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Abstract

A high dimensional regression setting is considered with p predictors X = (X1, ..., Xp)
T

and a response Y . The interest is with large p, possibly much larger than n the

number of observations. Three novel methodologies based on Principal Fitted

Components models (PFC; Cook, 2007) are presented: (1) Screening by PFC

(SPFC) for variable screening when p is excessively large, (2) Prediction by PFC

(PPFC), and (3) Sparse PFC (SpPFC) for variable selection.

SPFC uses a test statistic to detect all predictors marginally related to the

outcome. We show that SPFC subsumes the Sure Independence Screening of Fan

and Lv (2008).

PPFC is a novel methodology for prediction in regression where p can be large

or larger than n. PPFC assumes that X|Y has a normal distribution and applies

to continuous response variables regardless of their distribution. It yields accuracy

in prediction better than current leading methods.

We adapt the Sparse Principal Components Analysis (Zou et al., 2006) to the

PFC model to develop SpPFC. SpPFC performs variable selection as good as

forward linear model methods like the lasso (Tibshirani, 1996), but moreover, it

encompasses cases where the distribution of Y |X is non-normal or the predictors

and the response are not linearly related.
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Introduction

With technological advances, scientists are routinely formulating regressions for

which the number of predictors p is large and often larger than the number of ob-

servations n. This occurs in research fields including biology, finance, and chemo-

metrics, etc. In genomics, for example, with microarray technology, information

on thousands of genes (predictors) can be obtained with only a few hundreds of

subjects. Dealing with datasets with p > n in forward regressions is a challenge

often referred to as “large p small n problems.” In this forward regression frame-

work, model building, variable selection and prediction often use the conditional

distribution of Y |X, where Y is the outcome variable and X = (X1, ..., Xp)
T is the

vector of predictors. Forward regression methods are perhaps the most commonly

used, whether the predictors are fixed or random. With deterministic predictors

fixed by design, forward regression methods are the natural choice. But when the

predictors have a stochastic nature, there is no reason not to consider the condi-

tional distribution X|Y or the joint distribution (Y,X). Many regression methods

using X|Y are found in the literature. Sliced Inverse Regression (SIR; Li, 1991) is a

commonly encountered method. Sliced Average Variance Estimation (SAVE, Cook

and Weisberg 1991) is another regression method that uses X|Y . Oman (1991)

used the inverse regression approach and wrote that “it is more natural to think

of X as the dependent and Y as the independent variable.” Recently, Leek and
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INTRODUCTION

Storey (2007) used an inverse regression model to develop their “surrogate variable

analysis.” In terms of dimension reduction, Cook (2007) showed that when (Y,X)

has a joint distribution, Y |X can be linked to X|Y through a reduction R(X) that

carries all of the regression information that X has about Y , and argued that the

conditional distribution X|Y provides perhaps a better handle on reductive infor-

mation when the dimension p is larger than n. Cook (2007) proposed an inverse

regression approach to dimension reduction in the regression context through Prin-

cipal Components (PC) and Principal Fitted Components (PFC) models. These

are likelihood-based approaches that model X|Y where the distribution of the out-

come is not necessarily relevant. The initial development of PFC models assumes

that the sample size n is larger than the number of predictors p. Our interest in

this thesis is in the application of the PFC models in the large p small n context

for dimension reduction. Large p does not necessarily mean p > n since any p that

limits our ability to see the data in three dimensions can be considered large.

Three methods are developed and presented in this thesis: (1) variable screening

when p is ultra large with a considerable number of irrelevant predictors; (2) a

prediction method and (3) variable selection when p is large.

The screening method is called Screening by Principal Fitted Components

(SPFC) and it uses a univariate PFC model. Screening predictors to collect those

related to the outcome can be an important step in regressions when n ¿ p. With

the use of basis functions involved in PFC models, the screening procedure can help

collect all predictors marginally related to the response. The relationship between

the response variable and individual predictors can be complex, and not necessarily

linear. We think that this screening is a necessary step prior to using many regres-

sion methods when p is excessively large. Some existing screening methods such

as the screening scheme in the Supervised Principal Components (SPC) method

developed by Bair et al. (2006) and the Sure Independence Screening method by

2
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Fan and Lv (2008), all become particular cases of SPFC. These existing variable

screening methods use the correlation between individual predictors and the re-

sponse. We have observed that predictors having a nonlinear relationship with

the response could fail to be selected. This is a serious drawback to these existing

methods.

In general, traditional prediction methods in the forward regression framework

follow a model fitting procedure. Model fitting is carried out through a four-step

iterative procedure guided by diagnostics (See Cook and Weisberg, 1982 - Section

1.2). At Step 1, the problem of interest is formulated and the assumptions are

checked. This is followed by the estimation in Step 2. At Step 3, inference is carried

out with the fitted model. Criticism of the model is done at Step 4; this can lead

back to Step 1 in case some deficiency is revealed. In most published model-based

applications, simple forward linear regression models are usually assumed, and as

pointed out by Fisher (1922), the complexity of the models depends on the amount

of data. Often, these methods assume that the number of important predictors in

the model is much less than n, which implies that many predictors are irrelevant.

The corresponding coefficients of these predictors in the model should be shrunk or

even set to zero. This induces the concept of sparseness. Penalized least squares

methods are typically designed for this purpose. In these methods, the nature

of the relationship between the predictors and the outcome is often unknown or

unexplored. These methods include the lasso (Tibshirani, 1996), Ridge Regression

(Hoerl et al., 1970), Bridge Regression (Frank et al., 1993), Elastic Net (Zou and

Hastie, 2005), the smoothly clipped absolute deviation penalty (SCAD; Fan, 1997)

and the Dantzig selector (Candès et al., 2005). These methods are applicable with

p is large, say, on the scale of o(nι) for some ι > 0.

When p is large and possibly larger that the sample size n, conventional statisti-

cal methods like forward regression procedures do not always produce satisfactory

3
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results. Modelling Y |X can be tedious and imponderable, which also affects the

prediction. Clearly a prediction method that is broader than the forward linear

model approach is needed. We present in this thesis a novel prediction method to

fill that need.

The variable selection method, called Sparse PFC (SpPFC), is an adaptation

of the Sparse Principal Components of Zou et al. (2005). SpPFC is comparable

to the lasso (Tibshirani, 1996) when the outcome and the predictors are linearly

related. But SpPFC can also perform well with variables nonlinearly related to the

outcome or in cases where Y |X is not normally distributed. In that sense, SpPFC is

broader than most existing methods for variable selection in large p context. SPFC

and SpPFC are inverse regression methods. They make use of the information on

the response Y through basis functions. They are applicable to categorical as well

as continuous responses. Because of the use of basis functions, the screening and

the variable selection methods are much more likely to capture any predictor that

could contain some information on the response. The case where the predictor and

the response are correlated is also captured with basis functions.

Throughout this thesis, we will be referring to forward linear regression models

as the model

Y = η0 + ηT (X− E(X)) + ε (1)

where η is a column vector of p regression coefficients, ε has a normal distribution

with expectation 0 and variance υ2 and ε X. The response is continuous unless

stated otherwise. Also, with a random sample of n observations (Yi,Xi), i =

1, ..., n, we will let X be the n× p data-matrix with the ith rows (Xi − X̄)T and Y

be the n−vector of outcome measurements (Y1, ..., Yn)T .

This thesis is organized as follows. Chapter 1 presents a review of Principal

Components and Principal Fitted Components models. We give the main results

4
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on parameter estimation, which can be found in Cook (2007) and Cook and Forzani

(2009a). We propose therein an algorithm to estimate the conditional variance of

X|Y in the diagonal case that works independently of the order of n and p. The

use of PFC models necessitates a specification of basis functions. Cook (2007)

mentioned some of them. In this chapter, more basis functions are explored and

presented.

The novel screening procedure SPFC is presented in Chapter 2 where we also

give an overview of existing methods.

Chapters 3 and 4 are dedicated to Prediction by PFC (PPFC). In Chapter

3, the proposed prediction methodology is presented. We set restrictions on the

PFC model to allow a fair comparison with forward linear regression methods.

Simulations results are presented under these restrictions. In Chapter 4, we relax

the restrictions on the PFC models and present an extended simulation study of

PPFC in the large p context. Applications to real datasets are therein presented.

Sparse PFC is covered in Chapter 5. It is the third novel method in this thesis.

It is designed for variable selection to yield accuracy in prediction. Its algorithm,

adapted from the Sparse Principal Components Analysis of Zou et al. (2006),

is presented. Sparse PFC is mainly compared to the lasso through simulation

examples.

Lastly, an extended PFC model is sketched in Chapter 6. This extended PFC

allows a modelling of X|Y with large p where relevant predictors can be condition-

ally dependent and irrelevant predictors are assumed independent. Initial work on

this extended model gives promising results.

5





Chapter 1

Principal Fitted Components

Principal Components have been used widely and extensively for dimension reduc-

tion. They are often used when the number of predictors p is large but less than

the number of observations n. There is still much active research on the use of

principal components for dimension reduction. Cook (2007), in his Fisher Lecture,

introduced Principal Components (PC) models and Principal Fitted Components

(PFC) models in the inverse regression setting as model-based approaches to di-

mension reduction. In this chapter, we present the main results on parameter

estimation for the PC and the PFC models as developed originally by Cook (2007)

and further studied by Cook and Forzani (2009a). The estimation includes the

maximum likelihood estimate (MLE) of the conditional variance ∆ of X|Y . When

∆ is diagonal, the MLE of ∆ does not have a closed-form. We propose a new

algorithm for its estimation. Basis functions are to be used in conjunction with

PFC models. Some of these bases were mentioned by Cook (2007). We extend the

original list and propose some more elaborate ones.

The following definition provides insights on sufficient dimension reduction

(SDR; Cook, 2007) and is used throughout this thesis.

7



Definition 1.0.1. A reduction R : Rp → Rd, d ≤ p is sufficient if at least one of

the following three statements holds:

i). X|(Y, R(X)) ∼ X|R(X)

ii). Y |X ∼ Y |R(X)

iii). Y X|R(X)

The first item corresponds to inverse regression and the second corresponds

to forward regression. These three statements are equivalent if (Y,X) has a joint

distribution. Cook (2007) established the connection between inverse and forward

regressions through R(X), which carries all of the regression information X has

about Y . The above definition suggests that dimension reduction may be pursued

through the forward regression using the conditional distribution of Y |X, through

the inverse regression using the conditional distribution of X|Y , or through the

joint distribution of (Y,X).

If we suppose that the SDR R(X) = ζTX, then from the above definition, the

p-dimensional predictor vector X can be replaced by the d-dimensional reduction

R(X) without loss of any information on the regression of Y given X. It is clear that

if ζTX is a SDR, then so is (ζA)TX for any d×d full rank matrix A. Consequently,

the subspace spanned by the columns of ζ, Span(ζ) is sought. Span(ζ) is called

a dimension reduction subspace (DRS; Cook, 1998). The intersection of all the

DRS’s, under some conditions, is also a DRS. This intersection, called central

subspace and denoted by SY |X, is often the object of interest in the dimension

reduction framework. More information about SDR, DRS and central subspace is

available from Cook (1998, 2007).

8



CHAPTER 1. PRINCIPAL FITTED COMPONENTS

1.1 Dimension Reduction Methods

In forward linear regression settings, the presence of multicollinearity among the

predictors can cause difficulties when dealing with least squares estimators. Prin-

cipal components are used to reduce the number of predictors prior to performing

a forward regression and also to help cope with collinearity effects. Different tech-

niques and strategies are proposed in the literature for selecting principal compo-

nents. The commonly used strategy is based on deleting components with small

variances since a multicollinearity appears as a principal component with very

small variance (Jolliffe, 2002). The most popular use of principal components in

a regression of Y on X consists of substituting the p predictors in the forward re-

gression model (1) by the m < p principal components Z = (Z1, ..., Zm)T obtained

by Z = GTX, where G is the p ×m matrix of the m eigenvectors corresponding

to the largest m eigenvalues of Σ the covariance matrix of X. The theory shows

that components with very small eigenvalues contribute with large terms in the

variance of the least squares estimator η̂ of the coefficient η in (1). By deleting the

principal components with small variances, one reduces the number of predictors

to be used in the regression. But, there is no reason to believe that components

with small variances are unimportant in the regression model (Cox, 1968). Even

though the use of principal components to reduce X marginally is well established,

the role of principal components in forward regression does not seem clear-cut. The

two objectives of deleting PCs with small variances and of retaining PCs that are

good predictors of the dependent variable may not be simultaneously achievable

(Jolliffe, 2002). The computation of the first m principal components in Principal

Components Regression does not involve the outcome and one might wonder if

useful information related to the response is discarded when reducing the predic-

tors marginally. A question that arises is: how can an SDR involving the outcome

9
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variable be obtained without loss of information in the regression of Y on X?

Successful methods to estimate the central space SY |X exist in the literature.

Most of them are inverse regression methods. The first generation of methods to

estimate SY |X were moment-based. Sliced Inverse Regression (SIR; Li, 1991) and

Sliced Average Variance Estimation (SAVE; Cook and Weisberg, 1991) are perhaps

the first inverse regression methods for dimension reduction to yield an estimate of

SY |X, although the concept of central space is newer (Cook, 1998). These methods

in fact estimate SY |X under two key conditions: (i) E(X|ηTX) is a linear function

of X (linearity condition) and (ii) Var(X|ηTX) is a nonrandom matrix (constant

covariance condition). Under the linearity condition E(X|Y ) ∈ ΣSY |X, which is

the population foundation for SIR. Under the linearity and constant covariance

conditions span(Σ− Var(X|Y )) ∈ ΣSY |X, which is population basis for SAVE.

SIR is known to have difficulties finding directions that are associated with

certain types of nonlinear trends in E(Y |X). SAVE was developed in response

to this limitation but its ability to find linear trends is generally inferior to SIR’s.

Several moment-based methods have been developed in an effort to improve on the

estimates of SY |X provided by SIR and SAVE. Li (1992) and Cook (1998) proposed

principal Hessian directions (pHd) with different perspectives. Cook and Ni (2005)

developed Inverse Regression Estimation (IRE), which is an asymptotically opti-

mal method of estimating SY |X. Ye and Weiss (2003) attempted to combine the

advantages of SIR, SAVE and pHd by using linear combinations. Xia et al. (2002)

developed the Minimum Average Variance Estimator (MAVE). Cook and Forzani

(2009b) used a likelihood-based objective function to develop a method called LAD

(likelihood acquired directions) that apparently dominates all dimension reduction

methods based on the same population foundations as SIR and SAVE. These meth-

ods have been developed and studied mostly in regressions where p ¿ n. They do

not produce any direct opening into predicting Y from X. In all of these methods,

10
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once the sufficient reduction is obtained, it is treated as fixed and then passed to

forward regression for prediction.

Cook (2007) proposed a new approach to estimate a sufficient reduction. It

is a model-based approach that seems broader than any previous for helping to

estimate the central space and also allowing a direct route for prediction. They

are Principal Components (PC) and Principal Fitted Components (PFC) models

which are inverse regression models.

1.2 Principal Components Models

Cook (2007) proposed the following inverse regression model to help estimate the

central subspace. The model, called the Principal Components model, is

Xy = µ + Γνy + σε (1.1)

where µ = E(X); Xy is the conditional X given Y = y; Γ ∈ Rp×d, d < p, ΓTΓ = Id,

σ > 0 and d is assumed to be known. The coordinate vector νy ∈ Rd is an unknown

function of y. The error vector ε ∈ Rp is assumed to be independent of Y and

normally distributed with mean 0 and an identity covariance matrix.

Proposition 1.2.1. (Cook 2007) Under the Principal Components Model (1.1),

the distribution of Y |X is the same as the distribution of Y |ΓTX for all values of

X.

This proposition says that one can replace X by ΓTX without loss of informa-

tion on the regression of Y on X and without specifying the marginal distribution

of Y or the conditional distribution of Y |X.

Under model (1.1), R(X) = ΓTX is a sufficient reduction, and thus the DRS

SΓ spanned by the columns of Γ is to be estimated. The parameter space for SΓ is

11
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the Grassmann manifold of dimension d in Rp. It should be stated that the set of

d-dimensional subspaces of Rp is called a Grassmann manifold and a single point

in a Grassmann manifold is a subspace.

Cook (2007) gives the maximum likelihood estimators of all the parameters in

model (1.1). Let λ̂j and γ̂j be respectively the eigenvalues and eigenvectors of

sample marginal covariance matrix Σ̂ = XTX/n. The estimated SΓ is obtained as

the span of the first d eigenvectors V̂d = (γ̂1, ..., γ̂d) corresponding to the d largest

eigenvalues Λ̂ = (λ̂1, ..., λ̂d) of the sample covariance matrix Σ̂. The maximum

likelihood estimators of σ2, µ and νy are respectively σ̂2 =
∑p

j=d+1 λ̂j/p where

λ̂1 > ... > λd+1 ≥ ... ≥ λp, µ̂ = X̄ and ν̂y = Γ̂T (X− X̄). The sufficient reduction

is estimated as R̂(X) = V̂T
d X which is simply the first d sample PCs of X.

1.3 Principal Fitted Components Models

In the PC model, the response y is not explicitly used to obtain the reduction.

With known response y, νy can be modeled to adapt the reduction to the specific

response. Let us suppose that we can model νy as νy = β(fy − f̄), with unknown

β ∈ Rd×r, while fy ∈ Rr is a known vector-valued function of the response and

f̄ =
∑

y fy/n. The PC model (1.1) becomes:

Xy = µ + Γβ(fy − f̄) + ε (1.2)

The error vector ε ∈ Rp is assumed to be independent of Y and normally dis-

tributed with mean 0 and covariance matrix ∆. Cook (2007) developed likelihood

based estimation methods in the cases of models with restrictive covariance. Cook

and Forzani (2009a) extended the scope of PFC models to allow a more general

covariance structure.

The parameter Γ in model (1.2) is not identified. The central subspace is

12
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obtained as SY |X = ∆−1SΓ and thus the subspace ∆−1SΓ is sought. With any

matrix M ∈ Rp×d whose columns form a basis for ∆−1SΓ, R(X) = MTX is a

sufficient reduction.

1.3.1 PFC Model Parameters Estimation

This section presents briefly the results of the estimation of parameters involved

in PFC models in the n À p context. Details are available in Cook (2007) and

Cook and Forzani (2009a) who gave the maximum likelihood estimators of the

parameters in model (1.2). We consider the following three profiles for the structure

of ∆: when the predictors are conditionally dependent, we have ∆ > 0 with

a general structure; when the predictors are conditionally independent and are

on the same scale, we have the isotonic error structure with ∆ = σ2I; and with

conditionally independent predictors on different scales, we have the diagonal error

structure ∆ = Diag(σ2
1, ..., σ

2
p). We will be referring to these variance structures

as the general, the diagonal and the isotonic error structures. A PFC model with

an isotonic variance structure will be referred to as the isotonic PFC model.

Let us consider the case where ∆ has a general structure. Let F denote the n×r

matrix with rows (fyi − f̄)T , i = 1, ..., n. Let Σ̂fit = XTF(FTF)−1FTX/n denote the

sample covariance matrix of the fitted vectors and let Σ̂res = Σ̂−Σ̂fit. The columns

of V̂ = (V̂d, V̂p−d) denote the eigenvectors of Σ̂
−1/2
res Σ̂fitΣ̂

−1/2
res corresponding to its

eigenvalues λ̂1 > λ̂2 > . . . > λ̂d > λ̂d+1 ≥ . . . ≥ λ̂p, with V̂d ∈ Rp×d containing the

first d eigenvectors. With d ≤ min(p, r) the first d eigenvalues must be distinct.

Let D̂d,p = Diag(0, . . . , 0, λ̂d+1, . . . , λ̂p). Then the MLE of the parameters are

∆̂ = Σ̂1/2
res V̂(Ip + D̂d,p)V̂

T Σ̂1/2
res (1.3)

Γ̂ = Σ̂1/2
res V̂d(V̂

T
d Σ̂resV̂d)

−1/2 (1.4)

β̂ = (V̂T
d Σ̂resV̂d)

1/2V̂T
d Σ̂−1/2

res XTF(FTF)−1 (1.5)

13



1.3. PRINCIPAL FITTED COMPONENTS MODELS

A sufficient reduction is estimated as R̂(X) = V̂T
d Σ̂

−1/2
res X. If r = d, then ∆̂ = Σ̂res.

Let Sd(A,B) denote the span of A−1/2 times the first d eigenvectors of A−1/2BA−1/2,

where A and B are symmetric matrices and A is nonsingular. We have the fol-

lowing:

Proposition 1.3.1. (Cook and Forzani, 2009a) The following are equivalent ex-

pressions for the MLE of ∆−1SΓ = {∆−1u : u ∈ SΓ} under model (1.2): Sd(∆̂, Σ̂fit) =

Sd(∆̂, Σ̂) = Sd(Σ̂res, Σ̂) = Sd(Σ̂res, Σ̂fit) = Sd(Σ̂, Σ̂fit).

From this proposition, the sufficient reduction under the PFC model (1.2) can

be computed as the principal components based on the linear transformed predic-

tors ∆̂−1/2X or Σ̂
−1/2
res X.

For a diagonal variance structure, a closed-form expression for the MLE of

∆ = Diag(σ2
1, . . . , σ

2
p) is not available. Instead it is estimated via an algorithm.

Cook and Forzani (2009a) suggested an algorithm that is appropriate for n > p. We

consider here an alternative algorithm to estimate ∆ that can be implemented in

both n < p and n > p contexts. It is an algorithm based on the following reasoning.

If the inverse mean function is specified then the variances σ2
j , j = 1, ..., p, can be

estimated by using the sample variances of the centered variables X−µ−Γβ(fy−f̄).

If ∆ is specified then we can standardize the predictor vector to obtain an isotonic

PFC model in X̃ = ∆−1/2X:

X̃ = ∆−1/2µ + ∆−1/2Γβ(fy − f̄) + ε, (1.6)

where ε is normal with mean 0 and variance Ip. Consequently, we can estimate SΓ

as ∆1/2 times the estimate Γ̃ of ∆−1/2Γ from the isotonic model (1.6). Alternating

between these two steps leads to the following algorithm:

1. Fit a PFC model assuming Var(Xy) = σ2I to the original data and get the

estimates Γ̂(1), β̂(1), µ̂(1).
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2. Iteratively, for some ε > 0 small, repeat until tr{(∆̂(j) − ∆̂(j+1))2} < ε.

(a) Calculate ∆̂(j) = Diag{(X− Γ̂(j)β̂(j)F)T (X− Γ̂(j)β̂(j)F)/n},

(b) Do the transformation X̃ = ∆̂(j)−1/2X.

(c) Fit the PFC model to X̃ to get the estimate Γ̃, β̃ and µ̃.

(d) Transform them back into the original scale of the predictors by Γ̂(j+1) =

∆̂(j)1/2Γ̃, µ̂(j+1) = ∆̂(j)1/2µ̃ and β̂(j+1) = β̃.

The remaining estimated parameters are next obtained. Let λ̂i, i = 1, .., p be the

eigenvalues of Σ̂ and Φ̂d = (φ1, ..., φd) be the eigenvectors corresponding to the

first largest d eigenvalues λ̂fit
i , i = 1, .., d of Σ̂fit. Then the MLEs of the parameters

become µ̂ = X̄, Γ̂ = Φ̂d, and β̂ = Φ̂T
dXTF(FTF)−1. The sufficient reduction can

be estimated as R̂(X) = Φ̂T
d ∆̂−1X.

In the isotonic error case with ∆ = σ2I, the MLE of σ2 is obtained as σ̂2 =

(
∑p

i=1 λ̂i −
∑d

i=1 λ̂fit
i )/p. The other parameters are expressed as in the diagonal

case. The sufficient reduction of the predictors space is R(X) = ΓTX.

In these last two cases, the number of observations n need not be larger than

p to estimate the parameters and to obtain the sufficient reduction. In all the

above results, the dimension d is used and assumed known. In practice, d is not

known and inference needs to be carried to determine its value. Cook and Forzani

(2009a) suggested the use of information criteria (AIC and BIC) and likelihood

ratio statistics to determine d. Their results are applicable in p ¿ n settings.

When p is large, an alternative method will be proposed in Chapter 4 to estimate

d. The dimension r of fy is specified by the user through the choice of the basis

function.
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1.3.2 Robustness

One strength of PFC models is related to their adaptability through the choice of

the basis function fy. But questions may arise on the choice of fy. How well does it

help to capture the dependency of the predictor on the response variables? Also,

how robust is Sd(Σ̂, Σ̂fit) as an estimator of ∆−1SΓ under non-normality of the

errors? Cook and Forzani (2009a) studied these issues and condensed the results

into the following theorem. Let ρ be the d× r matrix of correlations between the

elements of νY and fY .

Theorem 1.3.2. (Cook and Forzani; 2009a, Theorem 3.5). Sd(Σ̂, Σ̂fit) is a
√

n

consistent estimator of ∆−1SΓ if and only if ρ has rank d.

Cook and Forzani (2009a) argued that Sd(Σ̂, Σ̂fit) may be expected to be a

reasonable estimator when the basis function fy is mis-specified, provided that it

is sufficiently correlated with νy.

1.3.3 The Basis Functions

In models (1.2), the term fy − f̄ is a vector-valued function of the response y. It is

constructed under specific basis functions. Given a function ν = ν(y), we want to

find the transformations fy = (f1(y), ..., fr(y))T such that

ν(y) =
r∑

i=1

βifi(y).

The known function fy constitutes the basis functions to be used. In this thesis,

polynomial, piecewise continuous and discontinuous polynomial and Fourier basis

functions are considered. In all cases, we assume that the response variable is

univariate, although there is nothing in the theory that requires this restriction.

The polynomial approach derives from the Taylor theorem: A function ν at

the point y can be approximated in a neighborhood of y by a linear combination
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of polynomials. In general, one can approximate a nonlinear function by a poly-

nomial. A polynomial basis consists of the powers of y, that is, 1, y, y2, ... , yr.

For this work, we consider rth-degree polynomial bases. The linear basis fy = y,

fy ∈ R, the quadratic basis fy = (y, y2)T , fy ∈ R2 and cubic basis fy = (y, y2, y3)T ,

fy ∈ R3 are mentioned in Cook (2007) and are particular cases of polynomial bases.

To determine piecewise basis functions, the range of y is sliced into h slices

H1, ..., Hh. Within each slice, a constant, linear, quadratic or cubic polynomial basis

is used. Except for the constant intra slice basis, we consider two cases: in the first,

the curves from adjacent slices are discontinuous. We refer to this as the piecewise

discontinuous basis. In the second case, the curves are continuous without being

necessarily differentiable at the joints. This is the piecewise continuous basis. We

consider the following notations: for the kth slice, nk is the number of observations

it contains and n =
∑

nk. We denote by Jk(y) the indicator function such that

Jk(y) = 1 if y ∈ Hk and Jk(y) = 0 otherwise. We also denote by τ0, τ1, ...τh, the

end-points of the slices. For example, (τ0, τ1) are the end-points of the first slice;

(τ1, τ2) are the end-points of the second slice, and so on.

For piecewise discontinuous bases, a constant, a linear, a quadratic or a cubic

polynomial is fitted within each slice. For a polynomial of degree m, there are

(m + 1)h parameters to determine. The general form of the components fyi
of fy

where fy ∈ R(m+1)h−1 is obtained. This yields the relationship between the number

of slices and the dimension of fy. Here r = (m + 1)h− 1 when h slices are used.

A linear, a quadratic and a cubic polynomial basis within the slices are also

considered for the piecewise continuous case. Unlike the discontinuous case, curves

from adjacent slices are continuous at each of the (h − 1) inner knots. For a

piecewise linear polynomial, 2h parameters are needed but there is one constraint

at each knot. The number of parameters to determine is 2h − (h − 1) = h + 1.

This yields r = h.
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In the piecewise continuous quadratic case, we can set one or two constraints

at each of the inner knots. Continuity alone implies one constraint at the knots.

Differentiability at the knot gives two constraints. We chose the case with differ-

entiability at the inner knots for this work so far. With two constraints at each of

the (h− 1) knots and 3 parameters for each slice, there are 3h− 2(h− 1) = h + 2

parameters to determine. This yields the length of fy as r = h + 1.

In the piecewise continuous cubic case, we decided to consider three constraints

at each inner knots. A total of 4h − 3(h − 1) = h + 3 parameters need to be

estimated. The length of fy is r = h + 2. Two and three constraints at the knots

respectively for the piecewise continuous quadratic and cubic cases yield quadratic

and cubic splines. These constraints can be relaxed to allow a continuity without

differentiability at the inner knots. This scenario is not yet considered in our

current work.

In all cases, the end-points τ0, ..., τh of the slices can be determined two different

ways. The first way is the simplest: the slices are obtained so that they contain

approximately the same number of observations. The second way is more elaborate.

The goal is to estimate the end-points of the slices with the data for optimal results.

Hawkins (2000) proposed a dynamic programming algorithm for this purpose.

Fourier bases are suggested by Cook (2007). They consist of a series of pairs

of sines and cosines of increasing frequency. A Fourier basis is given by

fy = (cos(2πy), sin(2πy), ..., cos(2πky), sin(2πky))T . (1.7)

and r = 2k. Fourier bases can also be used within slices but this case is not explored

here. Fourier bases are very popular in signal processing. They are mostly used

for periodic functions.

Following are the expressions of the basis functions considered. The first listed

basis (piecewise constant basis) was proposed by Cook (2007). The remaining
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bases are new and are proposed in this thesis.

1. Piecewise Constant Basis fy ∈ Rh−1 . This basis is suitable for a cat-

egorical response y taking values 1, 2, ..., h where h is the number of sub-

populations or sub-groups. The kth component fyk
of fy takes a constant

value in the slice Hk with fyk
= Jk(y ∈ Hk), k = 1, ..., h− 1.

2. Piecewise Discontinuous Linear Basis fy ∈ R2h−1,

fy(2i−1)
= J(y ∈ Hi), i = 1, 2, ..., h− 1

fy2i
= J(y ∈ Hi)(y − τi−1), i = 1, 2, ..., h− 1 (1.8)

fy(2h−1)
= J(y ∈ Hh),

3. Piecewise Discontinuous Quadratic Basis fy ∈ R3h−1,

fy(3i−2)
= J(y ∈ Hi), i = 1, 2, ..., (h− 1)

fy(3i−1)
= J(y ∈ Hi)(y − τi−1), i = 1, 2, ..., (h− 1)

fy(3i)
= J(y ∈ Hi)(y − τi−1)

2, i = 1, 2, ..., (h− 1)

fy(3h−2)
= J(y ∈ Hh)

fy(3h−1)
= J(y ∈ Hh)(y − τh−1). (1.9)

4. Piecewise Discontinuous Cubic Basis fy ∈ R4h−1 and

fy(4i−3)
= J(y ∈ Hi), i = 1, 2, ..., (h− 1)

fy(4i−2)
= J(y ∈ Hi)(y − τi−1), i = 1, 2, ..., (h− 1)

fy(4i−1)
= J(y ∈ Hi)(y − τi−1)

2, i = 1, 2, ..., (h− 1)

fy4i
= J(y ∈ Hi)(y − τi−1)

3, i = 1, 2, ..., (h− 1)

fy(4h−3)
= J(y ∈ Hh) (1.10)

fy(4h−2)
= J(y ∈ Hh)(y − τh−1)

fy(4h−1)
= J(y ∈ Hh)(y − τh−1)

2.
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5. Piecewise Continuous Linear Basis fy ∈ Rh. This is also called a linear

spline. The general form of the components fyi
of fy is

fy1 = J(y ∈ H1)

fy2 = J(y ∈ H1)(y − τ0)

fyi
= J(y ∈ Hi−1)(y − τi−2), i = 3, ..., h (1.11)

6. Piecewise Continuous Quadratic Basis fy ∈ Rh+1. Adjacent curves are

continuous and differentiable at the inner knots.

fy1 = J(y ∈ H1)

fy2 = J(y ∈ H1)(y − τ0),

fy3 = J(y ∈ H1)(y − τ0)
2, (1.12)

fyi
= J(y ∈ Hi)(y − τi−3)

2, i = 4, ..., h

7. Piecewise Continuous Cubic Basis fy ∈ Rh+2. Adjacent curves are con-

tinuous at the inner knots where the second order derivatives are continuous.

fy1 = J(y ∈ H1)

fy2 = J(y ∈ H1)(y − τ0),

fy3 = J(y ∈ H1)(y − τ0)
2,

fy4 = J(y ∈ H1)(y − τ0)
3, (1.13)

fyi
= J(y ∈ Hi)(y − τi−4)

3, i = 5, ..., h + 2

The dimension r depends on the basis and the number of slices considered. The

number of slices is constrained by the amount of data.

The choice of the basis can be aided by graphical exploration. The inverse re-

sponse plots (Cook, 1998) of Xyj versus y, j = 1, . . . , p, can give a hint about suit-

able choices for the basis. For example, when the plots show a linear relationship
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between the predictors and the outcome, then fy = y can be used. When quadratic

curvature is observed, then fy = (y, y2)T can be considered. More elaborate basis

functions could be useful when it is impractical to apply graphical methods to all

of the predictors. It is also possible to develop an automatic mechanism to choose

the basis. This can be done by numerically exploring a set of possible bases and

choosing the best based on some criterion. For example, prediction performance

might be used to select the basis.

1.3.4 End-points estimation

Unlike the polynomial basis, all the piecewise bases require the specification of the

slices. One way to specify the slices is to slice the range of the response Y into

r segments of the same width. This “same-width” slicing method does not seem

satisfactory because it may lead to slices with too few observations and can induce

computational challenges.

A second way is to use the data to determine the segments or end-points. We

suppose that the relationship between the outcome and individual predictors can

exhibit some pattern. For example, it can be a multi-modal curve. The data

can be used with a specific piecewise basis function to determine the end-points

of the slices for a better fit. The use of the data to determine the end-points

is a process control problem. Various programming tools are available. For our

problem, we so far adopted the dynamic programming (DP) approach of Hawkins

(2000) on a change-point model. The model is that the sequence of data can be

partitioned into slices with the observations following the same statistical model

within each slice, but different models in different slices. Hawkins gives an explicit

algorithm to estimate the end-points of the slices. It is reprinted in the next section.

The number of slices is not given a priori but is determined using an information
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criterion. Other possible methods to obtain the end-points include the free-knots

splines method (de Boor, 1978) and the genetic algorithm (Chatterjee et al., 1995).

A third way is to slice the range of the outcome into h segments having about

the same number of observations. We call this an “equi-size” slicing. There is no

optimization of the slicing. This is not necessarily the best approach but is the

easiest to implement.

1.3.5 Dynamic Programming Algorithm

Let us suppose that we have the observations (Xi, Yi), i = 1, ..., n and there are

(k − 1) change-points corresponding to k slices or segments, where Xi and Yi are

observations from univariate variables. The change-points are points in the data

where a shift in the mean occurs. The goal is to find the change-points. We will be

referring to the change-points as end-points. Let us suppose that the observations

Xi falling into slice (τj−1, τj) follow an exponential family distribution with the

density function

f(X, θ) = exp [−θ′X + c(X) + d(θ)]. (1.14)

The log-likelihood of the data is given by

L(X, θ, τ ) =
k∑

j=1

τj∑
i=τj−1+1

[θ′jXi − c(Xi) + d(θj)]. (1.15)

For any arbitrary 0 < h < m ≤ n, let S(h,m) =
∑m

i=h+1 Xi. Let Q(h,m) be

−2 times the maximized log-likelihood obtained by substituting θ̂ for θ in the

log-likelihood of this subsequence of the data. We have

Q(h,m) = −2[θ̂′S(h,m)− (m− h)d(θ̂)] (1.16)

and we have the following equality

− 2 max
{τj},{θj}

L(X, θ, τ ) = −2 max
{τj}

k∑
m=1

Q(τm−1, τm) (1.17)
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With this comes the following theorem:

Theorem 1.3.3. (Hawkins, 2000)

Write F(r,m) for -2 times the maximized log likelihood resulting from fitting an r-

segment model to the sequence X1, X2, ..., Xm. Then F (r,m) satisfies the recursion

F (1,m) = Q(0,m), (1.18)

F (r,m) = min
0<h<m

F (r − 1, h) + Q(h,m). (1.19)

This gives the dynamic programming algorithm as the following

1. For m = 1, 2, ..., n, calculate F (1, m) = Q(0,m)

2. For r = 2, 3, ..., k, calculate F (r,m), with m = 1, 2, ..., n using (1.19) to find

the h value minimizing F (r − 1, h) + Q(h,m); keep a record of the h values

yielding the minimum.

This algorithm produces the set (τ̂1, τ̂2, ..., τ̂k−1) that maximizes
k∑

m=1

Q(τm−1, τm).

These estimates are the end-points of the slices to be used.

1.3.6 Choice of Slicing Method

The dynamic programming (DP) of Hawkins and the “equi-size” approach are

considered in this section as slicing methods. We explored extensively these two

ways to slice the range of the outcome for the piecewise bases. The DP and

the “equi-size” slicing were implemented and their performances were compared

through simulations. We considered the following univariate PFC model

Xy = µ + β(fy − f̄) + σε. (1.20)

where X ∈ R. The maximum likelihood estimate of the parameter β is obtained

as β̂ = xTF(FTF)−1 where x = (X1 − X̄, ..., Xn − X̄)T and F is the n × r matrix

with row ith being fyi − f̄ .
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The two methods were implemented with piecewise discontinuous constant, lin-

ear, quadratic and cubic bases and also the piecewise continuous linear, quadratic

and cubic bases. They were compared using the following mean distance mfy that

depends on the basis function considered.

mfy =
1

n

n∑
i=1

|Xi − X̄ − β̂(fyi − f̄)| (1.21)

In our simulations, datasets were created with two different setups. For the

first, X|Y follows different models from slice to slice; the underlying relationship

between X and Y was not smooth. For the second, observations were generated

from a smooth underlying relationship between X and Y .

From our simulations, we have the following comments. (1) DP performs well

in detecting the true end-points when the correct number of slices is provided. (2)

When the true number of slices is not provided, DP still provides the outstanding

end-points. (3) With smooth and non-smooth underlying true relationships be-

tween X and Y , DP works better than the “equi-size” method based on the mean

distance mfy .

DP allows us to find the end-points but does not provide an exact method for

testing the number of slices. Hawkins suggested the “scree” test to find the optimal

number of slices. Yao (1988), assuming normality of X with constant means within

slices and a common variance across the slices, proposed estimating the number of

slices by Schwarz’ criterion.

So far, we have considered the problem of slicing in the univariate context only.

In this context, we observed that the DP approach gives better results compared

to the “equi-size” method. This DP approach can be useful, especially with the

screening method presented in Chapter 2 that uses univariate PFC model. A DP

approach to slicing in the case of multivariate predictors may also be possible but

was not investigated in this work. Piecewise bases, whenever they are used with
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multivariate PFC models, are obtained with the “equi-size” method throughout

this thesis.

1.4 Conclusions

We gave an overview of PFC models and their parameter estimation. Basis func-

tions play an important role in these models. PFC models will give satisfactory

results when the basis functions capture the natural trends present in the data.

We proposed a list of new bases including piecewise polynomial continuous and

piecewise polynomial discontinuous. The list presented in this chapter is not ex-

haustive.

We adopted polynomial bases as the first choice for basis functions (although

they may not always be the best). In some regressions, piecewise bases can bring

substantial improvements in fitting compared to polynomial bases, but they require

sufficient observations. Piecewise continuous quadratic and cubic polynomial bases

functions presented in this chapter were developed, assuming a differentiability at

the inner knots. In our future work, we will explore these bases relaxing differen-

tiability. The end-points estimation procedure presented in this chapter is applied

to univariate predictors. We will also investigate in the future the multivariate

case for its implementation.
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Chapter 2

Large p Sufficient Reduction

The concept of large p in regression is often related to the number of observations

n. We can group large p scenarios roughly into two groups. The first group is of

p in tens or hundreds. We may write for short that p is on the scale of o(n). The

second is of p excessively large, in thousands. This magnitude of p can be said to

be on the scale of o(nκ) for some κ > 0.

There is abundant literature on methods to tackle regression problems in the

first group, especially when p is large but less than n. Dimension reduction meth-

ods like SIR are used to obtain a sufficient reduction that is often passed to forward

regression methods for further inference and prediction. Forward regression meth-

ods like PCR and PLS are commonly encountered. Inference with forward linear

regression methods can be challenging with large p. A great amount of work is

found on high dimensional linear models, and penalized least squares methods are

often the way to proceed. The least absolute shrinkage and selection operator

(lasso) has gained popularity lately and is very successful for its variable selection

capability.

The second group is of p extremely large with n ¿ p. We suppose that within
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this large pool of p predictors, there is a relatively small set of relevant predictors

of size on the scale of o(n), and a large number of irrelevant ones.

The objective in this chapter is to reduce an excessively large dataset by screen-

ing out irrelevant predictors with a minimal loss of regression information. A novel

method for dimension reduction in ultra-high dimensional predictor spaces is pro-

posed. Screening by Principal Fitted Components (SPFC) uses a univariate PFC

model to screen the predictors to reduce their dimensionality from ultra-high to

relatively small. With the use of basis functions, SPFC is likely to find predictors

having linear and nonlinear marginal relationships with the outcome. Existing

methods are mostly correlation screening methods and are based on the marginal

linear relationship between individual predictor and the outcome. Correlation

screening becomes a particular case of our novel screening methodology. Corre-

lation screening works well to select predictors linearly related to the response.

When the marginal relationship is not linear, correlation screening may perform

poorly. No method was found in the literature for screening applicable specifically

for nonlinear relationships.

2.1 Screening by Principal Fitted Components

When dealing with large p regressions, there may be a possibility that a substantial

subset X2 of the predictors is inactive, thus

X2 Y |X1, (2.1)

which can be an hypothesis to test. The subset X2 does not furnish any information

about the response once X1 is known. Let us consider the PFC model (1.2) with
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∆ > 0. Partition X, Γ and ∆ as

X =


 X1

X2


 ;Γ =


 Γ1

Γ2


 ;∆ =


 ∆11 ∆12

∆21 ∆22


 (2.2)

with Γ1 ∈ Rq×d and Γ2 ∈ R(p−q)×d. Also, partition ∆−1 = (∆ij), i = 1, 2; j = 1, 2,

to conform to the partition of X and let ∆−ij = (∆ij)−1. The sufficient reduction

under a general PFC model is R(X) = ΓT∆−1X. Using the partition above (2.2),

this reduction can be written as

ΓT∆−1X = (ΓT
1 ∆11 + ΓT

2 ∆21)X1 + (ΓT
1 ∆12 + ΓT

2 ∆22)X2. (2.3)

It shows that the hypothesis (2.1) is obtained if and only if ΓT
1 ∆12 + ΓT

2 ∆22 = 0

which is in the following lemma.

Lemma 2.1.1. (Cook and Forzani, 2009a) Assume model (1.2) with a general

structure for ∆. Then X2 Y |X1 if and only if

Γ2 = −∆−22∆21Γ1. (2.4)

Cook and Forzani (2009a) gave the MLEs of all parameters under the null hy-

pothesis (2.1) and proposed the likelihood ratio statistic (LRT) to test it. The

maximum likelihood estimations and the LRT require a large sample with suffi-

ciently small p. Since our focus is on excessively large p and relatively small n,

no asymptotic statistical test would hold. Thus, alternative approaches are to be

used.

One approach consists of assuming that the relevant predictors are conditionally

independent of the irrelevant ones X1 X2|Y . That translates into ∆12 = 0. Since

∆21 = −(∆11 −∆12∆
−1
22 ∆21)

−1∆12∆
−1
22 , assuming ∆12 = 0 implies that

X2 Y |X1 ⇒ Γ2 = 0. (2.5)
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Another approach is to assume that ∆ can be decomposed as ΓMΓT +Γ0M0Γ
T
0

where (Γ,Γ0) is an orthogonal matrix. With such decomposition, ∆−1Γ = ΓM−1.

In this case, the rows of ∆−1Γ are zeros if and only if the rows of Γ are zero.

Under these two approaches, a way to screen out the set of irrelevant predictors

X2 is by testing the null hypothesis Γ2 = 0. This can be done by considering

individual rows of Γ and testing the hypothesis γj = 0, j = 1, ..., p where γj is the

jth row element of Γ.

Fortunately, with the inverse regression approach, we can consider univariate

PFC to determine whether individual predictors are relevant or not. Absorbing γj

into β to form the r-vector φj = γjβ
T , the univariate PFC is

Xjy = µj + φT
j (fy − f̄) + σjε, j = 1, ..., p. (2.6)

This model is a linear regression model where Xjy is the conditional Xj|(Y = y)

and fy − f̄ defined as in model (1.2) is a known function of y and we assume

ε ∼ N(0, 1). Since β is not degenerative, φj = 0 if and only if γj = 0.

The relevance of a predictor Xj is assessed by determining whether the mean

function E(Xjy) depends on the outcome y. A nonconstant mean function can be

evaluated by testing the hypotheses φj = 0. A predictor is relevant when φj 6= 0.

The model (2.6) is simply a forward linear model with its predictors being the

columns of fy− f̄ and the response is Xj. When this model is fitted, an F statistic

can be used to test the null hypothesis

H0 : φj = 0. (2.7)

The F test statistic can therefore be used as a criterion of selection. A predictor

Xj is relevant if the model yields an F -statistic smaller than a user-specified cutoff

value.

The implementation of this screening process involves a specification of a basis

function and several basis functions were described in Chapter 1. The use of
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basis functions gives more power, flexibility and versatility to SPFC and yields a

screening method that is superior to many existing methods encountered in the

literature. SPFC is very likely to select any predictor having any marginal mean

relationship with the response. Relevant predictors are those with an F statistic

smaller than a cutoff value to be determined by the practitioner. The cutoff can

correspond to a significance level α such as 0.1 or 0.05 for example.

2.2 Robustness

In Section 2.2, we presented the results from Cook and Forzani (2009a) on the

robustness of the estimator of ∆−1SΓ and mis-specification of the model of νy in

the context of a general PFC model. Let us touch base briefly with mis-specification

of the model for νy in univariate PFC. Let us suppose that νy is the true function

that captures the dependency of X on Y and write the true PFC model as

Xy = µ + νy + σε. (2.8)

We intend to replace νy by a function of a chosen basis φT (fy − f̄) where φ ∈ Rr .

The above model can be written as

Xy = µ + φT (fy − f̄) + {νy − φT (fy − f̄)}+ σε. (2.9)

If fy is a good approximation of νy, then we should have the following two condi-

tions

E{νY − φT (fY − E(f))} ≈ 0 (2.10)

(νY − φT (fY − E(f)) Y. (2.11)

Condition (2.11) seems the most important since (2.10) can be obtained by con-

struction. The relationship between νY and φT (fY −E(f)) should be linear. Thus,

we should expect the correlation between νY and φT (fY −E(f)) to be close to one.
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In the particular case of univariate PFC, rather than focusing on the robustness

of φ̂ as an estimator of φ, and since the relevance of a predictor is evaluated through

an F test statistic, we can consider robustness of the F -test under non-normality

of the errors in the linear regression (2.6). But this is a well-studied problem in

linear regression. Many publications, including Pearson (1931), David and Johnson

(1951), Box and Watson (1962), have considered the sensitivity of the distribution

of the errors to non-normality for various special cases. Following a discussion

from Lehmann (1997, Section 7.3), it can be said that F -test is robust against

non-normality when the sample size is large and the response is sampled from an

arbitrary distribution with finite variance.

2.3 Existing Screening Methods

Various screening methods exist. Some are designed for continuous and others

are for categorical response variables. Methods for continuous response are mostly

correlation screening and methods for categorical response are often based on test

statistics.

2.3.1 Screening Methods with Continuous Outcome

The leading screening method currently is Sure Independence Screening (SIS) of

Fan and Lv (2008) who give a compelling case for predictor screening based es-

sentially on the strength of marginal linear relationships. The authors define sure

screening as the property that all the important variables survive with a proba-

bility tending to 1 after applying a variable screening procedure. SIS is a forward

linear regression model driven screening procedure. It considers the linear model

(1) and assumes that the true model is sparse. The authors define the method as
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correlation learning and argue that it is broader than correlation screening. Let

us assume in this section that X is first standardized column-wise and Y is cen-

tered to have a mean of zero. The core method comes as follows. They define

M∗ = {1 ≤ i ≤ p : ηi 6= 0} as the true sparse model where ηi is the ith com-

ponent of η in the forward linear model (1). The p-vector that is obtained by

componentwise regression:

ω = XTY = (ω1, ..., ωp)
T (2.12)

is the vector of marginal correlations of predictors with the response variable

rescaled by the standard deviation of the response.

For any given γ ∈ (0, 1), the authors sort the p componentwise magnitudes of

the vector ω in decreasing order and define a submodel

Mγ = {1 ≤ i ≤ p : |wi| is among the first [γn] largest} (2.13)

where [γn] denotes the integer part of γn. This shrinks the model to a submodel

with size d = [γn] < n. The authors argue that under some conditions, they have

P (M∗ ⊂Mγ) → 1 as n →∞ with p fixed.

The authors also propose the iteratively thresholded ridge regression screener

(ITRRS) that uses the ridge regression estimator. With ωλ = (XTX+nλI)−1XTY,

they define

M1
δ,λ = {1 ≤ i ≤ p : |ωλ

i | is among the first [δp] largest}. (2.14)

The authors argue that when the tuning parameters δ and λ are chosen appropri-

ately, with overwhelming probability the submodel M1
δ,λ contains the true model

M∗ and its size is of order nθ for some θ > 0 lower than the original p. They follow

by proposing the ITRRS as follows:

33



2.3. EXISTING SCREENING METHODS

1. First, carry out the procedure in submodel (2.14) to the full model {1, ..., p}
and obtain a submodel M1

δ,λ with size [δp].

2. Then apply a similar procedure to the model M1
δ,λ and again to obtain a

submodel M2
δ,λ ⊂M1

δ,λ with size [δ2p] and so on.

3. Finally, obtain a submodel Mδ,λ = Mk
δ,λ with size d = [δkp] < n, where

[δk−1p] ≥ n.

The authors prove that under some conditions, ITRRS has the so-called sure

screening property.

Another proposal on screening is Supervised Principal Components (SPC) by

Bair et al. (2006). The SPC technique is used in settings where the number of

predictors p is larger than the number of observations n. With this technique,

rather than performing a principal components analysis using all the predictors

in a dataset, only those predictors with the largest estimated correlation with the

response are used. The SPC procedure in a nutshell is given in the following

algorithm:

• Compute univariate standard regression coefficient for each of the p predic-

tors as sj = XT
j Y with Xj being the j-th column of the n × p data-matrix

X.

• Form a reduced data matrix of only those features whose univariate coefficient

exceeds a threshold θ.

• Compute the first (or the first few) principal components of the reduced data

matrix.

• Use these principal component(s) in a forward regression model to predict

the outcome.
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The authors compared the results of the application of their method to the results

using ridge regression, the lasso and partial least squares and showed that their

method works better.

In both cases, the authors relied on forward linear regression models and de-

veloped screening methods based on the marginal linear relationships between the

predictors and the response. It seems that correlation screening would perform

well when the following three assumptions are met: (i) the linear model is true,

(ii) the predictors are independent, and (iii) all the relevant predictors are linearly

related to the response.

The assessment of the first assumption can be difficult when p is large. This

linear model assumption may be unrealistic in the ultra-large dimensional predictor

space but, as quoted before, “the complexity of the models depends on the amount

of data” (Fisher, 1922) .

The second assumption is always assumed with the encountered screening meth-

ods. Assuming independent predictors seems inherent to the forward linear model

considered and we were not able to find any proposal in the literature that ad-

dresses seriously the case of dependent predictors.

The third assumption is also inherent to the assumed forward linear model.

Correlation screening would be restrictive and inefficient when there are weak

linear trends between the predictors and the outcome. Examples exist to show

that relevant predictors may have a strong nonlinear relationship with the response

variable.

2.3.2 Screening Methods with Categorical Outcome

We consider cases with categorical outcome variable Y . Popular methods for

screening the predictors are based on t-statistics. Having a binary outcome, for
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example, is a simple case that is abundant in the literature. For each predictor Xj,

let us denote by n0 the number of observations corresponding to Y = 0, with mean

X̄0j and standard deviation σ̂0j; and n1 the number of observations corresponding

to Y = 1, with mean X̄1j and standard deviation σ̂1j, where n0 + n1 = n and

j = 1, ..., p.

Let Tj, j = 1, .., p be the statistic used to rank and screen the predictors.

Predictors having large Tj are top ranked and are selected. For the jth predictor,

the statistic Tj is obtained using the following methods:

• Difference of Means (Muckerjee, 2004): Tj = |X̄0j − X̄1j|.

• T-statistic (Guyon, 2003): Tj = (X̄0j − X̄1j)/σ̂pj with σ̂2
pj being the pooled

variance σ̂2
pj = {(n0 − 1)σ̂2

0j + (n1 − 1)σ̂2
1j}/(n0 + n1 − 2)

• Signal-to-Noise Ratio (Lai, 2005): Tj = |X̄0j − X̄1j|/
√

σ̂2
0j + σ̂2

1j

• Significance Analysis of Microarray (SAM; Tusher, 2001): Tj = (X̄0j −
X̄1j)/(σ̂j + f), with σ̂j being the standard deviation given by

σ̂j =

√
a{∑m [Xmj − X̄0j]

2
+

∑
k [Xkj − X̄1j]2}

with a = (1/n0 + 1/n1)/(n0 + n1 − 2). Here,
∑

m and
∑

k are summations

of expressions corresponding respectively to Y = 0 and Y = 1. The Tjs

are computed as a function of σ̂j. The value of f is chosen to minimize the

coefficient of variation of Tj(σ̂j) .

We should point out here that these four methods above are inverse regression

methods since the sampling scheme conditions on the outcome Y .

Logistic Regression is another option for screening when the response is

binary. The predictors are normalized to have unit variance. They are used one
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at a time in a forward regression. Using the predictor Xj, a logistic regression is

fitted as logit(E(Y = 1|Xj)) = αj + βjXj. The absolute values of the maximum

likelihood estimators of the βjs are used to rank and screen the predictors (Ma,

2005).

Nonparametric methods exist and include the Wilcoxon rank-sum statistic and

the Kolmogorov-Smirnov statistic. Also, empirical Bayesian methods are encoun-

tered in the literature (West, 2003).

2.3.3 Connecting SPFC to Existing Methods

With a continuous outcome, SPFC can be applied whenever forward linear regres-

sion methods apply. Assuming that (Y,X) is jointly normal, let us consider the

PFC model (1.2) and use the simplest basis fy = y with d = 1. Let us absorb the

parameter β into Γ and set Φ = Γβ. The MLE under the inverse model (1.2) of

the p×1 vector Φ = (φ1, φ2, ..., φp)
T is XTY/n. After column-wise standardization

of X this corresponds to the p-vector ω in expression (2.12) of SIS. Consequently,

SPFC reduces to SIS with fy restricted to y. Following Fan and Lv, we could

select predictors by taking the first [γn] with the largest standardized |φi|. But we

decided to tie the selection to a test statistic for φi = 0, which automatically gives

the same ordering.

The choice of the first [γn] < n predictors proposed by Fan and Lv comes with

a concern about the number of predictors effectively related to the outcome being

possibly larger than n. The consequence is that many important ones could be

easily discarded. For this reason, it seems more appropriate to use a test statistic

to decide whether a predictor is related to the outcome.

When the response is categorical with g levels, model (2.6) still holds and

φj ∈ Rg−1. Screening the predictor Xj for its relationship with the outcome
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becomes equivalent to testing the hypothesis H0 : φj = 0 versus Ha : φj 6= 0.

With g = 2, a t statistic to test whether the means of two samples are identical

and can be seen as equivalent to testing τj = 0 in the inverse regression model

Xj = µ + τjy + εj where the response corresponds to the related groups.

This novel method for screening SPFC is versatile and is applicable in scenarios

compatible with existing methods. But it can also accommodate other scenarios

where existing methods do not fit or perform poorly.

2.3.4 Simulations on Screening

In the following simulations, datasets with p = 500 and p = 1000 predictors are

generated. We suggested considering a larger p, such as 106 predictors. Yet it is not

essential to do so since the screening procedure can be performed on each predictor

to determine whether it is relevant. The dimension p does not affect the relevance

of any particular predictor. The only challenge is about the computational cost

which is not a concern at this stage of the development of the methodology.

2.3.4.1 Simulations #1

This first simulation is to compare SPFC to SIS. It is already shown that SIS is a

special case of SPFC. In this simulation, we show a simple case where SPFC works

perfectly while SIS fails.

One hundred datasets were generated. Each dataset had n = 70 observations

and p = 500 independent predictors X = (X1, ..., Xp)
T with X1 ∼ Uniform(1, 10)

and Xi ∼ N(0, 2), i = 2, ..., p. The response was generated as y = (5X1)ε where

ε ∼ N(0, 1).

We adopted the idea of SIS and estimated the frequency that the only ac-

tive predictor X1 is among the first 35 (Fan and Lv’s γ = 0.5) with the largest
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standardized |φi|. SPFC was also used with a cubic polynomial basis.

The model used to generate the response does not match the usual forward

linear model. Moreover, the relevant predictor has a weak linear relationship with

the response. A poor performance of correlation screening was expected.

The results are in Table 2.1. Correlation screening shows a random selection

and captures X1 among the first 35 predictors only 12% of the time. On the other

hand, SPFC with a cubic polynomial basis fy captured X1 among the first 35

predictors 97% of the time.

The success of SPFC is attributed to the important feature of PFC model

to use basis functions capable of capturing the dependency of the predictors on

the response. In this simulation, although the response was obtained through a

forward model, the inverse model with a cubic polynomial basis function helped

to capture the dependency between X1 and Y .

Table 2.1: Percent time X1 is included in the set of relevant predictors.

Methods % Selection of X1

Correlation Screening (SIS) 12%

SPFC - Cubic Polynomial 97%

2.3.4.2 Simulations #2

In these simulations, unlike the previous, the predictors were generated under

an inverse regression model. The outcome was generated from Uniform(−3, 3)

and the predictors as X = Γβfy + ε with ε ∼ N(0, 4I) and Γ = (Γ1, ..., Γ4)

where Γi is a column vector with all entries equal to 0 except the ith that is 1;

β = Diag(1, 0.5, 2, 8) and fy = (y, y2, y sin(y),
√
|y|)T . One hundred datasets were
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generated and for each we used p = 1000 predictors and n = 100 observations.

Among the p predictors, only the first four were effectively related to the outcome.

For each dataset, SPFC was used to screen relevant predictors. Unlike the

previous case where a fixed number of predictors was selected, in this case, the

number of screened predictors is based on the test statistic. The significance level

of the test was set to α = 0.1. For each predictor, the proportion of inclusion in

the relevant set was obtained. The results are in Table 2.2. For each method, the

average number of predictors selected is also given.

Predictor X1 is linearly related to the outcome. It is selected with the correla-

tion screening 100% of the time. But correlation screening fails drastically to select

the other three relevant predictors not linearly related to the response variable.

The quadratic polynomial basis gives outstanding performance. It does as

well as the correlation screening on X1 but also, is able to select the other three

predictors. The relatively poor performance of the quadratic polynomial basis to

select X3 can be linked to the mis-specification of the model for νy in Section 2.2.

Here the quadratic polynomial basis is not the best suited basis to model the true

trigonometric function ysin(y).

The last column of the table gives the average total number of predictors se-

lected among the thousand. It appears that with the two bases used (linear and

quadratic), 100 predictors are selected. Thus, when p is excessively large, the

screening method which uses a test statistic to select relevant predictors will tend

to select about [αp] predictors.

2.4 Conclusion and Future Work

Although only two sets of simulations were presented in this chapter, we have

investigated many different scenarios and compared the performance of SPFC with
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Table 2.2: Screening Simulations

Basis X1 X2 X3 X4 # Selected

Correlation Screening (SIS) 1.00 0.17 0.11 0.06 102

SPFC - Polynomial (r=2) 1.00 1.00 0.74 1.00 103

different basis functions to correlation screening. Screening by PFC is a versatile

method that is more flexible than available leading methods for screening. SPFC

subsumes Sure Independence Screening. With the use of basis functions, SPFC is

likely to capture any predictors marginally related to the outcome.

Unlike SIS or penalized least squares methods, inverse regression models can

easily accommodate a categorical response and cases with nonlinear relationship

between the response and predictors. In all these settings, inverse regression

method for screening still performs well.

The selection of relevant predictors is done with the use of a test statistic. The

significance level α is chosen by the user and we suggest to use α = 0.1. If α

is too small, some relevant predictors may be screened out and too large α may

allow too many irrelevant predictors. We suggest to consider α that yield a greater

statistical power.

There is an abundant list of basis functions to be used. Users can explore

various basis functions including those mentioned in Chapter 1. The best basis

function to be used may be dataset-specific, but polynomial bases seem to give

good performance.

Screening predictors by univariate PFC can be computationally expensive.

With the scale of p considered in this chapter, a faster and more efficient algo-

rithm may be needed for the implementation of this method.
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Chapter 3

Prediction

In this chapter, we introduce Prediction by Principal Fitted Components (PPFC),

a novel method for predicting an outcome variable Y with a set of predictor vari-

ables X = (X1, ..., Xp)
T . PPFC focuses on continuous outcome variables and does

not make explicit use of their distribution. It can be used regardless of the dimen-

sionality p relative to the number of observations n. We are mostly interested in

scenarios where (1) p is large, possibly much larger than n, and (2) Y |X is not

necessarily normally distributed.

A brief review of nonparametric kernel regression is presented for its connection

with PPFC. The conditional mean function E(Y |X) is derived and its estimation is

proposed with the three settings of the PFC model (isotonic, diagonal and general).

We then focus on the case where the inverse mean function E(X|Y ) is linear in

Y for fair comparison with forward regression methods. We give a maximum

likelihood estimate of E(Y |X) under joint normality of (Y,X). Prediction by PFC

is adaptable to various settings; its performance is compared to forward regression

methods under the following settings: small to large p, small to large n, sparsity

and non-sparsity, with isotonic, diagonal and general PFC. The next chapter will
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3.1. PREDICTION BY PFC

explore cases where E(X|Y ) is nonlinear in Y .

3.1 Prediction by PFC

The prediction method we are proposing can be related to nonparametric methods

for prediction involving kernel density functions. Before introducing this novel

method, we briefly review kernel estimation methods.

3.1.1 Nonparametric Method for Prediction

Let us consider the simple forward nonparametric regression model

Y = m(X) + ε (3.1)

where ε ∼ N(0, σ2
f ). We assume that X ∈ R. The goal of the prediction is to

estimate m(x) = E(Y |X = x) for a new observation x. Let f(X, Y ), f(Y |X),

f(X|Y ), fX(X) and fY (Y ) represent the joint density function, the conditional

density of Y given X, the conditional density of X given Y , the marginal density

function of X and the marginal density function of Y . We have

E(Y |X = x) =

∫
yf(y|x)dy

=

∫
yf(x, y)

fX(x)
dy (3.2)

The density functions are unknown and are to be estimated. A product kernel

estimate of f(x, y) and the estimate of fX(x) are

f̂(x, y) =
1

nhxhy

n∑
i=1

Kx(
x− xi

hx

)Ky(
y − Yi

hy

) (3.3)

f̂X(x) = =
1

nhx

n∑
i=1

Kx(
x− xi

hx

) (3.4)
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In these equations, n represents the number of observations; hx and hy are the

bandwidths. The functions Kx and Ky are the kernel functions that have the

properties of probability density functions. They are defined to satisfy the following

conditions (Simonoff, 1996; page 42)

∫
K(u)du = 1,

∫
uK(u)du = 0,

∫
u2K(u)du = σ2

K > 0. (3.5)

Substituting f(x, y) and fX(x) by their estimates (3.3) and (3.4) in (3.2) and

dropping the indices x for Kx and hx, the conditional expectation E(Y |X = x) is

estimated as

Ê(Y |x) =
n∑

i=1

[
K(x−xi

h
)∑n

j=1 K(x−xi

h
)

]
Yi ≡

n∑
i=1

wiYi

This means that the conditional expectation is estimated as a weighted average of

the observed responses with the weight being

wi =
K(x−xi

h
)∑n

j=1 K(x−xi

h
)

(3.6)

The estimator Ê(Y |x) is the Nadaraya-Watson (N-W) kernel estimator (Nadaraya,

1964). Various kernel functions K are proposed in the literature. Among them,

there are the Epanechnikov, the Gaussian and the Uniform. These three have the

following forms

Gaussian K(u) =
1√
2π

exp{−u2

2
} (3.7)

Epanechnikov K(u) =
3

4
(1− u2)I(|u| ≤ 1) (3.8)

Uniform K(u) =
1

2
I(|u| ≤ 1) (3.9)

In practice h is not known. Under various kernel functions, different expressions

are proposed for the optimal value of h. Cross-validation is suggested, but is said
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3.1. PREDICTION BY PFC

to yield a highly variable bandwidth (Simonoff, 1996). In the multivariate case

with p predictors, the weight becomes

wi =
Kp[H

−1(x− xi)]∑n
j=1 Kp[H−1(x− xi)]

(3.10)

where Kp is often obtained as a product of univariate kernels. The bandwidth H is

a p×p matrix with p(p+1)/2 entries. Three simple forms are typically considered

(Simonoff, 1996). They are H = hIp, H = Diag(h1, ..., hp) and H = hV 1/2 where

V is an estimate of the covariance matrix of X. The choices of H based on the data

follow the same principles as for univariate data. Note that the kernel function is a

function of the predictors only and does not involve the response. As p gets large,

the estimation of the kernel density gets progressively more difficult (Simonoff,

1996) and very large sample sizes are needed to gain useful accuracy.

3.1.2 The Mean Function Under PC and PFC Models

We now consider the PC and the PFC models where the distribution of the pre-

dictors is used. Under the PC and the PFC models, the density function fX(x) is

estimated parametrically rather than by the kernel functions. From the equalities

f(Y |X)fX(X) = f(X|Y )fY (Y ) (3.11)

fX(X) =

∫
f(X|y)fY (y)dy, (3.12)

we can write E(Y |X) as

E(Y |X = x) =

∫
yf(y|X = x)dy

=

∫
yf(x|y)fY (y)

fX(x)
dy

=

∫
yf(x|y)fY (y)dy∫
f(x|y)fY (y)dy

.
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This last expression gives

E(Y |X = x) =
EY (Y f(x|Y ))

EY (f(x|Y ))
(3.13)

which is the core expression used for prediction with PC and PFC. This expression

is general and can be applied with any method that can allow an estimation of

f(x|Y ).

With the observed response Y = (Y1, ..., Yn)T , the predictive value Ŷ for a given

observation X = x is obtained as

Ê(Y |x) =

∑n
i=1 Yif̂(x|Yi)∑n
j=1 f̂(x|Yj)

=
n∑

i=1

[
f̂(x|Yi)∑n

j=1 f̂(x|Yj)

]
Yi

=
n∑

i=1

wi(x,Y)Yi (3.14)

where

wi(x,Y) =
f̂(x|Yi)∑n

j=1 f̂(x|Yj)
. (3.15)

The estimated conditional expectation Ê(Y |x) is a weighted function which de-

pends on the observed response vector Y. This expression derived in (3.14) is

similar to the N-W kernel estimator in the multivariate case. But there is an

important difference. The weights in a kernel estimator do not depend on the

response, while the weights (3.15) do.

Under the PC and the PFC models, f is the density function of a multivariate

normal distribution. With the PC model with an isotonic error, we know that

the estimated sufficient reduction is Γ̂Tx. The estimated density function can be

written as

f̂(x|Y ) ∝ exp{−(2σ̂2)−1‖Γ̂T (x−Xi)‖2}. (3.16)
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We can thus write the estimated conditional expectation as

Ê(Y |x) =
n∑

i=1

exp{−(2σ̂2)−1‖Γ̂T (x−Xi)‖2}∑n
j=1 exp{−(2σ̂2)−1‖Γ̂T (x−Xj)‖2}

Yi (3.17)

It is easy to see that Ê(Y |x) is in the form of the N-W kernel estimator with a

gaussian kernel function. Unlike the N-W estimator, there is no need for an elab-

orate estimation of the bandwidth. The natural bandwidth is standard deviation

σ̂ of conditional predictors.

Under the PFC model, two cases can be considered. The first is the isotonic case

and the second is the general structure case. A diagonal PFC model can be rescaled

into an isotonic PFC model by standardizing the predictors with their conditional

standard deviations. In the isotonic case, the sufficient reduction is estimated as

Γ̂Tx. Let Bols = XTF(FTF)−1 be the coefficient matrix from the multivariate OLS

fit of X on fy, and let the fitted vectors be denoted as X̂i = X̄ + B(fyi − f̄). Then

the estimated density function f̂ can be written as

f̂(x|Y ) ∝ exp{−(2σ̂2)−1‖Γ̂T (x− X̂i)‖2}. (3.18)

The estimated conditional expectation is obtained as in (3.17) except that Xi is

replaced by X̂i.

Estimation under the PFC model with a general structure is more elaborate.

The sufficient reduction is given by R(X) = ΓT∆−1X. The MLE of ∆−1Γ is

obtained as in Proposition 1.3.1. The estimated density function f̂ is

f̂(x|Y ) ∝ exp{−1

2
(x− X̂i)

T [∆̂−1Γ̂(Γ̂T∆̂−1Γ̂)−1Γ̂T∆̂−1](x− X̂i)}. (3.19)

All the estimation results are from Cook (2007) and Cook and Forzani (2009a).

The expression (3.19) can be simplified. By setting Ṽ = Σ̂
−1/2
res V̂(Ip + K̂)−1/2,

we have ∆̂−1 = ṼṼT and the columns of ∆̂1/2Ṽ are the normalized eigenvectors

of ∆̂−1/2Σ̂fit∆̂
−1/2. Let Ṽd and V̂d denote the p × d matrices consisting of the
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first d columns of Ṽ and V̂. Since the MLE of ∆−1Γ is S(∆̂, Σ̂fit), we have

Sd(∆̂, Σ̂res) = span(∆̂−1/2∆̂1/2Ṽ) = span(Ṽd) = span(Σ̂
−1/2
res V̂d). Consequently,

we have the following: ∆̂−1Γ̂ = Ṽd = Σ̂
−1/2
res V̂d. This implies the reduction R̂(x) =

V̂T
d Σ̂

−1/2
res x. From expression (3.19), we have (Γ̂T∆̂−1Γ̂)−1 = ṼT

d ∆̂Ṽd = Id. The

estimated density function can be written as

f̂(x|Y ) ∝ exp{−1

2
‖V̂T

d Σ̂−1/2
res (x− X̂i)‖2}. (3.20)

The estimation of the mean function under the PC and the PFC models in-

corporates a dimension reduction. When the dimension p is too large the density

function could become a high dimensional function. But we see that the estimated

density functions are in a lower dimension d smaller than p. In general, when a

sufficient reduction R(X) is obtained, we know that E(Y |X) = E(Y |R(X)). The

success of our method depends on obtaining a good estimate of the density f .

With the assumed model (1.2), the density is known and well behaved. We can

therefore use this method for prediction with large as well as small p.

3.1.3 Mean Function by MLE

We know that under a forward linear regression model, the estimation benchmarks

are set by the maximum likelihood estimates. To be able to compare our method

to least squares methods, we assume that (Y,X) is jointly normal; in the remainder

of this chapter, we assume d = 1 and set fy = y. These restrictions, along with

∆ = σ2I, yield a very simple expression of the PFC model. The subsequent model

is still complex enough to allow a fair comparison of prediction by PFC to the

forward linear regression methods for prediction. Under these restrictions, Cook

(2007) established a clear connection with ordinary least squares, that the span of

the parameter η in the forward model (1) is the same as the span of Γ. We assume

for simplicity that the outcome and the predictors are centered to have mean 0
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(µ = 0 and Ȳ = 0). The simple PFC model under consideration in the rest of this

chapter is

Xy = Γy + σε, (3.21)

where the error term ε ∼ N(0, I). We will derive an estimate of E(Y |X) based

on the MLE of the parameters in models (3.21) and (1). We will also present a

connection between PFC and PLS.

We denote by C = Cov(X, Y ) the covariance of X and Y . We consider both

the forward linear regression model (1) and the simple PFC model (3.21). Under

the inverse model (3.21), the covariance matrix of X can be expressed as

Σ = Var(X)

= Var(E(X|Y )) + E(Var(X|Y ))

= σ2
Y ΓΓT + σ2Ip. (3.22)

Using joint normality, we derive the MLE of Γ, σ2
Y and σ2.

Theorem 3.1.1. Assume that (Y,X) is jointly normal and let C̃, Σ̃ and σ̃2
Y be

respectively the sample covariance of X and Y , the sample marginal covariance of

X and the sample variance of Y . Under the simplest PFC model (3.21), the MLEs

of Γ, σ2
Y and σ2 are:

Γ̂ =
C̃

‖C̃‖
; σ̂2

Y = σ̃2
Y ; σ̂2 =

1

p
(tr{Σ̃} − σ̃2

Y ). (3.23)

The proof of this theorem is in Appendix A. The mean function under the

forward model is E(Y |X) = ηTX where η can be estimated by the ordinary least

squares method as η̂ols = Σ̂−1Ĉ. Using joint normality, we can also express the
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mean function E(Y |X) as

E(Y |X) = CT (σ2Ip + σ2
Y ΓΓT )−1X

=
CTΓΓT

σ2 + σ2
Y

X

=
σ2

Y ΓT

σ2 + σ2
Y

X ≡ ηTX. (3.24)

Replacing the parameters by their MLE yields the MLE of η as

η̂mle =
σ̂2

Y Γ̂

σ̂2 + σ̂2
Y

=
Ĉ

σ̂2 + σ̂2
Y

=
pĈ

tr{Σ̃}+ (p− 1)σ̂2
Y

. (3.25)

A lower bound on the mean squared prediction error is given by the conditional

variance of Y |X

Var(Y |X) = σ2
Y − σ4

Y ΓT (σ2Ip + σ2
Y ΓΓT )−1Γ

= σ2
Y − σ4

Y (σ2 + σ2
Y )ΓT (ΓΓT )−1Γ

=
σ2σ2

Y

σ2 + σ2
Y

. (3.26)

We obtained an MLE of η that makes use of joint normality. This maximum

likelihood estimate of η is different from the OLS estimate; it is expected to give

better prediction performance compared to the OLS under joint normality assump-

tion. In terms of estimation, in the isotonic case, the estimate η̂mle can be obtained

without any mathematical challenge due to the dimensionality p.

3.1.4 Prediction Error

The estimation of E(Y |X = x) is the main step toward our goal for predicting a

future observation of a univariate response variable Y at the given value x of X.
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The performance of this prediction method is evaluated by estimating the usual

mean squared prediction error E[Y − Ê(Y |X = x)]2.

There are numerous techniques for assessing the mean squared prediction error

(PE). Often, a training set is used to estimate the parameters in the fitted function

and a test set is used to estimate PE. When a large independent test set is available,

a sample of n observations (Y ∗
i ,x∗i ), i = 1, ..., n can be taken from it to estimate

PE as

P̂E =
1

n

n∑
i=1

[Y ∗
i − Ê(Y |X = x∗i )]

2. (3.27)

This setup can be used for example with datasets generated from known mod-

els. With real datasets, the prediction error is assessed by implementing some

form of partitioning of the observations. Existing methods include leave-one-out

cross-validation (Geisser, 1975), k-fold cross-validation (Hastie et al., 2001), Monte

Carlo cross-validation (Molinaro et al., 2005) and Bootstrap (Efron and Tibshirani,

1997).

We propose to use k-fold cross-validation to estimate the mean squared pre-

diction error. With a dataset D, let us split the n observations randomly into K

subsets of roughly equal size D1, ..., DK and let D(−k) be the set D with Dk being

held out. We use D(−k) as a training set to estimate the parameters in models

(1.1) for PC and (1.2) for PFC. We are estimating PE = E[(Y − Ŷ )2|X] which is

given by

P̂E =
1

N

K∑

k=1

∑
Yj∈Dk

[(Yj − Ŷj)
2|X = x

(k)
j ]. (3.28)

where x
(k)
j are from the testing set Dk, j = 1, ..., nk, with nk being the number

of observations in Dk. In expression (3.28), the term Ŷj is obtained using (3.13)

which is estimated as

Ŷj =

∑
Yi∈D(−k)

Yif̂(x
(k)
j |Yi)

∑
Yi∈D(−k)

f̂(x
(k)
j )|Yi)

(3.29)
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where f̂ is obtained by estimating the parameters using the training sets D(−k).

The estimation of all the parameters follows Cook (2007) and Cook and Forzani

(2009a).

3.2 Other Mean Function Estimators

3.2.1 Partial Least Squares

PLS has a long history and has been used extensively in many fields including

Chemometrics and the social sciences. Univariate PLS is a method of modelling

relationships between a response variable Y and other explanatory variables. PLS

is very useful in situations where there are many variables but not necessarily

many samples or observations (n < p). With univariate PLS, linear combinations

of the predictors are formed sequentially and are related to the response variable by

ordinary least squares regression (Garthwaite, 1994). There are several algorithms

for PLS. The following is a formulation by Naik and Tsai (2000). Letting Ĝ =

(Ĉ, Σ̂Ĉ, ..., Σ̂m−1Ĉ) be the p×m matrix of the Krylov sequence, the PLS estimator

of η in (1) is

η̂pls = Ĝ(ĜT Σ̂Ĝ)−1ĜT Ĉ. (3.30)

When the number of factors retained m equals the number of variables p, the PLS

estimator is identical to the classical OLS estimator (Helland, 1990). When m is

less than p, cross-validation or AIC can be used to select the number of factors m̂

(Helland, 1992).

We now look at the connection between PFC and PLS with a focus on predic-

tion. We still use joint normality for (X, Y ). We adopt the formulation of Naik

and Tsai (2000). If we assume that the covariance C of X and Y is a reducing

subspace of Σ the covariance of X (Σspan(C) = span(C)), then only one factor is
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needed and Ĝ = Ĉ. The estimator of η under PLS can then be written as

η̂pls = (ĈT Σ̂Ĉ)−1‖Ĉ‖2Ĉ. (3.31)

The inverse model (3.21) can be used to get the estimate Γ̂ which yields the

sufficient reduction Γ̂TX. The estimate τ̂ of τ that minimizes
∑n

i=1(Yi−τ Γ̂TXi)
2 is

found to be τ̂ = (Γ̂TXTXΓ̂)−1Γ̂TXTY. Thus the expression of τ̂ Γ̂ with Γ̂ = Ĉ/β̂σ̂2
Y

is exactly the same as (3.31). This shows a simple connection between the PLS

and PFC models: estimating Γ by PFC model (1.2) followed by an OLS of Y on

Γ̂TX yields the same coefficient as η̂pls.

3.2.2 Penalized Methods for Mean Function

The ordinary least squares (OLS) method is not adequate in dealing with regression

with large p and small n. The OLS estimates often have low bias but large variance

which affects the prediction accuracy. Shrinkage methods were designed to improve

its estimates. Among these shrinkage methods are the lasso (Tibshirani, 1996) and

ridge regression (Hoerl et al., 1970). The lasso and ridge regression are two popular

penalized least squares methods that are considered in this chapter for comparison

to PPFC in terms of their prediction performance. The penalized least squares

estimates of η have the following general form.

η̂ = arg min
η
{

n∑
i=1

(Yi − Ȳ − ηT (Xi − X̄))2 + λ

p∑
j=1

|ηj|γ} (3.32)

For any given γ > 0, the estimator is called the bridge estimator (Frank et al.

1993). The parameter λ ≥ 0 is a tuning parameter. It is a complexity parame-

ter that controls the amount of shrinkage: the larger the value λ, the greater the

amount of shrinkage. With λ = 0, the estimator reduces to OLS. When λ is large

enough, the bridge estimator shrinks the estimates of η toward zero. The shrink-
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age has the effect of controlling the variances of η which improves the prediction

accuracy of the fitted model.

When γ = 2, the estimate η̂ that minimizes (3.32) is the ridge estimator. The

ridge estimator shrinks the estimates of η toward zero and improves the prediction

accuracy especially when there are many correlated predictors. The ridge estimator

does not shrink the estimates exactly to zero even with large λ and thus, it does

not do variable selection.

When γ = 1, the estimate becomes the lasso estimator. The lasso is very

attractive in the sense that by making λ sufficiently large, it shrinks the estimate

of some parameters exactly to zero and hence permits variable selection. Other

methods are proposed to address various shortcomings of the lasso. Zou and Hastie

(2005) pointed out that in the microarray context, if there is a group of variables

among which the pairwise correlations are very high, then the lasso tends to select

only one variable from the group and does not care which one is selected. Also if

p > n, the lasso selects at most n variables, thus the number of selected variables

is bounded by the number of samples. To fix these issues, they proposed an

alternative method called the Elastic Net. The Elastic Net estimator is given by

η̂enet = arg min
η
{

n∑
i=1

(Yi − Ȳ − ηT (Xi − X̄))2 + λ1

p∑
j=1

|ηj|+ λ2

p∑
j=1

η2
j} (3.33)

When λ2 = 0, the Elastic Net estimator coincides with the lasso. But, the lasso

and the Elastic Net assume a sparse true linear model which cannot be easily

verified when p is large. The lasso has been studied extensively in the literature

and has many variations.
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3.3 Simulations

We present some simulated examples in this section where the simplest basis func-

tion fy = y is used to generate the datasets. We fit PFC models to these datasets

also with fy = y and d = 1. We do not claim that this basis function is the best

basis to be used. However, it sets a fair ground for comparison with forward linear

models. Therefore, results in this section are only for this specified basis and do

not show the final performance of PPFC under other basis functions.

The following estimators are considered for use against PPFC: ordinary least

squares (OLS), partial least squares (PLS), ridge regression (RR), the lasso, and

the MLE estimator derived in (3.25). In sparse cases, the screening method SPFC

is used to collect important predictors before applying PPFC (See Section 2.1).

The subsequent method is referred to as PPFC.scr. The screening procedure is

carried so that a predictor is selected when the F statistic gives a p-value less than

the significance level 0.1.

We explore the prediction performance by estimating the mean squared pre-

diction error in four cases corresponding to the combination of n < p and n > p

with sparse and non-sparse, and with various estimators.

In all simulations, we adopt the following notations: Jp = (1, ..., 1)T and Op =

(0, ..., 0)T are p-vectors with entries respectively 1 and 0.

3.3.1 Simulation Setting Considerations

In the simulations in this chapter, the predictors are generated using the following

model

Xy = Gy + σε, G ∈ Rp. (3.34)
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Let us suppose that we allow the number of predictors p to increase. Two possi-

bilities related to the length of G can be evaluated. Let G = (α1, ..., αp)
T such

that GTG =
∑p

i=1 α2
i = k where αi ∈ R. The first consideration is to set k to be

a constant and the second is to assume that k = k(p).

Let us suppose here that we are in a dense case where no assumption is made

to set any αi to zero. When k is constant and does not change with p, the absolute

value of the entries αi will necessarily shrink toward zero as p increases. This

implies that when we increase the number of predictors, the signal input from the

response into individual predictors decreases. This does not seem to correspond

to any realistic application. We will later see the behavior of the prediction error,

which increases as p gets increased.

Let us still consider the dense case and assume now that k = k(p). For sim-

plicity, we assume that αi = 1 for all i, thus k(p) = p. In this case, increasing p

does not change the signal input from the outcome into individual predictors. Let

us rewrite the model (3.21) as

Xy =
G

‖G‖‖G‖y + σε (3.35)

We define G̃ as the normalized version of G (G̃ = G/‖G‖) and set G̃0 to be the

orthogonal completion of G̃. We can rewrite C as

C = Gσ2
Y = G̃‖G‖σ2

Y (3.36)

and the covariance matrix can be expressed as

Σ = σ2I + σ2
Y GGT

= σ2I + σ2
Y ‖G‖2G̃G̃T

= σ2G̃0G̃
T
0 + (σ2 + σ2

Y ‖G‖2)G̃G̃T (3.37)
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Its inverse is given by

Σ−1 =
G̃0G̃

T
0

σ2
+

G̃G̃T

σ2 + σ2
Y ‖G‖2

(3.38)

and the conditional variance which is a lower-bound of the prediction error is

re-expressed as

Var(Y |X) = σ2
Y −CTΣ−1C

= σ2
Y [1− σ2

Y ‖G‖2

σ2 + σ2
Y ‖G‖2

]

=
σ2σ2

Y

σ2 + σ2
Y ‖G‖2

.

=
σ2σ2

Y

σ2 + pσ2
Y

. (3.39)

This expression shows that when p increases, the lower-bound decreases and there

is an accumulation of information. We should expect a decrease of the mean

squared prediction error as we increase p.

For the sparse cases, we suppose that a finite number p0 of predictors is related

to the outcome and G = (α1, ..., αp0 , 0, ..., 0)T . In this case, an increase in the

number of predictors does not affect the length of G.

3.3.2 Simulations with ∆ = σ2I

3.3.2.1 Simulations with Normal Y

In the following simulations, the predictors were generated as X = Gy + ε where

ε ∼ N(0, σ2Ip) and the response Y ∼ N(0, σ2
Y ). We have set σ2 = 1 and σ2

Y =

1. The number of observations n or the number of predictors p was increased.

For given values of p and n, one hundred datasets were generated. Each dataset

was used to compute the mean squared prediction error. The mean values of
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these prediction errors were obtained and plotted. On the figures, the lower light-

green line represents the lower-bound Var(Y |X) computed assuming that (Y,X)

are jointly normal.

Simulation 1. Non-Sparse n > p: With p = 10 predictors, the number

of observations n was increased from 30 to 500. The datasets were obtained with

G = Jp/
√

p. A true lower bound of the mean squared prediction error was obtained

as Var(Y |X) = 0.5. Figure 3.1a gives a typical case where n > p with no sparsity.

All methods showed a decreasing trend in the prediction error which was expected.

The MLE was expected to perform better than the OLS and it shows on the plot.

PPFC shows better performance than OLS. Prediction by PC as expected gives

the worst performance. All the methods (OLS, MLE, RR, PLS) give equivalent

results as n gets large.

Simulation 2. Sparse n > p: The datasets were obtained as in the previous

case, except that G = (JT
p0

,OT
p−p0

)T /
√

p0. With p = 20 predictors, p0 = 10

predictors were effectively related to the outcome. This was a sparse case and

Figure 3.1b shows the results. The MLE estimate was obtained without screening

the predictors but it seems to give the best performance here also. In this sparse

context, PPFC.scr can be compared to the lasso which is outperformed. RR and

OLS yield slightly larger prediction errors compared to PPFC. The performance of

PPFC.scr is about the same as for the MLE based and the PLS. This simulation

seems to show a particularity of PPFC in the sparse cases: when the number of

irrelevant predictors is not excessive, screening may not be necessary.

Simulation 3. Non-Sparse p > n: The datasets were generated with n =

80 observations. The predictors were generated with G = Jp and their number

p increases from 80 to 500. In this scenario, we assumed that there is a large

pool of predictors and they are individually related to the outcome. Predictors

were collected from this pool and added to a set of initial ones. The number
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of predictors p of the set was increased; the signal input from the response into

individual predictors does not change. The results on Figure 3.1c show a very

competitive performance of PPFC compared to RR and to MLE. The lasso yields

a poor performance which is expected. All methods show a decreasing trend of

the prediction error.

Simulation 4. Sparse p > n: There were p0 = 10 effective predictors and

G = (JT
p0

,OT
p−p0

)T . In this scenario, we assumed that there was a finite number p0

of important predictors effectively related to the outcome. The length of G does

not change. Figure 3.1d shows the results. This was the sparse case of Simulation

3 with n = 80. To these p0 predictors were added unimportant predictors in

increasing number. These added predictors can be considered as noise since they

do not contribute to the information of the outcome. Here, the lasso gives an

outstanding result compared to PPFC. The performance of PPFC and RR gets

worse as p increases. However, PPFC.scr yields the best performance of all.

Simulation 5. Non-Sparse p > n: Figure 3.2a shows results obtained with

datasets generated as for 3.1c, except that G = Jp/
√

p. The length of G was

always equal to 1 and the number of predictors increases. In this scenario, when p

gets large, the signal input from the response into individual predictors decreases

to 0. This scenario, to our view, does not seem to match any realistic application.

It certainly can be seen as p different cases of datasets where the signal input from

the response is reduced from one case to the next until the last experiment where

the signal input is the lowest. We see an increase of the prediction error as p

increases for all methods considered.

Conclusions: The inverse regression modelling approach seems to be most

suitable to large p small n problems. Often in the literature, in large p contexts,

simulation set-ups consider the forward linear model. The predictors are often

marginally generated as independent standard normals. The response is usually
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obtained with a linear combination of the predictors. In these set-ups, it is hard

to see the effects of increasing p on the prediction error. This might be one of

the main reasons the idea of sparsity has been used in regression as a main trend

nowadays. With the inverse modelling approach, we allow p to grow freely, as it is

seen in these simulations. It is surely encouraging that PPFC is highly competitive

compared to least squares methods when the joint normality of (Y,X) is assumed.

3.3.2.2 Simulations with Non-Normal Y

We suppose that the response variable has one of the following three shapes:

(i) symmetrical with a heavy tail (t-distribution with small df), (ii) skewed (χ2-

distribution), or (iii) uniform. This is a way to mimic real datasets where normality

assumptions may be hard to meet. We still consider the estimators used in the

previous sections.

We present the four simulations below. The mean squared prediction errors

are computed as in the case of normal Y . The lower light-green line represents the

lower bound Var(Y |X) obtained under normality.

Simulation 1. Non-sparse and n > p: The predictors were generated as

X = Gy + ε where G = 0.3Jp, ε ∼ N(0, σ2I) and Y generated respectively from

a t, a χ2 and a uniform. We used p = 10 predictors, n = 200 observations, and

σ2 = 1.

For the t and the χ2 distributions, the degrees of freedom were taken from

3 to 50. The responses generated from t and χ2 were normalized to have unit

variance so that the heavy tail and skewness effects on the prediction errors could

be compared. For the uniform distribution with parameters (a, b), the difference

(b − a) was increased from 2 to 8. The response generated from the uniform

distribution was not normalized. We instead explored the effect of the variance
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Figure 3.1: Prediction Error with (X, Y ) jointly normal; a. Non-Sparse n > p; b.

Sparse n > p; c. Non-Sparse n < p; d. Sparse n < p.
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increase of the response on the prediction error.

The results are on Figures 3.2b, c and d. With a heavy-tailed t (small df),

there is little gain compared to the OLS and the MLE, but a significant difference

between PPFC and the other methods is observed in datasets obtained under

χ2 with small dfs. With the response uniformly distributed, the prediction error

increases with the range (b − a) and all of the considered methods behave likely.

PPFC slightly dominates OLS, PLS and MLE when the variance of the response

is large.

Simulation 2. Sparse and n > p: The datasets were generated as above except

that G = (JT
p0

,OT
p−p0

)T . This is a sparse case with p = 20 predictors including

p0 = 10 relevant ones.

The results are shown in Figures 3.3a, b and c. PPFC and PPFC.scr were used.

The results are quite similar to the non-sparse case. With the response uniformly

distributed, PPFC.scr and PPFC are numerically close and overlap on the plot;

they yield a better performance than the lasso, ridge regression, OLS, PLS and

MLE. PPFC and PPFC.scr dominate the other methods under t and χ2 with small

dfs.

Simulation 3. Non-sparse and n < p: We assume that there are more pre-

dictors than observations, but all predictors are important. We set G = 0.1Jp,

ε ∼ N(0, σ2I) with n = 80, p = 100 and σ2 = 1. The lasso may shrink the

coefficients of some predictors and consequently would not perform well.

Figures 3.3d, 3.4a and b show on the plots where PPFC yields better results

than the lasso and ridge regression. Ridge regression expectedly performs better

than the lasso. OLS is obtained by taking the generalized inverse of the covariance

matrix of the predictors. The MLE and PLS are numerically close and overlap

on the three plots. PPFC gives the best performance under t and χ2 with small

degrees of freedom.
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Simulation 4. Sparse and n < p: The datasets were obtained as in Simulation

3 but with G = 0.3(JT
p0

,OT
p−p0

)T and p0 = 10 relevant predictors. The results are

on Figures 3.4c, d and 3.5a. This is the ideal case for the lasso where it outperforms

PPFC, PLS and the MLE. However, with the screening method, PPFC.scr yields

the best performance of all.

Conclusions: Through these simulations, we have observed that with the out-

come generated from a χ2 and a t with low degrees of freedom, PPFC performs

exceptionally better than least squares methods, under both the sparse and the

non-sparse cases. This is one of the important features of PPFC: it performs gen-

erally well regardless of the distribution of the outcome which is not the case with

forward linear model methods like RR and the lasso. In sparse cases, PPFC.scr also

gives outstanding performance compared to the lasso. With an outcome uniformly

distributed, generally, PPFC dominates the lasso, RR, PLS and MLE.

3.3.3 PFC Prediction with Diagonal ∆

In this section, the predictors are on different scales and the variance of Xy has a

diagonal structure ∆ = Diag(σ2
1, . . . , σ

2
p). As stated earlier in Section 1.3.1, there

is no closed-form for the MLE of ∆ and an algorithm was proposed to determine

the MLE when p > n. With the estimated ∆̂, the rest of the parameters were

obtained as for the isotonic case. We investigated several simulations comparable

to the previous case of isotonic error and recorded similar results. Now we consider

two simulations. The first is to investigate the effect of an increasing range of the

diagonal elements of ∆ and the second is to illustrate potential benefits of the

diagonal PFC model.

Simulation 1: We considered a diagonal covariance structure and increased

the range of the elements σ2
i from 1 to 104. Datasets were generated with the
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Figure 3.2: Prediction Error, Non-Sparse cases: a. (X, Y ) normal with decreasing

signal intensity in X, n < p; b. Y ∼ t, n > p; c. Y ∼ χ2, n > p; d. Y ∼
Uniform(a, b), n > p.
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Figure 3.3: Prediction Error with Non-Normal Y : a. Y ∼ t, n > p, Sparse; b.

Y ∼ χ2, n > p, Sparse; c. Y ∼ Uniform(a, b), n > p, Sparse; d. Y ∼ t, n < p,

Non-Sparse.
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Figure 3.4: Prediction Error with Non-Normal Y and n < p: a. Non-Sparse,

Y ∼ χ2; b. Non-Sparse, Y ∼ Uniform(a, b); c. Sparse, Y ∼ t; d. Sparse, Y ∼ χ2.
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predictors obtained as X = Gy + ε with ε ∼ N(0,∆), ∆ = Diag(σ2
1, ..., σ

2
p),

G = 0.5(σ1, ..., σp)
T . The number of predictors used was p = 50 with n = 80

observations and Y ∼ N(0, 5). We set σ2
j = 10 for j = 1, ..., p/2 and σ2

k for

k = p/2 + 1, ..., p takes values from 11 to 104. We tied G to ∆ so that, when

the values of σ2
i increases, the intensity of the signal input in the predictors stays

constant.

For each range, one hundred datasets were generated and the mean prediction

error was computed. The results show that there is not much change in the esti-

mations when the range of the variance elements increases. In fact, with diagonal

∆, fitting PFC model with diagonal ∆ is equivalent to fitting an isotonic error

structure to ∆−1/2X. Comparisons with the lasso, RR, PLS were similar to the

isotonic cases.

Simulation 2: We generated datasets with the response Y from N(0, 1) and

150 predictors using G = 3J, and fy = y. The conditional variances (σ2
1, ..., σ

2
150)

were generated once as the order statistics for a sample of size 150 from uni-

form(0,500). The smallest order statistic was σ2
1 = 0.7 and the largest was

σ2
150 = 496. We then used (σ2

1, ..., σ
2
p) for a regression with p predictors. This

is not a realistic construction since the predictors will likely be not ordered. How-

ever, it gives us an insight on how the methods work.

For each value p, a sample of 50 observations was generated to estimate the

parameters for each of the methods considered. Predictions were assessed using

200 new simulated observations and the entire setup was replicated 100 times to

obtain the average prediction errors shown in Figure 3.5b.

We considered the following methods: (1) PFC model with diagonal ∆, (2)

PFC model with isotonic ∆, (3) PC model, (4) principal components regression

(PCR), (5) partial least squares (PLS), (6) ridge regression (RR) and (7) the lasso.

PFC models were fitted with fy = y and respectively a diagonal and an isotonic
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conditional variance.

With p = 3 predictors, all seven methods perform well because the first three

conditional variances are similarly small. With an increase of p, the prediction er-

rors for the diagonal PFC barely change while there is a rapid substantial increase

for the isotonic PFC, PC, PCR, and PLS. The lasso and RR show the same be-

havior as the diagonal PFC but give larger prediction errors when p is large. The

diagonal PFC fitting performs well because it weights each predictor according to

its conditional variance. Thus, with a large conditional variance, the corresponding

predictor will be down-weighted.

3.3.4 PFC Prediction under General ∆

We consider now dependent predictors. The variance of Xy has a general structure.

This general structure is considered helpful in looking into cases where some of the

predictors are highly correlated. So far, with the actual development of PFC

methodology, the estimation of ∆ with a general structure requires n > p.

3.3.4.1 Simulations with Normal Y

We consider (X, Y ) jointly normal. The outcome is generated from a N(0, 1), the

predictors are obtained from X = Gy + ε and the error term ε ∼ N(0,∆). We

consider sparse and non-sparse cases. The datasets were generated so that some

predictors in both cases are highly correlated and the number of observations was

increased. PPFC and PPFC.scr were applied where the PFC model was fitted with

fy = y. In the following simulations, the following notation is used: Mp = JpJ
T
p−Ip.

Simulations 1. Non-sparse: We used p = 10 predictors. With ∆ obtained

as ∆ = Diag(σ2
1, ..., σ

2
p) + σ2

oMp where σ2
i takes values from 1 to 103. We set

G = (σ1, ..., σp)
T with σ2

o = 8; σ2
j = 10 for j = 1, ..., (p/2) and σ2

k = 103 for
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k = (p/2) + 1, ..., p. We tied G to ∆ so that we have about the same signal-to-

noise ratio across the predictors.

The results are shown on Figure 3.5c. The OLS and MLE give about the same

prediction error that is shown in blue. They both perform expectedly well and

slightly dominate PPFC and PLS.

Simulations 2. Sparse: The number of predictors used was p = 20 but only

p0 = 10 predictors were effectively related to the outcome. The datasets were

generated with G = 2((σ1, ..., σp0)
T ,OT

p−p0
)T and ∆ with the following structure:

∆ =


 ∆1 0

0 ∆2


 (3.40)

where ∆1 = Diag(σ2
0J

T
p0/2, σ

2
1J

T
p0/2) + σ2

1M, ∆2 = σ2
1Ip0 , σ2

0 = 10 and σ2
1 = 1000.

The first p0 predictors have a general structure for their conditional covariance.

Some of the predictors are highly correlated; the remaining p − p0 predictors are

conditionally independent and uncorrelated to the first p0.

The conditional correlation among the highly correlated predictors was around

0.96. The results are in Figure 3.5d. Least squares methods dominate PPFC and

PPFC.scr.

Conclusions: Surely, there are effects of the high correlation among predictors

on the prediction errors. In these simulations, the correlation among predictors

is high (> 0.8) and we notice that PPFC tends to yield larger prediction errors

compared to cases with conditionally independent predictors.

3.3.4.2 Simulations with Y Non-Normal

The predictors were obtained as in the case of normal Y . The outcome was gen-

erated from two non-normal distributions (t and χ2) and were normalized. Under

these distributions, the response was obtained for increasing degrees of freedom
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Figure 3.5: Prediction Error: a. Sparse, Y ∼ Uniform(a, b), n < p, ∆ = σ2I; b.

Y ∼ Normal, Diagonal ∆ = Diag(σ2
1, ..., σ

2
p) with σ2

1 < ... < σ2
p and increasing p; c.

Y ∼ Normal, General ∆, Non-Sparse, n > p; d. Y ∼ Normal, General ∆, Sparse,

n > p
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from 3 to 50.

The results are shown on Figure 3.6a and 3.6b for the non-sparse case. PPFC is

outperformed by the MLE and PLS. For the sparse case shown on Figures 3.6c and

3.6d, PPFC shows two reactions to the distribution of the response. With a χ2,

PPFC and PPFC.scr outperforms the lasso, RR, PLS and PLS for a highly skewed

response (small dfs). But with t, the good performance of PPFC is observed only

for very small dfs.

3.3.5 Correlation Effects on Prediction

Does high correlation among predictors affect prediction performance? We con-

sidered a simple simulation example to explore this possible effect. Datasets were

generated with the predictors as X = Gy + ε where G = (JT
p0

,OT
p−p0

)T with

p = 20 and p0 = 10, and ε ∼ N(0,∆). The term ∆ had the same structure as in

(3.40) with ∆1 = σ2Ip0 + ρσ2Mp0 ; ∆2 = σ2Ip−p0 . The outcome was obtained from

N(0, 1), σ2 = 1 and n = 400 observations were used.

The results are shown on Figure 3.7b. The prediction error increases for all

methods considered as the correlation increases.

Now our interest is to appreciate the loss in prediction when PFC is fitted with

a diagonal structure on correlated predictors. We generated datasets with p = 30

predictors and n = 400 observations. The outcome was obtained from N(0, 1) and

the predictors as X = Gy + ε with G = 0.2Jp. With p0 = 10, p1 = 20 and σ2 = 3

the variance was set as in (3.40) where ∆1 = σ2Ip0 + ρσ2Mp0 and ∆2 = σ2Ip1 . We

increased the correlation ρ from 0 to 0.97 and recorded the prediction error under

the considered methods.

The results are shown on Figure 3.7a. The prediction error from fitting with a

diagonal variance structure is represented by PPFC-d, and PPFC-g is for fitting
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Figure 3.6: Prediction Error with Non-Normal Y , General ∆ and n > p: a.

Y ∼ χ2, Non-Sparse; b. Y ∼ t, Non-Sparse; c. Y ∼ χ2, Sparse; d. Y ∼ t, Sparse
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Figure 3.7: Prediction Error: a. (Y,X) ∼ Normal, X generated with general ∆ and

PFC fitted with diagonal variance; b. Effect of Correlation among Predictors; c.

Effect of β with Independent Predictors; d. Effect of β with Dependent Predictors
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with a general structure. It is striking to see that when correlated predictors

are fitted with a diagonal structure, the prediction mean squared error increases

linearly with the correlation.

3.3.6 Signal Input Effect on Prediction

In this section, we explore the effect of the size of the signal input into the predic-

tors. Two sets of simulations were used. In both sets, we generated the predictors

as X = Gβy + ε where ε ∼ N(0,∆). For a fixed value of β, one hundred datasets

were generated. The outcome was generated from N(0, 1). We set G = Jp in both

simulations. The parameter β takes values from 0 to 1. For each value, the mean

of the mean squared prediction errors was computed.

Simulation 1: We set ∆ = σ2I, p = 20 predictors, σ2 = 1 and n = 400

observations and the results are in Figure 3.7c. The prediction mean squared error

decreases for all estimation methods; the lasso shows interesting behavior in this

case, with larger prediction errors as the signal increases in the predictors. This

behavior needs a closer examination in order to understand the behavior of the

lasso to a signal increase.

Simulation 2: The results on Figure 3.7d are obtained with ∆ = σ2Ip+ρσ2Mp

with p = 20 predictors, ρ = 0.9, σ2 = 0.2 and n = 300 observations. The same

general behavior as in Simulation 1 is observed in this case also. The lasso and

RR overlap.

Conclusion: All methods show the same decreasing trend in the prediction

mean squared error as the signal input increases in the predictors. These simula-

tions could be done also by fixing β constant and increasing the noise.
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3.4 Conclusions

Prediction by Principal Fitted Components was presented in this chapter with

the expression of its mean function E(Y |X). The mean function is reminiscent

of nonparametric kernel methods for prediction in regression. Kernel methods

drastically suffer from high dimensionality of the predictors. But unlike kernel

methods, PPFC incorporates the reduction into its expression and thus, easily

deal with large p.

Under joint normality of (X, Y ), the MLE of E(Y |X) is the best estimator.

Through our simulations, we observed that with independent predictors, PPFC

performs competitively against the maximum likelihood estimator. When the dis-

tribution of Y is non-normal, with either a skewness (χ2) or heavy tails (t), PPFC

outperforms the MLE.

With normally distributed response variable, the performance of PPFC was

compared to the lasso, PLS, and RR, which are forward linear model methods.

We considered large and small number of predictors, and also large and small

number of observations. PPFC gave competitive results compared to forward linear

model methods with conditionally independent as well as conditionally dependent

predictors.

Overall, with the response variable non-normally distributed (t with df < 5, χ2

with df < 10 and uniform) and conditionally independent predictors, PPFC dom-

inates forward linear model methods. With conditionally dependent predictors, a

mixed result was obtained for t and χ2.

PPFC can be used regardless of p and n. When p is excessively large with a large

number of irrelevant predictors, the screening method SPFC presented in Chapter

2 allows us to screen out irrelevant predictors and help get accuracy in prediction.

In the sparse cases, SPFC was used on the datasets; it yielded substantial gain in
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the prediction performance.

Prediction by PFC can be explored also for categorical responses. The use of

the mean function (3.14) is no longer a valid quantity for prediction. A different

approach is sought. Let us suppose that the response Y is categorical with a

sample space SY consisting of g categories SY = {y1, ..., yg} and let Pr(Y |X = x)

be the conditional probability of the category being Y given a new observation x

on X. We can write

Pr(Y = yk|x) =
Pr(Y = yk)f(x|Y = yk)

f(x)
. (3.41)

A common method to predict the category is to determine the argument y∗ that

maximizes Pr(Y = yk|x) over the sample space. The denominator does not play

any role in the maximization, so we can predict the category y∗ by maximizing

Pr(Y = yk)f(x|Y = yk) over the sample space. Substituting estimates, we obtain

the predicted class as

y∗ = arg max
yk∈SY

P̂r(Y = yk)f̂(x|Y = yk). (3.42)

Prediction by PFC with categorical responses may be explored in its own right.

In this work, our focus is more on continuous responses. But we will certainly

investigate prediction guided by expression (3.42) in our future work.

So far in this chapter, the novel prediction method focuses on PFC with fy =

y. This setup is the simplest but allows the comparison with the forward linear

regression methods. In the next chapter, other forms of fy are allowed and PPFC

is further explored through simulations.
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Chapter 4

Prediction Extended

In the previous chapter, we introduced Prediction by Principal Fitted Components

(PPFC) with the simplest structure of the PFC model. We considered the basis

function fy = y and used Γ ∈ Rp. The sufficient reduction was obtained as one

linear combination of the predictors. The setup was to allow a fair comparison

with forward least squares methods that are widely used in the applications for

prediction. We observed that PPFC, under these restrictions on d and fy, performs

well and yields competitive results compared to forward linear regression methods.

In the present chapter, we explore other possibilities offered by PPFC under various

settings related to the dimension d of the sufficient reduction and to the basis

function fy. We show simulation cases where no serious competitor is found in the

literature. Results on real datasets are also presented.

4.1 Parameters Estimation - Revisited

We discuss the full PFC model (1.2) in this chapter. We allow ∆ to have any of

the three specified structures - isotonic, diagonal or general. The parameter Γ is

79



4.1. PARAMETERS ESTIMATION - REVISITED

in Rp×d. In Chapter 1, the estimation of the parameters involved in this model

was given. Cook (2007) and Cook and Forzani (2009a) gave the main results

and further discussion of these methods were found therein. It was stated that the

dimension d was estimated either by an information criteria like the AIC or BIC or

by a likelihood ratio statistic. These methods are suitable to cases where p << n.

For this work, the consideration is on large p. The number of observations n may

not be large enough to allow the use of these asymptotic methods. We consider

an alternative method to estimate d, which is basically a cross-validation method.

Let us recall from Section 3.1.4 that the mean squared prediction error (PE)

is estimated by the means of k-folds cross-validation. With a dataset D, the n

observations are split randomly into K subsets of roughly equal size D1, ..., DK .

Setting D(−k) to be the set D with Dk having been held out, it is used as a training

set to estimate the parameters in models (1.2) and the estimated mean squared

prediction error is

P̂E =
1

N

K∑

k=1

∑
Yj∈Dk

[(Yj − Ŷj)
2|X = x

(k)
j ]. (4.1)

where x
(k)
j are from the testing set Dk, j = 1, ..., nk, with nk being the number of

observations in Dk. The term Ŷj is given by

Ŷj =

∑
Yi∈D(−k)

Yif̂(x
(k)
j |Yi)

∑
Yi∈D(−k)

f̂(x
(k)
j )|Yi)

. (4.2)

The dimension d is needed to compute f̂ . It can take values 0, 1, ..., min(r, p). Its

estimation occurs within the training set D(−k). For each possible value dm of

d, the mean squared prediction error is calculated by cross-validation using the

training set which is considered as the whole dataset D∗. It is split also randomly

into K subsets D∗
1, ..., D

∗
K . We calculate

P̂Edm,k =
1

n∗k

∑

Yj∈D∗k

[(Yj − Ŷ ∗
j )2|X = x

(k∗)
j ]. (4.3)
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where x
(k∗)
j are from the testing set D∗

k, j = 1, ..., n∗k, with n∗k being the number of

observations in D∗
k. In this expression Ŷ ∗

j is obtained as

Ŷ ∗
j =

∑
Yi∈D∗

(−k)
Yif̂(x

(k∗)
j |Yi)

∑
Yi∈D∗

(−k)
f̂(x

(k∗)
j )|Yi)

. (4.4)

The mean squared prediction error for d = dm is obtained as

P̂Edm =
1

K

K∑

k=1

P̂Edm,k. (4.5)

along with its standard error. The value d̂ of d that yields the smallest mean

squared prediction error is the value to be used. There are situations where dif-

ferent values of d may yield prediction errors statistically not different. To aid in

choosing d, the mean of the mean squared prediction errors along with a confi-

dence interval around the estimated mean can be obtained. In such a situation,

the smallest value of d can be used.

So far, there is no specification of K for the K-fold cross-validation. When the

number of observations is large enough, K can be 10. But with a small number of

observations, a leave-one-out cross-validation can be used.

4.2 Simulations

4.2.1 Simulation Considerations

We performed a simulation study to illustrate the behavior of PPFC and compare

it to least squares methods. The response is generated from various distributions

and the predictors are obtained as X = Gβfy+ε where the terms in this expression

are specified for each set of simulations.

In this chapter, we consider typically d > 1. The following methods are also

used for comparison to the PPFC method for prediction: PLS, RR, the lasso
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and the Elastic Net. The prediction errors are computed as follows. A dataset

(Yi,Xi), i = 1, ..., n is generated with its n observations to estimate the parameters

involved in each of the methods considered including PFC. Then a new sample of

200 observations (Y ∗
i ,X∗

i ), i = 1, ..., 200 is generated to compute the mean squared

prediction error P̂Ek for the estimated mean function Ê(Y |X). This process is

repeated 100 times. And we have

P̂Ek =
200∑
i=1

(Y ∗
i − Ê(Y |X = X∗))2/200, k = 1, ..., 100. (4.6)

Finally, we obtain the mean squared prediction error as P̂E =
∑

k P̂Ek/100.

Two reasons motivate the use of a fixed number of observations (200) to deter-

mine the prediction error. First, it is a way to bypass the cross-validation procedure

and second, this allows us to compute the mean squared prediction errors with a

fixed number of observations for all simulations even when n varies.

The density estimate f̂(X|y) is computed using the user-specified basis func-

tion fy. We explore mainly the polynomial basis. The results of the first four

simulations below are summarized in tables with two entries for PPFC. The first

entry uses a polynomial basis function and the true d. The second entry uses the

exact basis used to generate the dataset and the true d. Simulations with esti-

mated d̂ of d are forward in section 4.2.6. Simulation #2 involves sparsity. Its

results have two additional entries for PPFC. They correspond to the prediction

error obtained under the polynomial basis and the true basis but with a screened

datasets (PPFC.scr). The mean of the mean squared prediction errors obtained

with 100 datasets are shown in the tables with their corresponding standard error

in parentheses.

For implementation, R packages lars, MASS, pls and elasticnet are used re-

spectively for the Lasso, Ridge Regression, PLS and Elastic Net.
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4.2.2 Simulation #1

The outcome is generated from Uniform(0, 3) and the predictors with fy = exp(2y),

G = Jp and β = 0.1. The variance of ε is σ2I, σ2 = 8, n = 100 observations and

p = 50 predictors. The results are in Table 4.1 where the PFC model is fitted to

the datasets with an isotonic error.

Table 4.1: Results for Simulation #1

Methods P̂E (se)

PPFC - Polynomial (r = 4; d = 1) 0.075 (0.002)

PPFC - Exact Basis 0.075 (0.002)

PLS 0.26 (0.002)

RR 0.26 (0.003)

Enet 0.27 (0.003)

Lasso 0.28 (0.002)

Comments : The prediction error with PPFC using the polynomial basis is at

most one third the size of the least squares methods (See Table 4.1). The datasets

were generated so that the mean function E(Y |X) does not look linear and the

number of predictors is relatively large. As it was stated in the Introduction, with

a large number of predictors, it can be very difficult to use a forward regression

for modelling: transformations are to be done on the outcome variable or indi-

vidual predictors. One can imagine a case where p is very large and the marginal

relationship between each predictor and the response is not linear. Forward regres-

sion methods might work at the cost of a tedious iterative modelling procedure.

However, in the inverse regression framework and the nonparametric approach for

prediction, this difficulty is skipped and accuracy in the prediction can be achieved.
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4.2.3 Simulation #2

The datasets were generated as in the previous case except that G = (JT
p0

,OT
p−p0

)T ,

β = 0.4 with p = 50 and p0 = 5; n = 100 observations were used and σ2 = 20. The

results in Table 4.2 are obtained fitting PFC models with an isotonic error with

and without screening.

Table 4.2: Results for Simulation #2

Methods P̂E (se)

PPFC - Polynomial (r = 3; d = 1) 0.19 (0.003)

PPFC.scr - Polynomial (r = 3; d = 1) 0.18 (0.003)

PPFC - Exact Basis 0.19 (0.003)

PPFC.scr - Exact Basis 0.18 (0.003)

Enet 0.28 (0.003)

PLS 0.28 (0.003)

Lasso 0.30 (0.004)

RR 0.34 (0.005)

Comments: This case is similar to the previous one. We introduced a sparse-

ness into the dataset by setting only 10% of the predictors to be related to the

outcome. With our method, a screening procedure can be used prior to comput-

ing the prediction error. The results shown in Table 4.2 for PPFC are obtained

with and without the screening procedure. In this example, the screening does not

improve much the prediction although there are 90% of irrelevant predictors. All

forward regression methods give poor results compared to PPFC.

PPFC can be easily used when the set of predictors is obtained as a combination

of many irrelevant and a few relevant predictors which have a nonlinear relationship
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with the outcome. As in the previous case, there is no elaborate modelling process.

The screening process could yield some improvement in some cases of sparseness.

4.2.4 Simulation #3

The outcome was generated from Uniform(0, 3) and the predictors were obtained

as X = Γβfy +ε; G = (G1,G2) where G1 = (JT
p/2,O

T
p/2)

T ; G2 = (OT
p/2,J

T
p/2)

T and

β = 0.2I2; fy = (y, exp(2y))T . The error term ε ∼ N(0,∆) where ∆ is a diagonal

matrix with entries σ2
0 for the first p/2 and σ2

1 for the last p/2 predictors; σ2
0 = 2

and σ2
1 = 20; n = 100 observations and p = 50 predictors were used. The results

are in Table 4.3. They are obtained fitting PFC models with diagonal structure

for ∆.

Table 4.3: Results for Simulation #3

Methods P̂E (se)

PPFC - Polynomial (r = 4; d = 2) 0.019 (0.0005)

PPFC - Exact Basis 0.019 (0.0005)

RR 0.041 (0.0006)

Enet 0.048 (0.0007)

Lasso 0.049 (0.0008)

Comments: We present a case where a portion of the predictors is linearly

related to the outcome and the rest are nonlinearly related to the outcome. This

would be a scenario where all the predictors are related to the outcome but with

different types of relationships including linear and nonlinear.

The results are in Table 4.3. The reduction is built with two linear combinations

of the predictors. It is known that forward least squares methods would perform
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poorly in this context. This poor performance is observed although half of the

predictors are linearly related to the response.

The prediction errors under the true and the fourth degree polynomial give the

same numerical results. This shows that polynomial bases can be good proxies of

the true basis.

4.2.5 Simulation #4

The response was continuous and bimodal, generated from 0.5N(−2, 1)+0.5N(2, 1).

The predictors were generated as X = Gβfy + ε where G = (G1,G2) with G1 =

(JT
p/3,O

T
2p/3)

T and G2 = (OT
p/3,J

T
p/3,O

T
p/3)

T ; fy = (y2, y3)T and β = Diag(0.3, 0.05).

The error term ε ∼ N(0, σ2I) where σ2 = 1; the number of observations n = 100

and p = 200 predictors were used. A PFC model was fitted to the datasets with

isotonic error. The results in Table 4.4 are for PPFC with screened dataset.

Table 4.4: Results for Simulation #4

Methods P̂E (se)

PPFC - Polynomial (r = 3; d = 2) 0.29 (0.009)

PPFC.scr - Polynomial (r = 3; d = 2) 0.29 (0.009)

PPFC.scr - Exact Basis (d = 2) 0.29 (0.009)

Enet 1.46 (0.023)

Lasso 1.54 (0.024)

PLS 1.56 (0.043)

RR 1.68 (0.037)

Comments: This simulation combines two particularities of Simulation #1 and

#2. It assumes sparseness and also uses d = 2 as the number of linear combinations
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of the reduction.

PPFC yields numerically the same results as PPFC.scr, as the irrelevant predic-

tors barely affect the prediction. This phenomenon seems to occur whenever there

is a strong signal input into the relevant predictors or the number of irrelevant

predictors is not excessively large. PPFC and PPFC.scr yield prediction errors of

size at most one fifth of lasso.

4.2.6 On the Estimation of d

The response was generated from Uniform(0, 3) and p predictors were obtained

with G = (G1,G2) where G1 = (JT
p0

,OT
p−p0

)T , G2 = (OT
p0

,JT
p0

,Op−2p0)
T . We set

β = Diag(2/
√

20, 1/
√

20) and ε ∼ N(0,∆) with ∆ = Diag(σ2
0J

T
p0

, σ2
1J

T
p0

, σ2
0J

T
p−2p0

)

where σ2
0 = 2 and σ2

1 = 20 and also set fy = (y, exp(2y)).

We considered three cases. The first (Case 1) is with large n = 400 with p = 2p0

and p0 = 20. This is a non-sparse case with 40 relevant predictors. The second

(Case 2) is also non-sparse with n = 100 observations, p0 = 60 and p = 2p0. In

this case, the number of predictors is larger than the number of observations. The

third (Case 3) is sparse. It has n = 100 observations, p = 120 predictors with

p0 = 20.

In all three cases, the datasets generated have the following particularities:

(1) one set of p0 predictors is linearly related to the response and another set of

p0 predictors is nonlinearly related, (2) the conditional covariance of X|Y has a

diagonal non-isotonic structure, (3) G ∈ Rp×2 and thus the sufficient reduction

has two linear combinations of the predictors.

For the three cases, a PFC model was fitted with a diagonal covariance structure

and a fourth degree polynomial basis function fy. The results in Table 4.5 show

the prediction errors for the methods considered under the three cases. For PPFC,
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five rows are given. The first row corresponds to the results when d is estimated by

cross-validation. The next four rows give the results with specified d. We know that

the true value of d is 2. In all three cases, there are no high discrepancies between

the results with the specified and the estimated d. The prediction error obtained

with d chosen by cross-validation is numerically close to the value obtained using

the true d.

With large n, the lasso and PLS still perform poorly compared to PPFC. Three

reasons may explain this fact: (1) the sufficient reduction is obtained with two

linear combinations of the predictors, but forward linear models will only use

one linear combination; (2) the distribution of the response is not normal, but

uniform, and (3) the trend between a large number of predictors and the response

is nonlinear.

Case 1 is data-rich; all forward regression methods give numerically the same

prediction error that is outperformed by PPFC. With n < p in Case 2, PFC

still shows outstanding results. Case 3 is sparse. The screening procedure was

used. This case is suitable to the lasso; it shows better results compared to RR

and comparable results compared to PLS. These three cases show two scenarios

relative to (1) the order between p and n, and (2) sparsity versus non-sparsity. In

all cases, PPFC shows great performance. This prediction method seems to be a

significant contribution to the practices of Statistics.

In the prediction process where d is chosen by cross-validation, we kept track of

d̂ for each dataset. Table 4.6 shows the empirical distribution of d̂ under the three

simulation cases considered. With the data-rich first case, the cross-validation

method picked the true value 86% of the times. It can be said that with enough

data points, the choice of the true d by cross-validation is quite predominant. In

the second case, the true d was picked 54% of the times. In the third case, the

true d was selected only 31% of the time and it seems that roughly, the method
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picks d randomly among the four possible values.

4.2.7 Some Advantages of PPFC

Prediction by PFC has many advantages compared to traditional least squares

methods. These advantages include the following: (1) the conditional distribution

of Y |X does not need to be normal; (2) the specific distribution of the outcome is

Table 4.5: Prediction Error

Case 1 Case 2 Case 3

d̂ by c.v. 0.063 (0.0031) 0.07 (0.006) 0.090 (0.0047)

d = 1 0.073 (0.0036) 0.08 (0.006) 0.092 (0.0053)

PPFC d = 2 (true) 0.063 (0.0031) 0.07 (0.005) 0.087 (0.0049)

d = 3 0.065 (0.0031) 0.07 (0.005) 0.089 (0.0046)

d = 4 0.066 (0.0030) 0.08 (0.005) 0.093 (0.0045)

OLS 0.18 (0.002) 0.70 (0.028) 1.07 (0.042)

Forward Lasso 0.18 (0.002) 0.19 (0.003) 0.26 (0.005)

Methods RR 0.18 (0.002) 0.20 (0.003) 0.46 (0.007)

PLS 0.18 (0.002) 0.27 (0.004) 0.27 (0.004)

Table 4.6: Estimation of d

Case 1 (n > p) Case 2 (n < p) Case 3 (n < p)

d = 1 0.00 0.23 0.17

d = 2 (true) 0.86 0.54 0.31

d = 3 0.08 0.16 0.23

d = 4 0.06 0.07 0.29
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not relevant; (3) the dimensionality of the predictors is not a challenge anymore

(large p and small n does not necessarily hinder the prediction); (4) with the

use of basis function, accuracy in the prediction can be improved; (5) linear and

nonlinear relationships are easily covered and it does not require any elaborate

modelling process.

The challenges encountered with forward regression due to p > n or p À n

are easily solved. In a dense scenario with a large number p of relevant condi-

tionally independent predictors, PPFC applies directly. When the predictors are

conditionally independent and a large number of them is irrelevant, the screening

method SPFC can be applied to screen out the irrelevant ones.

4.3 Applications

We apply PPFC to some known datasets. Five datasets with n > p are used.

Although the emphasis of this thesis is on large p, these examples show how PPFC

works compared to the usual forward regression methods such as the OLS, the

PLS, and the Lasso.

PPFC is used on each of the datasets. The estimated dimension d̂ of d is

obtained by cross-validation, as describe herein. The selection of the degree of the

polynomial basis is guided by a graphical exploration of the inverse response plot

of individual predictors versus the response (Cook, 1998).

4.3.1 The Mac Dataset

The Mac dataset is from Rudolf Enz (1991). The data give average values in

1991 on several economic indicators for 45 world cities. There are nine continuous

predictors and 45 observations. The outcome is a continuous variable. It is the
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minimum labor to buy a BigMac and fries in US dollars. The dataset is obtained

from the statistical software Arc.

The PFC model was fitted assuming that the predictors are conditionally inde-

pendent (diagonal ∆). The prediction error is obtained by a leave-one-out cross-

validation. The results are in Table 4.7. Two entries are given for PPFC with

the first being the polynomial basis. Although it outperforms the prediction by

forward linear regression methods for this data, it is not necessarily the best. As

an example, we give the second entry which uses a piecewise constant basis. This

basis yields even better prediction error than the polynomial basis.

Table 4.7: Mac dataset

Methods Prediction Error

PPFC - Polynomial (r = 3, d̂ = 1) 933

PPFC - P/wise constant (r = 10, d̂ = 4) 756

Enet 1198

RR 1211

Lasso 1412

PLS 1426

MLE 1703

OLS 2268

4.3.2 Boston Housing Dataset

The Boston Housing dataset (Harrison and Rubinfeld, 1978) was taken from the

statistical software R package MASS. The dataset has 506 observations and 14

predictors. Predictors chas and rad are categorical and were removed from the
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list of predictors. The response variable used is medv which is the median value

of owner-occupied homes in $1000.

The prediction error for PPFC was obtained by leave-one-out cross-validation

and the PFC model was fitted assuming that the predictors are conditionally de-

pendent (∆ > 0). The prediction results are in Table 4.8. Here also, we observe a

significant reduction of the prediction error with PPFC compared to forward linear

model methods.

Table 4.8: Boston dataset

Methods Prediction Error

PPFC - Polynomial (r = 2, d̂ = 2) 20.3

MLE 24.8

RR 24.9

Lasso 24.9

Enet 24.9

OLS 25.0

PLS 25.1

4.3.3 Diabetes Datasets

The Diabetes datasets (Tibshirani, 1996) were also obtained in the statistical soft-

ware R. They can be found in the package lars. The datasets contain blood and

other measurements in diabetics. They have 442 observations. The response vari-

able, which is a measure of disease progression one year after baseline, is contin-

uous. The first dataset has 10 predictors and will be referred to as the diabetes1

dataset. The second dataset has 64 predictors obtained by adding interaction terms
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to the first 10. It will be referred to as the diabetes2 dataset. In both datasets, the

categorical predictor sex was removed. However in diabetes2, predictors obtained

by crossing continuous predictors with sex are continuous and therefore kept. The

results are in Table 4.9 and 4.10.

PPFC was used assuming a general structure of ∆. With both datasets, PPFC

yields a slight gain in the prediction error compared to the other methods. In

diabetes1, ridge regression, the forward regression methods give about the same

results. PPFC with a cubic polynomial basis shows a slight improvement over

ridge regression and MLE results.

With diabetes2, a linear polynomial basis is used. A screening procedure was

applied to the data prior to fitting PFC. PPFC and the lasso give about the same

results and perform better than ridge regression, PLS and OLS.

Table 4.9: Diabetes1 dataset

Methods Prediction Error

PPFC - Polynomial (r = 3, d̂ = 3) 3017

PPFC - P/wise Constant (r = 5; d̂ = 5) 3010

MLE 3076

RR 3078

OLS 3081

Lasso 3083

PLS 3094

It should be pointed out that these diabetes datasets found in the lars package

have the predictors and the response already centered and standardized. The stan-

dardization of the predictors was performed by dividing each predictor marginally

by its sample standard deviation. We may argue that predictors should be stan-
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dardized with their sample conditional standard deviation to avoid possible loss

of information. The results using the diabetes data could be different if the data

were not standardized as they are.

4.3.4 LANL Dataset

The data comes from a large simulation code developed at Los Alamos National

Laboratory (LANL) to aid in a study of an environmental contaminant introduced

into an ecosystem. It is extracted from the statistical software ARC. A description

of the data can be found in Cook (1998) where a brief statistical analysis is pre-

sented. The dataset has p = 84 predictors with a continuous outcome and n = 500

observations.

The initial response variable Y is highly skewed toward larger observations and

was replaced by its logarithm transformed log(Y ). No transformation was made on

the predictors. Leave-one-out cross-validation was used to estimate the prediction

error. PFC model was fitted assuming that the predictors are conditionally depen-

dent. The results are in Table 4.11. With this data also, PPFC with a polynomial

Table 4.10: Diabetes2 dataset

Methods Prediction Error

PPFC.scr - Polynomial (r = 1, d̂ = 1) 3037

Lasso 3040

RR 3205

PLS 3256

MLE 3570

OLS 3573
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basis yields a smaller prediction mean squared error compared to forward linear

model methods.

Table 4.11: LANL dataset

Methods Prediction Error

PPFC.scr - Polynomial (r = 2, d̂ = 2) 0.80

Lasso 0.83

MLE 0.90

RR 0.90

OLS 0.90

PLS 0.91

4.4 Concluding Remarks

Our focus in this work is rather on Prediction by PFC than Prediction by PC. But

Prediction by PC can be explored in its own right and compared to the traditional

use of PC in regression.

Prediction by PFC is a novel approach for prediction in regression. PPFC

can be seen as a semi-parametric method using a density function derived from

the principal fitted components model. It focuses only on random designs and

its main assumption is that X|Y is normally distributed. PPFC shows a great

versatility in its application and can be applied in situations where there is no

significant competitor. Most challenges due to large p are easily solved. In practice,

often there is a mixture of continuous and categorical predictors. Cook and Li

(2009) proposed the generalized Principal Fitted Components that accommodate

scenarios where X|Y follows one-parameter exponential families.
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PPFC places practically no restrictive constraint on the distribution of the out-

come variable. The current work emphasizes a continuous response, although a

similar development is possible for a categorical response. The use of PPFC is not

hindered by the dimensionality of the predictors, especially when the predictors

are conditionally mildly dependent. When the predictors are conditionally inde-

pendent, with p large and possibly larger than n, estimation and prediction can

be easily carried out. With conditionally dependent predictors, the appropriate

fitting will be with a general ∆. Its estimation requires n > p. Using PPFC

under a diagonal covariance structure with dependent predictors may undermine

the prediction, especially when the predictors are conditionally highly dependent.

Our simulations showed that screening the predictors to select those related

to the outcome, prior to applying the method, may be beneficial when p is large

and a large number of predictors is unnecessary. The method is a significant

competitor of the regular least squares methods. It also performs well where no

other competitor is available.

In our simulations, we have used G with entries 1s for non-sparse cases and 1

and 0s for the sparse cases. Intermediate cases can be considered. Grouping of the

predictors is possible where different groups of predictors have different entries.

Polynomial basis functions without slicing are mostly used in the simulations.

In Section 1.3.3, several other basis functions were given. Although some of these

bases perform exceptionally well for some datasets, polynomial bases give very

competitive results in many cases. There is no claim that polynomial bases are

always the best and it seems that the best basis is dataset-specific.

With real datasets, we gain an improvement in the prediction error with the

use of PPFC compared to all the other methods used. As stated earlier, the use

of PPFC requires that the user specifies a basis function. This choice can be

suggested through an exploration of the scatter-plots of the data. It should be
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stated that there is an infinite number of basis functions to be used. There is no

claim in this document that the exploration of these bases is exhausted.

4.5 Future Work

Some aspects of the PPFC need to be worked out to help make this prediction

methodology time efficient and robust. In the short term, faster algorithms for

the methodology should be implemented. The implementation will be in R with

several capsules of the code written in C; an R package will be made available. In

the long term, the following aspects are to be investigated: robustness to outliers,

asymptotics, and predictor effects.

In the forward regression framework, model selection is crucial. Least squares

regression methods are known to be non-robust to outliers. During the model

selection procedure, diagnostics can be performed for influential points and outliers.

Various methods exist in the forward regression context to test for these outliers.

We will explore the validity of these methods in the inverse regression settings and

eventually seek their adaptation to the inverse regression approach.

In estimating expression (3.14), there are instances where f̂(x|Yj) ≈ 0 for all

j. This occurrence yields a computational error in estimating the weight w(x,Y).

The reason is not yet fully explained but is seems that we may be in the presence

of some influential observations. This issue needs to be addressed.

In this document, we investigated the three variance structures for Var(X|Y =

y). These are the isotonic, the diagonal and the general structure. In fact, there are

various intermediate structures between the diagonal and the general structures.

One interesting case would be a model as (1.2) but with ∆ = ΓMΓT + Γ0M0Γ
T
0

where (Γ,Γ0) is an orthogonal matrix, M has a general variance structure, and

M0 is diagonal. This case makes use of the diagonal and general structure of
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the variance and can be used when p is larger than n and some predictors are

dependent.

So far in this thesis, our focus has been on large p. The prediction method

developed is not intended to be used only with large p but can be used regardless

of p. We will be exploring asymptotic behavior of the prediction methods when n

gets large and also when p gets large. We can assume that p = p(n) and investigate

a case with p(n)/n → ϕ for some ϕ ∈ (0,∞). We will be focusing on cases where

p → ∞ with fixed n, which seems to be the reality practically faced nowadays in

many research fields.
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Chapter 5

Sparse PFC

Principal Fitted Components models and their induced prediction method open the

field to compelling possibilities of modelling and prediction in large p regression.

In this chapter, we present Sparse Principal Fitted Components (SpPFC), which

is an adaptation of the sparse principal components analysis (SPCA) of Zou et

al. (2006) to PFC. SpPFC is a variable selection method that gives accuracy in

prediction, places practically no restrictive constraint on the distribution of the

outcome variable and is applicable in large p contexts.

Among the dimension reduction methods in the literature, some estimate the

sufficient dimension reduction, while others make the reduction intrinsic to a mod-

elling process. Some penalized least squares methods may fall into the latter. The

“least absolute shrinkage and selection operator” or the lasso (Tibshirani, 1996)

is a method of estimation in forward linear regression models when the number of

predictors is large. It incorporates the concept of sparsity into regression modelling

processes for the two main reasons: parsimony and accuracy in prediction. While

forward linear regression model methods work exceptionally well when the model

is accurate, they have a serious drawback if the regression depends on more than
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one linear combination of the predictors.

There are two main differences between SpPFC and the lasso. First the lasso

is a forward linear regression method. It uses only d = 1 linear combination of the

predictors while SpPFC is based on PFC and thus accommodates any d. Second,

the lasso is not robust to the distribution of the response, but SpPFC does not

make use of the distribution of the response.

We present some simulation examples to illustrate the usefulness of SpPFC

compared to the lasso. It should be stated that, although the lasso may not be the

best penalized least squares method in the literature, it is still the benchmark many

other methods are evaluated against. Moreover, since most existing methods are

forward linear regression methods, their improvement relative to the lasso would

not be significant compared to SpPFC. Before we present SpPFC, we will briefly

present an overview of some variable selection methods in regression.

5.1 Some Existing Variable Selection Methods

Variable selection methods abound in the literature. But in the large p arena,

it is noticeable that mostly all variable selection methods are constructed around

forward linear regression models. We present in this section some of these methods.

We consider the standard regression model (1). With this model, we know that

the minimal sufficient reduction is R(X) = ηTX. The interest is thus to estimate

the parameter η. When n is sufficiently large and p ¿ n, the ordinary least

squares (OLS) can be used to estimate η. In large p settings, OLS does not yield

trustworthy results. The parameter estimates have large variances that affect the

prediction accuracy. Various methods were proposed to deal with problems induced

by large p and to improve on the OLS estimate of η.

The concept of sparsity was probably introduced in forward linear regression
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models to help deal with estimation challenges induced by large p. Sparsity assumes

that among the p predictors, many are irrelevant and redundant. In the forward

model (1), the components of the parameter η corresponding to these irrelevant

predictors are to be shrunk or set to zero. It yields parsimonious models that

are easy to interpret. Parsimonious models often lead to reduction of the mean

squared prediction error.

5.1.1 Reduction in Forward Linear Regression

Let us assume that given (Y,X), we decide first to determine a reduction of X

by a dimension reduction methodology that produces Z = GTX with some G ∈
Rp×m,m ≤ p and then use the reduction in the forward linear model (1) to estimate

the mean function E(Y |GTX) by OLS.

Let us suppose that G is semi-orthogonal, thus GTG = Im. Assuming that Y

and X are both centered around 0, the forward linear model (1) would be equivalent

to Y = ζTZ + ε where ζ ∈ Rm and ε ∼ N(0, υ2). Let Z = XG be the reduced

data-matrix. We have Ŷ = ζ̂TZT with ζ̂T = YTZ(ZTZ)−1. Thus

Ŷ = YTXG(GTXTXG)−1GTXT

= ĈTG(GT Σ̂G)−1GTXT

= η̂T
GXT (5.1)

Inserting Σ̂Σ̂−1 into the expression of η̂G, we have

η̂G = G(GT Σ̂G)−1GT Σ̂Σ̂−1Ĉ

= G(GT Σ̂G)−1GT Σ̂η̂ols

= PG(Σ̂)η̂ols (5.2)

This estimator η̂G is the projection PG(Σ̂) of η̂ols onto span(G) in the Σ̂ inner
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product. It does not require a computation of Σ̂ if m < p. Depending on the size

of m, this estimator may be useful when n < p.

When G = Ip, then η̂G = η̂ols; it makes use of no reduction other than the

trivial. If G is chosen to be the first m eigenvectors of Σ̂, then GTX consists of

the first m principal components and η̂G is the principal components estimator.

Setting G = (Ĉ, Σ̂Ĉ, ..., Σ̂m−1Ĉ) yields the PLS estimator with m factors given in

expression (3.30). Predictors can be eliminated by using an information criterion

like AIC or BIC, resulting in a G with some rows equal to 0.

These estimators (PC, PLS...) are well known but it should be mentioned

that span(G) is not necessarily a consistent estimator of a dimension reduction

subspace without an additional structure. For example, the PC estimator depends

on G only through the marginal distribution of X and this alone cannot guarantee

that GTX is a consistent estimator of a sufficient reduction.

5.1.2 Penalized Least Squares Methods

The following methods are reviewed: the lasso (Tibshirani, 1996), Elastic Net

(Zou et al, 2005), Dantzig Selector (Candès and Tao, 2005) and SCAD (Fan and

Li, 2001). For these methods, forward linear model (1) is assumed with the goal

to estimate the parameter η. These methods assume that the true linear model

is sparse. They can shrink some coefficients exactly to zero which makes them

attractive for variable selection.

Lasso shrinks the regression coefficients by imposing a penalty on their size.

The lasso coefficients minimize a penalized residual sum of squares and are given by

expression (3.32) with γ = 1. The lasso seems to have many limitations. Recently,

Friedman et al. (2004) considered a situation where there is small number of

samples (n = 100) and a large number of predictors (p = 10, 000) and argued that
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in the sparse scenario, the lasso works better than the ridge while in the non-sparse

scenario, neither the lasso nor the ridge will fit the coefficients well, since there is

too little data from which to estimate these nonzero coefficients. Elastic Net was

proposed by Zou and Hastie (2005) to improve on some limitations of the lasso as

stated in Section 3.2.2 and its estimator is given in expression (3.33).

Several other penalization methods were designed to fix, address or improve

various characteristics of the lasso. An example is Dantzig Selector (Candès and

Tao, 2005). To estimate η, Dantzig Selector was introduced as the solution of the

L1-regularization problem

min
η̃∈Rp

‖η̃‖l1 subject to ‖XT r‖∞ ≤ (1 + t−1)υ
√

2 log p, (5.3)

where υ = Var(Y |X), r is the residual vector with the ith entry (Yi− Ȳ − η̃T (Xi−
X̄)), t is a positive scalar and with u = (u1, ..., up)

T , ‖u‖∞ = maxi{|ui|, i =

1, ..., p}. The Dantzig selector is also applicable in large p small n contexts.

Fan and Li (2001) proposed the Smoothly Clipped Absolute Deviation Penalty

(SCAD). The SCAD estimator is given by

η̂scad = arg min
η
{

n∑
i=1

(Yi − Ȳ − ηT (Xi − X̄))2 +

p∑
j=1

Pλ(|ηj|)}. (5.4)

where Pλ(|η|) = λ2 − (|η| − λ)2I(|η| < λ), I is the indicator function and λ is the

regularization parameter. Fan and Li argued that a good penalty function should

result in an estimator with the following three properties: unbiasedness, sparsity

and continuity, which SCAD satisfies but the ridge, lasso and bridge estimators do

not.

Bühlmann and Kalisch (2008) proposed a method based on the so-called partial

faithful distributions. They claim that the method is “diametrically opposed” to

penalty-based methods. Their method is essentially a correlation based method.

They propose the following definition of partial faithfulness.
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Definition 5.1.1. (Bühlmann and Kalisch, 2008) The linear model (1) satis-

fies the partial faithfulness assumption if and only if for every j ∈ {1, ..., p}:
Parcor(Y, Xj|XS) = 0 for some S ⊆ {1, ..., p}\j ⇒ ηj = 0, where Parcor(Y, Xj|XS)

is the partial correlation of Y and Xj given {Xk, k ∈ S}.

They propose the following algorithm.

1. Start with the Step 0 active set A[0] = {1, ..., p}.

2. Set m = 1. Do correlation screening and build the Step 1 active set A[1] =

{1 ≤ j ≤ p; Cor(Y, Xj) 6= 0}.

3. Repeat

m=m+1. Construct the Step m active set: A[m] = {j ∈ A[m−1]; Parcor(Y,Xj|XS) 6=
0, for all S ⊆ A[m−1]\{j} with |S| = m− 1}.

until |A[m−1]| ≤ m.

They stated that the set A[m] can be used as a dimensionality reduction and any

favored variable selection method could be then used for the reduced linear model

with covariates corresponding to indices in A[m].

Penalization methods in forward linear regression can arguably be seen as a

dimension reduction method. They are a rather convenient computational method

to bypass the poor performance of OLS and gives attractive characteristics such

as prediction accuracy and parsimonious models.

Determining a sufficient dimension reduction using forward regression is fine

when the assumed model is true. But unfortunately this cannot be verified. As

stated in the introductory chapter, the model fitting procedure, guided by diag-

nostics can be tedious and imponderable with large p. Also, often we encountered

datasets where the sufficient dimension reduction depends on more than one linear
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combination of the predictors. In such a setting, problems with estimating the

SDR is amplified.

5.1.3 Inverse Regression Methods

The central space SY |X is the target meta-parameter of interest in the dimension

reduction framework. Let ζ denote a p× d matrix whose columns form a basis of

SY |X. Then R(X) = ζTX is the minimal sufficient linear reduction that contains

all the information X has about Y . Various methods are designed for its estima-

tion. Slice inverse regression (SIR; Li, 1991) and slice average variance estimation

(SAVE; Cook, 1991) were probably the first inverse regression methods capable of

estimating the central space, although the central subspace did not originate until

after these methods were proposed. Many other methods exist such as principal

Hessian directions (pHd; Li, 1992; Cook, 1998) and inverse regression estimation

(IRE; Cook and Ni, 2005). These existing methods are moment-based and do not

require any model specification. They are capable of estimating the central space,

but require that the number of predictors p is less than the number of observations

n to allow covariance inversion. Cook et al. (2007) introduced a novel method

for estimating the central subspace that eliminates the need for sample covari-

ance inversion. The method encompasses PLS as a special case and is applicable

regardless of the (n, p) relationship.

Often, the reduction R(X) is linear combination of all p predictors and variable

selection methods are being designed in response to the need for parsimonious solu-

tions. Model-free dimension reduction methods are used to develop several variable

selection methods. Li (2007) gave a unified estimation strategy which combines

a regression-type formulation of sufficient dimension methods and shrinkage esti-

mation to produce both sparse and accurate solutions. Li and Nachtsheim (2006)
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combined the shrinkage idea of lasso to SIR to produce Sparse Sliced Inverse Re-

gression that is still restricted to p < n. Li and Yin (2008) proposed an L2 regular-

ization to enable SIR to work with p > n and highly correlated predictors. They

also proposed and L1 regularization to achieve simultaneous reduction and variable

selection. Cook and Ni (2005) introduced a family of minimum-discrepancy-based

inverse regression estimators (IRE) for estimating the central space. Bondell and

Li (2009) developed a shrinkage estimation strategy for the entire IRE family that

is capable of simultaneous dimension reduction and variable selection.

These dimension reduction methods help estimate the sufficient reduction R(X).

In terms of prediction, this sufficient reduction is then turned to forward regres-

sion to estimate E(Y |R(X)). Principal and Principal Fitted Components models

of Cook (2007) constitute a significant breakthrough in the sense that they allow

model-based sufficient dimension reduction for any practical size of p and also a

direct route to estimation E(Y |X). The sufficient reduction is returned to the

prediction by PFC with the gain in accuracy and flexibility unmatched by other

methods.

5.2 Sparse Principal Fitted Components (SpPFC)

In a discussion paper on the Consistency in Boosting in 2004, Friedman et al.

evoked the “bet on sparsity” and wrote “Use a procedure that does well in sparse

problems, since no procedure does well in dense problems.” This “bet on sparsity”

does not seem to hold anymore with the inverse methods that uses PFC models.

The dense case with large p may turn into a blessing rather than a curse.

Sparse PFC does not spring out of a computational challenge due to large p

small n, but rather, from an attempt to obtain a dimension reduction that is a

combination of few predictors with the intrinsic possibility of prediction accuracy.
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Let us suppose that Γ can be partitioned into (ΓT
1 ,ΓT

2 )T where Γ1 ∈ Rp1×d and

Γ2 ∈ Rp2×d with p1 + p2 = p. Following the arguments in Section 2.1, predictors

corresponding to Γ2 = 0 are irrelevant and therefore should be removed. The

screening procedure described in Chapter 2 was proposed to do so, but it deals

with excessively large p on the scale of o(nι) for some ι > 0. Sparse PFC is designed

for p relatively large but rather on a smaller scale, say o(n).

Sparse PFC is likely to capture predictors corresponding to Γ1 that are impor-

tant to yield better prediction error where the prediction is computed with PPFC.

We explore SpPFC under the isotonic, diagonal and general error structure.

5.2.1 Sparse Isotonic PFC Models

We recall that under the isotonic model (∆ = σ2I), the sufficient reduction is

R(X) = ΓTX. Its estimate is R̂(X) = Γ̂TX where Γ̂ contains the eigenvectors

corresponding to the first largest d eigenvalues of Σ̂fit.

Zou et al. (2006) proposed an algorithm to produce Sparse Principal Compo-

nents using results of the Elastic Net method (Zou and Hastie; 2005). We adapt

the Sparse Principal Components Analysis algorithm to obtain the Sparse PFC

algorithm. The algorithm to estimate the sparse reduction is the following.

Step 1: With a specified basis function, form the matrix

Σ̂fit = XTF(FTF)−1FTX/n.

Step 2: Let A start at Vd, the matrix of the d eigenvectors corresponding

to the first d eigenvalues of Σ̂fit.

Step 3: Given a fixed A = (α1, ..., αd), where αj ∈ Rp, solve the following
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elastic net problem for j = 1, 2, ..., d

βj = arg min
β
{(αj − β)T Σ̂fit(αj − β) + λ||β||2 + λ1,j||β||1} (5.5)

Step 4: For a fixed B = (β1, ..., βd), compute the SVD of Σ̂fitB = UDVT ,

then update A = UVT .

Step 5: Repeat Steps 3 and 4, until convergence.

Step 6: Normalize Γ̂j = βj/||βj||, for j = 1, ..., d.

The main difference between this algorithm and the one from Zou et al. (2006)

is that the fitted covariance matrix Σ̂fit replaces the usual sample covariance matrix

Σ̂ of X. The algorithm applies to cases with n > p and p > n. With p À n, Zou

et al. (2006) argued that the computational cost is expensive. They suggested to

replace expression (5.5) in Step 3 by the soft-thresholding expression

βj =

(
|αT

j Σ̂fit| − λ1,j

2

)

+

Sign(αT
j Σ̂fit), (5.6)

for j = 1, ..., d where (A)+ = max{0, A}.
When the parameters λ 6= 0 and λ1,j 6= 0, expression (5.5) is an Elastic Net

penalization problem. With λ = 0, it becomes a lasso penalization problem. When

λ = 0 and λ1,j = 0, there is no penalization and the optimization recovers Vd,

the matrix of the d eigenvectors corresponding to the first d eigenvalues of Σ̂fit.

According to Zou et al. (2006), the empirical evidence suggests that the output of

the above algorithm does not change much as λ is varied. For n > p, the authors

suggested λ = 0 or small positive number. In the rest of this chapter, we use the

lasso version by setting λ = 0.

On the choice of λ1,j, the authors suggested trying different combinations to

figure out a good choice based on a compromise between variance and sparsity.

For us, we will tie the choice of λ1,j to the prediction error.
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With the above algorithm, we will obtain an estimate Γ̂ with some components

γ̂ij, i = 1, ..., p; j = 1, .., d shrunk to zero. Because of the lasso penalty, with large

λ1,j, some components γ̂ij can be set exactly to zero. Typically, some rows of Γ̂

will have all d entries equal to zero. These rows together constitute Γ2. Rows of

Γ̂ with at least one nonzero entry constitute the estimate of Γ1. Predictors X1

corresponding to Γ̂1 are relevant and are collected.

5.2.2 Implementation

We use the implementation of the SPCA by Zou et al. (2006) in the R package

elasticnet. There is a choice of tuning parameters in using SPCA and as stated in

the previous section, we set λ = 0. A set of values of λ1,j is used, and for each

value, Γ̂ is obtained. Predictors corresponding to rows with nonzero entries are

collected. A dataset formed with the reduced predictors is used now in a prediction

procedure. A mean squared prediction error is obtained for each value of λ1,j. The

estimate Γ̂ corresponding to the value of λ1,j that yields the smallest prediction

error is kept. Its rows with nonzero entries are the selected predictors.

5.2.3 Isotonic Sparse PFC with fy = y and d = 1

There is an immediate need to compare SpPFC to forward regression methods.

The obvious method to compare SpPFC against is the lasso. But to do so in a fair

setting, we need to set d = 1, fy = y. The comparisons are carried by the means

of simulations.

In all the simulations, we generated the predictors under the inverse model

where some were linearly related to the response and others were not related.

SpPFC would thus be comparable to a forward linear regression variable selec-

tion method like the lasso. We considered two cases: the first with Y normally
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distributed and the second where Y is non-normal.

Both SpPFC and the lasso were applied to the simulated datasets to obtain

(1) the “best” set of predictors that yields the best prediction error and (2) the

corresponding prediction error. The tuning parameter for the lasso is determined

by cross-validation. Unlike the lasso, a set of values of λ1,j in the range of exp (−20)

to exp (0) was used for SpPFC. The choice of the range was based on empirical

results and is rather arbitrary.

Out of the “best” set of predictors, we obtain for both SpPFC and the lasso,

the number of effective relevant predictors and the number of irrelevant predictors

that are included.

5.2.3.1 Simulations with Normal Y

We consider the model (3.21). The response was generated from a standard normal

distribution. The predictors were obtained as X = Gβy + ε where ε ∼ N(0,∆).

We set ∆ = σ2I with σ2 = 1, G = (JT
p0

,OT
p−p0

)T and β = 1/
√

p0. Two hundred

observations were generated with p = 20 predictors including p0 = 10 relevant

ones.

The PFC model was fitted to the dataset with fy = y and an isotonic variance.

The package lars from R was used for the lasso.

One hundred datasets were generated. For each dataset, we obtain the mean

squared prediction error PEk, k = 1, ..., 100. The prediction errors are obtained as
∑100

k=1 PEk/100 and are given with their standard errors in parenthesis.

From the generated datasets, the first ten predictors are relevant and the last

ten are irrelevant. The true Γ is a column vector. Its first ten elements are nonzero

and the last ten are zero. We should expect SpPFC and the lasso to select the first

ten relevant and zero irrelevant predictors.
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Table 5.1: Simulations with (Y,X) normal and ∆ = σ2I

SpPFC lasso

# Relevant Predictors 9.9 (0.03) 9.9 (0.03)

# Irrelevant Predictors 1.8 (0.19) 4.4 (0.22)

Pred.Error 0.50 (0.005) 0.54 (0.006)

Table 5.2: Simulations with non-normal Y and ∆ = σ2I

SpPFC lasso

Y ∼ t3 Y ∼ χ2
3 Y ∼ t3 Y ∼ χ2

3

# Relevant Predictors 9.8 (0.06) 9.8 (0.05) 9.9 (0.03) 9.8 (0.03)

# Irrelevant Predictors 1.6 (0.19) 1.8 (0.19) 4.8 (0.25) 4.9 (0.26)

Prediction Error 0.52(0.029) 0.46 (0.005) 0.58 (0.022) 0.56 (0.008)

This simulation setup is the best for the performance of the lasso. We present

the results in Table 5.1. Both methods capture the same exact number of relevant

predictors but the lasso tends to select slightly more irrelevant predictors and also

yields less accurate prediction errors.

5.2.3.2 Simulations with Non-Normal Y

We proceeded as in the subsection 5.2.3.1 and the datasets were generated the

same way. The single difference is that we considered other distributions for Y .

We used two non-normal distributions: t3 and χ2
3. The first is to simulate a

symmetric distribution with a heavy tail and the second is for a highly skewed

distribution. The response variable from both distributions is normalized to have

a unit variance so that the prediction errors can be compared.

We present the results in Table 5.2. Few observations can be made: (1) both
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methods, the lasso and SpPFC, perform well in selecting the true relevant predic-

tors; (2) the lasso includes more irrelevant predictors than SpPFC; (3) SpPFC out-

performs the lasso in terms of prediction performance. It is observed that SpPFC

performs rather better with skewed than with heavy tailed response variables.

5.2.4 Isotonic Sparse PFC with Non-Linear fy and d = 1

We consider a case now where there is no obvious other method to hold against

SpPFC. We explore some predictors nonlinearly related to the response and we

still consider the case where the sufficient reduction is made out of one linear

combination of the predictors.

We generated the datasets as in the previous case except for the following: the

outcome was generated from Uniform(0, 3), fy = exp(2y) and β = 0.1.

PFC was fitted with an isotonic error, a third degree polynomial basis fy =

(y, y2, y3)T and d = 1. The choice of this basis was guided by the relationship

between the relevant predictors and the outcome. The value d = 1 was used

since we are not investigating the choice of d and only one linear combination was

needed.

The results in Table 5.3 were expected. SpPFC can select almost all the relevant

predictors but the lasso can not. This shows that a forward linear model approach

can fail to capture predictors with nonlinear trend. SpPFC also selects more

irrelevant predictors, the main reason is because of the basis function considered.

A more evolved basis tends to capture predictors showing some random nonlinear

trend. The lasso shows a very poor prediction performance. This is the behavior

our method is designed to fix: to yield accuracy in prediction regardless of p and

of the relationship between the outcome and the predictors.

One strength of SpPFC is that it selects variables both linearly and nonlinearly
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Table 5.3: Non-Linear Relationship between X and Y ; ∆ = σ2I

SpPFC lasso

# Relevant Predictors 9.8 (0.08) 3.5 (0.11)

# Irrelevant Predictors 5.9 (0.28) 2.7 (0.23)

Prediction Error 0.05 (0.001) 0.26 (0.002)

related to the outcome. The use of basis functions (polynomial, piecewise polyno-

mial,...) yields a great flexibility and allows a greater potential for this method to

select virtually any relevant predictor related to the outcome through the choice

of basis functions.

5.2.5 Isotonic Sparse PFC with d > 1

We consider a case where the relevant predictors include some quadratically and

others cubically related to the outcome. We generated datasets with the response

from a bimodal distribution 0.5N(−2, 1) + 0.5N(2, 1) and p = 30 predictors were

used. The predictors were generated as X = Gβfy + ε. We set G = (G1,G2)

with G1 = (JT
p/3,O

T
2p/3)

T and G2 = (OT
p/3,J

T
p/3,O

T
p/3)

T ; fy = (y2, y3) and β =

Diag(0.3, 0.05). We had ∆ = σ2I with σ2 = 1 and n = 200 observations were

used.

With such generated datasets, there were three categories of predictors. A

first category of 10 relevant predictors were quadratically related to the outcome

as X(2) = 0.3y2 + ε where the power (2) on X shows that X has a quadratic

relationship with the response. A second category of 10 relevant predictors were

cubically related to the outcome as X(3) = 0.05y3 + ε. Here also, the power (3)

on X indicated its cubical relationship with the response. A third category of 10

predictors were not related to the outcome and thus were irrelevant. The sufficient
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Table 5.4: Simulations with d > 1; and ∆ = σ2I

SpPFC lasso

# Relevant Predictors X(2) 9.9 (0.05) 1.0 (0.13)

# Relevant Predictors X(3) 9.9 (0.08) 9.5 (0.07)

# Irrelevant Predictors 6.5 (0.34) 1.9 (0.21)

Prediction Error 0.82 (0.013) 1.74 (0.023)

reduction was made with two linear combinations of the predictors (d = 2).

SpPFC was used by fitting a PFC model with an isotonic error and a third

degree polynomial basis function. We used d = 2 and bypass its estimation. We

know that with our method, using an appropriate basis, the predictors X(2) and

X(3) will be selected as relevant. The lasso is used for comparison for variable

selection.

The results are in Table 5.4. As expected, SpPFC selects all effective relevant

predictors, both X(2)s and X(3)s. The lasso fails to select predictors quadratically

related to the outcome, but is able to select those with a cubic relationship. SpPFC

tends to select more irrelevant predictors than the lasso. The prediction error by

the lasso is two times larger than for SpPFC. This example shows another strength

of SpPFC: it performs well when more than one linear combination of the predictors

is needed.

5.3 Sparse Diagonal PFC

We now allow predictors to have different scales. This case is less restrictive than

the isotonic but is not fully relaxed. The MLE of ∆ is obtained through the it-

eratively re-weighted least squares method in Chapter 1. The sufficient reduction
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is obtained as R̂(X) = Γ̂T∆̂−1X. We can argue that the sparseness comes either

through Γ̂ with some of its entries being zero, or through ∆̂ with some diagonal

elements being too large such that they dominate the signal input into the corre-

sponding predictor. In either case, the row entries of ∆̂−1Γ̂ will be typically close

enough to zero to induce the sparseness.

We investigated the sparseness through ∆. To do so, we considered a diagonal

∆ with its elements ranging from small to large variances. We generated datasets

with the response y from N(0, 1) and 200 predictors using G = J, β = 0.5 and

fy = y. The conditional variances (σ2
1, ..., σ

2
200) were generated once as the order

statistics for a sample of size 200 from 60 times a chi-squared random variable with

2 degrees of freedom. The smallest order statistic is σ2
1 = 0.07 and the largest is

499. As such, the first predictors have small conditional variances with a strong

signal input from the response. The last predictors have large conditional variances

that dominate the signal input from the response. Predictors with weak signals

can be considered as irrelevant. The ordering here is just to track how relevant

predictors are selected, either by SpPFC or by the lasso.

A sample of 50 observations was generated to estimate the parameters for each

of the methods considered. Predictions were assessed using 200 new simulated

observations and the entire setup is replicated 100 times to obtain the average

prediction error. We also kept the average number of predictors selected.

The results are in Table 5.5. With the datasets obtained, the first ordered 16

σ2
j are less than 12. Also the first ordered 156 σ2

j are less than 178. On average,

SpPFC selected the first 156 predictors with conditional variances less than 178.

The lasso on the other hand selected only the first 16 predictors with conditional

variances less than 12. In terms of prediction, the lasso performs better than

SpPFC.

It is worth pointing out that, in the simulated datasets, the first few predic-
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Table 5.5: Simulations with d = 1; and diagonal ∆

SpPFC lasso

# Relevant Predictors 156 (0.7) 16 (0.9)

Prediction Error 0.20 (0.004) 0.18 (0.005)

tors have conditional variances very small and the corresponding predictors are

quasi-deterministic. These predictors are not proper for the best result with PFC,

but the lasso probably gains from them. This might explain the relatively poor

performance of SpPFC compared to the lasso here.

5.4 Sparse General PFC

With conditionally dependent predictors, PFC models with a general structure

are needed to allow estimation of ∆. The estimation requires that n is sufficiently

large and p is small enough. We obtained the estimation of all parameters involved

in the model in Section 1.3.1. The sufficient reduction is obtained as R̂(X) =

Γ̂T∆̂−1X, which can also be expressed as R̂(X) = V̂T
d Σ̂

−1/2
res X where V̂d denotes

the d eigenvectors of Σ̂
−1/2
res Σ̂fitΣ̂

−1/2
res corresponding to its first largest d eigenvalues.

Sparseness with general ∆ may not be of great interest. But the interest may

come when we assume an intermediate structure between a diagonal and a general

of the conditional variance. In the following simulations, we assume that a first

portion of the predictors are highly correlated while the other portion is made

up with independent predictors, which are also independent of the first portion.

We set the conditional variance ∆ as in (3.40) where ∆1 = σ2Ip0 + ρσ2Mp0 and

∆2 = σ2Ip−p0 and Mp = JpJ
T
p − Ip. A PFC model with such structure of ∆ is

special and needs further investigation on its own, which is beyond the scope of this
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chapter. In the following simulations, the fitting of PFC models proceeds and uses

a general structure of ∆. It is suspected that this fitting may not yield optimal

results for the PFC results but it is still a baseline to explore the sparseness with

PFC. We first consider cases where fy = y with normal and non-normal response

variable, and then follow with cases where fy is non-linear.

5.4.1 Case with fy = y

5.4.1.1 Normal Response Y

The outcome was generated as a standard normal. The predictors were obtained

as X = Gy + ε where ε ∼ N(0,∆) and G = (JT
p0

,OT
p−p0

)T . One hundred datasets

were generated. Each had n = 400 observations and p = 20 predictors including

p0 = 10 relevant ones. We considered 3 cases, each corresponding to a different

correlation ρ. We used ρ = 0.2, 0.5 and 0.9. The general PFC model was fitted

with a linear basis function fy = y.

Table 5.6 shows the results. Correlation among the predictors increases the

prediction error; SpPFC is affected the same way the lasso is. Two observations

can be made. First, SpPFC tends to select fewer irrelevant predictors than the

lasso. This conclusion is contrary to results obtained in Table 5.3 where a more

elaborate basis was used. Second, the number of relevant predictors selected in

SpPFC tends to be smaller than with the lasso. But SpPFC still performs slightly

better than the lasso in term of the mean squared prediction error.

5.4.1.2 Non-Normal Response Y

We proceeded as in the previous subsection 5.4.1.1 and the datasets were generated

the same way, except that the response was obtained with non-normal distribu-

tions: t3 and χ2
3. The first was to simulate symmetric distributions with a heavy
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Table 5.6: Simulations with ρ = 0.2, 0.5, 0.9; (X, Y ) Normal; fy = y and ∆ > 0.

# Relevant Pred. # Irrelevant Pred. Prediction Error

ρ = 0.2; SpPFC 8.3 (0.18) 0.9 (0.15) 0.75 (0.005)

ρ = 0.2; lasso 9.3 (0.07) 3.3 (0.22) 0.76 (0.006)

ρ = 0.5; SpPFC 4.2 (0.15) 0.1 (0.06) 0.85 (0.006)

ρ = 0.5; lasso 6.7 (0.13) 1.8 (0.19) 0.87 (0.007)

ρ = 0.9; SpPFC 1.8 (0.19) 0.1 (0.05) 0.89 (0.007)

ρ = 0.9; lasso 3.3 (0.13) 1.8 (0.21) 0.91 (0.007)

Table 5.7: Simulations with non-normal Y , ∆ > 0 with ρ = 0.9 and fy = y

SpPFC lasso

Y ∼ t3 Y ∼ χ2
3 Y ∼ t3 Y ∼ χ2

3

# Relevant Predictors 1.9 (0.18) 1.9 (0.16) 2.5 (0.11) 3.1 (0.12)

# Irrelevant Predictors 0.8 (0.14) 0.4 (0.09) 1.6 (0.19) 1.9 (0.18)

Prediction Error 0.80 (0.025) 0.90 (0.01) 0.85 (0.03) 0.93 (0.01)

tail and the second was for highly skewed distributions. The response variable from

both distributions was normalized to have a unit variance so that the prediction

error can be compared. We considered only ρ = 0.9 in these simulations.

The results are in Table 5.7. Compared to cases with independent predictors,

we observe that the prediction error is inflated. Still, SpPFC slightly outperforms

the lasso in terms of prediction error. Fewer relevant predictors are selected by

both methods.
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Table 5.8: Non-Linear Relationship between X and Y ; ∆ > 0, fy = exp(2y)

SpPFC lasso

# Relevant Predictors 8.0 (0.27) 1.7 (0.11)

# Irrelevant Predictors 1.2 (0.16) 5.0 (0.35)

Prediction Error 0.08 (0.0007) 0.25 (0.001)

5.4.2 Simulations with other fy

We generated the predictors as X = Gfy+ε where G = (JT
p0

,OT
p−p0

)T , fy = exp(2y)

and ε ∼ N(0,∆). We used p = 20 predictors including p0 = 10 relevant ones. We

set σ2 = 1 and ρ = 0.9. In this case, the relevant predictors and the response

are non-linearly related. In the forward regression framework, a tedious iterative

procedure guided by diagnostics could help improve the fitting and the prediction.

Transformation would be made either on the response or the predictors during

this procedure. But in the following simulation, the forward model that was used

(lasso) did not benefit from this iterative approach. Instead, we used the dataset

as it was to show how its results would compare to SpPFC’s. PFC was fitted with

a general structure of ∆ and a third degree polynomial basis was used.

The results are in Table 5.8. On average, SpPFC selected 8 relevant predictors

out of 10 and one irrelevant out of 10. Lasso almost failed by selecting more

irrelevant predictors than relevant ones. SpPFC shows here also an outstanding

result where it outperforms the lasso significantly by selecting relevant predictors

and yielding smaller mean squared prediction error.
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5.5 Application: The Mac Dataset

We revisit the Mac dataset used in the Chapter 4. The results of SpPFC were ob-

tained by fitting a diagonal PFC model. We considered a third degree polynomial

basis fy = (y, y2, y3)T . The dimension d was not determined by cross-validation

but instead set to 1. A leave-one-out cross validation was used to determine the

mean squared prediction error.

The results in Table 5.9 show two entries for PFC. The first is with sparse PFC

and the second is that obtained in Table Tab:Mac with PFC without screening.

There is a net improvement by Sparse PFC compared to PFC under the same

fitting. Obviously, SpPFC and PPFC outperform forward regression methods they

are compared against.

Table 5.9: Mac dataset

Methods Prediction Error

Sparse PFC - Polynomial (r = 3, d = 1) 886

PPFC - Polynomial (r = 3, d̂ = 1) 933

Enet 1198

RR 1211

Lasso 1412

PLS 1426

MLE 1703

OLS 2268
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5.6 Conclusion and Future Work

This chapter is an initial attempt into the possibilities of sparse PFC. Through

simulation examples and a real dataset, it shows a great potential for the sake

of variable selection and accuracy in prediction. It carries the characteristics of

PPFC such as a versatility in its application. It does not involve mathematical

derivations other than through Principal Fitted Components (Cook, 2007) and

Sparse Principal Components (Zou et al. 2006). But it is highly computational.

Several aspects of this method are to be worked on. So far, the implemen-

tation of Sparse Principal Components Analysis in the package spca of Hui Zou

in the statistical software R is used. It might be more efficient to consider an

implementation for our purposes, by incorporating the PFC fitting and the sparse

estimations.

The case with n < p needs to be more investigated for an efficient imple-

mentation. Recall from Chapter 4 of the possible modelling scenario with ∆ =

ΓMΓT + Γ0M0Γ
T
0 where (Γ,Γ0) is an orthogonal matrix, M has a general vari-

ance structure, and M0 is diagonal. This can accommodate large p small n with

some predictors highly correlated. I presume that SpPFC would be of interest for

variable selection and prediction in that setting.

For a general PFC with n > p where p is relatively small, the sparseness should

be obtained properly through the p× d matrix ∆−1Γ by forcing some of its rows

to be zero. This could be explored through a penalized likelihood function.

In the future, SpPFC will be investigated for its variable selection consistency.

We will explore asymptotics in terms of p getting excessively large with n fixed.
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Extended PFC Models

In Chapter 2, we presented a way to screen predictors, taking into account their re-

lationship with the response. We assumed that we had a large number of predictors

and relatively few observations. The screening method we developed, theoretically,

allows one to select all the predictors that have any mean relationship with the re-

sponse. The number of selected predictors can still be large or larger than n. This

chapter presents an on-going investigation of a modelling scenario where p > n and

some predictors are highly correlated. We propose an extended version of the orig-

inal Principal Fitted Components model (Cook, 2007). The maximum likelihood

estimator of the parameters in the model is derived and the sufficient reduction

of the predictors is obtained. Having many more predictors than the sample size

does not seem to hinder so far any aspect of the development of this method. The

methodological development of the model as well as the computational implications

are being developed.

123



6.1. AN EXTENDED PFC MODEL

6.1 An Extended PFC Model

Let us suppose that there is a condition in which we are interested, is measured

through the variable Y , and called outcome or phenotype. Let X̃ be a large vector

of predictors or genes, supposedly finite. Among all the subsets of X̃, let L of size q

be the least cardinal set, having all the information on Y such that Y X̃|L where

stands for statistical independence. When selecting a set of predictors to explain

the outcome, the hope is to select L. But instead of L, another subset X ∈ X̃ of

size p is selected. We suppose that X can be modelled as a transformation of L

with some random errors. The following model can be assumed:

X = µx + TL + ξ, (6.1)

where X ∈ Rp, µx ∈ Rp, T ∈ Rp×q, L ∈ Rq and ξ ∼ N(0,∆), with ∆ ∈ Rp×p.

Let us suppose that L is measured and the outcome is observed. Let Ly be the

conditional L given Y = y, which is assumed to follow the PFC model

Ly = µL + Γβ(fy − f̄) + ε, (6.2)

where µL ∈ Rq, Γ ∈ Rq×d, β ∈ Rd×r, fy ∈ Rr, f̄ =
∑

y fy and ε ∼ N(0,Ψ), with

Ψ ∈ Rq×q. This PFC model yields the sufficient dimension reduction ΓTΨ−1L. In

fact, L is not observed but the random vector of p predictors X = (X1, X2, ..., Xp)
T

is and we assume that ξ ε. Combining models (6.1) and (6.2), the following is

the result:

Xy = α + TΓβ(fy − f̄) + ε, (6.3)

where α = µx + TµL and ε ∼ N(0,Ω), with Ω = TΨTT + ∆. This model is an

extended PFC model. It is used to find the sufficient reduction of the predictors’

space which will be a function of X. Also, the parameters in this model are

investigated for estimation.
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6.2 Sufficient Reduction

Using model (6.3), our interest is to determine the sufficient reduction of the pre-

dictors’ space, given the response y. The sufficient reduction is given by ΥTX with

Υ ∈ Rp×d and d ≤ p such that Y X|ΥTX. To find Υ, we will use the factorization

theorem. Let f(X|y) be the density function of X given the response Y = y. Let

us suppose that f(X|y) can be rewritten as f(X|y) = k(X)g(ΥTX|y) for any X,

where k is a function that does not depend on y and g is a function that depends

on X only through ΥTX. Then the distribution of X|(ΥTX, y) is the same as the

distribution of X|ΥTX. We have

f(X|y) = (2π)−
p
2 |Ω|− 1

2 exp{−1

2
(X−α− TΓβ(fy − f̄))TΩ−1(X−α− TΓβ(fy − f̄))}.

From model (6.3), Ω = TΨTT + ∆. Let us suppose that p > q and ∆ can be

decomposed as

∆ = TD1TT + UD2UT , (6.4)

where U is the orthogonal completion of T such that (T,U) is a p× p orthogonal

matrix. The matrices D1 > 0 and D2 > 0 are not necessarily diagonal. We can

rewrite

Ω = T(Ψ + D1)TT + UD2UT = TMTT + UD2UT , (6.5)

where M = Ψ + D1. We get

f(X|y) = k(X) exp{1

2
[XTTM−1Γνy + νT

y ΓTM−1TTX]},

where νy = β(fy − f̄) is a function of y and k is a function of X only. This yields

the sufficient reduction to be ΓTM−1TTX.

Theorem 6.2.1. Consider the Model Xy = α+TΓβ(fy−f̄)+ε where ε ∼ N(0,Ω),

with Ω = TΨTT + ∆ and assume that ∆ = TD1TT + UD2UT where U is the
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completion T. Then, with M = Ψ + D1, the distribution of X|(Y,ΓTM−1TTX) is

the same as the distribution of X|ΓTM−1TTX.

In this theorem, we assume the decomposition of ∆ as TD1TT + UD2UT . The

sufficient reduction shows that the component D2 is not needed at all and the

component D1 is not explicitly needed except through the term M. This sufficient

reduction makes use of D1 and is therefore different from the sufficient reduction

induced by model (6.2) only.

This decomposition of ∆ is possible only if we assume that p ≥ q and when

p = q then D2 = 0. It is clear that when p < q, such decomposition is not possible.

From here and in the remaining of this chapter, we will assume that p > q. This

means that we are considering a large set of predictors X and assuming that its

dimension is larger than the dimension of the least cardinal set L.

6.3 Maximum Likelihood Estimation

We consider a sample of n observations and assume that Ω can be decomposed as

in (6.5). It comes that Ω−1 = TM−1TT + UD−1
2 UT and |Ω| = |M||D2|. The full

log-likelihood is a function of α,β,Γ,T,M,D2, q and d. However, at this level, we

are holding q and d fixed. Let L = L(α,β,Γ,T,M,D2|q, d).

L = −np

2
log(2π)− n

2
log |M| − n

2
log |D2| (6.6)

−1

2

∑
y

(Xy −α− TΓβ(fy − f̄))TTM−1TT (Xy −α− TΓβ(fy − f̄))

−1

2

∑
y

(Xy −α− TΓβ(fy − f̄))TUD−1
2 UT (Xy −α− TΓβ(fy − f̄)).

The MLE of α is obtained as α̂ = (1/n)
∑

y Xy = X̄. Let us note here that M

and D2 are covariance matrices of TTX and UTX respectively and these latter two
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terms are independent. Also, let us define XT = (Xy1 − X̄,Xy2 − X̄, ...,Xyn − X̄),

FT = (fy1 − f̄ , fy2 − f̄ , ..., fyn − f̄), Σ̂ = XTX/n, Σ̂fit = XTF(FTF)−1FTX/n and

Σ̂res = Σ̂− Σ̂fit. We can thus rewrite the log-likelihood as

L(α, β,Γ,T,M,D2|q, d) = L0 + L1(D2|q) + L2(α,β,Γ,T,M|q, d) (6.7)

where

L0 = −(np/2) log(2π).

L1 = −(n/2) log |D2| − (1/2)
∑

y

(Xy − X̄)TUD−1
2 UT (Xy − X̄).

= −(n/2) log |D2| − (n/2)tr{(UT Σ̂U)D−1
2 }.

L2 = −(n/2) log |M| − (1/2)
∑

y

(Xy − X̄− TΓβ(fy − f̄))TTM−1TT

(Xy − X̄− TΓβ(fy − f̄)).

The expression L1(D2) is maximized with D̃2 = UT Σ̂U . Substituting D̃2 back in

the expression of L1 yields

L1(U) = −(n/2) log |UT Σ̂U| − n(p− q)/2.

The expression L2(α̂,β,Γ,T,M|q, d) can be rewritten as

L2 = −(n/2) log |M|
−(1/2)

∑
y

{[TT (Xy − X̄)− Γβ(fy − f̄)]TM−1[TT (Xy − X̄)− Γβ(fy − f̄)]}

= −(n/2) log |M| − (1/2)tr{[XT− FβTΓT ]M−1[XT− FβTΓT ]T}. (6.8)

This expression can also be written using the Vec operator as

L2 = −n

2
log |M| − 1

2
‖Vec(XTM−1/2)− (M−1/2ΓT ⊗ F)Vec(βT )‖2. (6.9)

As a function of β, holding all the other parameters fixed, the expression L2 is

maximized by β̃ = (ΓTM−1Γ)−1ΓTM−1TTXTF(FTF)−1. The partially maximized
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log-likelihood L2(Γ,T,M|q, d) becomes

L2 = −n

2

[
log |M|+ tr{(TT Σ̂T)M−1} − tr{TT Σ̂fitTM−1/2PM−1/2ΓM−1/2}

]

where PM−1/2Γ = M−1/2Γ(ΓTM−1ΓT )−1ΓTM−1/2. Holding M and T fixed, the

expression in L2 is maximized by choosingM−1/2Γ to be a basis for the span of the

first d eigenvectors ofM−1/2TT Σ̂fitTM−1/2. The partially maximized log-likelihood

L2(T,M|q, d) becomes

L2 = −n

2

[
log |M|+ tr{(TT Σ̂T)M−1} −

d∑
i=1

λi(M−1TT Σ̂fitT)

]

= −n

2


log |M|+ tr{(TT Σ̂resT)M−1}+

min(q,r)∑

i=d+1

λi(M−1TT Σ̂fitT)


 .

In this expression, λi(A) represents the i-th eigenvalue of A. Now for fix T, we have

TT Σ̂T > 0 and we suppose that d ≤ min(r, q). Let V̂ and Λ̂ = Diag(λ̂1(T), ..., λ̂q(T))

be the matrices of the ordered eigenvectors and eigenvalues of

(TT Σ̂resT)−1/2(TT Σ̂fitT)(TT Σ̂resT)−1/2

and assume that the nonzero λ̂i’s are distinct. Cook and Forzani (2009a)[Theorem

2.2] showed that the maximum likelihood of L2(M) over M > 0 is attained at M̃ =

(TT Σ̂resT)1/2V̂(I+K̂)V̂T (TT Σ̂resT)1/2 where K̂d,q = Diag(0, ..., 0, λ̂d+1(T), ..., λ̂q(T)).

The partially maximized log-likelihood is

L2(T|q, d) = −n

2


log |TT Σ̂resT|+

min(q,r)∑

i=d+1

log(1 + λi(T))


 . (6.10)
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The full log-likelihood L becomes a function of T as

L(T|q, d) = −n

2
[p log(2π) + (p− q) + log |UT Σ̂U|

+ log |TT Σ̂resT|]− n

2

min(q,r)∑

i=d+1

log(1 + λ̂i(T)) (6.11)

= −n

2
[p log(2π) + (p− q) + log |Σ̂|+ log |TT Σ̂−1T|

+ log |TT Σ̂resT|]− n

2

min(q,r)∑

i=d+1

log(1 + λ̂i(T)). (6.12)

This log-likelihood function is a real-valued function that is to be maximized

over the p× q matrix T. The function involves the eigenvalues of T. Eigenvectors

are not isolated in the vector spaces but define linear subspaces. In case it depends

on the subspace spanned by the columns of T, L(T|q, d) will be invariant under an

orthogonal transformation of T. We next consider the objective function L(T|q, d)

with the goal to determine if it is invariant under an orthogonal transformation T.

Let T̃ = TO where O is a (p− q)× (p− q) orthogonal matrix. We have

L(T̃) = −n

2
[p log(2π) + p− q + log |Σ̂|+ log |T̃T Σ̂−1T̃|+ log |T̃T Σ̂resT̃|]

−n

2

min(q,r)∑

i=d+1

log(1 + λ̂i(T̃))

= −n

2
[p log(2π) + p− q + log |Σ̂|+ log |OTTT Σ̂−1TO|+ log |OTTT Σ̂resTO|]

−n

2

min(q,r)∑

i=d+1

log(1 + λ̂i(TO))

= −n

2
[p log(2π) + p− q + log |Σ̂|+ log |TT Σ̂−1T|+ log |TT Σ̂resT|]

−n

2

min(q,r)∑

i=d+1

log(1 + λ̂i(TO)).

The eigenvalue λ̂i(TO) are of (OTTT Σ̂resTO)−1/2(OTTT Σ̂fitTO)(OTTT Σ̂resTO)−1/2.

This matrix yields the same eigenvalues as (TT Σ̂resT)−1/2(TT Σ̂fitT)(TT Σ̂resT)−1/2
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since O is a (p− q)× (p− q) orthogonal matrix. This means that λ̂i(TO) = λ̂i(T)

therefore, the expression L is invariant under orthogonal transformation. The

invariance under orthogonal transformation of L(T) means that L(T) = L(TO)

for any such orthogonal matrix O. This implies that L depends on the subspace

spanned by T and not on the specific basis chosen to represent the subspace. It fol-

lows that, the optimization of L(T) is on the space of all q-dimensional subspaces

of Rp.

Let Gp×q be the set of all q-dimensional subspaces of Rp; it is called a Grassmann

manifold. It is a compact set of dimension q(p− q). An element of this manifold is

a subspace; it can be represented uniquely by a projection matrix or non-uniquely

by a basis (Liu, X. et al. 2004). In the case of the objective function L(T), we are

interested in finding an estimate T̂ of T that maximizes L(T). The q-dimensional

subspace ŜT is obtained as the space spanned by the columns of T̂.

Once T̂ is obtained, the other parameters are derived. Let V̂d be the matrix of

the first d columns of V̂. The maximum likelihood estimates of the parameters in

model (6.3) are

β̂ = (V̂T
d T̂T Σ̂resT̂V̂d)

1/2V̂T
d (T̂T Σ̂resT̂)−1/2T̂TXTF(FTF)−1

Γ̂ = (T̂T Σ̂resT̂)1/2V̂d(V̂T
d T̂T Σ̂resT̂V̂d)

−1/2

M̂ = (T̂T Σ̂resT̂)1/2V̂(Iq + K̂d,q)V̂T (T̂T Σ̂resT̂)1/2

D̂2 = UT Σ̂U

α̂ = X̄.

The sufficient reduction of the predictors’ space is obtained as R̂(X) = Γ̂TM̂−1T̂TX.

The estimate T̂ becomes crucial in determining the sufficient reduction. To be able

to estimate T using the expression (6.11), the terms |UT Σ̂U| and |TT Σ̂resT| need

to be strictly positive. When n is large enough to ensure non-singularity of Σ̂ and
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Σ̂res, L(T) could be evaluated. But in this work, our focus is on small samples and

typically p À n. This means that Σ̂res and Σ̂ are likely to be singular. For a given

semi-orthogonal T and its orthogonal completion U, the terms UT Σ̂U and TT Σ̂resT

are respectively (p− q)× (p− q) and q × q matrices. If we assume that q is small

compared to n and n is less than p−q, then TT Σ̂resT would be nonsingular provided

that T is not in the null eigenspace of Σ̂res. But UT Σ̂U would likely be singular and

we would not be able to evaluate the objective function L(T). To solve the prob-

lem, we will require an assumption on UTX. In the above development, a general

structure is assumed for the covariance matrix D2 of the non-essential predictors

UTX. We can restrict that structure to solve the singularity problem. We suppose

that UTX are normally distributed with mean 0 and a diagonal covariance matrix.

This means that D2 = Diag(δ2
1, δ

2
2, ..., δ

2
p−q). The derivations above for the model

(6.3) will remain the same except for the estimate of D2. If we suppose δ2
i 6= δ2

j

for i 6= j, then the estimate of D2 is such that δ̂2
i = (UT Σ̂U)ii where (UT Σ̂U)ii

represents the ith diagonal element of UT Σ̂U. But to simplify the next derivations,

we assume that D2 is δ2 times the identity matrix. With this, the estimate of D2

is such that δ̂2 = tr{UT Σ̂U}/(p− q). It yields the objective function of T as

L(T|q, d) = −n

2

[
p log(2π) + (p− q)(1 + log{tr(UT Σ̂U)

p− q
}) + log |TT Σ̂resT|

]

−n

2

min(q,r)∑

i=d+1

log{1 + λ̂i(T)}. (6.13)

With this expression, T will be fully estimable if its columns do not fall into the

null eigenspace of Σ̂res. Thus, we can restrict span{T} ⊆ span{Σ̂res} which will

ensure the estimation of T using the expression (6.13).
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6.3.1 Maximum Likelihood Estimation in special case

In this special case, we look at the initial model (6.3) but we consider the parameter

Γ to be a scalar (q = 1). This means T ∈ Rp, Γ = 1, βT ∈ Rr. The model becomes

Xy = α + Tβ(fy − f̄) + ε. (6.14)

We suppose that ∆ = δ2Ip×p and Ψ = σ2. We also suppose that ε ∼ N(0,Ω).

Furthermore, we suppose that Ω can be rewritten as

Ω = (σ2 + δ2)TTT + δ2UUT = η2TTT + δ2UUT . (6.15)

With this decomposition, we obtain Ω−1 = η−2TTT + δ−2UUT and |Ω| = η2δ2(p−1)

We know from Theorem 6.2.1 that we don’t need to estimate σ2 specifically, but

δ2 and η2. The log-likelihood function becomes

L(α, η2, δ2,β,T) = −n

2
[p log(2π) + log(η2) + (p− 1) log(δ2)]

−η−2

2

∑
y

(TT (Xy −α)− β(fy − f̄))T (TT (Xy −α)− β(fy − f̄))

−δ−2

2

∑
y

(UT (Xy −α))T (UT (Xy −α)). (6.16)

The MLE of the parameters α, β, δ2 and η2 are easily derived as functions of T.

The estimation of T is done using the objective function

L(T) = −n

2

[
p + p log(2π) + (p− 1) log{tr(UT Σ̂U)

p− 1
}
]

−n

2
log{tr(TT Σ̂resT)}. (6.17)
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This function is optimized in Gp×1, which is the set of all 1-dimensional subspaces

in Rp. Once T̂ is found, the other parameters are obtained as

α̂ = (1/n)
∑

y

Xy = X̄

β̂ = T̂TXTF(FTF)−1

δ̂2 = tr(UT Σ̂U)/(p− 1) (6.18)

η̂2 = tr(T̂T Σ̂resT̂).

The number of predictors p can be large and is typically larger than q. In this

special case, q = 1. If we have p = 500 predictors and fit with r = 3, any sample

size larger than 4 should work.

6.3.2 Simulations on special cases

For this first part of the simulations, we considered the model (6.14) which was

a particular case of model (6.3). We know that the sufficient reduction in the

particular case is given by TTX. Therefore, the interest is to find the estimate of the

transformation matrix T involved in the model. To do so, a dataset was generated

as follows. The response values y were obtained as y = U(−2, 2) + N(0, σ2
y) where

σy = 0.1. The least cardinal set having all the information on y was obtained

as L = y + ε with ε ∼ N(0, δ2). The predictors were generated using the model

X = TL + ξ with ξ ∼ N(0, σ2Ip).

To reflect the purpose of this methodology, we generated a number of obser-

vations n = 8 which is less than the number of predictors p = 50. We considered

q = 1, r = 3 and we fixed σ = 0.2 and δ = 0.05. A Grassmann optimization

algorithm was used to estimate the column of T. The subspace generated by the

estimated T̂ is a vector in Rp. We compared the angle between T̂ and the true T

in degrees using 100 replicates. The result gives a mean angle of 11.5 degrees with
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a standard error 0.16.

Table 6.1: Mean angle and δ

δ 0.05 0.02 0.01 0.008 0.005 0.002 0.001

Mean angle (T̂,T) 13.8 5.4 3.2 2.6 2.3 2.0 1.9

St Error 0.87 0.26 0.11 0.06 0.04 0.02 0.01

Table 6.2: Mean angle and Number of Predictors

Number of Predictors 30 50 80 120 160

Mean angle (T̂,T) 8.9 11.7 15.8 18.8 22.1

St Error 0.32 0.48 0.78 0.66 0.96

A second simulation was next carried out to find how the value of δ affects

the accuracy of the estimate of T. We kept all parameters fixed in the previous

model except for δ. We varied the value of δ decreasingly. For each value of δ, 30

replicates were used to estimate the mean angle. Table 6.1 shows the results of the

simulations. It appears that when the value of δ decreases, the estimate becomes

more accurate.

For the third simulation, we set δ = 0.05 and all the other parameters were fixed

as in the previous simulation, except that we increased the number of predictors

from 30 to 160. Here a sample size n = 10 is used and 20 replicates were considered.

Table 6.2 shows the results. The expected angle between T and a randomly chosen

vector is about 80 degrees for p = 30 and 86 degrees for p = 160. The results are

encouraging but it appears that when the number of predictors becomes excessively
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larger than the sample size, the estimate of T becomes less accurate. This fact

triggers an investigation of non-essential predictors and to remove them before

using this proposed methodology.

6.4 Further Work and Exploration Points

The dimension reduction methodology we are proposing is relevant in small sample

contexts. For our further work, we will be exploring small sample methods guided

by (6.3).

6.4.1 Alternative Estimation Method

The modelling scenarios leading to model (6.3) can be thought of as modelling

X using the PC and the PFC models successively. Let us assume that ∆ can be

decomposed as in the expression (6.4) and consider the least set Ly, which contains

all the information on y to rewrite model (6.1).

X = µx + TLy + TD1/2
1 ε0 + UD1/2

2 ε2, (6.19)

where ε0 ∼ N(0, Iq) and ε1 ∼ N(0, Ip−q). This is an extended PC model with

heterogeneous errors (Cook, 2007). The sufficient reduction is obtained as TTX.

The marginal covariance matrix of the predictors is

Σ = T(D1 + Var(Ly))TT + UD2UT

= TV1K1VT
1TT + UV2K2VT

2UT , (6.20)

where V1K1VT
1 and V2K2VT

2 are the spectral decompositions of (D1 + Var(Ly))

and D2 respectively. The PC directions under model (6.19) are obtained as TV1

and UV2 corresponding to eigenvalues given by the corresponding elements of the
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diagonal matrices K1 and K2. It appears that using PC to estimate the subspace

generated by the columns of T will be useful if the smallest eigenvalue in K1 is

larger than the largest eigenvalue in K2 (Cook, 2007). We will be exploring this

estimation method which may lead to estimating K1 and K2 as the signal and the

noise.

6.4.2 Predictors with no effect

The methodology we are developing will take advantage of increasing large number

of predictors. However, through the simulations, it seems like when p is excessively

larger than n, the estimation of T might become less precise. If we consider all the

predictors, we might have some which would be redundant or would not yield any

information on the response. In that case, they can be simply ignored. A method

needs to be developed to determine these predictors with no effect.

If we consider the partition of X and T as

X =


 X1

X2


 and T =


 T1

T2


,

we can rewrite the sufficient reduction as ΓTM−1TT
1 X1 + ΓTM−1TT

2 X2. If X2

becomes irrelevant in explaining the outcome, the sufficient reduction will be

ΓTM−1TT
1 X1. We will be testing an hypothesis of the form Y X2|X1.

6.4.3 Inference on the extended PFC Model

Model (6.3) is the extended model we are investigating. In this model, X ∈ Rp,

T ∈ Rp×q, ∆ ∈ Rp×p, Γ ∈ Rq×d, β ∈ Rd×r, fy ∈ Rr. We will be investigating

possible inferences about q, d, and r.

The value q is the dimension of the least cardinal set of predictors having all

the information about the response Y . At this point, it is not yet clear to us
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how inference on q should be conducted. It seems that such inference will yield

the maximum value q could take, which is n. The value of q would be based on

prior information the researcher might have about the population of predictors

and how many predictors might be necessary to explain the outcome. Instead,

in the microarray domain, a researcher might consider that (say) a dozen genes

constitute the core set of predictors having all the information about the outcome

of interest. This would help set the value of q. In any case, q needs to be less

than the number of observations. Further investigation needs to be done about

this point.

The dimension d needs to be obtained through an inference. With q fixed, we

will consider the log-likelihood function of d. Using information criteria like AIC

or BIC, we will determine the value of d that yields the best fit.

Determining the suitable value of r is an ongoing work with the basis functions

we introduce in Chapter 1. Our investigation continues.

6.4.4 Grassmann optimization

We are not aware of any existing implementation of the Grassmann optimization

in the statistical software R. To be able to carry our estimations, and since the

computation was performed in R, we needed to write our own R code to implement

the Grassmann optimization. We have written an initial R code that was used

throughout our simulations. The code requires evaluating a likelihood function,

a derivative, and a rotation function. When p is large, the computation becomes

very slow. Since this methodology is to be used with large p, we need to find ways

to boost the computation speed.

The matrix of interest T to be estimated has dimension p × q. So far, we

have considered cases with q = 1 in our simulations. We will be testing the code in
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cases q ≥ 2. For that, we will explore the use of sequential orthogonal optimization

and will also be writing many parts of the optimization code in the programming

language C.
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Proof of theorem 3.1.1

Proof. We will use the following notation. Let A be a p × p nonsingular matrix

such that

A =


 A11 A12

A21 A22


 and A−1 =


 A11 A12

A21 A22


 (6.21)

then we have the following

A11 = (A11 −A12A
−1
22 A21)

−1

A12 = −(A11 −A12A
−1
22 A21)

−1A12A
−1
22

A22 = (A22 −A21A
−1
11 A12)

−1.

Also, we have the determinant of A as

|A| = |A11||A22 −A21A
−1
11 A12|. (6.22)

We can write the following

Z =


 Y

X


 ∼ N





 0

0


 ,


 σ2

Y σ2
Y ΓT

σ2
Y Γ σ2Ip + σ2

Y ΓΓT





 . (6.23)

Let Σx be the marginal covariance matrix of X and Σz be the covariance matrix

of Z. Let us suppose that we have n observations and set Z = (Z1, ....,Zn)T . Let

σ̃2
Y = YTY/n, C̃ = XTY/n, Σ̃z = ZTZ/n and Σ̃x = XTX/n be respectively the
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sample variance of Y , the sample covariance of X and Y , the sample covariance of

Z and X. We can write

Σ̃z =


 σ̃2

Y C̃T

C̃ Σ̃x


 . (6.24)

The likelihood function can be written as

f(Z|σ2
Y ,Γ, σ2) = (

1

2π
)n|Σz|−n/2 exp{−1

2

n∑
i=1

(ZT
i Σ−1

z Zi)}. (6.25)

Aside from some constant, the log-likelihood is

L(σ2
Y ,Γ, σ2|Z) = −n

2
log |Σz| − 1

2

n∑
i=1

(ZT
i Σ−1

z Zi)

= −n

2
log |Σz| − 1

2
tr{ZTZΣ−1

z }
= −n

2
log |Σz| − n

2
tr{Σ̃zΣ

−1
z }

=
n

2
log |S| − n

2
tr{Σ̃zS} (6.26)

where S = Σ−1
z has the following expression

S =




σ2
Y +σ2

σ2σ2
Y

−ΓT

σ2

− Γ
σ2

Ip

σ2 .


 (6.27)

Then we have

log |S| = − log(σ2
Y )− p log(σ2) (6.28)

tr{Σ̃zS} = σ̃2
Y (

σ2
Y + σ2

σ2σ2
Y

)− C̃TΓ

σ2
+ tr{Σ̃x − C̃ΓT

σ2
}

=
σ̃2

Y

σ2
Y

− 1

σ2
(2C̃TΓ− tr{Σ̃x} − σ̃2

Y ). (6.29)

Expression (6.26) aside from the multiplier n/2 becomes:

L(σ2
Y ,Γ, σ2|Z) = − log(σ2

Y )− p log(σ2)− σ̃2
Y

σ2
Y

− 1

σ2
(tr{Σ̃x}+ σ̃2

Y − 2C̃TΓ).
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The estimates are obtained as

(σ̂2
Y , σ̂2, Γ̂) = arg max

σ2
Y ,σ2,Γ

L(σ2
Y ,Γ, σ2|X, Y ). (6.30)

The likelihood (6.30) depends on Γ only through

L1(Γ, σ2|Z) =
2C̃TΓ

σ2
. (6.31)

The matrix Γ is a semi-orthogonal. With σ2 fixed, L1(Γ, σ2|Z) is maximized with

Γ̂ =
C̃

‖C̃‖
. (6.32)

We have the following partial derivatives:

∂L(σ2
Y , σ2|X, Y )

∂σ2
Y

= − 1

σ2
Y

+
σ̃2

Y

σ4
Y

(6.33)

∂L(σ2
Y , σ2|X, Y )

∂σ2
= − p

σ2
+

tr{Σ̃x}+ σ̃2
Y − C̃

σ4
. (6.34)

Solving these two equations

∂L(σ2
Y , σ2|X, Y )

∂σ2
Y

= 0 (6.35)

∂L(σ2
Y , σ2|X, Y )

∂σ2
= 0 (6.36)

yields

σ̂2
Y = σ̃2

Y ; σ̂2 =
1

p
(tr{Σ̃} − σ̃2

Y ).
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