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Sufficient dimension reduction and prediction
in regression

BY KOFI P. ADRAGNI AND R. DENNIS COOK*

University of Minnesota, School of Statistics, 313 Ford Hall, 224 Church Street
Southeast, Minneapolis, MN 55455, USA

Dimension reduction for regression is a prominent issue today because technological
advances now allow scientists to routinely formulate regressions in which the number
of predictors is considerably larger than in the past. While several methods have been
proposed to deal with such regressions, principal components (PCs) still seem to be the
most widely used across the applied sciences. We give a broad overview of ideas underlying
a particular class of methods for dimension reduction that includes PCs, along with an
introduction to the corresponding methodology. New methods are proposed for prediction
in regressions with many predictors.

Keywords: lasso; partial least squares; principal components; principal component regression;
principal fitted components

1. Introduction

Consider the frequently encountered goal of determining a rule m(x) for predicting
a future observation of a univariate response variable Y at the given value x
of a p × 1 vector X of continuous predictors. Assuming that Y is quantitative,
continuous or discrete, the mean-squared error E(Y − m(x))2 is minimized by
choosing m(x) to be the mean E(Y | X = x) of the conditional distribution of
Y | (X = x). Consequently, the prediction goal is often specialized immediately
to the task of estimating the conditional mean function E(Y | X) from the
regression of Y on X. When the response is categorical with sample space SY
consisting of h categories SY = {C1, . . . , Ch}, the mean function is no longer
a relevant quantity for prediction. Instead, given an observation x on X, the
predicted category C∗ is usually taken to be the one with the largest conditional
probability C∗ = arg max Pr(Ck | X = x), where the maximization is over SY .
When pursuing the estimation of E(Y | X) or Pr(Ck | X), it is nearly always
worth while to consider predictions based on a function R(X) of dimension less
than p, provided that it captures all of the information that X contains about
Y so that E(Y | X) = E(Y | R(X)). We can think of R(X) as a function that
concentrates the relevant information in X. The action of replacing X with
a lower-dimensional function R(X) is called dimension reduction; it is called
sufficient dimension reduction when R(X) retains all the relevant information
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about Y . A potential advantage of sufficient dimension reduction is that
predictions based on an estimated R may be substantially less variable than
those based on X, without introducing worrisome bias. This advantage is not
confined to predictions, but may accrue in other phases of a regression analysis
as well.

One goal of this paper is to give a broad overview of ideas underlying
sufficient dimension reduction for regression, along with an introduction to
the corresponding methodology. Sections 1a,b, 2 and 3 are devoted largely to
this review. Sufficient dimension-reduction methods are designed to estimate
a population parameter called the central subspace, which is defined in §1b.
Another goal of this paper is to describe a new method of predicting quantitative
responses following sufficient dimension reduction; categorical responses will
be discussed only for contrast. The focus of this paper shifts to prediction
in §4, where we discuss four inverse regression models, describe the prediction
methodology that stems from them and give simulation results to illustrate
their behaviour. Practical implementation issues are discussed in §5, along with
additional simulation results.

(a) Dimension reduction

There are many methods available for estimating E(Y | X) based on a random
sample (Yi , Xi), i = 1, . . . , n, from the joint distribution of Y and X. If p is
sufficiently small and n is sufficiently large, it may be possible to estimate
E(Y | X) adequately by using non-parametric smoothing (see Wand & Jones
1995). Otherwise, nearly all techniques for estimating E(Y | X) employ some
types of dimension reduction for X, either estimated or imposed as an intrinsic
part of the model or method.

Broadly viewed, dimension reduction has always been a central statistical
concept. In the second half of the nineteenth century, ‘reduction of observations’
was widely recognized as a core goal of statistical methodology, and principal
components (PCs) were emerging as a general method for the reduction of
multivariate observations (Adcock 1878). PCs was established as a first reductive
method for regression by the mid-1900s.

Dimension reduction for regression is a prominent issue today because
technological advances now allow scientists to routinely formulate regressions
in which p is considerably larger than in the past. This has complicated
the development and fitting of regression models. Experience has shown that
the standard iterative paradigm for model development guided by diagnostics
(Cook & Weisberg 1982, p. 7) can be imponderable when applied with too
many predictors. An added complication arises when p is larger than the
number of observations n, leading to the so-called ‘n < p’ problem. Standard
methods of fitting and corresponding inference procedures may no longer be
applicable in such regressions. These and related issues have caused a shift
in the applied sciences towards a different regression genre with the goal of
reducing the dimensionality of the predictor vector as a first step in the analysis.
Although large-p regressions are perhaps mainly responsible for renewed interest,
dimension-reduction methodology can be useful regardless of the size of p. For
instance, it is often helpful to have an informative low-dimensional graphical
summary of the regression to facilitate model building and gain insights. For
Phil. Trans. R. Soc. A (2009)
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this goal, p may be regarded as large when it exceeds 2 or 3 because these
bounds represent the limits of our ability to view a dataset in full using computer
graphics. Subsequent references to ‘large p’ in this paper do not necessarily imply
that n < p.

Reduction by PCs is ubiquitous in the applied sciences, particularly in
bioinformatics applications, where PCs have been called ‘eigen-genes’ (Alter et al.
2000) in microarray data analyses and ‘meta-kmers’ in analyses involving DNA
motifs. The report by Wegman et al. (2006) reiterates and makes clear that
past influential analyses of data on global warming are flawed because of an
inappropriate use of the PC methodology.

While PCs seem to be the dominant method of dimension reduction across
the applied sciences, there are many other established and recent statistical
methods that might be used to address large-p regressions, including factor
analysis, inverse regression estimation (IRE) (Cook & Ni 2005), partial least
squares (PLS), projection pursuit, seeded reductions (Cook et al. 2007), kernel
methods (Fukumizu et al. 2009) and sparse methods like the lasso (Tibshirani
1996) that are based on penalization.

(b) Sufficient dimension reduction

Dimension reduction is a rather amorphous concept in statistics, changing its
character and goals depending on context. Formulated specifically for regression,
the following definition (Cook 2007) of a sufficient reduction will help in
our pursuit of methods for reducing the dimension of X while en route to
estimating E(Y | X).

Definition 1.1. A reduction R : R
p → R

q , q ≤ p, is sufficient if it satisfies one
of the following three statements:

(i) inverse reduction, X | (Y , R(X)) ∼ X | R(X),
(ii) forward reduction, Y | X ∼ Y | R(X),
(iii) joint reduction, X Y | R(X),

where indicates independence, ∼ means identically distributed and A | B refers
to the random vector A given the vector B.

Each of the three conditions in this definition conveys the idea that the
reduction R(X) carries all the information that X has about Y , and consequently
all the information available to estimate E(Y | X). They are equivalent when
(Y , X) has a joint distribution. In that case, we are free to determine a
reduction inversely or jointly and then pass it to the conditional mean without
additional structure: E(Y | X) = E(Y | R(X)). In some cases, there may be a
direct connection between R(X) and E(Y | X). For instance, if (Y , X) follows
a non-singular multivariate normal distribution, then R(X) = E(Y | X) is a
sufficient reduction, E(Y | X) = E{Y | E(Y | X)}. This reduction is also minimal
sufficient: if T (X) is any sufficient reduction, then R is a function of T . Further,
because of the nature of the multivariate normal distribution, it can be expressed
as a linear combination of the elements of X: R = βTX is minimal sufficient for
some vector β.
Phil. Trans. R. Soc. A (2009)
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Inverse reduction by itself does not require the response Y to be random, and
it is perhaps the only reasonable reductive route when Y is fixed by design. For
instance, in discriminant analysis, X | Y is a random vector of features observed
in one of a number of subpopulations indicated by the categorical response Y ,
and no discriminatory information will be lost if classifiers are restricted to R.

If we consider a generic statistical problem and reinterpret X as the total
data D and Y as the parameter θ , then the condition for inverse reduction
becomes D | (θ , R) ∼ D | R so that R is a sufficient statistic. In this way, the
definition of a sufficient reduction encompasses Fisher’s (1922) classical definition
of sufficiency. One difference is that sufficient statistics are observable, while
a sufficient reduction may contain unknown parameters and thus needs to be
estimated. For example, if (X, Y ) follows a non-singular multivariate normal
distribution, then R(X) = βTX, and it is necessary to estimate β.

In some regressions, R(X) may be a nonlinear function of X, and in extreme
cases no reduction may be possible, so all sufficient reductions are one-to-one
functions of X and thus equivalent to R(X) = X. Most often, we encounter multi-
dimensional reductions consisting of several linear combinations R(X) = ηTX,
where η is an unknown p × q matrix, q ≤ p, that must be estimated from the
data. Linear reductions may be imposed to facilitate progress, as in the moment-
based approach reviewed in §3a. They can also arise as a natural consequence
of modelling restrictions, as we will see in §3b. If ηTX is a sufficient linear
reduction, then so is (ηA)TX for any q × q full-rank matrix A. Consequently, only
the subspace span(η) spanned by the columns of η can be identified—span(η)
is called a dimension-reduction subspace. If span(η) is a dimension-reduction
subspace, then so is span(η, η1) for any p × q1 matrix η1. If span(η1) and span(η2)
are both dimension-reduction subspaces, then under mild conditions so is their
intersection span(η1) ∩ span(η2) (Cook 1996, 1998). Consequently, the inferential
target in sufficient dimension reduction is often taken to be the central subspace
SY |X , defined as the intersection of all dimension-reduction subspaces (Cook
1994, 1996, 1998). A minimal sufficient linear reduction is then of the form
R(X) = ηTX, where the columns of η now form a basis for SY |X . We assume
that the central subspace exists throughout this paper, and use d = dim(SY |X ) to
denote its dimension.

The ideas of a sufficient reduction and the central subspace can be used
to further our understanding of the existing methodology and to guide the
development of a new methodology. In §§2 and 3, we consider how sufficient
reductions arise in three contexts: forward linear regression, inverse moment-
based reduction and inverse model-based reduction.

2. Reduction in forward linear regression

The standard linear regression model Y = β0 + βTX + ε, with ε X and E(ε) = 0,
implies that SY |X = span(β) and thus that R(X) = βTX is minimal sufficient.
The assumption of a linear regression then automatically focuses our interest
on β, which can be estimated straightforwardly using ordinary least squares
(OLS) when n is sufficiently large, and it may appear that there is little to be
gained from dimension reduction. However, dimension reduction has been used
in linear regression to improve on the OLS estimator of β and to deal with n < p
Phil. Trans. R. Soc. A (2009)
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regressions. One approach consists of regressing Y on X in two steps. The first
is the reduction step: reduce X linearly to GTX using some methodology that
produces G ∈ R

p×q , q ≤ p. The second step consists of using OLS to estimate the
mean function E(Y | GTX) for the reduced predictors. To describe the resulting
estimator β̂G of β and establish notation for later sections, let Y be the n × 1
vector of centred responses, let X̄ = ∑n

i=1 X/n denote the sample mean vector, let
X be the n × p matrix with rows (Xi − X̄)T, i = 1, . . . , n, let Σ̂ = X

T
X/n denote

the usual estimator of Σ = var(X), let Ĉ = X
T
Y/n, which is the usual estimator

of C = cov(X, Y ), and let β̂ols = Σ̂−1Ĉ be the vector of coefficients from the OLS
fit of Y on X. Then (Cook & Forzani 2009b)

β̂G = PG(Σ̂)β̂ols = G(GTΣ̂G)−1GTĈ. (2.1)

This estimator, which is the projection PG(Σ̂) of β̂ols onto span(G) in the Σ̂ inner
product, does not require computation of Σ̂−1 if q < p and thus could be useful
when n < p, depending on the size of q. In any case, the estimator of E(Y | X) is

Ê(Y | X) = Ȳ + β̂
T
G(X − X̄). (2.2)

If G = Ip, then β̂G = β̂ols, which achieves nothing beyond β̂ols. If we choose the
columns of G to be the first q eigenvectors of Σ̂, then GTX consists of the first q
PCs and β̂G is the standard principal component regression (PCR) estimator.
Setting G = (Ĉ, Σ̂Ĉ, . . . , Σ̂q−1Ĉ) yields the PLS estimator with q factors (Helland
1990). Eliminating predictors by using an information criterion like Akaike AIC
or Bayesian BIC (§5a) can result in a G with rows selected from the identity
matrix Ip, and again we obtain a reduction in X prior to estimation of β. If
span(G) is a consistent estimator of a dimension-reduction subspace S, then
β̂G may be a reasonable estimator of β because span(β) ⊆ S ⊆ R

p, recalling that
the intersection of any two dimension-reduction subspaces is itself a dimension-
reduction subspace. However, while these estimators are well known, span(G)
may not be a consistent estimator of a dimension-reduction subspace without an
additional structure, even if the linear model is accurate. The PCR estimator
depends on G only through the marginal distribution of X, and this alone
cannot guarantee that span(G) is consistent. The performance of the PLS
estimator depends on the relationship between C and the eigenstructure of Σ
(Naik & Tsai 2000).

A somewhat different approach is based on estimating β by using a penalized
objective function like that for the lasso (Tibshirani 1996). The lasso estimator is

β̂lasso = arg min
β

⎧⎨⎩
n∑

i=1

(Yi − Ȳ − βT(Xi − X̄))2 + λ

p∑
j=1

| βj |
⎫⎬⎭ ,

where βj is the jth element of β, j = 1, . . . , p, and the tuning parameter λ is often
chosen by cross validation. Several elements of β̂lasso are typically zero, which
corresponds to setting the rows of G to be the rows of the identity matrix Ip

corresponding to the non-zero elements of β̂lasso. However, with this G, we do
Phil. Trans. R. Soc. A (2009)
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not necessarily have β̂lasso = β̂G, although the two estimators are often similar.
Consequently, the methodology based on penalization does not fit exactly the
general form given in equation (2.1).

Pursuing dimension reduction based on linear regression may not produce
useful results if the model is not accurate, particularly if the distribution of Y | X
depends on more than one linear combination of the predictors. There are many
diagnostic and remedial methods available to improve linear regression models
when p is not too large. Otherwise, application of these methods can be quite
burdensome.

3. Inverse reduction

Inverse regression X | Y provides an alternative approach to estimating a sufficient
reduction. It can deal straightforwardly with regressions that depend on more
than one linear combination of the predictors, and does not necessarily suffer
from the modelling problems that plague forward regression when p is large.
There are two general paradigms for determining a sufficient reduction inversely.
The first is by specifying a parametric model for the inverse regression of X on
Y , as discussed in §§3b and 4. In this model-based approach, minimal sufficient
reductions can in principle be determined from the model itself. For example, we
saw previously that E(Y | X) is a sufficient reduction when (Y , X) is normally
distributed. The second, which is discussed §3a, is the moment-based approach in
which derived moment relations are used to estimate a sufficient reduction by way
of the central subspace. Model accuracy is nearly always an issue in the model-
based approach, while efficiency is worrisome in the moment-based approach.
Some of the best moment-based methods have turned out to be quite inefficient
in relatively simple settings (see Cook & Forzani 2009a, for an instance of this
inefficiency).

(a) Moment-based inverse reduction

In contrast to model-based reduction, there is no law to guide the choice of
R(X) in moment-based reduction. However, progress is still possible by restricting
consideration to multi-dimensional linear reduction and pursuing estimation of
the central subspace SY |X , as discussed in §1b. Recall that d = dim(SY |X ) and
that the columns of the p × d matrix η are a basis for SY |X .

Sliced inverse regression (SIR; Li 1991) and sliced average variance estimation
(SAVE; Cook & Weisberg 1991) were the first moment-based methods proposed
for dimension reduction. Although the concept of the central subspace was not
developed until a few years after SIR and SAVE were introduced, it is now
known that these methods in fact estimate SY |X under two key conditions:
(i) E(X | ηTX) is a linear function of X (linearity condition) and (ii) var(X | ηTX)
is a non-random matrix (constant covariance condition). We forgo discussion
of these conditions, which involve only the marginal distribution of X, as
they are well known and widely regarded as mild. A good recent discussion
of them was given by Li & Wang (2007). Under the linearity condition,
E(X | Y ) − E(X) ∈ ΣSY |X , which is the population foundation for SIR. Under
the linearity and constant covariance conditions, span(Σ − var(X | Y )) ∈ ΣSY |X ,
Phil. Trans. R. Soc. A (2009)
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which is population basis for SAVE. When the response is categorical, E(X | Ck)

can be estimated straightforwardly as the average predictor vector X̄k in category
Ck . The SIR estimator of SY |X , which requires n > p, is then the span of the
first d eigenvectors of Σ̂−1MMT, where M is the p × h matrix with columns
X̄k − X̄. Continuous responses are treated by slicing the observed range of Y
into h categories Ck and then applying the method for a categorical response.
The SAVE estimator uses a similar construction. Routines for computing SIR,
SAVE and other moment-based estimates of SY |X are available in the R package
‘dr’ (http://cran.us.r-project.org/web/packages/dr/index.html) and in the ARC
software (www.stat.umn.edu/arc/software.html).

Both SIR and SAVE provide
√

n consistent estimators of SY |X under standard
conditions, but by itself consistency does not guarantee good performance
in practice. It is known that SIR has difficulty finding directions that are
associated with certain types of nonlinear trends in E(Y | X). SAVE was
developed in response to this limitation, but its ability to find linear trends is
generally inferior to SIR’s. Several moment-based methods have been developed
in an effort to improve on the estimates of SY |X provided by SIR and
SAVE. Using the same population foundations as SIR, Cook & Ni (2005)
developed an asymptotically optimal method of estimating SY |X called IRE.
Ye & Weiss (2003) and Zhu et al. (2005) attempted to combine the advantages
of SIR and SAVE by using linear combinations of them. Cook & Forzani
(2009a) used a likelihood-based objective function to develop a method called
LAD (likelihood acquired directions) that apparently dominates all dimension-
reduction methods based on the same population foundations as SIR and SAVE.
These methods have been developed and studied mostly in regressions where
p 
 n, although there are some results for other settings (Li 2007; Li & Yin
2008). SIR, SAVE, IRE and LAD come with a range of inference capabilities,
including methods for estimating d and tests of conditional independence
hypotheses such as Y is independent of X1 given X2, where we have partitioned
X = (XT

1 , XT
2 )T.

Moment-based sufficient dimension-reduction methods provide estimates of
the minimal sufficient linear reduction, but they are not designed specifically
for prediction and do not produce predictive methods per se. Instead, once
R̂ = η̂

TX has been determined, it is considered fixed and standard model
development methods are typically used to estimate E(Y | η̂TX) and thereby
obtain predictions. Model-based sufficient reduction methods allow a more direct
route to estimation of E(Y | X).

(b) Model-based inverse reduction

Model-based sufficient dimension reduction is relatively new (Cook 2007).
There are several useful characteristics of this approach, which may become clear
in the sections that follow. One is that a model for X | Y can itself be inverted to
provide a method for estimating the forward mean function E(Y | X) without
specifying a model for the full joint distribution of (X, Y ). For convenience,
we denote the densities of X and X | Y by g(X) and g(X | Y ), and so on,
keeping in mind that the symbol g indicates a different density in each case.
Because densities will always appear together with their arguments, this should
Phil. Trans. R. Soc. A (2009)
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cause no ambiguity. We assume that R(X) has a density as well. With these
understandings, we have

E{Y | X = x} = E{Yg(x | Y )}
E{g(x | Y )}

= E{Y | R(x)}
= E{Yg(R(x) | Y )}

E{g(R(x) | Y )} ,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3.1)

where all right-hand side expectations are with respect to the marginal
distribution of Y . Equation (3.1)1 provides a relationship between the mean
function E{Y | X} and the conditional density of X | Y , while equation (3.1)2
is a restatement of the equality of the mean functions for the regressions of Y
on X and R(X). The final equality (3.1)3 establishes a relationship between these
forward mean functions and the conditional density of R | Y , and provides a
method to estimate E(Y | X):

Ê{Y | X = x} =
n∑

i=1

wi(x)Yi

and wi(x) = ĝ(R̂(x) | Yi)∑n
i=1 ĝ(R̂(x) | Yi)

,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.2)

where ĝ denotes an estimated density and R̂ is the estimated reduction. This
estimator is reminiscent of a non-parametric kernel estimator (Simonoff 1996,
ch. 4), but there are important differences. The weights in a kernel estimator do
not depend on the response, while the weights wi here do. Kernel weights typically
depend on the full vector of predictors X, while the weights here depend on X
only through the estimated reduction R̂(x). If d is small, the estimator (3.2) may
avoid the curse of dimensionality. Multivariate kernels are usually taken to be the
product of univariate kernels, corresponding here to constraining the components
of R to be independent. Finally, there is no explicit bandwidth in our weights as
they are determined entirely from ĝ, which eliminates the need for bandwidth
estimation by, for example, cross validation.

The success of this approach depends on obtaining good estimators of the
reduction and of its conditional density. In the next section, we address these
issues by using normal models for the conditional distribution of X | Y . The
models in §§4a,b and d were introduced by Cook (2007). The model in §4c is
from Cook & Forzani (2009b). Our discussion includes a review of the results
that are needed to use equation (3.2).

4. Normal inverse models

Let Xy denote a random vector distributed as X | (Y = y), and assume that Xy is
normally distributed with mean μy and constant variance matrix Δ > 0, where
the inequality means that Δ is positive definite. Let μ̄ = E(X) and let Γ ∈ R

p×d
Phil. Trans. R. Soc. A (2009)
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denote a basis matrix whose columns form a basis for the d-dimensional subspace
SΓ = span{μy − μ̄ | y ∈ SY }, where SY denotes the sample space of Y . Then we
can write (Cook 2007)

Xy = μ̄ + Γ νy + ε, (4.1)
where ε is independent of Y and normally distributed with mean 0 and covariance
matrix Δ, and νy = (Γ TΓ )−1Γ T(μy − μ̄) ∈ R

d ; we assume that var(νY ) > 0. The
basis matrix Γ is not identifiable in this model, as for any full-rank d ×
d matrix A we can always obtain an equivalent parametrization as Γ νy =
(ΓA−1)(Aνy). However, span(Γ ) is identifiable and estimable, and for this
reason we assume without loss of generality that Γ is a semiorthogonal
matrix, Γ TΓ = Id .

Model (4.1) represents the fact that the translated conditional means μy − μ̄

fall in the d-dimensional subspace SΓ . Under model (4.1), R(X) = Γ TΔ−1X is
minimal sufficient (Cook & Forzani 2009b), and the goal is thus to estimate
Δ−1SΓ = {Δ−1z : z ∈ SΓ }. As the minimal sufficient reduction is linear, it follows
that SY |X = Δ−1SΓ . In other words, in the class of models represented by
equation (4.1), moment-based and model-based dimension reduction coincide in
the population.

As a convenient notation for describing estimators of Δ−1SΓ , let Sd(A, B)

denote the span of A−1/2 times the first d eigenvectors of A−1/2BA−1/2, where
A and B are symmetric matrices and A is non-singular. The subspace Sd(A, B)

can also be described as the span of A−1 times the first d eigenvectors
of B. We refer to errors having covariance matrix Δ = σ 2Ip as isotonic.
Isotonic models are models with isotonic errors. For notational simplicity, we
will use Xi when referring to observations rather than the more awkward
notation Xyi .

(a) The principal component model

The isotonic version of model (4.1) is called the PC model because the
maximum likelihood estimator (MLE) of Δ−1SΓ = SΓ is Sd(Ip, Σ̂) and thus the d
components of R̂(X) are simply the first d PCs. This relatively simple result is
due to the nature of Δ. As the errors are isotonic, the contours of Δ are circular.
When the signal Γ νy is added, the contours of Σ = Γ var(νY )Γ T + σ 2Ip become
p-dimensional ellipses with their longest d axes spanning SΓ . The MLE σ̂ 2 of
σ 2 is σ̂ 2 = ∑p

j=d+1 λ̂j/p, where λ̂1 > · · · > λ̂d+1 ≥ · · · ≥ λ̂p are the eigenvalues of Σ̂,
and the MLE of μ̄ is simply X̄.

We performed a small simulation to provide some intuition. Observations on
X were generated as Xy = Γ ∗ν∗

y + ε, where ν∗
y was sampled uniformly from the

boundary of the square [−1, 1]2, the elements of the p × 2 matrix Γ ∗ were sampled
independently from a standard normal distribution, and the error vector ε was
sampled from a normal distribution with mean 0 and variance matrix Ip. In terms
of model (4.1), μ̄ = 0, Γ = Γ ∗(Γ ∗TΓ ∗)−1/2 and νy = (Γ ∗TΓ ∗)1/2ν∗

y . This sampling
process, which does not require an explicit choice of Y , was repeated n = 80
times for various values of p. Figure 1 shows plots of the first two PCs for four
values of p. We see that for small p the square is not recognizable, but for larger
values of p the square is quite clear. In figure 1d, there are p = 500 predictors,
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Figure 1. Plots of the estimated sufficient reduction from the PC model with n = 80 observations
and varying number of predictors p: (a) p = 3; (b) p = 5; (c) p = 25; (d) p = 500.

while the number of observations is still n = 80. The sides of the estimated
square in figure 1d do not align with the coordinate axes because the method
is designed to estimate only the subspace Δ−1SΓ , which is equal to SΓ with
isotonic errors.

Turning to prediction, let Γ̂ denote the p × d matrix with columns consisting
of the first d eigenvectors of Σ̂. Then, the weights (3.2) can be written as

wi(x) ∝ exp{−(2σ̂ 2)−1‖Γ̂ T
(x − Xi)‖2}

= exp{−(2σ̂ 2)−1‖R̂(x) − R̂(Xi)‖2},

}
(4.2)

where R̂(x) = Γ̂ Tx is the estimated reduction. In this case, Ê(Y | X = x) is in the
form of a normal product kernel density estimator with bandwidth σ̂ . Here and
in other weights, we assumed that d is known. Methods for choosing d in the
context of prediction are discussed in §5.

The method of estimating E(Y | X) characterized by equation (4.2) is distinct
from the standard PCR estimator given in equation (2.2) with the columns of
G being the first d eigenvectors of Σ̂. Predictions from equations (4.2) and (2.2)
both use PCs, but the way in which they are used is quite different. Model (4.1),
which leads to PCs as the MLE of the sufficient reduction, has a very general mean
function, but its error structure is restrictive. Nevertheless, this error structure
has recently been used in studies of gene expression (X) that are complicated by
Phil. Trans. R. Soc. A (2009)
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Figure 2. Comparison of prediction errors: (a) ν∗
Y = 2.5Y ; (b) ν∗

Y = Y + Y 2 + Y 3. The line passing
through the plotted points corresponds to predictions from the inverse model using equation (3.2)
with weights (4.2). The other line is for PCR predictions (2.2).

stratification and heterogeneity (Leek & Storey 2007). On the other hand, the
usual linear model has a restrictive mean function, and under that model alone
there seems to be no clear rationale for reduction by PCs (Cox 1968).

We performed a small simulation study to illustrate the relative behaviour
of predictions using equations (2.2) and (4.2). The basic simulation scenario
Xy = Γ ∗ν∗

Y + ε was the same as that leading to figure 1, but in this case we
set n = 200, d = 1, Γ ∗ = (1, . . . , 1)T, var(ε) = 52Ip and ν∗

Y = 2.5Y , where Y is a
standard normal random variable. In this set-up, (X, Y ) has a multivariate normal
distribution, so both equations (2.2) and (4.2) are appropriate, but the predictions
from PCR (2.2) use the fact that the mean function E(Y | X) is linear, while
predictions using equation (4.2) do not. For each of 100 datasets generated in
this way, the mean-squared prediction error PEk for the estimated mean function
Ê(Y | X) was determined by sampling 200 new observations (X∗, Y ∗):

PEk =
200∑
i=1

(Y ∗
i − Ê(Y | X = X∗

i ))
2

200
, k = 1, . . . , 100. (4.3)

The final prediction error was then determined by averaging,
∑100

k=1 PEk/100.
The prediction errors are shown in figure 2a for 3 ≤ p ≤ 150. While the PCR
predictions (2.2) perform a bit better at all values of p, the loss when using
predictions from the inverse model is negligible. Figure 2b was constructed in the
same way, except that we set ν∗

Y = Y + Y 2 + Y 3. In this case, the predictions
(4.2) from the inverse model are much better than the PCR predictions because
they automatically adapt to E(Y | X) regardless of the nature of νY .

(b) The isotonic principal fitted component model

It will often be possible and useful to model the coordinate vectors as νy =
β(fy − f̄ ), where fy ∈ R

r is a known vector-valued function of y with linearly
independent elements and β ∈ R

d×r , d ≤ min(r , p), is an unrestricted rank-d
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matrix. Under this model for νy , each coordinate Xyj , j = 1, . . . , p, of Xy follows
a linear model with predictor vector fy . Consequently, when Y is quantitative,
we are able to use inverse response plots (Cook 1998, ch. 10) of Xyj versus y,
j = 1, . . . , p, to gain information about suitable choices for fy , which is an ability
that is not generally available in the forward regression of Y on X. When p is
too large for such graphical inspection, the PC model can be used as a tool to
aid in selecting fy . Under the PC model, the MLE of νy for the ith observed case
is ν̂i = (Γ̂ TΓ̂ )−1Γ̂ T

(Xi − X̄) = Γ̂ T
(Xi − X̄); the second equality follows because Γ̂

is a semiorthogonal matrix. These vectors ν̂i can then be plotted against Yi ,
i = 1, . . . , n, and used in the same way as the inverse response plots. In cases
like figure 1d, brushing a histogram of the response while observing movement of
the corresponding points around the square may be useful. We can also consider
vectors fy that contain a reasonably flexible set of basis functions, like polynomial
terms in Y , which may also be useful when it is impracticable to apply graphical
methods to all of the predictors. Piecewise polynomials could also be used.

In some regressions, there may be a natural choice for fy . Suppose for instance
that Y is categorical, taking values in one of h categories Ck , k = 1, . . . , h. We
can then set r = h − 1 and specify the kth element of fy to be J (y ∈ Ck), where
J is the indicator function. Another option consists of ‘slicing’ the observed
values of a continuous Y into h bins (categories) Ck , k = 1, . . . , h, and then
specifying the kth coordinate of fy as for the case of a categorical Y . This has
the effect of approximating each conditional mean E(Xyj) as a step function of y
with h steps,

E(Xyj) ≈ μ̄j +
h−1∑
k=1

γT
j bk{J (y ∈ Ck) − Pr(Y ∈ Ck)},

where γT
j is the jth row of Γ and bk is the kth column of β.

Models with νy = β(fy − f̄ ) are called principal fitted component (PFC ) models.
To describe the MLE of Δ−1SΓ when the errors are isotonic, let F denote the n × r
matrix with rows (fi − f̄ )T. Then, the n × p matrix of centred fitted vectors from
the linear regression of X on f is X̂ = PFX and the sample covariance matrix of
these fitted vectors is Σ̂fit = X

TPFX/n, where PF denotes the linear operator that
projects onto the subspace spanned by the columns of F. Under this isotonic PFC
model, the MLE of Δ−1SΓ is Sd(Ip, Σ̂fit). Johnson (2008) gave sufficient conditions
for this estimator to converge at the usual

√
n rate.

Under the isotonic PFC model, the sufficient reduction is estimated as R̂(x) =
Γ̂ Tx, where the columns of Γ̂ are the first d eigenvectors of Σ̂fit. The elements
of this R̂ are called PFCs. Additionally, the MLE of β is β̂ = Γ̂ T

X
T
F(FT

F)−1

and the MLE of σ 2 is σ̂ 2 = (
∑p

j=1 λ̂j − ∑d
j=1 λ̂fit

j )/p, where the λ̂fit
j are the ordered

eigenvalues of Σ̂fit.
To describe the weights under this model, let Bols = X

T
F(FT

F)−1 be the
coefficient matrix from the multivariate OLS fit of X on f, and let the fitted vectors
be denoted by X̂i = X̄ + Bols(fi − f̄ ). The weights from equation (3.2) are then

wi(x) ∝ exp{−(2σ̂ 2)−1‖R̂(x) − R̂(X̂i)‖2}. (4.4)
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Figure 3. Comparison of prediction errors from PCR (equation (2.2)), inverse PCs (equation (4.2)),
isotonic principal fitted components (iso. PFC) (equation (4.4)) and diagonal principal fitted
components (diag. PFC) (equation (4.5)): (a) isotonic PFC, fy = (y, y2, y3)T; (b) diagonal PFC,
fy = y.

These weights are of the same general form as those in equation (4.2) from the PC
model, but there are two important differences. First, the isotonic PFC reduction
uses the eigenvectors from Σ̂fit, while the PC reduction uses the eigenvectors from
Σ̂. Second, the reduction is applied to the observed predictor vectors Xi in the
PC weights (4.2), while the reduction is applied to the fitted predictor vectors X̂i
in the isotonic PFC weights (4.4).

Shown in figure 3a are results from a simulation study to illustrate the potential
advantages of using fitted components. The data were generated as for figure 2b.
We used fy = (y, y2, y3)T for the fitted model and, to broaden the scope, we
increased the overall variability by reducing the sample size to n = 50 and
increasing the conditional variance matrix to var(ε) = 152Ip. This is a highly
variable regression, but all three methods respond quickly as the number of
predictors increases. The PCR predictions do better than the inverse predictions
from the PC model for relatively small p, but the situation is reversed for larger
values of p. Most importantly, the prediction errors from isotonic PFC are the
smallest at all values of p. Figure 3b is discussed in the next section.

(c) The diagonal principal fitted component model

The isotonic PFC model requires that, given the response, the predictors
must be independent and have the same variance. While this model will be
useful in some applications, the requirement of equal variances is restrictive
relative to the range of applications in which reduction may be desirable. In
this section, we expand the scope of application by permitting a diagonal error
covariance matrix Δ = diag(σ 2

1 , . . . , σ 2
p ). This allows for different measurement

scales of the predictors, but still requires that they be conditionally independent.
The estimated sufficient reduction for this model is R̂(x) = Γ̂ TΔ̂−1x, where Δ̂ is
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the MLE of Δ and Γ̂ is any basis for the MLE of span(Γ ). With this R̂, the
weights have the same form as the weights for the isotonic PFC model,

wi(x) ∝ exp
{− 1

2‖R̂(x) − R̂(X̂i)‖2}, (4.5)

where X̂ is as defined for equation (4.4).
It remains to determine Δ̂ and Γ̂ . For this model, we were unable to

find a closed-form expression for these estimators. However, a straightforward
alternating algorithm can be developed based on the following reasoning. If the
inverse mean function is specified, then the variances σ 2

j can be estimated by
using the sample variances of the centred variables Xi − μ̄ − Γβ(fi − f̄ ). If Δ is
specified, then we can standardize the predictor vector to obtain an isotonic PFC
model in Z = Δ−1/2X,

Z = Δ−1/2μ̄ + Δ−1/2Γβ(f − f̄) + ε, (4.6)

where ε is normal with mean 0 and variance matrix Ip. Consequently, we can
estimate span(Γ ) as Δ1/2 times the estimate Γ̃ of Δ−1/2Γ from the isotonic model
(4.6). Alternating between these two steps leads to the following algorithm.

1. Fit the isotonic PFC model to the original data, getting initial estimates
Γ̂ (1) and β̂(1). The MLE of the intercept μ̄ is always X̄, so there is no need
to include this parameter explicitly in the algorithm.

2. For some small ε > 0, repeat for j = 1, 2 . . . until tr{(Δ̂(j) − Δ̂(j+1))
2} < ε.

(a) Calculate Δ̂(j) = diag{(X − Fβ̂
T
(j)Γ̂

T
(j))

T(X − Fβ̂
T
(j)Γ̂

T
(j))}.

(b) Transform Z = Δ̂
−1/2
(j) X.

(c) Fit the isotonic PFC model to Z, yielding estimates Γ̃ , and β̃.

(d) Backtransform the estimates to the original scale Γ̂ (j+1) = Δ̂
1/2
(j) Γ̃ ,

β̂(j+1) = β̃.

Cook & Forzani (2009b) proposed a different algorithm for fitting the diagonal
PFC model. The algorithm here is more reliable when n < p.

We again report partial results of a simulation study to illustrate the potential
benefits of the diagonal PFC model. The scenario for generating the data was
the same as that for figure 2a with 3 ≤ p ≤ 200 and n = 50, modified to induce
different conditional variances. The conditional variances (σ 2

1 , . . . , σ 2
200) were

generated once as the order statistics for a sample of size 200 from 60 times
a chi-squared random variable with two degrees of freedom. The smallest order
statistic was σ 2

1 = 0.07 and the largest was σ 2
200 = 499. We then used (σ 2

1 , . . . , σ 2
p )

for a regression with p predictors. In this way, the conditional variances increased
as we added predictors. While it is unlikely that predictors would be so ordered
in practice, this arrangement seems useful to highlight the relative behaviour of
the methods. In each case, we fitted the isotonic and diagonal PFC model using
fy = y. Predictions were again assessed using 200 new simulated observations, and
the entire set-up was again replicated 100 times to obtain the average prediction
errors shown in figure 3b. With p = 3 predictors, all methods perform well because
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the first three conditional variances are similarly small. The prediction error for
the diagonal PFC model changed very little as we added predictors, while the
prediction errors for all other methods increased substantially. This happened
because the MLEs from the diagonal PFC model can weight each predictor
according to its conditional variance, while the predictors are treated equally
by the other methods. Predictions from the PC model were consistently the
worst. This is perhaps to be expected because the other three methods use mean
functions that are appropriate for this simulation.

Predictions from the diagonal PFC model should perform well also when Δ > 0
is not a diagonal matrix, provided that the conditional predictor correlations
are small to moderate. This is in agreement with Prentice & Zhao (1991, p.
830) who recommended in a related context that independence models generally
should be adequate for a broad range of applications in which the dependences
are not strong. The methodology discussed in the next section may be useful in
the presence of strong conditional correlations.

(d) The principal fitted component model

In this section, we describe the estimator (3.2) for general Δ > 0, allowing the
predictors to be conditionally dependent with different variances. The methods
deriving from the isotonic and diagonal PFC models do not require p < n. In
contrast, the methods of this section work best in data-rich regressions where
p 
 n. The analysis relies on the MLEs given by Cook (2007, §7.2) and studied
in more detail by Cook & Forzani (2009b).

The following notation will help describe the MLEs under the PFC model.
Let Σ̂res = Σ̂ − Σ̂fit > 0 be the sample covariance matrix of the residuals vectors
Xi − X̂i from the OLS fit of X on f. Let ω̂1 > · · · ≥ ω̂p and V̂ = (v̂1, . . . , v̂p) be the

eigenvalues and the corresponding matrix of eigenvectors v̂j of Σ̂−1/2
res Σ̂fitΣ̂

−1/2
res .

Finally, let K̂ be a p × p diagonal matrix, with the first d diagonal elements
equal to zero and the last p − d diagonal elements equal to ω̂d+1, . . . , ω̂p. Then,
the MLE of Δ is

Δ̂ = Σ̂1/2
res V̂(Ip + K̂)V̂T

Σ̂1/2
res .

If d = r , then K̂ = 0, and this estimator reduces to Δ̂ = Σ̂res. Otherwise, Δ̂
recovers information on variation due to overfitting (r > d). The MLE of β is
β̂ = Γ̂ TP

Γ̂ (Δ̂−1)
Bols, where P

Γ̂ (Δ̂−1)
Bols is the projection of Bols onto the span of Γ̂

in the Δ̂−1 inner product, and the MLE of Δ−1Γ is Sd(Δ̂, Σ̂fit), which is equal
to the SIR estimator of SY |X when the response is categorical (Cook & Forzani
2009b).

Turning to prediction, we substituted these MLEs into the multivariate
normal density for X | Y and simplified the resulting expression by in part
ignoring proportionality constants not depending on the observation i to obtain
the weights (3.2):

wi(x) ∝ exp
{− 1

2(x − X̂i)
T[Δ̂−1Γ̂ (Γ̂ TΔ̂−1Γ̂ )−1Γ̂ TΔ̂−1](x − X̂i)

}
, (4.7)

where X̂i is as defined for equation (4.4). We next discuss how these weights can
be simplified to a more intuitive and computationally efficient form.
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Let Ṽ = Σ̂−1/2
res V̂(Ip + K̂ )−1/2. Then it is easy to show that Δ̂−1 = ṼṼ

T
, and

that the columns of Δ̂
1/2

Ṽ are the normalized eigenvectors of Δ̂−1/2Σ̂fitΔ̂
−1/2.

Let Ṽd and V̂d denote the p × d matrices consisting of the first d columns
of Ṽ and V̂. Then, because the MLE of Δ−1Γ is Sd(Δ̂, Σ̂fit), it follows
that Sd(Δ̂, Σ̂fit) = span(Δ−1/2Δ1/2Ṽ) = span(Ṽd) = span(Σ̂−1/2

res V̂d). Consequently,
we may take Δ̂−1Γ̂ = Ṽd = Σ̂−1/2

res V̂d , which implies the reduction

R̂(x) = V̂T
d Σ̂−1/2

res x = (v̂T1Σ̂
−1/2
res x, . . . , v̂T

d Σ̂−1/2
res x)T.

Using these results in equation (4.7), we have Γ̂ TΔ̂−1Γ̂ = (Γ̂ TΔ̂−1
)Δ̂(Δ̂−1Γ̂ ) =

Ṽ
T
d Δ̂Ṽd = Id , and thus

wi(x) ∝ exp
{− 1

2(x − X̂i)
T[Δ̂−1Γ̂ Γ̂ TΔ̂−1](x − X̂i)

}
= exp

{− 1
2(x − X̂i)

TΣ̂−1/2
res V̂dV̂T

d Σ̂−1/2
res (x − X̂i)

}
= exp

{− 1
2‖R̂(x) − R̂(X̂i)‖2

}
.

⎫⎪⎬⎪⎭ (4.8)

The reduction in this case is applied to x and X̂ in the same way that it was for
the weights from the isotonic and diagonal PFC models, but the reduction itself
differs. A perhaps clearer connection between the PFC reduction and the isotonic
PFC reduction can be seen by noting that span(Σ̂−1/2

res V̂d) is equal to the span of

the first d eigenvectors of Σ̂
−1
resΣ̂fit. Under the isotonic PFC model, the reduction

is computed by using the first d eigenvectors of Σ̂fit, while under the PFC model
the reduction is computed using the first d eigenvectors of Σ̂

−1
resΣ̂fit. Additionally,

as Sd(Σ̂res, Σ̂fit) = Sd(Σ̂, Σ̂res), the reduction could be computed also as the first
d eigenvectors of Σ̂−1Σ̂fit.

5. Implementation

In this section, we present additional simulation results and provide some
suggestions for issues that must be addressed prior to implementation. We
consider only the isotonic, diagonal and general PFC models, and address the
implementation issues first.

(a) Choice of d

Two general methods for choosing d ∈ {0, 1, . . . , min(r , p)} have been studied
in the literature. One is by using an information criterion such as the Akaike
(AIC) and Bayesian (BIC) information criteria. Let L(d0) denote the value of the
maximized log likelihood for any of the three inverse models under consideration
fitted with a value d0 for d. Then the dimension is selected that minimizes
the information criterion −2L(d0) + h(n)g(d0), where h(n) is equal to log(n) for
BIC and 2 for AIC, and g(d0) = p + d0(p − d0) + dr + D(Δ) is the number of
parameters to be estimated as a function of d0. The first addend in this count
corresponds to μ, the second to SΓ and the third to β. The final term D(Δ) is the
number of parameters required for Δ, which is equal to 1, p and p(p + 1)/2 for
the isotonic, diagonal and PFC models. The second method is based on using the
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likelihood ratio statistic 2(L(min(r , p)) − L(d0)) in a sequential scheme to choose
d. Using a common test level and starting with d0 = 0, choose the estimate of
d as the hypothesized value that is not rejected; see Cook (2007) and Cook &
Forzani (2009a) for further discussion of these methods.

These methods for choosing d have been shown to work well in data-rich
regressions where p 
 n, but can be unreliable otherwise. Consequently, in the
context of this paper, we will determine d using the cross-validation method
proposed by Hastie et al. (2001, ch. 7).

(b) Screening

When dealing with large-p regressions, there may be a possibility that a
substantial subset X2 of the predictors is inactive; that is, X2 is independent
of the response given the remaining predictors X1. In terms of PFC models, X2
is inactive if and only if the corresponding rows of Δ−1Γ are all equal to zero.
Addressing this possibility in terms of the general PFC models requires a data-rich
regression, and is outside the scope of this paper (see Cook & Forzani 2009b for
further discussion). For the isotonic and diagonal PFC models, the predictors X2
are inactive if and only if the corresponding rows of Γ are all equal to 0. In these
models, we can test if the kth row of Γ is equal to 0 straightforwardly by using an
F statistic to test if α = 0 in the univariate regression model of the kth predictor
Xk on f, Xk = μ + αTf + ε. This method with a common test level of 0.1 was used
for screening in the simulations that follow. When d = 1 and f = y, this method
is equivalent to sure independence screening proposed by Fan & Lv (2008).

(c) Simulation results

To allow for some flexibility, we used the following general set-up as the
basis for our simulations. Let Jk and Ok denote vectors of length k having
all elements equal to 1 and 0. A response was generated from a uniform
(0, 3) distribution. Then with fy = (y, e2y)T a predictor vector of length p was
generated using an integer p0 ≤ p/2 as Xy = Γ ∗β∗fy + ε, where Γ ∗ = (Γ ∗

1, Γ
∗
2)

with Γ ∗
1 = (JT

p0
, OT

p−p0
)T and Γ ∗

2 = (OT
p0

, JT
p0

, Op−2p0)
T, β∗ = diag(2/

√
20, 1/

√
20) and

ε ∼ N (0, Δ) with Δ = diag(σ 2
0 JT

p0
, σ 2

1 JT
p0

, σ 2
0 JT

p−2p0
), σ 2

0 = 2 and σ 2
1 = 20. Datasets of

n independent observations generated in this way have the following properties:
(i) one set of p0 predictors is linearly related to the response, another set of p0 is
nonlinearly related and the remaining p − 2p0 predictors are independent of the
response; (ii) the conditional covariance of X | Y has a diagonal structure; (iii)
Γ is a p × 2 matrix and thus the sufficient reduction is composed of d = 2 linear
combinations of the predictors.

We present results from three cases of this simulation model. In each case, we
fitted the diagonal PFC model with fy = (y1, . . . , y4)T, so the fitted fy was not the
same as that used to generate the data. The prediction errors were determined
using the method of equation (4.3).

Case 1. p 
 n. In this regression, we set n = 400, p = 40 and p0 = 20, so all
predictors are relevant and no screening was used. The results are shown in the
third column of table 1. The first row shows the prediction errors when d is
determined by the cross-validation (c.v.) method of Hastie et al. (2001, ch. 7). In
this case, the estimated d can vary across the 100 replicate datasets. The next
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Table 1. Prediction errors (4.3) for three simulation scenarios, with standard errors
given in parentheses.

method method class case 1 case 2 case 3

PFC d̂ by c.v. 0.063 (0.0031) 0.07 (0.006) 0.090 (0.0047)
d = 1 0.073 (0.0036) 0.08 (0.006) 0.092 (0.0053)
d = 2 (true) 0.063 (0.0031) 0.07 (0.005) 0.087 (0.0049)
d = 3 0.065 (0.0031) 0.07 (0.005) 0.089 (0.0046)
d = 4 0.066 (0.0030) 0.08 (0.005) 0.093 (0.0045)

forward methods lasso 0.18 (0.002) 0.19 (0.003) 0.26 (0.005)
PLS 0.18 (0.002) 0.27 (0.004) 0.27 (0.004)

four rows show the prediction errors when d is fixed at the indicated value across
all datasets. The final two rows show the prediction errors for PLS and the lasso
applied straightforwardly to the linear regression of Y on X using the R packages
‘pls’ and ‘lars’. We see that the PFC prediction errors are fairly stable across the
choices for d and that they are roughly one-third of the prediction error for the
forward methods.

Case 2. n < p. In this simulation, we set n = 100, p0 = 60 and p = 120, so again
all predictors are relevant and no screening was used. The results, which are shown
in the fourth column of table 1, are qualitatively similar to those for case 1, except
that the prediction error for the lasso is notably less than that for PLS.

Case 3. n < p. For this case, we set n = 100, p0 = 20 and p = 120. Now there are
only 40 relevant predictors out of 120 total predictors and, as discussed in §5b,
screening was used prior to fitting the diagonal PFC model. The results shown
in the final column of table 1 are qualitatively similar to the other two cases.
Here, we were a bit surprised that the lasso did not perform better because it
is designed specifically for sparse regressions. Evidently, the adaptability of the
diagonal PFC model through the choices of f and d can be important for good
predictions.

(d) Illustration

We conclude this section with an illustrative analysis of an economic regression
using data from Enz (1991). The data and additional discussion were given by
Cook & Weisberg (1999, p. 140). The response, which was measured in 1991, is
the average minutes of labour required to buy a BigMac hamburger and french
fries in n = 45 world cities. There are nine continuous predictors. We fitted the
diagonal PFC model as discussed in §4c, and estimated the prediction error using
leave-one-out cross validation. We set d = 1 to allow an even-handed comparison
with forward methods.

The results are shown in table 2. Two entries are given for PFC. The first
corresponds to fitting PFC with the cubic polynomial basis f = (y, y2, y3)T

and the second uses a more elaborate piecewise constant polynomial with 10
slices for f. PFC with the piecewise constant polynomial basis gives a better
prediction error than PFC with the cubic polynomial basis, but both methods
outperform the predictions by five forward methods, the elastic net (Zou &
Phil. Trans. R. Soc. A (2009)
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Table 2. BigMac dataset.

prediction
methods error

PFC—cubic polynomial 933
PFC—piecewise constant 771
elastic net 1198
ridge regression 1211
lasso 1412
PLS 1426
OLS 2268

Hastie 2005), the lasso, ridge regression, PLS and OLS. The relative behaviour
of PFC illustrated here is typical of our experiences, regardless of the number
of predictors.

6. Discussion

The methodology introduced in this paper applies across a useful range of
applications with continuous predictors that, given the response, are mildly
correlated. We view the ability to choose fy as an important feature because it
allows a level of adaptability that is not really available when directly modelling
the mean function E(Y | X) in large-p regressions. The assumption of normal
errors is not crucial, but the predictions may not perform well under extreme
deviations from normality. For instance, we expect that it is possible to develop
substantially better methodology for regressions in which all the predictors are
binary, perhaps employing a quadratic exponential family for X | Y in place of
the multivariate normal. Work along these lines is in progress.

It also seems possible to develop models ‘between’ the diagonal and general
PFC models that allow for some of the conditional predictor correlations to be
substantial but stop short of permitting a general Δ > 0. One route is to model
the conditional covariance matrix as Δ = ΓMΓ T + Γ 0M0Γ

T
0 , where Γ is the same

as that in model (4.1), (Γ , Γ 0) is an orthogonal p × p matrix, M > 0 and M0 > 0
(Cook 2007). The minimal sufficient reduction in this case is R(X) = Γ TX, which
does not involve the Ms. This model for Δ allows arbitrary correlations among the
elements of R and among the elements of Γ T

0 X, but requires that R and Γ T
0 X be

conditionally independent. Predictions under this model in a data-rich regression
can be obtained as an extension of results by Cook (2007). The behaviour of this
model in n < p regressions is under study.

Research for this paper was supported in part by the US National Science Foundation, Microsoft
Research and the Newton Institute for Mathematical Sciences, Cambridge, UK.
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