) such that for any flow
(mn) the relation limn mn(Jn) = 0 holds and the total amount of liquid
transferred between (Jn) and (Mn\Jn) is finite.
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Consensus. Terms

Consensus Algorithms and the Decomposition-Separation Theorem,
Sadegh Bolouki and Roland P. Malhame, IEEE Transactions on Automatic
Control, vol. 61, no. 9, September 2016.
A multi-agent system, in the most general sense, is a network of multiple
interacting agents. Each agent is assumed to hold a state regarding a
certain quantity of interest. Depending on the context, states may be
referred to as opinions, values, beliefs, positions, velocities, etc. States of
agents are updated based on an algorithm or protocol which is an
interaction rule specifying the interaction between each agent and its
neighbors. Global consensus, or simply consensus, in the system is defined
as convergence of all states to a common value over time. Among all
update algorithms in multi-agent systems, distributed averaging algorithms
are of great importance and have been discussed the most in the literature.
Such algorithms impose that the state of each agent is updated according
to a convex combination of the current states of its neighbors and its own.

Cucker & S Smale (2007) positions, velocities, nonlinear interaction phase
transitions. 14 / 30



Consensus. More areas of application

In biology - behavior of bird flocks, fish schools, humans etc

In robotics and control, consensus problems arise in relation to
coordination objectives and cooperation of mobile agents (e.g.,robots and
sensors)

In economics, seeking an agreement on a common belief in a price system
is another example of consensus. Gas prices in Ch-te

In sociology, the emergence of a common language in primitive societies
In social networks, consensus algorithms can shed light on the dynamics of
opinion formation.

In computer science - networks; management science
In a multi-agent system, it is possible that agents separate into several
clusters such that consensus occurs within each cluster. In this case,
multiple consensus is said to have occurred.

Gossip algorithms. In a gossip models the frequency of information
exchange is controlled by an internal clock ticking according to a timing
model. In each step, each agent transmits its information (state) to
another agent which is chosen randomly.
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Consensus. Questions

Consider a system composed of N agents that are labeled by numbers
1, ...,N. Let fn(i) be the scalar state of agent i at time n. Distributed
averaging algorithms can be defined in both continuous and discrete
times. A general discrete time averaging algorithm is defined by

fn+1 = Pnfn, f3 = P2P1P0f0, (5)

where fn is the column vector of states at each time instant n. Consensus
is now defined by the convergence of vector fn to a vector with equal
components as n.... Multiple consensus is also defined as the existence of
a limit for fn(i) for each agent i as time grows large. The limits may differ
for different agents.
The following two fundamental questions regarding the issue of consensus:
Q 1. Under what conditions on the underlying chain of the system,
consensus or multiple consensus is guaranteed irrespective of the time and
values that states are initialized ?
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Consensus. Questions

Q 2. For a general underlying chain, having fixed the initial time, what is
the set of initial conditions resulting in the occurrence of consensus in the
system ?

Q 1 is equivalent to a property of the underlying chain called ergodicity.
multiple consensus is equivalent to another property of underlying chain
called class-ergodicity. Chain is class-ergodic if the limit matrix exists, but
in general possibly with distinct rows.

Q 3. the question arises as to whether it is possible, for a limited number
of key agents, to set their initial opinion/parameter assessment, in such a
way that the (exogenously evolving) network converges to a global
consensus.
Such an issue is important in negotiations, or even the possible shaping or
manipulation of public opinion by clever campaigning. notion of minence
grise coalition. Gray Cardinals.

For which MCs the consensus occurs ? It depends.
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MC Tree Theorem

Let S be a finite set and P be a stochastic irreducible matrix. Let T be a
spanning tree directed to y . This means that T is a connected graph
without cycles (tree), contains all the vertices of S (spanning), and that a
vertex y is designated as a root. In any rooted tree with a root y there is a
unique path between any vertex v and y ”directed” to y , and this
direction makes the tree a tree directed to y . Denote G (y) the set of all
spanning trees on S directed to y . Let us define

q(y) =
∑

T∈G(y)

r(T ), where r(T ) =
∏

(u,v)∈T

p(u, v). (6)

Then

π(x) =
q(x)∑
y∈S q(y)

, (7)

Vector q = (q(y), y ∈ S) is called the Rooted Spanning Tree (RST) vector.

In the classical theorems of G. Kirchhoff (1847, undirected graphs) and W.
Tutte (1948, directed graphs) RST vector with p(u, v) = 1 gives a number
of spanning trees and is calculated as a determinant of so called Laplacian
Matrix. 18 / 30



Elimination - a key operation in MC
An important and traditional tool for the study of Markov chains (MCs) is
the notion of a Censored (Embedded) MC.
Let us assume that a Markov model M = (S ,P) is given and D ⊂ S ,
C = S \ D. Then the matrix P = {p(x , y)} can be decomposed as follows

P =

[
Q T
R P0

]
, (8)

where the substochastic matrix Q describes the transitions inside of D,P0

describes the transitions inside of C and so on.
Let (Zn) be a MC defined in model M, and observed only in the set C .
Formally : consider the sequence of Markov times τ0, τ1, ..., τn, ..., where
τ0 = 0, and τn, n ≥ 1 are the times of first, and so on, return of the MC
(Zn) to the set C , i.e., τn+1 = min{k > τn,Zk ∈ C},
Yn = Zτn , n = 0, 1, 2, ....
The strong Markov property and standard probabilistic reasoning imply the
following basic lemma which should probably be credited to Kolmogorov
and Doeblin.
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Basic Lemma (Kolmogorov, Doeblin)

Elimination Lemma. (a) The random sequence
(Yn),Yn = Zτn , n = 0, 1, 2, ... is a Markov chain in a model
MD = (S ,PD), (or in MD = (C ,PD)) where
(b) the transition matrix PD = {pD(x , y), x , y ∈ S} is given by the
formula

PD =

[
0 NT
0 P0 + RNT

]
. (9)

Here U = NT is the matrix of the distribution of the MC at the time of
the first return (visit) to C starting from x ∈ D, N = N(D) is the
fundamental matrix for the substochastic matrix Q, i.e.
N =

∑∞
n=0Q

n = (I − Q)−1, where I is the identity matrix. This
representation is given, for example, in the classical text Kemeny & Snell.
The matrix N = N(D) = {n(x , y), x , y ∈ D} has a well-known
probabilistic interpretation, n(x , y) is the expected number of visits to y
starting from x until the time τ1 of the first return to set C .
Let us mention also, that there is an Insertion Lemma, when any state,
eliminated previously, can be restored (inserted) in one iteration. This is a
new operation in the theory of MCs !
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Elimination continues

The rows of matrix PD = P0 + RNT give the distribution of MC (Zn) at
the time τ1 and Px(Zτ1 = y) = pD(x , y), x ∈ S , y ∈ C .
For x ∈ D, distribution is given by submatrix P0 + RNT .

An important case is when the set D consists of one nonabsorbing point z .
In this case formula (9) is replaced by the one-state elimination formula,
written here for columns, (P ≡ P1,P{z} = P2),

p2(·, z) = 0, p2(·, y) = p1(·, y) + p1(·, z)n1(z)p1(z , y), y 6= z , (10)

where
n1(z) =

∑∞
n=0 p

n
1(z , z) = 1/s1(z), s1(z) = 1− p1(z , z) =

∑
u 6=z p1(z , u).

This transformation (written for rows) is similar to one step of Gaussian
elimination and requires O(n2) operations. We say that matrix P2 is
obtained from P1 in one iteration. Thus matrix PD can be calculated
directly by (9) or recursively using formula (10) in |D| iterations.
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Optimal Stopping (OS) of Markov Chains (MCs)

Optimal stopping of stochastic processes...Options pricing for American
options. Not many general results...Snell’s Envelope

T. Ferguson: ”Most problems of optimal stopping without some form of
Markovian structure are essentially untractable.”

OS Model M = (X ,P, c, g , β), discrete time

X finite (countable) state space,

P = {p(x , y)}, stochastic (transition) matrix

c(x) one step cost function,

g(x) terminal reward function,

β discount factor,0 ≤ β ≤ 1

(Zn) MC from a family of MCs defined by a Markov Model
M = (X ,P)

v(x) = supτ≥0 Ex [
∑τ−1

i=0 β
ic(Zi ) + βτg(Zτ )], value function
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Description of OS Continues

Remark ! absorbing state e, p(e, e) = 1,

p(x , y) −→ βp(x , y), p(x , e) = 1− β. Standard trick

β −→ β(x) = Px(Z1 6= e) probability of ”survival”.

S = {x : g(x) = v(x)} optimal stopping set.

Pf = Pf (x) =
∑

y p(x , y)f (y).

Theorem (Shiryayev 1969)

(a) The value function v(x) is the minimal solution of Bellman equation ...

v = max(g , c + Pv),

(b) if state space X is finite then set S is not empty and
τ0 = min{n ≥ 0 : Zn ∈ S} is an optimal stopping time. ...
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State Elimination Algorithm for OS of MCs

Initial model M1 = (X1,P1, c1(x), g(x), β1(x)), g without subindex

g(x)− (P1g(x) + c1(x)) = g − T1g
↙ ↘

g(x)− T1g(x) ≥ 0 for all x there is z : g(z)− T1g(z) < 0
⇓ ⇓

X1 = S M1 −→ M2 : g(x)− T2g(x)
↙ ↘

... and so on

p2(x , y) = p1(x , y) + p1(x , z)n1(z)p1(z , y),

c2(x) = c1(x) + p1(x , z)n1(z)c1(z),

where n1(z) = 1/(1− p1(z , z)). Similar Matrix formulas P2 = P1 + ...
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Recursive Calculation of RST vectors

The algorithm to calculate the Rooted Spanning Tree vector q(y) is an
immediate corollary of the following fundamental theorem, generalized into
Idempotent Calculus framework in GKMS 2015.
Theorem (1999, 2015, 2017) Let M1 = (S1,P1) be a (finite irreducible
Markov) model, z ∈ S1, and let M2 = (S2,P2), be a model obtained by of
state z , i.e., S2 = S1 \ z , and Pi , i = 1, 2 are defined as above. Let
(qi (y), y ∈ Si ), i = 1, 2 be RST vectors calculated by formula (6) for both
models, i.e.

q1(y) =
∑

T ′∈G1(y)

∏
(u,v)∈T ′

p1(u, v), q2(y) =
∑

T∈G2(y)

∏
(u,v)∈T

p2(u, v).

Then

q1(y) = s1(z)q2(y), y 6= z , q1(z) =
∑
y∈S2

q2(y)p1(y , z),

where s1(z) =
∑

v 6=z p1(z , v), not s1(z) = 1− p1(z , z) anymore.
But now in this theorem pi (u, v), i = 1, 2 are just elements, (symbols,
variables), that can be added, multiplied and divided, and we can consider
Ri (T ) =

∏
pi (u, v) as generating functions on a trees ! 25 / 30



Probabiliy Theory and Mathematics

This extension of MCs Theory into Idempotent Calculus framework
confirms a remarkable foreseeing of A.N. Kolmogorov, who wrote in almost
unknown paper in 1926 written for a volume addressed to a general public.

Probability theory has become a topic of interest in modern mathematics
not only because of its growing significance in natural sciences, but also
because of the gradually emerging deep connections of this theory with
many problems in various fields of pure mathematics. It seems that the
formulas of probability calculus express one of the fundamental groups of
general mathematical laws.

A. N. Kolmogorov

His words seem even more remarkable, if a reader recalls that in 1926 A.N.
Kolmogorov was only 23 years old, his fundamental treaties was not
written yet and it was only the third year when he became interested in
Probability Theory.
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Rutgers University, 3rd Applied Probability Conference, June 2014:
Sheldon Ross, Isaac Sonin, John Gittins, Michael Katehakis
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Algorithms based on Censored MCs

A short list of areas with algorithms based on Censored MCs:

Optimal Stopping of Markov Chains (MCs)

Optimal Stopping of Random Sequences Modulated by a MC

Gittins index and Generalized GI. Abstract Optimization

GTH/S (Grassman, Taksar, Heiman/Sheskin) algorithm to calculate
the invariant distribution for ergodic MC

Invariant in Islands and Ports model

Continue, Quit, Restart model

MC Tree Theorem.

The references can be found on my website, type in Google Isaac Sonin

Thank you for your attention !
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