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a b s t r a c t

Given a high dimensional p-vector of continuous predictors X and a univariate response
Y , principal fitted components (PFC) provide a sufficient reduction of X that retains all re-
gression information about Y in X while reducing the dimensionality. The reduction is a
set of linear combinations of all the p predictors, where with the use of a flexible set of ba-
sis functions, predictors related to Y via complex, nonlinear relationship can be detected.
In the presence of possibly large number of irrelevant predictors, the accuracy of the suf-
ficient reduction is hindered. The proposed method adapts a sequential test to the PFC to
obtain a ‘‘pruned’’ sufficient reduction that shedoff the irrelevant predictors. The sequential
test is based on the likelihood ratio which expression is derived under different covariance
structures of X |Y . The resulting reduction has an improved accuracy and also allows the
identification of the relevant variables.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Consider the Big-Mac dataset (Enz, 1991), a simple dataset that gives average values in 1991 of several economic indica-
tors for 45 world cities. It has nine continuous predictors and a continuous outcome variable. The outcome is the minimum
labor to buy a Big Mac and fries in US dollars. A regression fitting to the raw data without any transformation of the re-
sponse or predictors yields a multiple R2, the square of the correlation between the observed and the fitted response to be
0.46. After a graphical exploration and the appropriate transformation of the variables, we obtained R2

= 0.87. The reason
of this drastic improvement is that the relationships between the response and the predictors, initially nonlinear (Fig. 1),
were transformed into linear through amodel fitting procedure guided by diagnostics (see Cook andWeisberg, 1982, Section
1.2). With nine predictors, this procedure is easily doable. However, when p is large, say 50 or more, a regression modeling
using this iterative procedure is rather a daunting task, tedious and imponderable. Ubiquitously, a forward linear model is
considered, and the relationship between individual predictors and the response is often unexplored because of the high
dimensionality of the predictors. Diagnostic methods are seldom used formodel checking. Using an ill-fittingmodel to solve
a variable selection problem can result in reduced performance.

Most variable selection methods are constructed around forward linear regression models. Because the ordinary least
squares estimation does not yield satisfactory results when p is large, it is often assumed that a large portion of these p pre-
dictors is irrelevant in explaining the response Y . The corresponding coefficients of these predictors in a linear regression
model are shrunk or even set to zero. This brings the concept of sparsity into regression modeling with two induced con-
sequences: parsimony of the model and accuracy in prediction. A flurry of research on algorithms and theory for variable
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Fig. 1. BigMac partial scatter-matrix plot.

selection involving sparsity constraints have been observed in recent years. These methods include the soft thresholding
(Donoho, 1995), the nonnegative garotte (Breiman, 1995), lasso (Tibshirani, 1996), the smoothly clipped absolute deviation
penalty (SCAD; Fan and Li, 2001), elastic net (Zou and Hastie, 2005), and Dantzig selector (Candès and Tao, 2007) among
many others. Thesemethods work exceptionally well when themodel is accurate. However they do not perform adequately
when the predictors and the response have an arbitrary non-linear relationship.

A recent methodology proposed by Cook (2007) brings significant openings to address the shortcomings of linear mod-
els in capturing information about high dimensional predictors non-linearly related to the response. Cook (2007) proposed
the concept of sufficient dimension reduction in regression and set up a new paradigm of dimension reduction through a
likelihood-based approach called principal fitted components (PFC). A reduction R : Rp

→ Rd, d ≤ p, was defined to be suf-
ficient if it satisfies one of the following three statements: (i) Y |X ∼ Y |R(X), (ii) X |(Y , R(X)) ∼ X |R(X), and (iii) X Y |R(X).
The symbol stands for statistical independence, andU ∼ V stands forU and V having identical distribution. Statement (i)
holds in a forward regression while statement (ii) holds in an inverse regression setup. Under a joint distribution of (Y , X)
the three statements are equivalent.

Principal fitted components are a class of inverse regressionmodels that yield a sufficient reduction of the predictors. Let
Xy denote the random vector X |(Y = y) and assume that there is a vector-valued function ν(Y ) ∈ Rd, with d ≪ min(n, p)
and E[ν(Y )] = 0, so thatXy can be represented by themodelXy ∼ N(µ+Γ ν(y), ∆). The termΓ ∈ Rp×d is a semi-orthogonal
matrix, and µ = E(X). The covariance ∆ is assumed to be independent of Y . Under this model the translated conditional
means E(Xy) − µ fall in the d-dimensional subspace span(Γ ), and thus Γ captures the dependency between X and Y . Once
the response is observed, the term ν(y) which is unobserved can be approximated using a flexible set of basis functions as
ν(y) ≈ βf(y). The subsequent model

Xy = µ + Γ βf(y) + ∆1/2ε (1)

is called a PFC model where ε is assumed to be normally distributed with mean 0 and variance Ip. Under this model, Cook
(2007) showed that Γ T∆−1X is a sufficient reduction of X . The choice of the basis function allows to capture predictors that
are linearly and nonlinearly related to the response. The maximum likelihood estimators of the parameters in the model
have been obtained (Cook, 2007; Cook and Forzani, 2008).

In high dimensional settings, irrelevant predictors, which often abound, can hinder the accuracy of the estimated suffi-
cient reduction. Our goal is to obtain a ‘‘pruned’’ estimator of the sufficient reduction, which not only helps achieve accuracy,
but also allows the identification of the relevant variables. By ‘‘pruning’’, we mean removing inactive predictors that do not
contain any regression information about the response. This is often called a sparse estimator.

An estimation of the sparse reduction kernel ∆−1Γ has been proposed by Li (2007) who established a framework to ob-
tain the sparse sufficient reduction using a regression-type formulationwith the lasso (Tibshirani, 1996) and elastic net (Zou
and Hastie, 2005) penalties. Chen et al. (2010) proposed the coordinate independent sparse sufficient dimension reduction
that shrinks row elements of ∆−1Γ while preserving the orthogonality constraint of Γ . Both methodologies are apt when
n ≫ p. We herein construct a sequential likelihood ratio test that is reminiscent of the idea of testing predictor contribution
in sufficient dimension reduction of Cook (2004). It helps obtain the sparse reduction under structures of∆ that allow p > n.
We show the performance of the procedure through simulations.

2. A sequential test for sparse PFC

We assume that the p-vector predictor X can be partitioned as (XT
1 , XT

2 )T , with X2 ∈ Rp2 , and let (Γ T
1 , Γ T

2 )T , ∆ =

(∆ij)i,j=1,2 and ∆−1
= (∆ij)i,j=1,2 be the corresponding partitions of Γ , ∆ and ∆−1 following the partition of X . Under
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model (1), the sufficient reduction can be written as

Γ T∆−1X = (Γ T
1 ∆11

+ Γ T
2 ∆21)X1 + (Γ T

1 ∆12
+ Γ T

2 ∆22)X2. (2)

Let us suppose that X2 represents the set of predictors with no regression information about Y in the sense that X2|Y has
the same distribution as X2. Consequently, we have Γ2 = 0. However, the sufficient reduction which becomes Γ T

1 ∆11X1 +

Γ T
1 ∆12X2, still retains X2. In order to obtain a sufficient reduction without the irrelevant X2, we will assume that ∆12

= 0.
We summarize the result in the following proposition.

Proposition 2.1. Consider PFC model (1) and the aforementioned partitioning of X, Γ and ∆. Then we have the following:

(i) X2 Y ⇔ Γ2 = 0;
(ii) X1 X2|Y ⇔ ∆12 = 0;
(iii) If X2 Y and X1 X2|Y then Γ T

1 ∆−1
11 X1 is a sufficient reduction of X.

It is possible that the statement X2 Y holds and yet ∆12 ≠ 0. This implies that X1 and X2 are related through the error.
One possibility of this occurrence is that both X1 and X2 are related to a latent variable that is unobserved. The assumption
∆12 = 0 forces to ignore this latent dependency, and it may be reasonable in practice. However the assumption will be
relaxed in Section 2.2 under an extended structure of ∆.

For now, we will assume that ∆12 = 0. We aim to effectively separate the predictors into the active X1 and the inactive
X2. Following Proposition 2.1, once a set X2 is suspected to be unrelated to Y , we will test the hypothesis

H0 : Γ2 = 0 against H1 : Γ2 ≠ 0 (3)

at a specified significance level α. Failing to reject H0 implies that X2 contains no relevant predictors.
We proceed with a likelihood ratio test. Let LH0 and LHa be the log-likelihood evaluated at the maximum likelihood

estimates of the parameters in the appropriate PFC model under the null and the alternative hypotheses respectively. Then
under H0, Λ = 2(LHa − LH0) follows approximately a chi-square distribution with dp2 degrees of freedom. A number of
structures of ∆ have been discussed in the literature, including the isotropic, the anisotropic, and the structured. For predic-
tors conditionally independent, we have ∆ = diag(δ2

1, . . . , δ
2
p). This structure is referred to as anisotropic when δ2

i ≠ δ2
j for

some i ≠ j, that is, the predictors are on different measurement scales. When δ2
i = δ2 for all i, the model is referred to as

isotropic: predictors are on same measurement scale. The structured model is rather adaptive and allows group conditional
independence of the predictors.

The sequential LRT procedure relies essentially on the identification of candidates X1 and X2. We proceed using the
strength of the marginal dependency between individual predictors and the response. Specifically, we start with a diagonal
∆. To show this, we rewrite Eq. (1) as

∆−1/2Xy = ∆−1/2µ + ∆−1/2Γ βf(y) + ε

where ε ∼ N(0, I). This transformation is to rescale the predictors to be on the same scale. Consequently, the rows of Γ =

∆−1/2Γ can be compared. Let γ̃j be the jth row vector of Γ . The strength of the dependency between individual predictors
and the response can be evaluated by ∥γ̃ ∥. Larger values correspond to predictors with stronger relationships with the re-
sponse. Predictors are then sorted in the decreasing order of the ∥γ̃j∥s. This has been proposed by Adragni and Cook (2008)
for variable screening, and it was shown to subsume the sure independence screening of Fan and Lv (2008). The proposed
algorithm is as follows.

Algorithm.

1. Fit an anisotropic PFC model, and estimate the dimension d̂ of the reduction.
2. Form ∆̂−1/2Γ = (ζ̂ T

1 , ζ̂ T
2 , . . . , ζ̂ T

p )T .
3. Sort the predictors in the decreasing order x(1), . . . , x(p) according to their corresponding ∥ζ̂i∥2.
4. Do sequentially from i = d̂ until H0 is not rejected

a. Set X1 = (x(1), . . . , x(i))
T and X2 = (x(i+1), . . . , x(p))

T .
b. Test the hypothesis (3) at a level of significance α.
c. If H0 is rejected, then i = i + 1 and return to step a.; otherwise stop.

Fitting a PFCmodel requires user-provided basis function f(y). In general, a third degree polynomial or a piecewise constant
are suggested. Once a basis function is chosen, the parameters can be estimated. The dimension d of Γ is estimated using
either a likelihood ratio test or information criteria (AIC, BIC) as suggested by Cook and Forzani (2008).

To fix the idea, let us demonstrate on the Big-Mac dataset (Enz, 1991). It contains nine continuous predictors and a con-
tinuous outcome variable. The outcome is the minimum labor to buy a Big Mac and fries in US dollars. The nine predictor
variables are X1 theminimum labor to buy one kilogram of bread, X2 the lowest cost of 10 km public transit, X3 the electrical
engineer’s annual salary, X4 the tax rate paid by electrical engineer, X5 the annual cost of 19 services, X6 the primary teacher’s
salary, X7 the tax rate paid by primary teacher, X8 the average days of vacation per year, and X9 the average hours worked
per year.
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Fig. 2. Reductions of the predictors against the response.

We start with step (1) of the algorithm by fitting the anisotropic PFC model and estimating the dimension d. This first
step was carried out using the R package ldr of Adragni and Raim (2014). The model was fitted using a piecewise constant
basis with five slices. The guidance on the choice of the number of slices follows that of sliced inverse regression of Li (1991):
the number of slices should be large enough to allow the estimation of d, and yield enough observations per slice to estimate
the intra-slice parameters.

We proceeded to the estimation of the dimension d, using a likelihood ratio test. The hypothesis H0 : d = i against
Ha : d > i was tested sequentially for i = 0, 1, 2, . . .. The null hypothesis was rejected for d = 0 and for d = 1, but was
not rejected for d = 2 against d > 2. Thus, the estimated dimension of the reduction was d̂ = 2. Fig. 2 gives the plot of
the two components of the reductions against the response. These two components retain all regression information about
the response that is contained in the initial nine predictors. These two components can now be used to model the mean
function E(Y |X) = E(Y |ζ̂ TX). The components were obtained with the two column-vectors of ∆̂−1Γ as (0.0132, −0.9896,
−0.0527, −0.0280, −0.0072, −0.1180, −0.0543, 0.0070, 0.0013) and (−0.0236, −0.0916, 0.2842, −0.1352, 0.0026,
0.7450, −0.2296, −0.5331, 0.0063). With the estimatedΓ and ∆̂, steps (2) and (3) are carried out. The likelihood ratio test
in step (3.b) depends on the structure to be used. In the following sections, we provide the expression of this test under
the different structures of PFC model. We adopt the following notations throughout. Given n replications of {Xi, yi}ni=1, we
denote by X the n×p data-matrix with its ith observation given by (Xi− X̄)T , and F ∈ Rn×r to be the data-matrix of the basis
function, formed with its ith row being f(yi). We let PF = F(F T F)−1F T be the projection operator that projects on the space
spanned by the columns of F , where the basis function is chosen such that F T F is invertible, and denote Σfit = XTPFX/n, to
be a p× p covariance matrix of rank at most r < min(p, n). Furthermore, we let Σres = XT (Ip − PF )X/n. Using the partition
of X , we set Xj to be the data-matrix of Xj, and let Σjj = XT

j Xj/n, Σjj,fit = XT
j PFXj, Σjj,res = XT

j (Ip − PF )Xj, j = 1, 2.

2.1. Likelihood ratio test under structured ∆

We are assuming explicitly that, conditionally on the response, the active or relevant predictors X1 are independent of
the inactive ones. Thus, ∆ is structured, being block-diagonal with ∆11 > 0, ∆22 > 0, and ∆12 = 0. We adopted and imple-
mented the maximum likelihood estimation procedure proposed by Cook and Forzani (2008). A linear structure of ∆ was
used with ∆ =

m
i=1 δiMi, where m ≤ p(p + 1)/2 and M1, . . . ,Mm are known real symmetric p × p linearly independent

matrices and the elements of δ = (δ1, . . . , δm)T are functionally independent. The details of the algorithm for the maxi-
mum likelihood estimation is in Cook and Forzani (2008, Section 8). The following proposition gives the expression of the
likelihood ratio test, with its proof in the Appendix.

Proposition 2.2. Assuming that ∆12 = 0, let ∆̂ = (∆̂ii)i=1,2 be the MLE of ∆ under Ha. Then the expression of LRT is given by

Λ = n

p + log |Σ22| + log |Σ11,res|


+ n


p1

i=d+1

log[1 + λ̂i(Σ−1
11,res

Σ11,fit)] −

p
i=d+1

λi(∆̂
−1Σfit)



− n

log |∆̂11| + log |∆̂22| + Tr{∆̂−1

11
Σ11,res} + Tr{∆̂−1

22
Σ22,res}


. (4)

It should be noted that the isotropic and the anisotropic structures are special cases of the structured ∆. The isotropic struc-
ture can be obtained by setting m = 1 and M1 = Ip; the anisotropic structure can be obtained by setting m = p and Mi =
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eieTi , i = 1, . . . , p, where ei ∈ Rp with all 0 entries except 1 at the ith position. A simpler form of the LRT is obtained under
the isotropic model, that is provided in the following proposition.

Proposition 2.3. Let λ̂
11,fit
i , λ̂fit

i , and λ̂i be the ith largest eigenvalue of Σ11,fit, Σfit, and Σ respectively. The LRT statistic under
the isotropic model is given by

Λ = np log

1 +

d
i=1

(λ̂fit
i − λ̂

11,fit
i )

p
i=1

λ̂i −
d

i=1
λ̂fit
i

 . (5)

The proofs of these propositions are in the Appendix. It should be noted that there is no dimensionality issue with the
isotropic and anisotropic models when p ≫ n; the estimation of the parameters can be carried for any decent sample size.
However, the estimation of the parameters requires n ≫ max(p1, p2) when ∆11 and ∆22 are unstructured.

The choice of the structure of ∆ could be determined by a test statistic in data-rich problem where n ≫ p. For a fixed
dimension d, a model with structured ∆ can be compared to another with unstructured covariance following Cook and
Forzani (2008, Section 8). When n is not large enough to estimate an unstructured ∆, an anisotropic model can be fitted.

Returning to the Big-Mac dataset, the sample size of 45 is not large enough to allow an accurate estimation of the 9×9 un-
structured covariance∆. Hence, we carried the algorithm using the anisotropic structure. The sequential test selected all the
variables except X9, the average hours worked per year. With the remaining variables, the two components of the estimated
sufficient reduction are obtained and plotted against the response in Fig. 3. A reduction in the spread of the observations
around the loess curve seems apparent on the plot with the second component compared to the original plot in Fig. 2.

The assumption of conditional independence may not always hold in general, and it might be of interest to evaluate the
performance of the method when that assumption is violated. We will attempt an evaluation on a dataset in Section 3.1.

2.2. Extended ∆

So far, we have assumed that X1 X2|Y , which is equivalent to ∆12 = 0. In the following, we will consider a structure
that relaxes that assumption. Let Γ0 be the orthogonal completion of Γ , so that (Γ , Γ0) is a p × p orthogonal matrix. Let
PΓ = Γ Γ T be the projection operator on span(Γ ), the subspace spanned by Γ , and let QΓ = I − PΓ = Γ0Γ

T
0 where I is a

p × p identity matrix. Writing ∆ = (PΓ ,QΓ )T∆(PΓ ,QΓ )T yields

∆ = Γ ΩΓ T
+ Γ0Ω0Γ

T
0 , (6)

whereΩ = Γ T∆Γ ∈ Rd×d andΩ0 = Γ T
0 ∆Γ0 ∈ R(p−d)×(p−d). This is referred to as an extended structure of∆ (Cook, 2007).

It assumes that SΓ , the subspace spanned by the columns of Γ , is a reducing subspace of ∆ in the sense that ∆SΓ = SΓ .
The mean function E(Xy) in model (1) was obtained by approximating the true function ν(Y ) by βfY . This unknown

function could bemodeled as νy ∼ N(βfy, Ψ ), whereΨ > 0 is a d×dmatrix. Consequently, using expression (6), model (1)
can be rewritten as

Xy = µ + Γ βfy + Γ Φ1/2ϵ + Γ0Ω
1/2
0 ϵ0, (7)

with Φ = Ω +Ψ and (ϵT , ϵT
0 )T ∼ N(0, I). This model (7) also has an extended structure as described in Cook (2007). Under

this structure, the sufficient reduction is Γ TX . This structure allows some correlations among the conditional predictors but
stops short of permitting an unstructured ∆ > 0. The following proposition provides the expression of likelihood ratio test
under the extended structure. Its proof is in the Appendix.

Proposition 2.4. Let Γ andΓ1 be semi-orthogonal representative bases of the MLEs of span(Γ ) and span(Γ1) under Ha and H0
respectively, and let Γ0 be the orthogonal completion of Γ . Let Γ01 be the orthogonal completion of (Γ T

1 , 0, . . . , 0)T ∈ Rp×d.
The expression of the likelihood ratio test is then

Λ = n

log |Γ T

1
Σ11,resΓ1| + log |Γ T

01
ΣΓ01| − log |Γ TΣresΓ | − log |Γ T

0
ΣΓ0|


. (8)

The estimation of the parameters that led to expression (8) assumes that the columns of Γ1 and Γ01 do not fall into the null
eigenspace of Σ11,res and Σ , respectively, and similarly for Γ and Γ0 with respect to Σres and Σ .

The estimation ofΛ requires n ≫ p−d to allow the estimation of the (p−d)×(p−d) parameterΩ0. Other substructures
of the extended model could be considered. For example, Ω0 can be assumed to have a diagonal structure, while Φ is
unstructured. The performance and efficiency of the reduction under this extended model are yet to be addressed, as it
requires more evolved parameter estimations over Grassmann manifolds.

We close the discussion with a note on a PFC model with a general unstructured covariance when n is too small for the
estimation of ∆. A sparse estimation of both ∆ and Γ can be sought. The positive-definite l1-penalized estimation of large
covariance matrices of Xue et al. (2012) could be considered in a general alternating algorithm to estimate ∆ and Γ . This
should be studied by its own right and will be worth pursuing.
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Fig. 3. Plots of the reductions against the response of the Big-Mac data after the sequential LRT.

2.3. Other sparse sufficient dimension reduction methods

A number of sufficient dimension reductionmethods have been proposed in the statistics literature since the seminal pa-
per on sliced inverse regression (SIR; Li, 1991). Among thesemethods are the principal Hessian directions (PHD; Li, 1992), the
inverse regression estimation (IRE; Cook andNi, 2005), and the directional regression (DR; Li andWang, 2007). Some of these
methods are distribution-free, while others like PFC are likelihood-based. Nearly all sufficient dimension reductionmethods
seek a set of linear combinations ζ TX of the predictors that retains all the regression information of Y on X . Sparse sufficient
dimension reduction of Li (2007) is a generic formulation that can be adapted to any of the aforementioned methodologies.

Li’s formulation uses a lasso or an elastic-net type of tuning parameters to shrink coefficients of inactive predictors to
zero. An information criterion helps determine the optimal values of the tuning parameters. The information criterion is a
function of the inverse of the covariance matrix of the predictors Σ−1, and its computation brings a numerical challenge
when p is large compared to n. To avoid this issue in our adaptation of Li’s formulation to PFC, we used a cross-validation
approach with the prediction approach of Adragni and Cook (2009). We will later refer to this method as the PFC-enet.

Sliced inverse regression (Li, 1991) has been well studied, and there is a number of proposed methods for the estimation
of its sparse sufficient reduction (Zhong et al., 2005; Li and Yin, 2008; Wang and Zhu, 2013, among others). A connection
of SIR with PFC was established by Cook (2007, Section 6.3) and further elaborated in Cook and Forzani (2008, Section 4).
Cook (2007) showed that when the response Y is categorical, then SIR and PFC estimate the same minimal sufficient re-
duction subspace. When Y is continuous, SIR discretizes the response through a slicing procedure and can leave intra slice
information behind. On the other hand, the flexible basis functions of PFC potentially help avoid such loss of information.

We propose another method to estimate the sparse PFC. It is a p-value guided thresholding that sets to zero, rows of
Γ corresponding to predictors that do not have a marginal relationship with Y through fy. To describe it, let ϕ = Γ β and
assume a diagonal structure for ∆. Then model (1) can be expressed as p independent simple linear regressions

Xi = µi + ϕif(y) + δiεi, i = 1, . . . , p, (9)

where ϕi is the ith row vector of ϕ. If Xi and Y are dependent, then ϕi should be nonzero. The parameter ϕi can be tested for
equality to zero at a specified level of significance α. Given the data, let Fi be the test statistic for test H0 : ϕi = 0 against
H1 : ϕi ≠ 0. The statistic Fi follows an F distribution with (r, n− r −1) degrees of freedom. Let πi = P(F ≥ Fi|ϕi = 0) be the
p-value resulting from the test, let π = (π1, . . . , πp)

T , and let 1p be the p-vector of ones. The p-value guided thresholding
estimator Γα is obtained asΓα = J(π ≤ α1p)Γ . (10)

The inequality is element-wise, and J(·) represents the indicator function.With this procedure,πi ≤ α is an evidence against
H0 and Xi is assumed active; the corresponding row in Γα is nonzero. These rows form the estimate of Γ1. One advantage of
this procedure is that all predictors with corresponding p-values πi > α are discarded, and this may significantly prune the
predictors of the irrelevant ones. This method will be referred to as PFC-pv. We will later compare the proposed sequential
LRT method to PFC-enet and to PFC-pv through numerical simulations.

3. Numerical studies

We illustrate the performance of the sequential likelihood ratio test for sparse sufficient reduction estimation and
variable selection with PFC on two datasets and also through a simulation study. With the first dataset, the performance of
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Fig. 4. Plots of the reduction of the predictors against the response of the Boston data assuming conditional dependence of the predictors.

themethod is evaluatedwhen the assumption of the conditional independence is violated. The seconddataset is a casewhere
the sufficient reduction methodology leads to fitting a linear regression model and its related shrinkage methodologies for
variable selection.

3.1. The Boston housing dataset

The Boston housing dataset has been widely used in the literature and is available on the web site http://lib.stat.cmu.
edu/datasets/boston_corrected.txt. It has 506 observationswith 13 predictors. These predictors are the following: per capita
crime rate by town (crim), proportion of residential land zoned for lots over 25,000 sq.ft (zn), proportion of non-retail busi-
ness acres per town (indus), Charles River dummyvariable (chas), nitric oxides concentration (nox), average number of rooms
per dwelling (rm), proportion of owner-occupied units built prior to 1940 (age), weighted distances to five Boston employ-
ment centers (dis), index of accessibility to radial highways (rad), full-value property-tax rate (tax), pupil–teacher ratio by
town (ptratio), proportion of blacks by town (black), and percentage of lower status of the population (lstat). The response
(medv) is the median value of owner-occupied homes in each of the 506 census tracts in the Boston Standard Metropolitan
Statistical Areas in $1000s. We removed chas and rad as they are categorical with two and nine levels respectively. Previous
studies of the data (Li, 1991; Chen et al., 2010) suggested removing observations corresponding to crime rate greater than
3.2, as a few predictors remain constant except for 3 observations in this case. We thus used 374 observations.

In an initial investigation, we sought to determine the appropriate structure of∆. We fit PFCmodels to the data assuming
first that the dimension dwas five, using a piecewise constant basis function with eight slices. The choice of the dimension
d = 5was arbitrary since the true dimension is yet to be estimated.We believed that the true dimension would be less than
five, thus a dimension larger than expected helps avoid losing relevant information. A hypothesis test of an isotropic against
an unstructuredmodel rejected the null hypothesis. Similarly, an anisotropic structurewas rejected against an unstructured
model. The data contradicted the assumption of conditional independence of the predictors. The correlation among the
predictors, conditionally on the response, ranged from 0.02 to 0.96. The dimension of the sufficient reduction was then
estimated using a sequential likelihood ratio test that rejected d = 0 against d ≥ 1, and also rejected d = 1 against d ≥ 2,
but failed to reject d = 2 against d ≥ 3. All the tests were carried at a 5% significance level. The final model was obtained
and the reduction was plotted as shown in Fig. 4. The solid line is a nonparametric loess curve.

Although ∆ should be unstructured with the Boston data, we proceeded nevertheless fitting a PFC with an anisotropic
structure. The dimension of the reduction was again obtained as d̂ = 2 using LRT. The plots of the two components of
the reduction plotted against the response are in Fig. 5. This result, and other unreported simulations suggest that we can
expect a decent performance of the methodology when conditional independence is used while the true ∆ is unstructured.
All this analysis was carried using the R package ldr of Adragni and Raim (2014) that is available on CRAN at http://cran.r-
project.org/web/packages/ldr/. We applied the sequential likelihood ratio test with d̂ = 2 and an unstructured ∆. The test
did not identify any set of inactive predictors. Similar result was obtained using an anisotropic structure.

3.2. The Los Alamos National Lab dataset

The dataset was from a large simulation developed at Los Alamos National Laboratory (LANL) to aid in a study of an en-
vironmental contaminant introduced into an ecosystem. It was extracted from the statistical software ARC (http://www.
stat.umn.edu/arc/software.html). A description of the data can be found in Cook (1998) where a brief statistical analysis is
presented. The dataset has p = 84 predictors with a continuous outcome and n = 500 observations. The initial response

http://lib.stat.cmu.edu/datasets/boston_corrected.txt
http://lib.stat.cmu.edu/datasets/boston_corrected.txt
http://lib.stat.cmu.edu/datasets/boston_corrected.txt
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http://cran.r-project.org/web/packages/ldr/
http://cran.r-project.org/web/packages/ldr/
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http://www.stat.umn.edu/arc/software.html
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Fig. 5. Plots of the reduction of the predictors against the response of the Boston data assuming conditional independence of predictors.

variable Y is highly skewed toward larger observations and was replaced by its logarithm transformed log(Y ). No transfor-
mation was made on the predictors.

Wewere not able to fit a PFCwith an unstructured∆ as n is too small to estimate all the p(p+1)/2 = 3528 parameters in
∆. We thus used an anisotropic structure. With a cubic polynomial basis function, the dimension dwas estimated as d̂ = 1.
The plot of the reduction gave no evidence of nonlinear dependency between the predictors and the response. As such,
this dataset can be analyzed using a linear model. Highly efficient shrinkage methods such as the lasso (Tibshirani, 1996),
the smoothly clipped absolute deviation penalty (SCAD; Fan and Li, 2001), elastic net (Zou and Hastie, 2005), or Dantzig
selector (Candès and Tao, 2007) provide the estimators of the unidirectional sparse reduction. They can be used in selecting
the important predictors among the 84. We used the recently proposed coordinate descent method (glmnet; Friedman
et al., 2008) that selected 14 important predictors. The use of our sequential LRT included 11 predictors in its unidirectional
reduction; nine of these 11 predictors were selected by glmnet.

3.3. Sparse sufficient reduction simulation

In this simulation example, the goal is to show that more precise reduction of the data can be obtained using the sparse
estimation of the sufficient reduction. To show this, we generated a Swiss roll type dataset with a number of inactive
variables.

The dataset was generated as follows: We used n = 200 observations with p = 600 predictors and d = 2. We generated
Y from the uniform (0, 1), and F = (2Y cos(6πY), 2Y sin(6πY))T . With G = (GT

1,G
T
2)

T
∈ Rp×2 where G1 ∈ Rp1×2 and G2 ∈

Rp2×2, we set G2 = 0 and the elements of G1 were generated from the uniform (1.5, 2.5) and used p1 = 100 and p2 = 500.
The ith observation of Xi ∈ Rp was generated as Xi = 6GFi + Ei. The error term Ei was generated from the multivariate
normal with mean 0 and diagonal covariance with its first p1 entries being 0.5 and the remaining 10.

We applied PFC to obtain a sufficient reduction of the data. We plot the first two directions from the fitted PFC with and
without the sequential LRT procedure. The fit was performed using a piecewise constant basis with an anisotropic structure.
The results in Fig. 6 show a refined improvement of the sufficient reduction (b) compared to the raw reduction (a).

3.4. Variable selection simulation study

The performance of the method is studied for variable selection in the presence of complex relationships between the
predictors and the response. We simulated datasets where the relevant and irrelevant predictors were known. We used
each of the methods to estimate the true positive rate (TPR) and the false discovery rate (FDR). We define TPR and FDR as
follows where ideally, TPR should be to 1 and FDR to be 0.

TPR =
number of true relevant selected

p1
.

FDR =
number of false relevant selected

total number selected
.

We present two sets of simulations covering scenarios where the relationship between the response and the relevant
predictors is nonlinear. We used two different setups to generate the data. In the first setup, we first generated a so-called
latent variable and obtained the response and relevant predictors as noisy functions of the latent observations. In the second
setup, the predictorswere generated and the responsewas then obtained using a combination of the relevant predictors. The
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(a) Crude reduction. (b) Sparse reduction.

Fig. 6. Plot of the first two directions of the sufficient reduction (a) without the sequential LRT, and (b) with it.

Fig. 7. Typical relationships between the predictors and the response in simulation #1 (plot a) and simulation #2 (plot b).

strength of the relationship between the relevant predictors and the response were increased fromweak to strong.We used
100 data replications and obtained the estimate of TPR and FDR. A significance level of 0.05 was used for the sequential LRT.
In all cases, E and e represent n observations generated respectively from the multivariate standard normal, and univariate
standard normal distribution; 1n represents an n-vector of 1’s. Fig. 7(a) and (b) shows typical relationships between the
active predictors and the response in the first and second simulation sets respectively. The solid line on these plots is a
nonparametric loess curve. We compare the proposed sequential likelihood ratio test (PFC-lrt) to PFC-enet, PFC-pv, and also
to sparse PLS of Chun and Keles (2010). For sparse PLS, we used the R (R Development Core Team, 2013) software package
spls of Chung et al. (2012). PFC-enet and sparse PLS are both prediction-based method. We used a ten-fold cross-validation
in our simulations.

3.4.1. Simulation #1
We generated the response and predictors from observations U of a latent variable. We used n = 200 observations with

p = 500 predictors including p1 = 10 active ones. The latent observations U were generated from the uniform (−2, 3). We
obtained Y = U + 0.05e and X = λGF + E where G = (1T

p1 , 0
T
p−p1)

T , and F = 0.4(U + 21n) sin[1.2π(U + 21n)]. As such,
the active predictors were nonlinearly related to the response. The term λ = i/10, i = 1, . . . , 10 is a constant that controls
the strength of the signal input compared to the noise.

The results are plotted in Fig. 8: TPR increased and FDR decreased from weak to strong signal. PFC-pv dominated
uniformly PFC-lrt for TPR, while it gave larger false discovery rates. PFC-enet flattened out around 80% TPR, which seems
to indicate the inconsistency of prediction-based variable selection method (Leng et al., 2006), and sparse PLS compared
unfavorably to the PFC-based methods on these data.

3.4.2. Simulations #2
With n = 200 observations, we used p = 1000 predictors including p1 = 10 active ones. We proceeded similarly as in

the previous simulation setup, except that F = (Y2
− 1n)I(Y ≤ 1n) + log[YI(Y ≥ 1n)].

The results in Fig. 9 are similar to those obtained in the previous simulations. The true positive rate for sparse PLS is
around the level of a random selection while the false discovery is constantly at 80% regardless of the signal to noise ratio.
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(a) True positive rate. (b) False discovery rate.

Fig. 8. TPR and FDR under inverse nonlinear model — Simulation #1.

(a) True positive rate. (b) False discovery rate.

Fig. 9. TPR and FDR under inverse nonlinear model — Simulation #2.

In these two simulation examples, the predictors were obtained to be nonlinearly related to the response where the
correlation was essentially zero. With the use of basis functions, all active predictors are likely to be selected using the
proposed sequential likelihood ratio test to form the PFC-based sparse sufficient reduction of the predictors.

4. Discussions

We have presented a sequential likelihood ratio test to obtain a sparse estimate of the sufficient reduction of the data
with PFC in high dimensional setup when the relationship between the active predictors and the response is nonlinear. The
sparse sufficient reduction also yields the active or important predictors relevant in explaining the response.

The sparse sufficient reduction can be readily carried into a forward model for prediction or classification. With the
reduction of the dimensionality from large p to d often less than five, a graphical exploration could be carried for a proper
forward modeling.

The simulation studies suggest a favorable behavior and a possible consistency of the selection of active predictors as
n increases. Theoretical study of the consistency of the selection is yet to be established. Specifically, if S is the set of truly
active predictors, and S∗

α is the selected set at level of significance α, what are theoretical conditions to have S ⊆ S∗
α with a

large probability?

Appendix

Proof of Proposition 2.1. Statement (i) is obtained by noting that Γ2 = span{E(X2|Y = y) − E(X2)} when y varies in the
sample space. Statement (ii) is a classical result of multivariate normal distribution. For statement (iii), we start with the
expression (2) of the sufficient reduction and note that ∆12

= −(∆11 − ∆12∆
−1
22 ∆21)

−1∆12∆
−1
22 . Assuming ∆12 = 0 and

Γ2 = 0 the result follows.
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Proof of the remaining propositions
The LRT is obtained as −2(LH0 − LHa) where LH0 and LHa are the maximized log-likelihood under H0 : Γ2 = 0 and

Ha : Γ2 ≠ 0 respectively. These maximized log-likelihood are obtained below. In all cases, we assume that {Xi, yi}ni=1 is ob-
served. Furthermore, X, Γ are assumed to be partitioned as XT

= (XT
1 , XT

2 ), andΓ T
= (Γ T

1 , Γ T
2 ). The log-likelihood function

is obtained as

L = −
np
2

log(2π) −
n
2
log(|∆|) −

1
2

n
i=1

(Xi − µ − Γ βfyi)
T∆−1(Xi − µ − Γ βfyi). (11)

We are assuming that
n

i=1 fyi = 0. Maximizing L over µ yields µ̂ = X̄ . Using the data matrices X and F , the partially
maximized log-likelihood can be rewritten as

L = −
np
2

log(2π) −
n
2
log(|∆|) −

1
2
Tr{(X − FβTΓ T )∆−1(X − FβTΓ T )T }. (12)

Proof of Proposition 2.2. There is no closed-form solution to theMLE of the structured∆underHa. Cook and Forzani (2008)
provided an algorithm for such estimation, where a linear structure of both ∆ and ∆−1 was assumed. Once ∆ is estimated,
under Ha, the maximized log-likelihood is

LHa = −
np
2

log(2π) −
n
2
log(|∆̂11|) −

n
2
log(|∆̂22|)

−
n
2
Tr{∆̂−1

11
Σ11,res} −

n
2
Tr{∆̂−1

22
Σ22,res} −

n
2

p
i=d+1

λi(∆̂
−1Σfit). (13)

We now obtain the log-likelihood under H0. Let

PΓ (∆−1) = Γ (Γ T∆−1Γ )−1Γ T∆−1.

Holding ∆ and Γ fixed, the log-likelihood (12) is maximized by

β̃ = Γ T
1 PΓ1(∆11)X

T
1F(F T F)−1.

The log-likelihood becomes

L = −
np
2

log(2π) −
n
2
log(|∆11|) −

n
2
log(|∆22|) −

1
2
Tr{X∆−1XT

}

−
1
2
Tr{−X∆−1Γ β̃F T

− F β̃TΓ T∆−1XT
+ F β̃TΓ T∆−1Γ β̃F T

}. (14)

Now, we have the following:

Tr{X∆−1XT
} = nTr{Σ11∆

−1
11 } + nTr{Σ22∆

22
}. (15)

Tr{X∆−1Γ β̃F T
} = nTr{Σ11,fit∆

−1
11 Γ1Γ

T
1 P

Γ1(∆
−1
11 )

} (16)

Tr{F β̃TΓ T∆−1XT
} = nTr{Σ11,fitPT

Γ1(∆
−1
11 )

Γ1Γ
T
1 ∆−1

11 } (17)

Tr{F β̃TΓ T∆−1Γ β̃F T
} = nTr{Σ11,fit∆

−1
11 Γ1Γ

T
1 P

Γ1(∆
−1
11 )

}. (18)

And the partially maximized log-likelihood simplifies to

L = −
np
2

log(2π) −
n
2
log(|∆11|) −

n
2
log(|∆22|) −

n
2
Tr{Σ11∆

−1
11 }

−
n
2
Tr{Σ22∆

−1
22 } +

n
2
Tr{Σ11,fitPT

Γ1(∆
−1
11 )

Γ1Γ
T
1 ∆−1

11 }. (19)

Noting that PT
Γ1(∆

−1
11 )

Γ1Γ
T
1 ∆−1

11 = PT
Γ1(∆

−1
11 )

Γ1Γ
T
1 ∆−1

11 = ∆
−1/2
11 P

Γ1(∆
−1/2
11 )

∆
−1/2
11 , we then obtain

L = −
np
2

log(2π) −
n
2
log(|∆11|) −

n
2
log |∆22| −

n
2
Tr{Σ11∆

−1
11 }

−
n
2
Tr{Σ22∆

−1
22 } +

n
2
Tr(∆−1/2

11
Σ11,fit∆

−1/2
11 P

Γ1(∆
−1/2
11 )

). (20)
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Keeping ∆11 fixed, L(Γ1) is maximized by the eigenvectors corresponding to the first d largest eigenvalues of ∆−1
11
Σ11,fit.

This leads to

L = −
np
2

log(2π) −
n
2
log(|∆22|) −

n
2
Tr{Σ22∆

22
} −

n
2
log(|∆11|) −

n
2
Tr{Σ11∆

11
} +

n
2

d
i=1

λ̂i(∆
−1
11
Σ11,fit), (21)

where λ̂i(A) is the ith largest eigenvalues of A. As a function of ∆22, L is maximized by ∆̂22 = Σ22. The partially maximized
log-likelihood becomes

L = −
np
2

log(2π) −
np2
2

−
n
2
log(|Σ22|) −

n
2
log(|∆11|) −

n
2
Tr{Σ11,res∆

−1
11 } −

n
2

p1
i=d+1

λ̂i(∆
−1
11
Σ11,fit). (22)

This last expression, as a function of ∆11 is similar to Eq. (4) in Cook and Forzani (2008) where Theorem 3.1 provides the
MLE and the final maximized log-likelihood under H0 is

LH0 = −
np
2

log(2π) −
np
2

−
n
2
log(|Σ22|) −

n
2
log |Σ11,res| −

n
2

p1
i=d+1

log[1 + λ̂i(Σ−1
11,res

Σ11,fit)]. (23)

Proof of Proposition 2.3. The partially maximized log-likelihood function under Ha with ∆ = σ 2I , is

L = −
np
2

log(2π) −
np
2

log(σ 2) −
1

2σ 2
∥Vec(X) − (Γ ⊗ F)Vec(βT )∥2. (24)

As a function of β , holding Γ and σ 2 fixed, the log-likelihood is maximized with β̃ = Γ TXT F(F T F)−1. Substituting β̃ in the
log-likelihood yields

L(σ 2, Γ ) = −
np
2

log(2π) −
np
2

log(σ 2) −
n

2σ 2
Tr{Σ − ΣfitPΓ }. (25)

As a function of Γ alone, L(Γ ) is maximized by the subspace spanned by the first d largest eigenvalues of Σfit. Let λ̂fit
1 ≥

· · · ≥ λ̂fit
p be the ordered eigenvalues ofΣfit. TheMLE of σ 2 is obtained bymaximizing the partiallymaximized log-likelihood

L(σ 2) = −
np
2

log(2π) −
np
2

log(σ 2) −
n

2σ 2
Tr{Σ − ΣfitPΓ }

which yields σ̂ 2
= [

p
i=1 λ̂i −

d
j=1 λ̂fit

j ]/p. Under Ha, the maximized log-likelihood for a fixed d becomes

LHa = −
np
2

log(2π) −
np
2

−
np
2

log


p

i=1

λ̂i −

d
j=1

λ̂fit
j


p


. (26)

Under H0 β̃ = Γ T
1 XT F(F T F)−1. Replacing β̃ in the log-likelihood (24), the MLE of Γ1 is obtained as the eigenvectors corre-

sponding to the first d largest eigenvalues of Σ11,fit. The MLE of σ 2 is then σ̂ 2
= [

p
i=1 λ̂i −

d
i=1 λ̂

11,fit
i ]/p, where λ̂

11,fit
i is

the ith largest eigenvalue of Σ11
fit . The maximized log-likelihood is

LH0 = −
np
2

log(2π) −
np
2

−
np
2

log


p

i=1
λ̂i −

d
i=1

λ̂
11,fit
i

p

 . (27)

Proof of Proposition 2.4. The partially maximized log-likelihood function under Ha, with ∆ = Γ ΩΓ T
+ Γ0Ω0Γ0 is,

L(Ω, Ω0, Γ , β) = −
np
2

log(2π) −
n
2
log(|Ω|) −

n
2
log(|Ω0|)

−
1
2
Tr{(X − FβTΓ T )(Γ Ω−1Γ + Γ0Ω

−1
0 Γ0)(X − FβTΓ T )T }.

Let L1 be the summand function of Ω0 and Γ0 only.

L1(Ω0, Γ0) = −
np
2

log(2π) −
n
2
log |Ω0| −

1
2
Tr{XΓ0Ω

−1
0 Γ T

0 XT
}. (28)

Holding Γ0 fixed, L1(Ω0) is maximized by Ω0 = Γ0ΣΓ0 to become

L1(Γ0) = −
np
2

log(2π) −
n(p − d)

2
−

n
2
log |Γ0ΣΓ0|. (29)
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The remaining summand of L is

L2(Ω, β, Γ ) =
n
2
log |Ω| −

1
2
Tr{(X − FβTΓ T )Γ Ω−1Γ T (X − FβTΓ T )T }

=
n
2
log |Ω| −

1
2
∥Vec(XΓ Ω−1/2

− FβTΩ−1/2)∥2

=
n
2
log |Ω| −

1
2
∥Vec(XΓ Ω−1/2) − (Ω−1/2

⊗ F)Vec(βT )∥2.

As a function of β , holding Γ and Ω fixed, L2 is maximized with β̃ = Γ TXT F(F T F)−1. This leads to the partially maximized
L2

L2(Ω, Γ ) = −
n
2
log |Ω| −

1
2
Tr{Γ T (Σ − Σfit)Γ Ω}. (30)

As a function of Ω alone, while holding Γ fixed, L2(Ω) is maximized by Ω = Γ TΣresΓ . The partially maximized log-
likelihood becomes

L(Γ ) = −
np
2

log(2π) −
np
2

−
n
2
log |Γ TΣresΓ | −

n
2
log |Γ T

0
ΣΓ0|.

This latter objection function is maximized over the Grassmannmanifold of dimension d(p−d) to obtain the estimate of the
subspace spanned by the columns of Γ . LetΓ be a basis representative of this estimated subspace, andΓ0 be the orthogonal
completion of Γ . Under Ha and for a fixed d, the maximized log-likelihood becomes

LHa = −
np
2

log(2π) −
np
2

−
n
2
log |Γ TΣresΓ | −

n
2
log |Γ T

0
ΣΓ0|. (31)

Under H0, β̃ = Γ T
1 XT

1F(F T F)−1. The summand L2 in (30) becomes

L2(Ω, Γ ) = −
n
2
log |Ω| −

1
2
Tr{Γ T

1
Σ11,resΓ1Ω} (32)

which is maximized over Ω , holding Γ fixed, by Ω = Γ T
1
Σ11,resΓ1. The parameter Γ1 is estimated by maximizing the

following partially maximized log-likelihood function

L(Γ1) = −
np
2

log(2π) −
np
2

−
n
2
log |Γ T

1
Σ11,resΓ1| −

n
2
log |Γ T

0
ΣΓ0|

over the Grassmann manifold of dimension d(p1 − d), where we assumed p1 > d. Let Γ01 be the orthogonal completion of
(Γ T

1 , 0T )T where 0 ∈ Rp2×d. The maximized log-likelihood can be written as

LH0 = −
np
2

log(2π) −
np
2

−
n
2
log |Γ T

1
Σ11,resΓ1| −

n
2
log |Γ T

01
ΣΓ01|. (33)
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