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We present a methodology for screening predictors that, given the response, follow a one-parameter expo-
nential family distributions. Screening predictors can be an important step in regressions when the number
of predictors p is excessively large or larger than n the number of observations. We consider instances
where a large number of predictors are suspected irrelevant for having no information about the response.
The proposed methodology helps remove these irrelevant predictors while capturing those linearly or
nonlinearly related to the response.

Keywords: variable screening; inverse regression; sufficient dimension reduction; high dimensionality

1. Introduction

We consider a regression context with a response variable Y and a set of p predictors X =
(X1, . . . , Xp)

T. We propose a new method for variable screening in a high-dimensional predictors’
space. It is the first screening methodology for predictors that, given the response, follow one-
parameter exponential family distribution. The need for this methodology arises as scientists are
routinely formulating regressions for which the number of predictors p is large and often larger
than the number of observations n. This occurs in research fields including biology, finance, and
chemometrics, etc. In genomics, for example, with DNA sequencing technology, information
on tens of thousands of single nucleotide polymorphisms (SNPs) (categorical predictors) can be
obtained with only a few hundreds of subjects. Dealing with data sets with p � n in forward
regressions is a challenge often referred to as ‘large p small n problems’. It is often observed
that among the large set of predictors, a sizable number is irrelevant in explaining the response.
These inactive predictors are to be screened out to reduce the excessively large data set with a
minimal loss of regression information.

A number of variable screening methods have been developed recently. The sure indepen-
dent screening (SIS) of Fan and Lv [9] and the forward regression screening of Wang [17] both
assume a linear regression model of Y | X to select the most important variables. These are
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2 K.P. Adragni

mostly a correlation screening based on the strength of the marginal linear relationship between
individual predictors and the outcome. The idea of sure independence screening was extended to
exponential family response Y by Fan and Song [10] where a generalized linear model was used
in selecting the most active variables. When the marginal relationship between the predictors and
the response is nonlinear, correlation screening often performs poorly. Because of that, Fan et al.
[8] proposed a nonparametric independence screening in sparse ultra-high dimensional additive
models where splines on the predictors were used to help capture the active ones, and Zhu et al.
[18] developed a model-free approach where both X and Y are random.

Our approach is different from those mentioned above as we consider an inverse regression of
X | Y to determine the active predictors. It has been observed that in most high-dimensional data,
the predictors are random and not fixed by design, as well as the response. There is no compelling
reason not to consider the regression of X | Y as long as it does not contradict the sampling
scheme used to collect the data. With recent development of sufficient dimension methodologies,
inverse regression become viable methods to help deal with high-dimensional data. A reduction
ζ TX, ζ ∈ R

p×d , d ≤ p is sufficient if Y ⊥⊥ X|ζ TX, that is ζ TX retains all regression information
about Y contained in X. The symbol ⊥⊥ stands for statistical independence. Our screening method
is based on a class of likelihood-based inverse regression methods called principal fitted com-
ponents (PFC) pioneered by Cook [5] and further developed by Cook and Forzani [6] and Cook
and Li [7] for sufficient dimension reduction. These methodologies utilize basis functions to help
capture any arbitrary relationship between the predictors and the response. The basis functions
can be splines obtained using the response observations and they equip the PFC models with ver-
satility to adapt to a range of relationships between the predictors and the response. The relevance
of each predictor is determined by a test statistic.

In the remainder of the article, we present the development of the screening procedure for
exponential family predictors in Section 2. We show a connection between our method and
existing methods in Section 3, and provide a set of simulations in Section 4 where an appli-
cation to a data set is also featured. We finally provide some existing theoretical results about the
consistency of the test, followed by a discussion in Section 6.

2. Variable screening with generalized PFC

Let Xjy, j = 1, . . . , p denote the random variable distributed as Xj | (Y = y). We assume that the
conditional predictors Xjy follows a one-parameter exponential model of the form

gj(x | Y = y, ηjy) = exp{ηjyx − B(ηjy)}H(x). (1)

We assume that ηjy, the natural parameters, is a function of y and suppose that ηjy = η̄ + γ Tνy.
Let η̄ = E(ηy) with ηy = (η1y, . . . , ηpy)

T, and let S� = span{ηy − η̄|y ∈ SY }, where SY is the sam-
ple space of Y . The term � ∈ R

p×d is a semi-orthogonal matrix whose columns form a basis for
the d dimensional subspace S� . The vector of natural parameters can be written as

ηy = η̄ + �νy, (2)

where νy is an unknown function of y. However, once y is observed, νy can be modeled and
assumed to be νy = β{fy − f̄}, where β ∈ R

d×r is an unrestricted rank d matrix, fy ∈ R
r is a

known user-selected function of y with linearly independent elements, and f̄ is the sample mean
of fyi , i = 1, . . . , n. We will refer to fy as a basis function. The vector of natural parameters
becomes

ηy = μ+ �βfy, (3)
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Journal of Applied Statistics 3

with μ = η̄ + �β f̄. This model is referred to as the generalized PFCs model. The dependency
between the predictors and the response is captured through �. The following proposition states
that �TX is a minimal sufficient reduction.

Proposition 2.1 ([7]) Let R(X) = �TX and let T(X) be any sufficient reduction. Then, under
models (2) and (3), R is a sufficient reduction and R is a function of T.

The sufficient reduction is a set of linear combinations of the p predictors. A predictor Xj

will contribute to the reduction when the corresponding row γ j of � is nonzero, thus we can
focus on individual predictors for their dependency on the response. The natural parameter of
the distribution of Xjy is

ηjy = μj + φT
j fy, (4)

where φj = βTγ j. This univariate model (4) is a generalized linear model with predictor vector
fy. The term νy in Equation (2) is the exact function of y that helps in capturing the dependency
of a predictor Xj on the response. It is approximated by a basis function. Restating the natural
parameter as

ηjy = η̄j + γ T
j β(fy − f̄) + γ T

j [νy − β(fy − f̄)], (5)

it appears that β(fy − f̄) would a reasonable proxy for νy if the following conditions are satisfied.

E{νY − β[fY − E(fY )]} = 0, (6)

νY − β[fY − E(fY )] ⊥⊥ Y . (7)

Condition (7) seems the most important since (6) can be obtained by construction. The rela-
tionship between νY and β[fY − E(fY )] should be linear. The following proposition sets the
framework for screening method.

Proposition 2.2 Let us consider model (4) and assume that Cov(νY , fY ) is of full rank. If
Var(fY ) is nonsingular with finite elements, then Xj ⊥⊥, Y if and only if φj = 0.

This proposition ties the screening procedure to the choice of the basis function. The perfor-
mance of the method depends on the adequate choice of fy which elements should be reasonably
flexible. We may still expect the method to perform adequately under misspecification of fy

provided that Cov(νY , fY ) �= 0.
The dimension d of the sufficient reduction in Proposition 2.1 is to be estimated. When n is

large enough, and p relatively small, d could be estimated by a likelihood ratio test [6], or by
cross-validation [1]. In this screening process, and henceforth, we assume that d = r where r is
determined by the choice of the basis function fy. The construction and choice of fy is provided
in Section 2.2.

In the above development, we have assumed that the predictors are conditionally independent.
Cook and Li [7] studied the case of quadratic exponential models to allow dependency among the
conditional predictors. They demonstrate that the methodology based on the conditional indepen-
dence to obtain the sufficient reduction can still be useful when the predictors are conditionally
dependent.
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4 K.P. Adragni

2.1 Screening via hypothesis test

The screening procedure falls upon whether φj = 0 for each predictor Xj. At least two approaches
could be used. The first is by testing the hypothesis

H0 : φj = 0 against Ha : φj �= 0 (8)

at a specified significance level α. The predictor Xj will be set as active or relevant when
we reject H0, and inactive or irrelevant otherwise. In an alternative approach, the magnitude
of the estimates ‖φ̂j‖ of φj for j = 1, . . . , p would be obtained and sorted decreasingly as

‖φ̂(1)‖ ≥ ‖φ̂(2)‖ ≥ · · · ≥ ‖φ̂(p)‖. The active predictors are those with ‖φ̂j‖ greater than a thresh-
old θ . While the value of θ may be arbitrary for the screening procedure, it could be estimated
by an information criterion or by cross-validation.

We proceed henceforth with the first approach tieing the selection of active predictors to a test
statistic. The method is likely to select any predictor having any marginal relationship with the
response, whether it is linear or arbitrary. There is no restriction to the number of predictors to
be selected once the level of significance α is set. Dimension reduction methods such as PFC [5]
may be applied to the screened set for further reduction.

2.2 The basis functions

The use of basis functions is usually convenient to approximate nonlinear functions. Given a
function νy, we want to find the transformations fy = (f1(y), . . . , fr(y))T such that

νy ≈
r∑

i=1

βifi(y).

The vector function fy constitutes the basis functions to be used. Several basis functions have
been suggested in conjunction with PFC models [1,5]. To gain an insight into the choice of the
appropriate basis function, inverse response plots (Cook, 1998) of Xj versus y, j = 1, . . . , p could
be used. In some regressions there may be a natural choice for fy. For example, suppose for
instance that Y is categorical, taking values in one of h categories Ck , k = 1, . . . , h. We can then
set the kth element of fy to be I(y ∈ Ck), where I(·) is the indicator function.

When graphical guidance is not available, Cook [5] suggested constructing a piecewise con-
stant basis. With a continuous Y , an option consists of ‘slicing’ the observed values into h bins
(categories) Ck , k = 1, . . . , h, and then specifying the kth coordinate of fy as for the case of a
categorical Y . This has the effect of approximating each conditional mean E(Xj | Y = y) as a
step function of Y with h steps.

Following the piecewise constant basis, we investigated piecewise polynomial bases, includ-
ing piecewise linear, piecewise quadratic and piecewise cubic polynomial when the response is
continuous. We construct the piecewise polynomial bases also by slicing the observed values of
Y into bins Ck , k = 1, . . . , h. Let τ0, τ1, . . . τh denote the end-points or knots of the slices. For
example, (τ0, τ1) are the end-points of C1; (τ1, τ2) are the end-points of C2, and so on. We give
here the description of the piecewise linear discontinuous basis fy ∈ R

2h−1 by its coordinates

f2i−1(y) = I(y ∈ Ci), i = 1, 2, . . . , h − 1

f2i(y) = I(y ∈ Ci)(y − τi−1), i = 1, 2, . . . , h − 1

f2h−1(y) = I(y ∈ Ch)(y − τh−1).

(9)
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Figure 1. Boxplots of the angle between span{�} and its estimator. Boxplots 1–6 are for the PFC estima-
tors under piecewise linear basis; the numbers 1–7 represent the number of slices. Boxplot on y4 is for
fy = (y, y2, y3, y4) and the last is the true basis used to generate the data.

The number r of linearly independent components of fy is to be small enough compared to n
to avoid modeling random variation rather than the overall shape between the response and
individual predictor.

We performed simulation studies comparing the use of piecewise linear discontinuous basis
functions to polynomial bases in PFC models. We generated n = 200 observations with the
response y ∈ R

n drawn independently from U(0, 4). We obtained X = Fβ�T + e where F is
a n × 2 matrix with the ith row being (yi cos(yi), exp(yi)), β = Diag(1, 0.1), e ∈ R

n×p is a
matrix of independent N(0, 1) variates. We used � = (�1, �2) where �1 = (1T

p/2, 0T
p/2)

T/
√

p/2
and �2 = (0T

p/2, 1T
p/2)

T/
√

p/2 with p = 20 predictors. Here, 1p and 0p stand for vectors of length
p of, respectively, 1’s and 0’s. We computed the angle between � and its estimator. The results
shown in Figure 1 are for 100 replications. For reference, the expected angle between � and
a randomly chosen vector in R

20 is about 80◦. Piecewise linear discontinuous basis with seven
slices is not statistically different from the fourth degree polynomial basis or the basis used to
generate the data. We were able to obtain similar results with piecewise quadratic and cubic
discontinuous bases.

We should note that for a categorical response, there is only one basis function, that is a piece-
wise constant basis. However for a continuous response, there is in theory an infinite number
of basis functions. In practice, a cubic polynomial basis is often adequate to capture nonlinear
dependencies. Several basis functions are implemented with more details in the R package ldr
[2] under the function bf.

3. Connection with other methods

We consider the normal inverse regression model Xy ∼ N(μ+ �βfy,�), where � > 0 is
assumed independent of Y , and μ = E(X). Let X1 be the vector of active predictors and X2

the vector of inactive predictors to form a partition of X. The following proposition presents the
condition for screening when X1 and X2 are conditionally independent.
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6 K.P. Adragni

Proposition 3.1 We assume that Xy ∼ N(μ+ �βfy,�) and that X2 ⊥⊥ X1 | Y. Let us parti-
tion � and � according to the partition of X as (�T

1 ,�T
2 )T, and � = (�ij), i = 1, 2; j = 1, 2.

Then X2 ⊥⊥ Y if and only if �2 = 0.

Screening the predictors by testing whether �2 = 0 can be done by considering individual
rows of � and testing whether γ j = 0, j = 1, . . . , p, or equivalently, the hypotheses (8) for j =
1, . . . , p. The model could be written for individual predictors as

Xjy = μj + φT
j fy + δjε, ε ∼ N(0, 1), (10)

The relevance of a predictor Xj is assessed by determining whether the mean function E(Xjy) =
μj + φT

j fy depends on the outcome y. Model (10) is a forward linear regression model where
the ‘predictor’ vector is fy and the ‘response’ is Xj. An F-test statistic can be obtained for the
hypotheses (8). The predictor Xj is relevant if the model yields an F-statistic larger than a user-
specified cutoff value. The cutoff may correspond to a significance level α such as 0.1 or 0.05
for example.

3.1 Correlation screening

Now, let assume that Y and X are centered around their means and restrict � to be a p × 1 matrix.
Furthermore, we set fy = y, � = δ2I and absorb β into �. These restrictions yield the simplest
expression of the PFC model as Xy ∼ N(�y, δ2I). Let y = (y1, . . . , yn) and X the p × n centered
data-matrix of the predictors. Under this model, let ω = (ω1, . . . , ωp)

T be the p-vector obtain by
the componentwise regression of X on y as ω = �yyT. This vector ω is proportional to the sample
correlation of X and y. For a given response vector, it appears that ω and � are proportional. The
SIS of Fan and Lv [9] sorts the p componentwise magnitudes of the vector ω in a decreasing
order and select the first p∗, (p∗ < n) corresponding predictors as the active ones. It is clear that
the componentwise magnitudes of � retain the same ordering as ω. Thus, SIS is a particular case
of our method. Furthermore, rather than selecting an arbitrary number of active predictors as
with SIS, our approach ties the selection to a test statistic.

Screening predictors based on ω is called a correlation screening since ω is proportional to the
correlation vector of the predictors data-matrix and the response vector. The correlation screening
was also used in the Supervised Principal Components [3], where a cross-validation method is
used to determine p∗.

3.2 T-test based methods

We now turn to scenarios where the predictors are continuous and the response is discrete with k
categories. The discrete response yields a natural basis function that is fy = (I(y = 1), . . . , I(y =
k)T)T. The componentwise PFC model is

Xjy = μj +
k−1∑
i=1

φijI(y = i) + δjε j = 1, . . . , p, (11)

where φij is the ith component of φj = βTγ j. This model is a multiple linear regression with
categorical predictors. The kth category is set as the baseline. In the particular case of binary
outcome (k = 2), a t-test can be used for the hypothesis H0 : φ1 = 0. This has been seen in the
literature, especially with microarray data sets. For example, Roberts and Mukherjee [14] used
the difference of means, Guyon and Elisseef [11] proposed a t-statistic with a pooled variance;
Lai et al. [13] used the signal-to-noise ratio.
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3.3 Multinomial predictors

The multinomial case may be of interest in genetics for example for screening the excessively
large data made of SNPs. SNPs are found to be of great importance in biomedical research and are
assumed to play an important role in the development of complex diseases, or believed to alter the
risk for developing particular diseases. SNPs data are categorical with three levels, or genotypes.
Biological considerations may collapse the three levels into two. It is observed that although the
SNPs have random occurrence, they are often treated as fixed predictors of a continuous type
in forward regressions. It is also observed that the sampling scheme often used in collecting the
genomic data, including in the Genome-wise Association Study suggests modeling X|Y for a
number of response variables. Modeling the SNPs as a function of the response could be helpful
in screening out inactive SNPs while treating these SNPs as random variables and making use
of their intrinsic distribution. These SNPs could be assumed to follow a multinomial distribution
with three levels, or a binomial distribution if a dominant or recessive model is assumed.

Let suppose that the predictors Xj, j = 1, . . . , p, are independent multinomial random vari-
ables with K categories. The model of Xy can be expressed in terms of a multivariate logit
defined coordinate-wise as multlogity = μ+ �βfy. The sufficient reduction is still �TX [7]. For
the univariate screening, the dependency between a predictor Xj and the response is determined
by whether ϕj = γ T

j β is nonnull. Using the set of K − 1 equations

log

(
P(Xj = i | Y = y)

P(Xj = K | Y = y)

)
= μij + ϕT

ijfy, i = 1, . . . , (K − 1), (12)

with
∑K

i=1 P(Xj = i | Y = y) = 1. A predictor Xj in this context is independent of Y if and only if
φ = 0 where φ = (ϕ1j, . . . ,ϕ(K−1)j). Following the development for normal predictors, we could
also tie the screening to tests statistics, testing the hypothesis (8).

4. Numerical studies and application

We provide three set of simulations. The first simulation set exhibits a nonadditive regression
model, and the second uses an inverse regression. Both consider continuous response and pre-
dictors. The third is with continuous response and binary predictors. In all three cases, a number
of predictors were generated to be related to the response and the goal is to use the screening
procedure to capture them. We provide the results as the proportion of times an active predictor
is selected with 100 generated data. The significance level uses is α = 0.05.

4.1 Nonlinear forward regression simulations

We generated n = 70 observations on p = 500 independent predictors (X1, . . . , Xp)
T with X1 ∼

U(1, 10) and Xi ∼ N(0, 4), i = 2, . . . , p. The response was obtained as y = (5X1)ε where ε ∼
N(0, 1).

The active predictor is X1; it is selected by the correlation screening about 5% of the time.
This result was as expected under random selection. On the other hand, with a piecewise linear
discontinuous basis using five slices, the new method captured X1 94% of the time.

4.2 Normal inverse regression simulations

The outcome y ∈ R
n were n = 100 independent draws from the uniform U(−3, 3) and the

predictors were X = Fβ�T + 2e with F ∈ R
n×4 with the ith row (yi, y2

i , yi sin(yi), |yi|1/2), and
� = (�1, . . . , �4) where �i is a column vector with all entries equal to 0 except the ith that
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8 K.P. Adragni

Table 1. Proportion of selection of active predictors.

Basis X1 X2 X3 X4

Correlation screening 1.00 0.06 0.05 0.05
Quadratic polynomial basis 1.00 1.00 0.69 1.00
Piecewise linear basis 1.00 1.00 1.00 1.00

is 1, and β = Diag(1, 0.5, 2, 8). The error e ∈ R
n×p is a matrix of independent N(0, 1) variates.

Specifically, among the p = 500 predictors, only the first four were active and effectively related
to the response. The first predictor X1 was linearly related to the response while the remaining
active three were nonlinearly related to y as

X1 = y + 2ε; X2 = 0.5y2 + 2ε; X3 = 2y sin(y) + 2ε; X4 = 8
√

|y| + 2ε.

In screening the predictors, we considered the following three basis function setups: (1) the
correlation screening (first degree polynomial basis), (2) a quadratic polynomial basis, and (3) a
piecewise linear discontinuous with five slices.

The results (Table 1) show that predictor X1 was selected with the correlation screening 100%
of the time. But correlation screening failed drastically to select the other three relevant predictors
nonlinearly related to the response variable. Piecewise linear basis showed a better performance
compared to quadratic polynomial.

4.3 Binary inverse regression simulations

We generated p = 500 binary predictors where only three of them were active and related
to the response as follows. Two hundreds observations were used. The ith observation of
Xj, j = 1, . . . , 3, was obtained as a binary outcome with probability πij = (1 + exp(−βjfj(yi)))

−1,
where f1(y) = y, f2(y) = |y|, and f3(y) = y sin(y), and β = (1, 3, 3). For the remaining (p − 3)

predictors, the ith observation was generated as a binary outcome with probability 0.5. We used
three different basis functions in the screening process: the correlation screening, the cubic poly-
nomial basis, and the piecewise linear discontinuous with two slices. The results in Table 2 here
again showed the poor performance of the correlation screening on active predictors nonlinearly
related to the response. For comparison, the proportion of selection of an inactive predictors at
5% confidence level is 0.05.

4.4 An application

We applied the screening method to a chemometrics data set. The data set is about predicting the
functional hydroxyl group OH activity of compounds from molecular descriptors. The response
(act) is the activity level of the compound, and the predictors are the nearly 300 descriptors.

Table 2. Screening binary predictors.

Basis X1 X2 X3

Correlation screening 1.00 0.00 0.00
Cubic polynomial basis 1.00 0.99 1.00
Piecewise linear basis 1.00 0.99 1.00
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Journal of Applied Statistics 9

Table 3. Screening p-values under the correlation (CS) and the
piecewise linear discontinuous basis (PL).

Descriptor p-Value CS p-Value PL

SHsOH 0.051 0.047
sc3 0.056 0.000
spc5 0.058 0.008
tets2 0.059 0.000
asn5 0.072 0.000
dn2n1 0.079 0.000
SssCH2 0.079 0.000
dn2n5 0.079 0.000
dn213 0.080 0.000

0.0 0.5 1.0 1.5
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1 2 3 4

−
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Figure 2. Scatter-plots of sc3 and tets2 against the log-transformed response act showing nonlinear
relationships.

The response and predictors are continuous variables and 719 observations were recorded. We
screened the descriptors at a 5% significance level.

The application of the correlation screening captured a set of 204 descriptors to be related to
the response. However using the piecewise linear discontinuous basis function with two slices,
the screening yielded a set of 236 descriptors, including 41 descriptors not detected by the corre-
lation screening. The following table is a short list of some of the 41 descriptors captured by the
piecewise linear discontinuous basis, that were not selected by the correlation screening at the
5% significance level.

This example showed that, as expected, when a relevant predictor is not linearly related to the
response, a correlation screening may fail to capture it. However, with the appropriate choice
of the basis function, all relevant predictors would be detected. Graphical investigations showed
nonlinear relationships between the response and some predictors listed in Table 3. As exam-
ples, the two plots in Figure 2 are of compounds sc3 and tets2 against log(act) that were not
selected by the correlation screening. A clear nonlinear relationship between the predictors and
the log-transformed response is displayed. We used the log-transformation of the response to
help see the graphical evidence of nonlinear relationship between the response and the mentioned
predictors.
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10 K.P. Adragni

5. Estimation, consistency, and power

We provide existing results on the maximum likelihood estimation of the parameter φ, and on the
consistency of the hypothesis test of (8). We also discuss the power of the test for large sample
sizes.

5.1 Estimation

The estimation of the parameters in exponential family distribution has been well studied in
both univariate and multivariate scenarios. We herein provide the maximum likelihood esti-
mation procedure for φ; for simplicity we drop the index j. Let θ = (μ,φT)T ∈ R

1+r, and set
Z = (1, fy)

T ∈ R
1+r. The density function (1) can be rewritten as

g(x | Y = y, θ) = exp{θTZx − B(θTZ)}h(x). (13)

The following proposition gives the MLE of θ .

Proposition 5.1 Suppose that the distribution of X is from the exponential family with the
probability density function (13) and let x1, x2, . . . , xn be a random sample from the distribution
of X and y1, . . . , yn be the observed response values. Let B′(t) represents the derivative of B at t.
Assuming that the equation

n∑
i=1

Zi[xi − B′(θTZi)] = 0 (14)

has a solution θ̂ in the parameter space of θ , then the solution of (14) is unique, and is the MLE
of θ .

The estimation of θ using Equation (14) can be obtained by iterated weighted least squares
algorithm. Once θ̂ is obtained, φ̂ is made of the last r entries of θ̂ . Details about the theorem and
estimation of the maximum likelihood for exponential family can be found in [4, p. 412].

5.2 Consistency

The screening consistency is not the usual consistency of point estimators. It rather focuses on
asymptotic hypothesis tests. En route to discuss this consistency, we present some definitions
(see [16, p. 140]).

Definition 5.2 Let Tn be a test statistic for H0 : φ = φ0 against Ha : φ �= φ0 with a rejec-
tion region defined by R(Tn) = 1, where R(Tn) can take values {0, 1}. Let αTn(φ0) = P(R(Tn) =
1 | φ = φ0) be the probability of type I error and 1 − αTn(φ) = P(R(Tn) = 0 | φ �= φ0) be the
probability of type II error.

(i) Tn is consistent if and only if limn→∞ αTn(φ) = 1 for any φ �= φ0.
(ii) Tn is Chernoff-consistent if and only if Tn is consistent and limn→∞ αTn(φ0) = 0.

While the consistency in Definition 5.2(i) only requires type II error to converge to 0,
Chernoff-consistency requires both type I and II to converge to 0. Let �(X) be the likeli-
hood ratio statistic. In the following, we consider the conditional predictors to have the density
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function of the form (1), but assume that μ = 0 for simplicity. The log-likelihood function
l(φ) = ∑n

i=1 log g(xi | φ) can be written as

l(φ) =
n∑

i=1

[φTfyi xi − B(fT
yi
φ)] + C, (15)

where C is a constant independent of φ. Let assume that φ̂ the maximum-likelihood estimate of φ
exists. The test statistic to be used in testing the hypotheses (8) is Tn = 2[l(φ̂) − l(φ)]. While the
exact distribution of Tn can be derived for some exponential family members (normal distribution
for instance), in general, the distribution of the test under the null and alternative hypotheses can
be difficult to derive, and often recourse is made to asymptotic theory. It is a classical result that
Tn converges to a central χ2

r under the null hypothesis. With fy being the basis function used
in conjunction with the model in Equation (4), using a Taylor series, we obtain an approximate
expression of the test as

Tn = (φ̂ − φ)TV̂
−1
n (φ̂)(φ̂ − φ), (16)

where φ = 0 under H0, and V̂
−1
n (φ̂) = ∑n

i=1 fyi f
T
yi
B′′(φ̂), with B′′(u) being the second derivative

of B(u). The next proposition sets conditions for the consistency and Chernoff-consistency of Tn.

Theorem 5.3 ([16, p. 452]) Consider model (10) and the test statistic Tn in Equation (16) for
the hypotheses (8). Let λmax

n be the largest eigenvalue of V̂n.

(i) If limn→∞ λmax
n → 0 then Tn is consistent.

(ii) Assume that α = αn → 0 as n → ∞, and χ2
r,1−αn

λmax
n = o(1), then Tn is Chernoff-consistent.

5.3 Power of the tests

In screening the set of p predictors, our interest is mostly in capturing the true active predictors.
Two types of error entail the hypothesis testing (8): selecting a predictor as active while it is not
(type I error) and declaring a predictor to be inactive when it is active (type II error). While select-
ing an inactive predictor could be inconsequential, failing to select an active predictor should be
avoided, thus statistical tests with high powers should be sought.

The power of the test for a given φ1 is P(R(Tn) = 1 |φ = φ1). In general there is no uniformly
most powerful test for the multi-parameter exponential family with composite hypotheses.
However, optimal tests could be constructed [4,15]. Under the alternative hypothesis, Tn has
approximately a χ2

r (ξn), with the noncentrality parameter

ξn(φ) = φTV̂
−1
n φ. (17)

For consistent tests, ξn(φ) → ∞ as n → ∞. Thus, there is no limiting distribution of Tn under
Ha. Pitman alternative hypotheses of the form Ha : φn = ψ/

√
n for some ψ ∈ Rr could be

considered to help estimate the limiting power.

6. Concluding remarks

We present a screening method for predictors that, given the response, follow an exponential
family distribution. A main feature of the method is that it is likely to capture any predictor that
is marginally related to the response with the use of basis functions.
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12 K.P. Adragni

The method is shown to subsume the SIS and also t statistics-based screening methods. The
number of relevant predictors to be selected is tied to test statistics. Thus, the significance level
can be chosen for the optimal power.

There is a number of basis functions to choose from. However, for continuous predictors,
the best choice of basis functions may be data set-specific. Any arbitrary marginal relationship
between active predictors and the response can be accommodated with the appropriate choice of
the basis function.

Results in Section 5 are essentially due to a large sample theory where the sample size is
assumed to be growing to infinity. In practice, sample sizes are finite and they almost never
grow. In a finite sample setting, the tests obtained in this Section 5 may not always be exact
and nothing can be said in general about their exact distribution under the null or alternative
hypotheses. Simulation studies could always be used to evaluate the performance of the tests.
Re-sampling methods, such as the bootstrap hypothesis testing [12] can be used.
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Appendix

A.1 Proof of Proposition 2.2

Proof From Cov(ηY , fY ) = γ TCov(νY , fY ) = γ TβVar(fY ) = φVar(fY ), we have,

φ = γ TCov(νY , fY )[Var(fY )]−1.

Suppose that X ⊥⊥ Y . Then ηY does not depend on Y , and γ = 0, which implies φ = 0.
Conversely, suppose that φ = 0. If Cov(νY , fY ) is of full rank and Var(fY ) is nonsingular with finite elements, then

γ = 0. Thus the distribution of Xy does not depend upon Y and X ⊥⊥ Y . �

D
ow

nl
oa

de
d 

by
 [

68
.8

4.
5.

12
9]

 a
t 1

8:
46

 2
2 

A
ug

us
t 2

01
4 


	1. Introduction
	2. Variable screening with generalized PFC
	2.1. Screening via hypothesis test
	2.2. The basis functions

	3. Connection with other methods
	3.1. Correlation screening
	3.2. T-test based methods
	3.3. Multinomial predictors

	4. Numerical studies and application
	4.1. Nonlinear forward regression simulations
	4.2. Normal inverse regression simulations
	4.3. Binary inverse regression simulations
	4.4. An application

	5. Estimation, consistency, and power
	5.1. Estimation
	5.2. Consistency
	5.3. Power of the tests

	6. Concluding remarks
	Acknowledgement
	References
	A.1. Proof of Proposition 2.2




