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Principal fitted component (PFC) models are a class of likelihood-based inverse regression methods that
yield a so-called sufficient reduction of the random p-vector of predictors X given the response Y. Assum-
ing that a large number of the predictors has no information about Y, we aimed to obtain an estimate
of the sufficient reduction that ‘purges’ these irrelevant predictors, and thus, select the most useful ones.
We devised a procedure using observed significance values from the univariate fittings to yield a sparse
PFC, a purged estimate of the sufficient reduction. The performance of the method is compared to that of
penalized forward linear regression models for variable selection in high-dimensional settings.

Keywords: dimension reduction; principal fitted component; sparsity; variable selection

1. Introduction

Scientists now routinely collect large amount of data and formulate regressions for which the
number of predictors p is often too large to allow a thorough graphical exploration of the data.
It is observed that regression data are collected jointly on (Y , X) where X = (X1, . . . , Xp)

T is
a random p-vector and Y is a univariate response. In a forward model of Y |X, the predictors
are usually treated as fixed, non-random; however, there is no compelling reason not to use the
information of X given Y. A model of X given Y falls into the framework of inverse regression.
Numerous inverse regression methodologies exist in the statistics literature, including sliced
inverse regression ([1], SIR) sliced average variance estimation ([2], SAVE) and directional
regression ([3], DR). In general, inverse methods are arguably the best suited to deal with the
high dimensionality in regression.

Cook [4] proposed a likelihood-based inverse regression method called principal fitted com-
ponents (PFC) models with the aim to estimate a sufficient reduction of X. Following is a formal
definition of sufficient reduction,[4] as defined below.

Definition 1.1 A reduction R : R
p → R

d , d ≤ p, is sufficient if it satisfies one of the following
three statements: (i) Y |X ∼ Y |R(X), (ii) X | (Y , R(X)) ∼ X |R(X), and (iii) X Y |R(X). The
symbol stands for statistical independence, and U ∼ V stands for U and V having identical
distribution.

*Corresponding author. Email: kofi@umbc.edu
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2 K.P. Adragni and M. Xi

The reduction R(X) captures all the information about the response Y that is contained in X.
Statement (i) holds in a forward regression and requires the conditional distribution of Y |X.
For example, in prospective study designs such as clinical trials, X is fixed by design and Y |X is
observed. Statement (ii) holds in an inverse regression and requires the conditional distribution of
X|Y . In retrospective studies, for example, case control designs, X is observed given the response
or status Y. Statement (iii) requires the joint distribution of (Y , X). Under a joint distribution of
(Y , X), the three statements are equivalent. Consequently, a model of X | Y can be used to obtain
a sufficient reduction of X and use this reduction in lieu of X in modelling Y |X.

A principal fitted components model is obtained as follows: Let Xy denote the p-vector random
variable distributed as X|(Y = y) and let μ = E(X) and μy = E(Xy). This model is based on
the assumption that Xy has a multivariate normal distribution, and is therefore only appropriate
for many-valued, quantitative, continuous or nearly-continuous predictors. It is assumed that
μy − μ falls in a subspace S of dimension d in R

p as y varies in its sample space. Let � ∈ R
p×d

denote a semi-orthogonal basis matrix of S, such that �T� = Id . We can then write Xy ∼ N(μ+
�νy, �) where νy = �T (μy − μ) is a function of y. The conditional variance � is assumed to
be independent of Y. Once the response values are observed, the unknown function νy can be
modelled as νy = λ(fy − E(fY )), where λ ∈ R

d×r is an unknown and unconstrained parameter of
rank at most d ≤ min{p, r}, and fy is a flexible basis function. The subsequent model, written as

Xy = μ+ �λ[fy − E(fY )]+�1/2ε, (1)

is referred to as a PFC model. Typically, the function fy ∈ R
r is a user-selected function. It helps

capture the dependency of X on Y. Clearly, the dependence of the predictors on Y is captured
through the row elements of �. Cook [4] showed that a sufficient reduction of X is �T�−1X
which is a set of d linear combinations of the p predictors. A predictor Xi is thus relevant in
the reduction if its corresponding row of �−1� is nonzero. We herein demonstrate that inverse
regression can be an alternative to forward model for variable selection.

We propose a hard-thresholding procedure called ‘p-value guided hard-thresholding’ which is
based on the magnitude of the scaled row elements of �̂, an estimate of �. Hard-thresholding has
been used in the literature [5,6] in wavelet estimation context for image-denoising. If any row
element of �̂ has an absolute value less than a specified threshold, then this procedure will set it
to zero. Thus, the procedure serves to prune the sufficient reduction of irrelevant predictors.

2. Preliminaries

We start with the most restrictive covariance structure of � by assuming that, conditional to the
response, the predictors are independent and on the same measurement scale, that is � = δ2I. The
subsequent model is referred to as an isotropic PFC. The sufficient reduction of X is �TX.[4]

To describe the estimator of the sufficient reduction, we assume that n data points (xi, yi), i =
1, . . . , n from (X, Y ) are observed. We denote by X ∈ R

n×p, the centred data matrix with the
ith row (xi − x̄)T with x̄ =∑n

i=1 xi/n, and F ∈ R
n×r is the data matrix of the basis function

with its ith row (fyi − f̄)T where f̄ =∑n
i=1fyi/n. We let PF = F(FT

F)−1
F

T denote the projection
operator on the space spanned by the columns of F. The maximum likelihood estimator of �

can be obtained as any orthonormal basis of the subspace spanned by the d eigenvectors of
�̂fit = X

TPFX/n corresponding to the largest d eigenvalues. The estimated sufficient reduction
�̂TX is the principal component of �̂fit, and is thus referred to as the PFC.

Obtaining a sparse reduction from model (1) amounts to estimating a sparse principal com-
ponent of �̂fit. The nonzero rows of �̂ correspond to the relevant predictors to be identified.
Several methods have been proposed to help estimate sparse principal components.[7–10] Zou
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Statistics 3

et al. [11] formulated principal component analysis as a regression-type optimization problem
and proposed a sparse principal components analysis (SPCA) algorithm by imposing the lasso
[12] constraint on the regression coefficients. The idea of SPCA was elaborated as a generic for-
mulation for sparse sufficient dimension reduction by Li.[13] We adapted and implemented the
algorithm of Li.[13] It is identical to the algorithm used by Chun and Keleş [14] to find the first
partial least-squares direction vector. We studied its performance and observed that it was not
sensitive to the inclusion of inactive predictors. To circumvent this, we propose an alternative
method to estimate the sparse principal fitted component using a hard-thresholding method.

The proposed method includes predictors in the estimated reduction based on the significance
of their relationship with the response. It is reminiscent of the method of Cook [15] on testing
predictors contribution to the sufficient reduction in the context of SIR where large sample tests
were used. With PFC, the normality assumption on X | Y provides an exact distribution to the
tests of these predictors. It is worth noting that SIR is a moment-based sufficient dimension
reduction method. It has been shown that when the response Y is categorical, SIR of Li [1]
and PFC estimate the same minimal sufficient reduction subspace. When Y is continuous, SIR
discretizes the response through a slicing procedure, which can inadvertently leave intra-slice
information behind. On the other hand, the use of flexible basis functions in PFC can potentially
help avoid such loss of information.[4,16]

In the remainder of the paper, we present the sparse estimation with the focus on single-index
principal fitted components models where d = 1 in Section 3. In Section 4, we provide details for
the sparse estimation for multiple-index PFC models where d > 1. Simulation studies comparing
the performance of the sparse single-index PFC to some existing variable selection methods
are in Section 5 where applications to two data sets are presented. We provide a theoretical
justification of our simulation results in Section 6, followed by some discussions in Section 7.

3. A P-value guided hard-thresholding on single-index PFC

We continue with an isotropic single-index PFC model with � = δ2I and � ∈ R
p×1. The suffi-

cient reduction of X is �TX.[4] Let us partition the predictors into two groups, X(1) ∈ R
p1 and

X(2) ∈ R
p2 , and partition � accordingly. We assume that X(1) is the set of active or relevant pre-

dictors that are linearly or nonlinearly related to the response, and that X(2) is inactive and has
no information about Y. The following proposition helps in setting up the variable pruning.

Proposition 3.1 Consider PFC model (1) where � = δ2I is independent of Y, and assume the
aforementioned partitioning of X and �. Then, we have

X(2) Y ⇔ �2 = 0.

The statement in this proposition can be proved by observing that E(X(2)|Y )− E(X(2)) =
�2νY , with νY �= 0. This implies that �2 = 0 if and only if E(X(2)|Y ) = E(X(2)). With �2 = 0,
the sufficient reduction becomes �T

1 X(1). The focus now is to properly identify both �2 and �1.
Let �λ = 	. Model (1) can then be expressed as p independent simple linear regressions

Xi = μi + φify + δiεi, i = 1, . . . , p, (2)

where Xi and φi are respectively the ith predictor in X and the ith row of 	. Thus, p independent
models (2) that are individually a linear regression model can be fitted. If Xi and Y are dependent,
then φi should be nonzero. The parameter φi can be tested for equality to zero at a specified level
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4 K.P. Adragni and M. Xi

of significance α. Given the data, let φ̂i be the ordinary least-squares estimator of φi. We consider
the usual test statistic

Fi = n− r − 1

r
·
∑n

j=1[(xij − x̄i.)
2 − (xij − x̄i. − φ̂ifyj)

2]∑n
j=1(xij − x̄i. − φ̂ifyj)

2

for testing H0 : φi = 0 against Ha : φi �= 0, where x̄i. =
∑n

j=1 xij/n. The statistic Fi follows an F
distribution with (r, n− r − 1) degrees of freedom. Let πi = P(F ≥ Fi |φi = 0) be the p-value
resulting from the test, and let π = (π1, . . . , πp)

T , and let 1p be the p-vector of ones. The crude
p-value guided thresholding estimator �̂α is obtained as

�̂α = J(π ≤ α1p) ◦ �̂, (3)

where �̂ is an estimator of �. The inequality is element-wise, and J(·) represents the indicator
function. The operator ◦ stands for the Hadamard product of matrices. With this procedure, πi ≤
α is an evidence against H0 and Xi is assumed active; the corresponding row in �̂α is nonzero.
These rows form the estimate of �1. One advantage of this procedure is that all predictors with
corresponding p-values πi > α are discarded, and this may significantly prune the irrelevant
predictors.

This hard-thresholding procedure is akin to multiple hypotheses testing where the concern is
often to control the family-wise error rate. Testing the p hypotheses while controlling for the
family-wise error rate ensures the simultaneous correctness of inferences about the p predictors.
It thus guarantees a correct overall decision in the selection of the active predictors. The goal of
this procedure, however, is not to control for the family-wise error rate; thus each of the p tests
is carried out at level α, regardless of p.

The univariate model fittings (2) have been shown to subsume the sure independence screening
of Fan and Lv [17] for variable screening.[18] Using the simplest basis function fy = (y− ȳ) in
the univariate models turns φis into scalars. Larger values of the estimated |φ̃i| correspond to
predictors with stronger dependence on the response. It can be shown that |φ̃i| is proportional to
the sample correlation between Xi and y. Predictors with large values of |φ̃i| are retained in the
pruned sufficient reduction.

3.1. Conditionally dependent predictors

An unstructured and nonsingular � is now considered. We partition � and �−1 as (�ij)i,j=1,2 and
(�(ij))i,j=1,2 according to the partition of X. The sufficient reduction of X can then be rewritten as

�T�−1X = [�T
1 �(11) + �T

2 �(21)]X(1) + [�T
1 �(12) + �T

2 �(22)]X(2).

With �2 = 0, the sufficient reduction �T�−1X = �T
1 �(11)X(1) + �T

1 �(12)X(2) still retains the
inactive predictors X(2) as long as �(12) �= 0. If X(2) is inactive and yet �12 �= 0, it may mean
that X(1) and X(2) are related through an unobserved latent variable. We chose to ignore this con-
ditional dependency between X1 and X2 and henceforth assume that �12 = 0, which implies that
�(12) = 0. The following proposition summarizes the assumptions and the result.

Proposition 3.2 PFC model (1) with the aforementioned partitioning of X, � and � bears the
following:

• If (a) X(2) Y and (b) X(1) X(2)|Y then �T
1 �−1

11 X(1) is a sufficient reduction of X.
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Statistics 5

Condition (a) is equivalent to �2 = 0 which means that X2 is inactive. Condition (b) is
equivalent to �12 = 0; it is a classical result of multivariate normal distribution.

The univariate test is still carried out to assess the dependency between individual predictors
and the response. The following procedure is used to obtain the pruned single-index sufficient
reduction of the predictors.

(1) Proceed with a thorough investigation for a PFC model fitting:
(a) select the appropriate basis function for the data,
(b) select the variance structure,
(c) fit the PFC model to collect �̂ and �̂.

(2) Fit the p univariate linear regressions (2) to collect the p-values.
(3) Form the ‘pruned’ estimated sufficient reduction �̂T

α �̂−1
α Xα of �T

1 �−1
11 X(1) at the level of

significance α.

Choices of the basis function in step (a) include polynomial, piecewise constant, piecewise
polynomial, and Fourier bases.[4,16,19] When nonlinear relationships are suspected, high degree
polynomial bases are suggested. A number of variance structures have been discussed in the
literature, including the isotropic (� = δ2I), the anisotropic [� = diag(δ2

1 , . . . , δ2
p)], the struc-

tured, and the unstructured �. A likelihood ratio test can be used to determine the appropriate
structure.[16] In step (3), the choice of the level of significance α can be arbitrary, e.g. 5% or
10%. It can also be determined by cross-validation if a prediction performance is used to guide
the selection, as detailed in the following section.

3.2. Prediction-based selection

It is possible that not all predictors selected at level α are relevant in predicting the response. We
propose selecting the most important predictors by cross-validation.

Let α1 < α2 < · · · < αm = α be a sequence of levels of significance, where α is the maximum
to be considered, that is, 0.1. For each αi, the mean square prediction error can be calculated in
the usual fashion.[20] We split the n observations of data set into K sets D1, . . . , DK of roughly
equal sizes n1, . . . , nK . The set D(−k), that is, the set D with Dk held out, is used as a training
set to estimate � and �. The p-value guided thresholding estimator �̂ of � that yields the best
prediction of the response is

�̂ = arg min
i∈{1,...,m}

1

K

K∑
k=1

1

nk

∑
yj∈Dk

[yj − Ê(Y | �̂T
αi
�̂−1

αi
x(k))]2, (4)

where x(k) are observations from the testing set Dk . We adopted the prediction method of Adragni
and Cook [19] which does not assume a model for Y |X to obtain Ê(Y |�̂T

α �̂−1
α x). Let ĝ denote

the estimated density function of �T�−1X. The predicted response is obtained as

Ê{Y | �̂T
α �̂−1

α x} =
n∑

i=1

wi(x)yi =
n∑

i=1

ĝ(�̂T
α �̂−1

α x | yi)∑n
j=1 ĝ(�̂T

α �̂−1
α x | yj)

yi,

The prediction-based method proposed herein is reminiscent of the variable selection for the
single-index model of Kong and Xia [21] where candidate models were obtained with all
nonempty subsets of the p predictors and a nonparametric model was assumed. Our approach
is similar except for the following: (i) the predictors are sorted and included incrementally in the
sufficient reduction based on their p-values, and (ii) there is no kernel bandwidth to be estimated
by cross-validation which is commonly needed by nonparametric methods.
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6 K.P. Adragni and M. Xi

3.3. A connection between PFC and forward linear model

Under restrictive assumptions on X | Y , we establish herein a connection between the inverse
regression (1) and a forward linear regression model through the following theorem.

Theorem 3.3 Assume that (Y , X) are jointly observed, and that a forward linear model Y =
βTX+ ε holds as well as the isotropic model (1) with Var(Xy) = δ2I, a restricted basis function
fy = (y− ȳ), and λ ∈ R. Let Var(Y ) = σ 2

Y . Then, we have

β = λσ 2
Y

δ2 + λ2σ 2
Y

�. (5)

This theorem suggests that the single-index isotropic PFC with a linear basis function is
equivalent to forward linear model in selecting relevant predictors when the predictors, condi-
tionally on the response, are independent. The maximum likelihood estimator of the parameters
in Equation (1) with an isotropic structure are given in the following theorem.

Theorem 3.4 Assume model (1), and let C̃ = X
T
Y/n, σ̃ 2

y = Y
T
Y/n, and �̂ = X

T
X/n, where

Y = (y1, . . . , yn)
T. The maximum likelihood estimators of the parameters are μ̂ = X̄, λ̂ =

‖C̃‖/σ̃ 2
y , �̂ = C̃/‖C̃‖, δ̂2 = (Tr{�̂} − n‖C̃‖2/σ̃ 2

y )/p.

There is no dimensionality issue when estimating the parameters under model (1), and
estimation of the parameters can be performed with a decent sample size.

4. Pruning Multiple-Index PFC

We consider a PFC model as in Equation (1), except that � ∈ R
p×d , where d ≤ min(r, p), λ ∈

R
d×r, and we continue to assume that �12 = 0 as in Proposition 3.2. We still have 	 = �λ. Here

again, if Xi and Y are dependent, then φi, the ith row vector of 	 should be nonzero. Let �̂ be an
estimator without thresholding of �. With π = (π1, π2, . . . , πp)

T be vector of the p-values from
the p fitted models, the crude p-value guided thresholding estimator �̂α is obtained as

�̂α = J((π ⊗ 1d) ≤ α1pd) ◦ �̂,

The following procedure is used to obtain �̂α .

(1) Proceed with a thorough PFC model fitting:
(a) select the appropriate basis function for the data,
(b) select the variance structure,
(c) estimate the dimension d of the reduction,
(d) fit the PFC model to collect �̂ and �̂.

(2) Fit the p univariate linear regressions (2) to collect the p-values.
(3) Form the ‘pruned’ estimated sufficient reduction �̂T

α �̂−1
α Xα of �T

1 �−1
11 X(1) at the level of

significance α.

This procedure is similar to the previous given in Section 3.1, except that the dimension d
of the reduction subspace must be estimated now. The estimation of d can be carried out using
either a sequential likelihood ratio test or information criteria.[16] We provide more details about
this sequential likelihood ratio test in Appendix A.4. A cross-validation method can also be used
to estimate d.[19] In step (3), the prediction-based selection of Section 3.2 can be used.
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Statistics 7

5. Numerical studies

We applied our methodology to two data sets: the diabetes and the Big-Mac data sets. The dia-
betes data set was described in [22] and can be found in the R package lars.[23] It has 64
predictors including 10 main predictors and certain of their interactions with 442 observations.
The Big-Mac data set [24] has 9 predictors with 45 observations.

We also conducted simulations to study the performance of our procedure in selecting the
relevant predictors. The maximum significance level was set to 0.1. The selection was guided
by prediction performance, and all tuning parameters were determined by leave-one-out cross-
validation for real data sets and by 10-fold cross-validation in simulations.

5.1. Data analysis

Diabetes Data I: We consider the data set with the nine continuous predictors without the inter-
actions. We removed the categorical covariate sex because our methodology is designed for
continuous variables. The response variable is a measure of disease progression one year after
baseline. It was centred and scaled to have unit variance.

We fit the models with fy = y− ȳ and an isotropic covariance structure. The dimension
d of the reduction is consequently one and was not estimated. We obtained the selected
predictors along with the prediction error. Out of the following variables, (age, bmi, map,
tc, ldl, hdl, tch, ltg, glu), the hard-thresholding estimator of the PFC kernel matrix �̂ was
(0.00,−0.49,−0.37,−0.20,−0.17, 0.33,−0.36,−0.47,−0.31)T . So all variables, except age
were actively related to the response, and thus contributed to the reduction. With this sufficient
reduction, the mean-squared prediction error was 0.51(se = 0.026).

This example follows Section 3.3 where the forward linear model and the single PFC
yield equivalent results, ensuing in a fair comparison between our method and forward lin-
ear models. We considered glmnet of [25], a R package of the recently proposed coordinate
descent algorithm implementation of the lasso for variable selection. The results yielded
β̂ = (0.00, 6.32, 2.11, 0.00, 0.00,−1.09, 0.00, 5.49, 0.00)T and a mean-squared prediction error
of 0.52(se = 0.030).

The two methodologies disagreed on the variables (tc, ldl, tch, glu) although they are individ-
ually related to the response (e.g. p-values in the univariate models are less than the significance
level). Understandably, with PFC, all predictors with a significant information about the response
are included in the estimated reduction, while for forward linear models, predictors are included
while controlling for terms previously included. The two methodologies should agree with
each other when the predictors are statistically independent, conditionally on the response as
in Theorem 3.3. Otherwise, sparse PFC would potentially select more active variables than
the lasso.

Diabetes Data II: We continue with the diabetes data set with the larger set of predictors. We
removed the categorical predictor and its interactions with other predictors. The remaining subset
had 54 predictors.

We fit the model with a piecewise constant basis function with five slices. The choice of the
number of slices was arbitrary. The guidance on the choice of the number of slices follows that
of sliced inverse regression of Li [1]: the number of slices should be large enough to allow
the estimation of d, and yield enough observations per slice to estimate the intra-slice parame-
ters. A likelihood ratio test of an isotropic structure against an unstructured � rejects the null
hypothesis. Similarly, an anisotropic structured was rejected against an unstructured �. A signif-
icance level of 5% was used for these tests. With a model with an unstructured �, a likelihood
ratio test was used to estimate the dimension d. A sequential test was used, following Cook and
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8 K.P. Adragni and M. Xi

−
1e

−
03

0e
+

00
1e

−
03

y

F
irs

t C
om

po
ne

nt

−1 2 −10 1 0 1 2

−
0.

00
5

0.
00

5

y

S
ec

on
d 

C
om

po
ne

nt

Figure 1. Plots of the sufficient reduction of the predictors against the response, using all 54 predictors.
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Figure 2. Plots of the sufficient reduction of the predictors against the response, using the ten selected predictors.

Forzani.[16] The hypotheses H0 : d = i against H1 : d > i were tested for i = 0, 1, 2, . . ., until
the first time the null hypothesis is not rejected. For this data set, we failed to reject the null
hypothesis that d = 2 against d > 2, and thus the estimated dimension used was d̂ = 2. These
steps were carried out using the R package ldr of [26]. The two plots in Figure 1 show the
two components of the sufficient reduction against the response. These two components of the
sufficient reduction are obtained as the two columns vectors of the data-matrix X�−1� where
X represents the 442× 54 data matrix of the predictors. The pruned sufficient reduction of the
54 predictors was made with two linear combinations of the following predictors and interac-
tion terms (bmi, map, tc, hdl, tch, ltg, glu, bmi2, bmi : map, bmi : ltg). The two components of the
pruned sufficient reduction are plotted against the response on Figure 2. The two components of
the pruned sufficient reduction can be used to effectively replace the 54 predictors X in a regres-
sion of Y on X. While the first component shows a straight line relationship with the response,
the second component suggests a quadratic relationship. These two components can now be used
in the modelling of the response.

We have observed a 10-fold cross-validation prediction error of 0.52 (se = 0.023). For com-
parison, the glmnet implementation of the lasso selected (bmi, map, hdl, ltg, glu2, bmi : map)

with a prediction error of 0.51 (se = 0.030).
Big-Mac Data: The Big-Mac data set [24] contains a continuous response variable that is

the minimum labour to buy a Big Mac and fries in US Dollars, and nine predictors with 45
observations. The response Y was centred and scaled to have unit variance. These predictors
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Figure 3. Sufficient reduction against the response of Big-Mac data set: all variables (left); after pruning (right).

are Bread the minimum labour to buy one kilogram of bread, BusFare the lowest cost of 10
kilometres public transit, EngSal the electrical engineer annual salary, EngTax the tax rate paid
by electrical engineer, Services the annual cost of 19 services, TeachSal the primary teacher
salary, TeachTax the tax rate paid by primary teacher, V acDays the average days of vacation per
year, and WorkHrs the average hours worked per year.

A graphical exploration of the data showed that the relationships between the predictors and
the response were nonlinear. And thus, we fit a PFC model with a piecewise discontinuous lin-
ear polynomial basis function with three slices and an unstructured �. A sequential likelihood
ratio test was used to test H0 : d = i against Ha : d > i for i = 0, 1, . . .. The test failed to reject
d = 1 against d > 1 (p-value=0.19), and consequently a single-index PFC model was fitted.
The p-value guided thresholding selected the following predictors Bread, BusFare, EngSal, Ser-
vice, and TeachSal. The selection was guided by prediction performance via cross-validation.
Figure 3 shows the inverse response plots [27] of the sufficient reductions against the response
using all the variable (left plot) and after pruning the variables (right plot). Both plots show a
clear nonlinear relationship between the sufficient reduction and the response. Further analysis
showed that all the predictors selected by PFC were nonlinearly related to the response. The
nonlinear relationships between the response and the predictors were captured through the use
of the basis function. We should point out that several forward regression methods could capture
these nonlinear relationships, including kernel regressions, nonlinear regressions, or by expand-
ing the predictors using splines [20]; however, these methods are often easily hindered by high
dimensionality of the predictors.

5.2. Simulations

We studied the variable selection behaviour of single index sparse isotropic PFC. Our interest
was in calculating the true positive rate (TPR) and the false discovery rate (FDR). To describe
TPR and FDR, we suppose that p hypotheses are tested with the following summary.

Declared non-significant Declared significant Total

True H0 U V p− p0
True Ha T S p0

p−W W p
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The false discovery rate was defined as E(V/W), the expected value of the proportion
of the rejected null hypotheses which are erroneously rejected, while TPR is E(T)/p0, the
expected proportion of correctly rejected null hypotheses among the true alternative hypotheses.
A seminal work of Benjamini and Hochberg (HB) [28] provides a procedure to control FDR.
We compared the variable selection performance of our method to that of BH procedure, and
to three implemented variants of the lasso in R: (i) lars, the least angle regression,[22]
(ii) elasticnet,[29] and (iii) glmnet, the coordinate descent implementation.[25] These
simulations were conducted for different ratios of the signal strength to the noise.

We considered scenarios where the relationship between the predictors and the response is
linear as in Theorem 3.3. This is the simplest setup for a fair comparison with penalized forward
linear regression methods.

We used three approaches to generate the data with n observations and p predictors: the for-
ward generation, the inverse generation, and the latent generation. With forward generation,
the observations of the predictors X were first generated independently of the response from the
normal distribution with mean 0 and variance δ2Ip. Then for a given parameter β, we obtained
Y = Xβ + σY |Xe, where the elements of e were obtained from the standard normal distribution.

With the inverse generation, the response observations Y were first generated from a given
distribution, and centred to have sample mean zero. The observations on the predictors were
then generated as X = GY+ δE with specified G. Here, the elements of E were generated from
the multivariate standard normal. The data-matrix X is made with two parts: the signal GY and
the noise δE.

The latent generation follows the inverse pattern. We first generated observations U from a
latent variable with a specified distribution. The response observations Y were obtained as Y =
U+ σe and centred to have sample mean zero. The predictors were obtained as X = GU+ δE.
This setup is similar to a single component factor analysis model [30] and has been used by [31]
in the context of supervised principal components.

In each of these cases, the first p0 predictors were linearly related to the response and the
remaining p− p0 predictors were not related to the response. Letting 1k and 0k represent k-
vectors of 1s and 0s, respectively, the data sets were generated using the following setup.

Forward: β = τ · (1T
p0

, 0T
p−p0

)T, σY |X = 1, p = 50, p0 = 4, n = 100.

Inverse: G = τ · (1T
p0

, 0T
p−p0

)T, δ = 1 and Y ∼ N(0, 9), p = 100, p0 = 50, n = 200.

Latent: G = τ · (1T
p0

, 0T
p−p0

)T, δ = 1, U ∼ N(0, 3), and σ 2 = 0.05, p = 100, p0 = 50, n = 200.

The value of τ determines the strength of the signal in X. We increased the signal to noise ratio
by fixing the noise strength and increasing the signal intensity with τ = i/10, i = 1, . . . , 12). For
each value of τ , a total of 1000 data sets were used to estimate TPR and FDR. The selection
under our method was guided by prediction performance.

The results in Figure 4 suggest that the performance of the methods depends on the type of data
generation. The p-value guided approach works fairly well in terms of both TPR and FDR. While
elasticnet and lars mostly dominated sparse PFC for TPR, they also had much larger rates
for FDR. It is observed that all the methods reached a plateau less than 90% under inverse and
less than 80% under latent data-generation scenarios as the signal to noise increases. Overall,
sparse PFC has a favourable performance compared to the variants of the lasso in terms of both
TPR and FDR. Of the three linear model-based methods, glmnet seems to have the worst
performance in TPR, and the best performance in FDR. Overall, the BH procedure performs
better than the other methods in terms of FDR.

These plots illustrate the delicate balance often sought when dealing with variable selection: a
high TPR is desired with a small FDR. While HB consistently yields the best FDR, it also gives
the worst TPR. On the other hand, elasticnet and lars have the highest TPR, yet they
yield the worst FDR. Our method seems to be cautiously in the middle.
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Figure 4. TPR and FDR against signal to noise ratio for sparse PFC (‘s’), glmnet (‘g’), lars (‘r’), elasticnet
(‘e’), and Benjamini-Hochberg procedure (‘b’) with forward data generation (a. and b.), the inverse generation (c. and
d.), and latent generation (e. and f.). Note that ‘r’ and ‘e’ overlap on plot a.
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6. On coordinate descent algorithm for lasso

Sparse PFC is an inverse regression method that explicitly uses the randomness of the predic-
tors. Forward regression methods, such as the lasso and its variants, use the randomness of the
response and condition on the predictors. The forward linear model

Y = βTX+ ε (6)

is assumed to be true, and a sparse β is estimated. It is understandable that the lasso and its
variants would perform best on forward generated data, and that sparse PFC would perform best
under an inverse-generated data scheme. Simulation results on Figure 4(e). showed an under-
performance of glmnet compared to the other methods in terms of TPR. With inverse and
latent generated data schemes, glmnet reached a plateau much lower than the other methods
considered. To further elucidate the behaviour of glmnet under the inverse and latent data-
generation schemes, we looked into the coordinate descent algorithm [25] for the lasso, where
the goal is to obtain

β̂ = min
β∈Rp

[
1

n

n∑
i=1

(yi − xT
i β)2 + ζ

p∑
i=1

|βj|
]

, (7)

where βj is the jth element of β and ζ is a tuning parameter. The glmnet algorithm uses a

cyclical coordinate descent approach. Let ỹ(j)
i be the fitted value excluding the contribution of xij,

the ith observation of Xj, and let z =∑n
i=1xij(yi − ỹ(j)

i )/n. The coordinate-wise update has the
form

β̃j ←

⎧⎪⎨
⎪⎩

z− ζ if z > 0 and ζ < |z|
z+ ζ if z < 0 and ζ < |z|
0 if ζ ≥ |z|.

(8)

We consider the population version of z. Let Ỹ (j) =∑i�=j β̃iXi, and assume that the predictors
Xi, i = 1, . . . , p and the response Y are scaled to have unit variance. The following proposition
gives the expression of Cov(Xj, Y − Ỹ (j)), the population version of z, under the forward and the
inverse models.

Proposition 6.1 Assume that the forward linear model (6) holds. Then

Cov(Xj, Y − Ỹ (j)) = βj +
∑
i�=j

E(XiXj)[βi − β̃i]. (9)

Assume that both model (1) holds with � ∈ R
p, λ ∈ R, fy = y− ȳ, and that Equation (6) also

holds. Then

Cov(Xj, Y − Ỹ (j)) = βj(δ
2 + λ2)[1−

∑
i�=j

β̃iβi(δ
2 + λ2)]. (10)

The coordinate-wise update (8) is based on result (9), where the predictors can be assumed
orthogonal to have E(XiXj) = 0 for i �= j. However, expression (10) suggests that Cov(Xj, Y −
Ỹ (j)) could be zero even if βj �= 0. This seems to explain the under-performance of glmnet with
inverse and latent data-generation simulations, compared to sparse PFC. Note that our intent is
not to criticize the glmnet algorithm, but rather to explain what we observed in the simulations.
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7. Discussions

We presented the p-value guided thresholding for pruning a sufficient reduction of the predictors
using PFC models. This methodology uses univariate PFC models to select predictors that are
statistically related to the response based on a test statistic. Predictors related to the response are
admitted in the sufficient reduction of the predictors. The methodology allows to prune away
irrelevant predictors.

A single-index PFC model is restrictive because of the dimension of the reduction is assumed
to be one; however, we showed a connection between a single-index PFC and a forward linear
model for variable selection. We observed through simulations that glmnet, the coordinate
descent implementation of the lasso in R, loses its edge in selecting the important predictors
when these predictors are random. A theoretical justification of this latter fact was provided. We
also described the methodology when the dimension of the reduction is greater than one.

The simulation results showed that the FDR performance of our methodology seems compa-
rable to that of HB for strong signals. It is of our interest to study whether our method controls
FDR as does HB procedure as suggested by Figure 4(b)–4(d).

Pruning a sufficient reduction can be reliably used to identify all active predictors for a use in
modelling forward regression. The sufficient reduction can also be used in forward regressions of
the form Y = g{ηT

1 X, ηT
2 X, . . . , ηT

d X; ε} is Y is continuous, or in logistic regressions of the form
logit(Y ) = g{ηT

1 X, ηT
2 X, . . . , ηT

d X}.
A referee had requested a simulation study comparing our method to existing sparse sufficient

dimension reduction methods: the algorithm of Li,[13] the methodology of Cook,[15] and the
algorithm of Chen et al.[32] We have implemented all three methodologies and studied their
behaviour in terms of variable selection. The choice of the tuning parameters of the algorithms
of Li [13] and of Chen et al. [32] was based on a criterion similar to the Akaike information
criterion. We found their behaviour very unsatisfactory when p is relatively large.

With respect to,[15] we found its comparison to this new method somewhat unfair: first,
Cook’s method was developed around SIR and was based on an asymptotic test where p is
assumed to be relative small. Second, SIR behaves best when the data is close to a normal distri-
bution, which is the setup for PFC. And third, using a piecewise constant basis function for PFC,
the result for SIR and PFC are equivalent.[4] With our simulation setups where p was relatively
large, Cook’s method was unfairly overwhelmed and not worth reporting. Perhaps a comparative
study of Li,[13] Cook,[15] and Chen et al. [32] could be interesting, since they all require n > p.
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Appendix

The following notations are adopted throughout this appendix. For an orthogonal matrix A, we define PA to be the
projection operator that projects onto span(A). With a semi-orthogonal �, we define �0 to be its orthogonal completion
such that (�, �0)

T (�, �0) = Ip.

A.1. Proof Theorem 3.3

We assume that X and Y are centred to have mean 0, and consider the forward and the inverse models

Y |X = βT X+ σY |Xε, (A1)

X | Y = �λY + δε, (A2)

where ε ∼ N(0, 1) and ε ∼ Np(0, Ip). At the population level, let � = Var(X) and C = Cov(X, Y) and write from
Equation (A1).

β = �−1C. (A3)
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Using the fact that � = Var(E(X | Y))+ E(Var(X | Y)), from Equation (A2), we have

� = (λ2σ 2
Y + δ2)��T + δ2�0�

T
0 ,

�−1 = 1

λ2σ 2
Y + δ2

��T + 1

δ2
�0�

T
0 .

With C = E[XY ] = E[E(XY | Y)] = E[�λY2] = �λσ 2
Y , the expression of β in Equation (A3) becomes

β = λσ 2
Y

λ2σ 2
Y + δ2

�. (A4)

A.2. Proof Theorem 3.4

The log-likelihood under model (1) using (Xi, yi), i = 1, . . . , n, and assuming
∑n

i yi = 0 is

L(μ, �, λ, σ) = −np

2
log(2π)− np

2
log δ2 − 1

2δ2

n∑
i=1

‖Xi − μ− �λyi‖2.

The estimate of μ is obtained holding all parameters fixed as μ̂ = X̄. With � fixed, the parameter λ is identifiable. Using
Ip = ��T + �0�

T
0 , the partially maximized log-likelihood becomes

L = − np

2
log(2π)− np

2
log δ2 − 1

2δ2

n∑
i=1

(Xi − X̄− �λyi)
T (��T + �0�

T
0 )(Xi − X̄− �λyi).

The estimation of λ is obtained using the following summand of the log-likelihood:

L(λ) = − 1

2δ2

n∑
i=1

(Xi − X̄− �λyi)
T��T (Xi − X̄− �λyi) = − 1

2δ2
‖�T

X
T − λY

T‖2.

This function is partially maximized, holding � fixed by λ̃ = �T
X

T
Y(YT

Y)−1. With �̂ = X
T
X/n, �̂fit = X

T PYX/n
and σ̃ 2

y = Y
T
Y/n, the partially maximized log-likelihood is

L(�, μ̂, λ̃, δ2) = −np

2
log(2π)− np

2
log δ2 − 1

2δ2
Tr{(XT − �λ̃Y

T )T (XT − �λ̃Y
T )}

= − np

2
log(2π)− np

2
log δ2 − n

2δ2
Tr{�̂} + n

2δ2
Tr{�̂fitP�}. (A5)

Holding δ2 fixed, expression (A5) is maximized in � by the eigenvector of �̂fit corresponding to its largest eigenvalue.
Since �̂fit is of rank one, we obtain �̂ = X

T
Y/‖XT

Y‖ corresponding to the largest eigenvalue ‖XT
Y‖2/(nσ̃ 2

y ). The MLE

of δ2 and λ are then

δ̂2 = Tr{�̂} − ‖XT
Y‖2/(nσ̃ 2

y )

p
and λ̂ = ‖X

T
Y‖

nσ̃ 2
y

. (A6)

A.3. Proof Proposition 6.1

We assume that model (A1) holds. Let Ỹ (i) =∑j �=i β̃jXj, where β̃ is obtained while withholding variable Xi from X.
Under forward model (A1),

Cov(Xi, Y − Ŷ (i)) = E(XiY)− E(XiỸ
(i))

= E[E(XiY |Xi)]−
∑
j �=i

E(Xiβ̃jXj)

= E

⎡
⎣Xi

∑
j

βjXj

⎤
⎦−∑

j �=i

E(Xiβ̃jXj)

= βiE(X 2
i )+

∑
j �=i

βjE(XiXj)−
∑
j �=i

E(Xiβ̃jXj)

= βiE(X 2
i )+

∑
j �=i

(βj − β̃j)E(XiXj), (A7)

and result (9) follows assuming that Var(Xi) = 1, i = 1, . . . , p.
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We now assume that model (1) holds. Let � = (γ1, . . . , γp)
T . Then

Cov(Xi, Y − Ỹ (i)) = E(XiY)− E

⎛
⎝Xi

∑
j �=i

β̃jXj

⎞
⎠

= E(E(XiY | Y))− E

⎛
⎝Xi

∑
j �=i

β̃jXj

⎞
⎠

= E(YE(Xi | Y))−
∑
j �=i

E(Xiβ̃jXj)

= λγiE(Y2)−
∑
j �=i

β̃jE(XiXj)

= λγiσ
2
Y −

∑
j �=i

β̃jE[E(XiXj | Y)]

= λγiσ
2
Y −

∑
j �=i

β̃jE[λ2γiγjY
2]

= λγiσ
2
Y −

∑
j �=i

β̃jλ
2γiγjσ

2
Y . (A8)

With ‖C‖2 = λ2σ 4
Y , and using the result (3.3), we have

Cov(Xi, Y − Ỹ (i)) = (δ2 + λ2σ 2
Y )βi −

∑
j �=i

β̃jλ
2

(
δ2 + λ2σ 2

Y

λσ 2
Y

)2

βiβj

= (δ2 + λ2σ 2
Y )βi −

∑
j �=i

β̃j

(
(δ2 + λ2σ 2

Y )2

σ 2
Y

)
βiβj

= (δ2 + λ2σ 2
Y )βi

⎡
⎣1−

∑
j �=i

(
δ2

σ 2
Y

+ λ2

)
β̃jβj

⎤
⎦ . (A9)

Result (10) follows assuming that σ 2
Y = 1.

A.4. On the Choice of the Dimension d

The dimension d of the dimension reduction subspace S is to be estimated. The following details are from Cook and
Forzani.[16] At least two methods were suggested to estimate d: information criterion – Akaike (AIC) and Bayesian
(BIC), and a sequential likelihood ratio test.

Let Ld0 be the log-likelihood value estimated for dimension d = d0. With information criterion, the dimension d is
selected to minimize over d0 the function

IC(d0) = −2Ld0 + h(n)g(d0),

where g(d0) is the number of parameters to be estimated, and h(n) is equal to log(n) for the Bayesian criterion and 2 for
Akaike’s. The term n is the number of observations.

The likelihood ratio test �(d0) = 2(Lp − Ld0 ) is used in a sequential manner for the hypothesis H0 : d = d0 against
Ha : d > d0 to choose d, starting with d = 0. The first hypothesized value of d that is not rejected is the estimated
dimension d. The term Lp denotes the value of the maximized log-likelihood for the full model with d0 = p and Ld0 is
the maximum value of the log-likelihood function when the dimension of the reduction is d0. Under the null hypothesis
�(d0) is distributed asymptotically as a chi-squared random variable with degrees of freedom (r − d0)(p− d0) where r
is the dimension of fy and p is the number of predictors.

The expression of the log-likelihood depends on the structure of � = Cov(Xy). There is no closed-form expression of
the log-likelihood under an anisotropic model. We provide below the expressions for the isotropic and the unstructured
models.

Let λ̂fit
i , i = 1, . . . , d0 be the eigenvalues of �̂fit = X

T PYX/n, as defined in Section 2, such that λ̂fit
1 > · · · > λ̂fit

d0
,

and let λ̂i, i = 1, . . . , p be the eigenvalues of �̂, the sample covariance of X. The estimate of σ 2 is σ̂ 2 = (
∑p

i=1 λ̂i −
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∑d0
i=1 λ̂fit

i )/p. The maximized log-likelihood under the isotropic model is

Ld0 = −
np

2
(1+ log(2π))− np

2
log(σ̂ 2).

For the unstructured PFC, let �̂res = �̂ − �̂fit, and let ω̂1 > · · · ≥ ω̂p and V̂ = (v̂1, . . . , v̂p) be the eigenvalues and

the corresponding eigenvectors of �̂
−1/2
res �̂fit�̂

−1/2
res . Finally, let K̂ be a p× p diagonal matrix, with the first d diag-

onal elements equal to zero and the last p− d diagonal elements equal to ω̂d+1, . . . , ω̂p. Then, the MLE of � is

�̂ = �̂
1/2
res V̂ (I + K̂)V̂��̂

1/2
res . [16, Theorem 3.1] The MLE of SY|X is then obtained as the span of �̂−1 times the first d

eigenvectors of �̂fit. The maximized value of the log-likelihood is given by

Ld0 =
np

2
(1+ log(2π))− n

2
log |�̂res| − n

2

p∑
i=d0+1

log(1+ ω̂i).
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