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Abstract Sufficient dimension reduction methodologies in regressions of Y on a p-
variate X aimat obtaining a reduction R(X) ∈ R

d , d ≤ p, that retains all the regression
information of Y in X . When the predictors fall naturally into a number of known
groups or domains, it has been established that exploiting the grouping information
often leads to more effective sufficient dimension reduction of the predictors. In this
article,we consider group-wise sufficient dimension reduction based on principal fitted
components, when the grouping information is unknown. Principal fitted components
methodology is coupled with an agglomerative clustering procedure to identify a
suitable grouping structure. Simulations and real data analysis demonstrate that the
group-wise principal fitted components sufficient dimension reduction is superior to
the standard principal fitted components and to general sufficient dimension reduction
methods.

Keywords Inverse regression · Clustering · Prediction

1 Introduction

We consider a regression setting with a vector of p predictors X and a univariate
response Y . We assume that the predictors are of a continuous type. When p is large,
it is alwaysworthwhile to reduce the dimensionality of X without losing any regression
information.The reduction allows for a better visualizationof the data, bettermodeling,
mitigation of dimensionality issues in estimating themean function E(Y |X), and better
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prediction of future observations. Replacing X by a lower dimensional function R(X)

is called dimension reduction. When R(X) retains all the relevant information about
Y , it is referred to as a sufficient reduction.

Formally, Cook (2007) defines a reduction R : R
p → R

d , d ≤ p, to be suf-
ficient if it satisfies one of the following three statements: (i) Y |X ∼ Y |R(X), (ii)
X |(Y, R(X)) ∼ X |R(X), and (iii) X Y |R(X). The symbol stands for statistical
independence, and U ∼ V stands for U and V having identical distribution.

The reduction R(X) captures all of the information about the response Y that is
contained in X . Statement (i) holds in a forward regression while statement (ii) holds
in an inverse regression setup. Under a joint distribution of (Y, X) the three statements
are equivalent. Thus, we can use an inverse regression to obtain a sufficient reduction
of X and use this reduction in lieu of X in modeling Y |X .

Several methodologies have been developed to obtain a linear reduction R(X) =
ηT X . The subspace Sη spanned by the columns of η is called a dimension reduction
subspace. The reduction subspace with a minimal dimension d, called the central sub-
space (Cook 1998) and denoted by SY|X, is often sought. Many of the methodologies
developed to estimate the central subspace are nonparametric. These include sliced
inverse regression (SIR; Li 1991), sliced average variance estimation (SAVE; Cook
andWeisberg 1991), and direction regression (DR; Li andWang 2007). Some recently
developed methods, such as principal fitted components (PFC; Cook 2007) and like-
lihood acquired directions (LAD; Cook and Forzani 2009) are likelihood-based.
Kernel-based methods such as the minimum average variance estimation (MAVE;
Xia et al. 2002) and its variants have also been proposed.

In this paper, we develop methods for group-wise sufficient dimension reduction
(SDR). We aim to partition the predictors into disjoint sets which are independent
conditional on the response, while allowing predictors within a set to be conditionally
dependent. These independent sets constitute the groups. Other authors have consid-
ered group-wise SDR; Li (2009) established a framework for grouped SDR, Li et al.
(2010) developed a group-wise dimension reduction through the conditional mean
function to obtain the group-wise central mean subspace, Guo et al. (2014) developed
a group-wise dimension reduction using the so-called “direct sum envelope”. These
methodologies assume that the grouping information is known. In general, a known
grouping structure can be imposed upon most SDR methods to obtain a group-wise
SDR of the predictors given the response. However, to our knowledge no dimension
reduction method has been devised to discover the group structure and estimate the
sufficient reduction simultaneously.

The main contribution of this paper is a method for obtaining a sufficient dimension
reduction of X when a grouping of the predictors is present or suspected, but the
grouping information is unknown. We were unable to devise the methodology for any
generic SDR method. However, we found that PFC models (Cook 2007) are well-
suited to evaluate the grouping of the predictors. Consequently, this article is based
upon utilizing a PFC model for a group-wise SDR.

The following is a brief description of a PFC model. Let Xy denote the p-vector
random variable distributed as X |(Y = y) and let μ̄ = E(X) and μy = E(Xy).
The model is based on the assumption that Xy has a multivariate normal distribution,
and is therefore only appropriate for many-valued, quantitative, continuous or nearly-
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continuous predictors. It is assumed that μy − μ̄ falls in a subspace S of dimension d
in R

p as y varies in its sample space. Let � ∈ R
p×d denote a semi-orthogonal basis

matrix of S, such that �T� = Id . We can then write Xy ∼ N (μ̄ + �ν y,�) where
ν y = �T (μy − μ̄) is a function of y. Once the response values are observed, the
unknown function ν y can be modeled as ν y = β(fy − E(fY )), where β ∈ R

d×r is an
unknown and unconstrained parameter of rank at most d ≤ min{p, r}, and fy ∈ R

r is
a flexible set of basis function. The subsequent model, written as

Xy = μ + �βfy + �1/2ε, (1)

where μ = μ̄ − �βE(fY ) and ε ∼ N (0, I ), is referred to as a PFC model. Typically,
the function fy is a user-selected function. It helps capture the dependency of X on Y .
Clearly, the dependence of the predictors on Y is captured through the row elements
of �. Cook (2007) showed that a sufficient reduction of X is ηT X , where η = �−1�

is a function of the p × p covariance matrix �.
Undermodel (1), the grouping information is essentially embedded in�. For exam-

ple, consider the gene expression data in the cardio data (Efron 2010). The data set is
from amicroarray experiment of n1 = 44 healthy controls and n2 = 19 cardiovascular
patients. For each subject, measurements on p = 20426 genes were recorded. The
initial data set was pruned via a t test to select genes that are differentially expressed.
For illustration, the first 30 genes with the largest t statistics were selected. A PFC
model was fitted. The 30 genes were treated as predictors and the response Y was
categorical, representing either either a healthy control or a cardiovascular patient.
The absolute correlation matrix obtained from the fitted covariance matrix is shown
in Fig. 1a. Brighter yellow depicts a high correlation, and the blue depicts low or
zero correlation. Rearranging the ordering of the genes (Fig. 1b) provides a visual
guide for potential groupings; the yellow blocks indicate groups of genes which are
conditionally dependent, while the blue stripes indicate conditional independence.

The information provided by these plots can be useful in understanding depen-
dencies among these predictors, after conditioning on the response. Statistically, this

Fig. 1 Plot of the conditional correlation of the genes expression data
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suggests that a structured � that allows for a conditional independence of some pre-
dictors should be used. A structured � removes any false dependency that could bias
the sufficient dimension reduction, and will be more efficient than an unstructured �

when the proposed group structure is true.
The remainder of this article is organized as follows. We begin Sect. 2 with a

discussion of the case when the grouping structure is known by adapting the work
of Li (2009) to PFC. Section 3 presents methods that could be used to identify the
grouping structure for dimension reduction, and Sect. 4 provides a set of simulations
evaluating the performance of our proposed approach. Several real data applications
are presented in Sect. 5, followed by an extensive simulation study comparing the new
procedure to existing SDR methods in Sect. 6, and some discussions in Sect. 7.

2 Sufficient dimension reduction with known grouping

The grouping information about the predictors may be known in various conditions.
Li (2009) provided a general framework for sufficient dimension reduction when this
grouping information is known, where two scenarios of group-wise sufficient dimen-
sion reduction were identified. Predictors may be partitioned based on conditions
inherent to the data collection. Among these are experimental, biological, and clinical
conditions. In these conditions, a joint sufficient dimension reduction can be sought.
The partitioning can also be based upon the statistical conditional independence of the
predictors. This is referred to as grouped sufficient dimension reduction. Theoretical
results of Li (2009) apply to sufficient dimension reduction via PFC when the parti-
tioning is known. We assume for now that this partitioning information is known and
provide the sufficient dimension reduction of the predictors under the two scenarios.

2.1 Joint sufficient dimension reduction

We continue with the PFC model (1) where the sufficient dimension reduction
is �T�−1X . We assume that the set of p predictors X can be written as X =
(X (1)T , . . . , X (g)T )T , where X (k) = (X (k)

1 , . . . , X (k)
pk )T , k = 1, . . . , g represent vec-

tors of pk predictors, with p = ∑g
k=1 pk . Let �, and �−1 be partitioned as

� =
⎛

⎜
⎝

�1
...

�g

⎞

⎟
⎠ , �−1 =

⎛

⎜
⎝

�(11) · · · �(1g)

...
. . .

...

�(g1) · · · �(gg)

⎞

⎟
⎠ (2)

The following proposition gives the joint sufficient dimension reduction under PFC
model (1). It is analogous to Proposition 1 of Li (2009).

Proposition 1 Let (X (1)T , . . . , X (g)T )T be a partitioning of the p predictors X,
and assume that � and �−1 are partitioned accordingly as in expressions (2).
Let ηi = �(1i)�1 + · · · + �(gi)�g, i = 1, . . . , g. Then Y X |�T�−1X ⇒
Y (X (1), . . . , X (g))|(ηT1 X (1), . . . , ηTg X

(g)).
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That is, (ηT1 X
(1), . . . , ηTg X

(g)) is a joint sufficient dimension reduction of (X (1)T , . . . ,

X (g)T )T . In this joint sufficient dimension reduction, the components ηi depend on
�(i j), i, j = 1, . . . , g. Thus, the estimation of the full conditional covariance � is
necessary in estimating ηi s. One may wonder whether ηi can be obtained marginally
using X (i), by ignoring the conditional co-dependencywith the other sets of predictors.
Simulation experiments by Li (2009) and our own unreported simulations suggest a
decent performance under weak co-dependency, but the performance degrades as the
co-dependency gets stronger.

Nevertheless, in some cases the natural grouping of the predictors may not adhere
to the above joint sufficient dimension reduction. The cognitive impairment study
(Cornish et al. 2008) described by Li (2009) is an example. A sufficient dimension
reduction of the predictors per domain is sought for each set of predictors X (i), i =
1, . . . , g. A PFC model (1) can be fitted as

X (k)
y = μk + ζkβkfy + �

1/2
k ε, k = 1, . . . , g, (3)

where ζk ∈ R
pk×dk is semi-orthogonal, and�k is a covariancematrix. The dimensions

dk, k = 1, . . . , g may differ across the g models while the basis function fy may be
assumed to be the same. The structure of�k may not be the same across the g models.
The dimension pk of X (k) is assumed to be greater than one, otherwise the predictor
will be a singleton and no reduction is needed. For each set of predictors, a minimal
sufficient reduction is obtained as ζ T

k �−1
k X (k). Letting ηk = �−1

k ζk , a joint sufficient
dimension reduction of (X (1)T , . . . , X (g)T )T is (ηT1 X

(1), . . . , ηTg X
(g)).

Turning now to the estimation of the parameters, results from Cook and Forzani
(2008) provide all the maximum likelihood estimators of ζk and �k . We provide
these estimators herein for completeness. We adopt the following notation. Generic
� and � are used in lieu of ζk and �k , respectively and the index k is dropped. For
a given matrix A, PA = A(AT A)−1AT is the orthogonal projection operator onto
the subspace spanned by the columns of A. We consider the maximum likelihood
estimation of the parameters in model (1) with an unstructured �. We assume that
there are n observations on (Y, X), denoted by (yi , xi ), i = 1, . . . , n. We denote by
F the n × r data-matrix with i th row (fyi − f̄)T . Denote by X the n × p predictor
data-matrix with i th row (xi − x̄)T , where f̄ = ∑n

i=1 fyi /n and x̄ = ∑n
i=1 xi/n. Let


̂ = X
T
X/n be the sample covariance matrix of X , and let 
̂fit = X

T PFX/n be the
covariance matrix of the fitted values from a multivariate regression of X on fy . We
also let 
̂res = 
̂ − 
̂fit. Let V̂ and �̂ = diag(λ̂1, . . . , λ̂p) be the matrices of the

ordered eigenvectors and eigenvalues of 
̂−1/2
res 
̂fit
̂

−1/2
res , and assume that the nonzero

λ̂i ’s are distinct.
The MLEs of parameters μ, β, S� the subspace spanned by the columns of �, and

� are respectively μ̂ = x̄, β̂ = (�̂T �̂−1�̂)−1�̂T �̂−1B, S�̂ = �̂1/2span{V̂d}, and
�̂ = 
̂res + 
̂

1/2
res V̂ K̂ V̂ T 
̂

1/2
res , where K̂ = diag(0, . . . , 0, λ̂d+1, . . . , λ̂p), and B =

X
T
F(FT

F)−1. The columns of V̂d are the d eigenvectors corresponding to the largest
eigenvalues of �̂−1/2
̂fit�̂

−1/2. The dimension d of� is obtained by a likelihood ratio
test (LRT), Akaike Information Criterion (AIC) or Bayesian Information Criterion
(BIC).
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2.2 A structured PFC model for a grouped SDR

For now, we assume that {X (i)}gi=1 represent groups of predictors, where X (i) =
(X (i)

1 , X (i)
2 , . . . , X (i)

pi )
T and each X (i)

m ∈ R. Our definition of group is provided by the
following two conditions

(i) X (i) and X ( j) are made of disjoint sets of predictors, and X (i) X ( j)|Y , for i �= j .
(ii) There are no sub-groups X (i1) and X (i2) of X (i) such that X (i) = (X (i1)T , X (i2)T )T

and X (i1) X (i2)|Y .
Condition (i) states that the groups are disjoint sets of predictors and are statistically
independent, given the response. Condition (ii) assures that any predictor within a
group is assumed to be statistically dependent on at least one other predictor in the
group, and that the group cannot be further decomposed into independent sets.

Because of the conditional independence of the groups given the response, the
grouping of the predictors induces a structure in the covariance � of model (1). Two
possible PFCmodel fitting approachesmay be considered. The first is fitting g separate
PFC models, one for each of the g groups of predictors X (i). The grouped sufficient
dimension can be obtained as in Sect. 2.1. The second approach is a single PFCmodel
with a structured � that is group-wise constrained. The following structured � is
used.

� =

⎡

⎢
⎢
⎢
⎣

�1 0 · · · 0
0 �2 · · · 0
...

...
. . .

...

0 0 · · · �g

⎤

⎥
⎥
⎥
⎦

(4)

The covariance� is block diagonal, and each block� is assumed unstructured. Under
this model, the sufficient reduction is still �T�−1X with the central subspace given
by SY|X = �−1S� . This approach may be helpful when individual group reductions
are not necessarily needed. The reduction could be passed to a forward model of the
form Y = f (ηT X, ε) for model building and prediction.

We now turn to maximum likelihood estimation of the parameters in model (1) with
a structured �. The maximum likelihood estimators of the parameters μ, β and S�

are as in Sect. 2.1. The maximum likelihood estimator of � maximizes the function

Ld(�) = −np

2
log(2π) − n

2
log(|�|) − n

2
Tr

[
�−1
̃res

]
− n

2

p∑

i=d+1

λi

(
�−1
̂fit

)
.

(5)

There is no closed-formsolution to the estimators of�. In their development of thePFC
model, (Cook and Forzani 2008, Appendix B) proposed an algorithm to help estimate
the structured�. The algorithm assumes that� has a linear structure� = ∑m

i=1 δi Gi

with m ≤ p(p + 1)/2 where G1, . . . ,Gm are known real symmetric p × p linearly
independent matrices, and that the elements of δ = (δ1, . . . , δm)T are functionally
independent. Let G̃ = {vec(G1), vec(G2), . . . , vec(Gm)}. The following algorithm
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solves ∂Ld(�(δ))/∂δ = 0 iteratively. The starting point is the value that maximizes
Ld̃ when d = r , which can be found explicitly.

1. Set δ0 = (δ01, . . . , δ
0
m)T = (G̃T G̃)−1G̃T vec(
̃res)

2. Compute �0 = ∑m
i=1 δ0i Gi .

3. Compute until convergence, k = 1, 2, . . .,

vec(�k) = (G̃T G̃)−1G̃T
[
vec(
̃res)

+∑p
i=d+1 λ

�−1
k−1

i vec{�1/2
k−1ū

�−1
k−1

i (ū
�−1

k−1
i )T�

1/2
k−1}

]
, (6)

with λ
�−1

k−1
i and ū

�−1
k−1

i being respectively an eigenvalue and eigenvector of

�
−1/2
k−1 
̂fit�

−1/2
k−1 , and λ

�−1
k−1

i are in the decreasing order for i = d + 1, ..., p.

To model an anisotropic � = diag(δ21, . . . , δ
2
p) we set Gi = ei eTi , where ei ∈ R

p

contains a 1 in the i th position and zeros elsewhere, for i = 1, . . . , p. For � with
two blocks �1 ∈ R

p1×p1 and �2 ∈ R
p2×p2 for example, there are 0.5p1(p1 + 1) +

0.5p2(p2 + 1) matrices Gi . A matrix G corresponding to any entry δ2k of �1 can be
obtained as G = eleTm + J (l �= m)emeTl where J (.) stands for the indicator function.

3 Dimension reduction with unknown grouping

The knowledge of the grouping among predictors is often times unknown, and yet a
grouping structure might be suspected or hypothesized. In the following, we seek to
reveal the grouping structure of the predictors by using a clustering technique. The
true � provides the main information about the grouping structure of the predictors,
given the response Y . We consider using the crude maximum likelihood estimator of
� from fitting an unstructured PFCmodel to help determine the suitable structure. We
consider an agglomerative clustering method on the correlation matrix derived from
�̂.

3.1 Hierarchical agglomerative clustering

There is long list of clustering methods and algorithms in the literature (Hastie et al.
2001). Some of these methods are parametric, such as k-means, k-medoids, and
Gaussian mixture. Others, like hierarchical agglomerative and divisive clustering, are
nonparametric. Many algorithms exist within the agglomerative clustering methods,
including single linkage, average linkage, and complete linkage variations. Agglom-
erative clustering methods require the specification of a distance metric to evaluate
the closeness of data points. In this study, we arbitrarily consider the complete link-
age agglomerative clustering algorithm. We use correlation coefficients to evaluate
the closeness of predictors. As PFC models assume normality of Xy , the conditional
correlation between two predictors determines whether or not they are conditionally
independent.
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An agglomerative clustering methodology is a bottom-up approach. It starts at the
bottom level where each predictor constitutes its own group. This corresponds to an
anisotropic structure with � = diag(δ21, . . . , δ

2
p). As the algorithm proceeds to higher

levels, it builds groups or clusters using the correlation-based closeness criterion to
group predictors together. At the final level, all of the predictors are placed in one
single group as for an unstructured �.

Given �, the correlation matrix can be obtained as R = D−1/2�D−1/2, where
D ∈ R

p×p is the matrix of the diagonal elements of �. The distance between two
predictors Xi and X j is di j = 1 − |Ri j |, where Ri j = ρ(Xi , X j |Y ) is the correlation
coefficient of the predictors Xi and X j , given Y . In complete linkage clustering two
closest clusters, say Ck and Cl , are merged using the following metric

d(Ck,Cl) = max
Xi∈Ck ,X j∈Cl

di j .

Following is a brief description of the complete linkage clustering.

1. Start with each variable in its own singleton cluster.
2. Merge the closest two clusters.
3. Repeat (2) until there is a single cluster.

As an illustration, consider Fig. 2 obtained with p = 8 predictors. When the cluster
number is four, the clusters {X1}, {X2, X3, X4}, {X5}, and {X6, X7, X8} are assumed
to be independent, conditional on Y . For each possibility for the count of clusters
1, . . . , p, a PFC model can be fitted with a structure of � induced by the conditional
independence of the clusters of predictors. With p predictors there will be p different
partitions of the predictors, ranging from p singleton clusters corresponding to an
anisotropic �, to a single cluster corresponding to an unstructured �. We assume that
the true structure of� is identified by one of the sets of clusters; our goal is to identify
it.

To proceed, we notice that for each structure, a PFC model can be fitted with the
appropriate structured �. The p models can be compared with respect to a likelihood
ratio test, an information criterion, or a prediction performance.

x1 x2 x3 x4 x5 x6 x7 x8

1

2
3
4
5
6
7
8

1.0

0

di
st
an

ce

cl
us
te
rs

Fig. 2 Dendrogam with eight predictors
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3.2 Model selection

With the clustering algorithm, p different PFC models are fitted, each with a specified
structure of �. We can then proceed with the selection of the most suitable model. At
least four methods can be used for the model selection: Akaike information criterion
(AIC), Bayesian information criterion (BIC), likelihood ratio test (LRT), or prediction
performance based on a cross-validation (CV).

Let LM be the log-likelihood under the model M , where M is one of the p models
with different � structure.

We will denote by Mk the model with k clusters, so that M1 is the model with
unstructured� and Mp is the model with anisotropic�. With AIC and BIC the model
is obtained by minimizing −2LM + h(n)g(M) over M ∈ {M1, . . . , Mp}, where h(n)

is equal to 2 for AIC and log n for BIC, and g(M) is the number of parameters to be
estimated in model M .

For a likelihood ratio test, we first note that predictors are added to clusters one
at a time. Second, the models are fitted with the same basis function and identical
dimension d of �. With these facts, the fitted PFC models are nested sequentially
from bottom to top, that is

Mp ⊂ Mp−1 ⊂ · · · ⊂ M2 ⊂ M1.

Model Mk, 1 < k ≤ p, has a structured covariance �k . It can be compared to model
M1 with an unstructured �1. We will refer to the unstructured model as a full model,
and to the structured model as a reduced model. We test the null hypothesis

H0 : �k = �1 against Ha : �k �= �1. (7)

The test statistic is T 2 = 2(LM1 − LMk ), where LM1 is the log-likelihood from the
PFC fit assuming an unstructured �1 and LMk is the log-likelihood from the PFC fit
assuming the structure �k suggested by the clustering algorithm. Then under H0, T 2

follows χ2
g(M1)−g(Mk )

.
We propose a sequential likelihood ratio test to select the appropriate model among

the p candidates.

1. Fit an unstructured PFC model to obtain �̂ and obtain the associated correlation
matrix.

2. Use a clustering method on the correlation matrix to obtain the list of cluster
assignments C1, . . . ,Cp.

3. Sequentially test the hypothesis (7) from k = p, . . . , 2 until the first time with
k = k0 when H0 is not rejected.

4. If a rejection of H0 occurred for k0 ≥ 2, then fit a structured PFC model with the
grouping induced by Ck0 and obtain the sufficient reduction; otherwise, select the
unstructured PFC model.

Lastly, a cross-validation method can be used to select the best predictive model.
We used the prediction method devised by Adragni and Cook (2009). Specifically,
normal inverse regression models for X |Y have been inverted to provide a method for
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estimating the forward mean function E(Y |X) without specifying a model for the full
joint distribution of (X,Y ). With the observed response (Y1, . . . ,Yn)T , the predicted
value Ŷ for a given observation X = x can be obtained as

Ê [Y |X = x] =
n∑

i=1

Yi
m̂(x |Yi )

∑n
i=1 m̂(x |Yi )

where m̂(x |Yi ) is the estimated density of ηT X |Yi . The best predictive model is the
one with the smallest mean squared prediction error obtained by a cross-validation.

4 Numerical studies

We have performed several sets of simulations in order to compare and evaluate the
relative effectiveness ofAIC, BIC, and LRT in selecting the suitable grouping structure
of the predictors. We refrained from using a cross-validation in these simulation stud-
ies as the predictive method was computationally expensive. However, it is used for
comparison purposes in Sect. 5. For all data sets generated, we have set a pre-specified
number of groups and a number of predictors in each group.

The data sets were generated as follows: the n response observations Y ∈ R
n were

generated from the normal distribution with mean 0 and variance 4. The matrix of
basis functions F = (Y, |Y|) ∈ R

n×2 is column-wise centered to have sample mean
0. We obtained � as two eigenvectors of a p × p generated positive definite matrix.
The covariance � was set to be block diagonal, with blocks

�(i) = σ 2
(
ρi1pi 1

T
pi + (1 − ρi )Ipi

)
,

where Ipi is an identity pi × pi matrix, and 1pi ∈ R
pi represents a column-vector

of ones. The error terms E ∈ R
n×p were generated from a multivariate normal with

mean 0 and variance � with σ 2 = 2. The data matrix of the predictorsX ∈ R
n×p was

obtained as X = F�T + E.
We ran three sets of simulations. In each of them, the number of observations n

was increased from 50 to 400. The first simulation set involves two groups, the second
involves three groups, and the last set involves seven groups of predictors. Given n,
p, and ρ, a data set is generated. In all cases, we fit an unstructured PFC model with
a cubic polynomial basis function. We assumed that the dimension d of the reduction
is known to be two, and we obtained the unstructured estimate �̂. The clustering
procedure was used to find the different sets of clusters. We then used LRT, AIC and
BIC to select the appropriate model. We determined the proportion of times the “true
structure” was selected out of 1000 replications. By “true structure”, we mean the trio
made of the exact true and the two closest to the true. For example, on Fig. 2, if the
true cluster corresponds to 3, then we use 2 and 4 to be the two closest. In some cases,
the exact true structure is not found by the clustering algorithm. In those cases, the
structure with the correct number of groups is selected together with its two closest.
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Fig. 3 Proportion of times the true model was selected using BIC (__b) , AIC (__a), and LRT (__l) with
two groups. The pi predictors in (p1, p2) have a conditional correlation ρi in ρ = (ρ1, ρ2)

Simulation #1: Three different values of p were used: 10, 20, and 30. The p predictors
are clustered into two groups of p/2 predictors. For each value of p, three correlation
values were used: ρ = 0, 0.3 and 0.5. The results are on Fig. 3. Figure 3a–c show
the anisotropic model, where the predictors are conditionally independent and each
predictor constitutes its own cluster. The likelihood ratio test seems to be performing
better than AIC and BIC, while BIC does somewhat fine when p is small. Of the three
methods, AIC had the worst performance.

Figure 3d through 3i show that all three methods perform relatively well when a
strong correlation is used and the sample size is large. Contrary to the first three plots,
AIC showed a greater performance compared to BIC, while LRT seems better than
the two.

Simulation #2:The p predictors are now clustered into three groups with p = (3, 3, 4)
for Fig. 4a, d, p = (6, 6, 8) for Fig. 4b, e and p = (10, 10, 10) for Fig. 4c, f. For
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Fig. 4 Proportion of times the true model was selected using BIC (__b) , AIC (__a), and LRT (__l) with
three groups. The conditional correlations within the groups are ρ = (ρ1, ρ2, ρ3)

a

a
a a a a a a

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
ro

po
rti

on
 o

f s
el

ec
tio

n

b

b

b

b b b b b

l

l

l

l
l

l
l l

ρ=0.5

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Nobs

a

a a a a a a a

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
ro

po
rti

on
 o

f s
el

ec
tio

n

b

b b b b b b b

l

l

l
l

l l l l

ρ=0.4

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Nobs

a a a a a a a a

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
ro

po
rti

on
 o

f s
el

ec
tio

n

b b b b b b b b

l

l

l
l l l l l

ρ=0.6

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Nobs

(c)(b)(a)

Fig. 5 Proportion of times the true model was selected using BIC (__b) , AIC (__a), and LRT (__l) with
seven groups of three predictors. The conditional correlation between the predictors within the groups is ρ

each value of p, two correlation values were used: ρ = 0.3 for first row, and ρ = 0.5
for second row. The results on these figures showed that for large n and a relatively
strong correlation, all three methods perform adequately well in selecting the model
with the correct structure. However, with weaker correlations, AIC shows an overall
better performance compared to LRT and BIC, especially for n ≥ 150.

Simulation #3:We increased the number of groups to seven, eachwith three predictors.
Three correlation values were used: ρ = 0.3, 0.4 and 0.6. The results are shown in
Fig. 5a–c. Both AIC and BIC performed well in selecting the correct model; they both
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improved as the correlation increased. Likelihood ratio test uniformly had the worst
performance even when the correlation increased.

None of the three methods AIC, BIC, or LRT performed uniformly better compared
than the others in detecting the true model structure. Overall, with large sample sizes,
BIC performs adequatelywell when p is small; LRT gives themost stable performance
although it is outperformed in some scenarios; AIC has its worst performance when
the structure is anisotropic; otherwise, it dominates LRT and BIC when p is small.

5 Applications

We applied the methodology to a number of data sets. Unlike the simulation studies,
we used the mean squared prediction error obtained by leave-one-out cross-validation
to select the structure of the conditional covariances and evaluate the performance
of the procedure. For the data sets considered, our goal was to obtain the sufficient
reduction of the predictors under the PFC model by obtaining, if relevant, a structured
� that best describes the conditional independence of the predictors. The best model
was obtained as the one that yields the smallest mean squared prediction error. The
following data sets were used.

Baseball data: The set contains salary information for 337 Major League Baseball
players who are not pitchers and played at least one game during both the 1991 and
1992 seasons. The purpose of the study is to determine whether a baseball player’s
salary is a reflection of his offensive performance. For each player, the salary from
the 1992 season along with 12 offensive statistics from the 1991 season were col-
lected. In addition to these variables, there are four indicator variables which identify
free agency and eligibility for arbitration. The data set was retrieved from Boos
(2014).

Big-Mac data (Enz 1991): The data set contains a continuous response variable that is
the minimum labor to buy a Big Mac and fries in US dollars, and nine predictors with
45 observations. These predictors are Bread the minimum labor to buy one kilogram
of bread, BusFare the lowest cost of 10km public transit, EngSal the electrical
engineer annual salary, EngTax the tax rate paid by electrical engineer, Services
the annual cost of 19 services, T eachSal the primary teacher salary, T eachTax the
tax rate paid by primary teacher, VacDays the average days vacation per year, and
WorkHrs the average hours worked per year.

Cardio data: The data set is from the Cardio Study (Efron 2010), a microarray exper-
iment comparing n1 = 44 healthy controls to n2 = 19 cardiovascular patients, each
measured on p = 20426 genes. The predictor matrix X is the doubly standardized
expression data; that is, the columns are standardized by individually subtracting the
mean and dividing by the standard deviation of each column, and the rows are similarly
standardized. The response is categorical, taking values “healthy” and “patient”.

Diabetes data: (Efron et al. 2004) The set contains blood and other measurements in
diabetics patients. Ten baseline variables, age, sex, body mass index, average blood
pressure, and six blood serum measurements were obtained for each of n = 442
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diabetes patients, as well as the response of interest, a quantitative measure of disease
progression one year after baseline.

Pollution data: (McDonald and Schwing 1973) This data set has 15 independent
variables and a measure of mortality on 60 US metropolitan areas in 1959–1961. It
was obtained from Boos (2014).

Pyrimidine data: The data set contains structural information on 74 2,4-diamino-
5-substituted benzyl pyrimidines used as inhibitors of dihydrofolate reductase in E.
coli. There are three positions where chemical activity occurs and nine attributes per
position leading to 27 total predictors. The response is the quantitative structure-
activity relationships (QSAR) of the inhibition of dihydrofolate reductase (DHFR) by
pyrimidines. The set was obtained from Boos (2014).

The response Y , when continuous, was centered and scaled to have unit variance.
A piecewise constant basis function fy with five slices is used for all of the data
sets considered, except for the cardio data. For the cardio data, let C1 and C2 denote
“healthy” and “patient” groups. We set fy to be J (y ∈ C1) − n1/n, where J (.) is the
indicator function, n1 = 44 and n = 63. For details on the choice of basis functions,
please see basis functions in the R package ldr (Adragni and Raim 2014b).

In all six cases, the dimension d of the reduction was estimated by a likelihood
ratio test using all of the data. A complete linkage agglomerative clustering in the R
package cluster (Maechler et al. 2015) was used. The mean squared prediction error
was obtained by leave-one-out cross-validation.

Of the six data sets, the cardio data is notable because of its size. Obviously, the
dimension p of the predictors is very large, compared to the sample size. We verified
and observed that a large portion of these predictors retain no regression informa-
tion about the response. To remove these irrelevant variables, we proceeded with a
screening procedure based a test statistic following Adragni (2015). We fit p separate
linear models of Xi = β0 + β1i fy + ε for i = 1, . . . , p, and tested the hypotheses
H0i : β1i = 0 against the alternative Hai : β1i �= 0. We collected all of the p values of
these tests and performed the multiple testing procedure of Benjamini and Hochberg
(1995) to control the false positive rate in multiple comparisons. This yielded a set
of p0 = 143 selected predictors having the strongest dependence with the response.
Since the number of selected predictors was still far greater than the sample size,
a direct unstructured PFC model could not be fitted. We proceeded by obtaining a
sparse estimate of the unstructured � using the graphical lasso of Friedman et al.
(2007) before applying the group-wise dimension reduction procedure.

We summarize the results of the data analysis in Fig. 6 and Table 1. Fig. 6a–
f provide the mean squared prediction error for the p different models induced
by the clustering procedure. Except for the diabetes data set in Fig. 6d, the mean
squared error is minimal for a structured model obtained by cross-validation. The
other three methodologies, AIC, BIC and LRT, were also used to select the best
model. Their results are added to Table 1. Under the columns corresponding to AIC,
BIC and LRT are the mean squared prediction errors corresponding to their respec-
tive selected model; the number of clusters corresponding to the selected model is in
parentheses.
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Fig. 6 Mean squaredprediction error against the number of conditionally independent clusters of predictors.
a Baseball. b Big-Mac. c Cardio. d Diabetes. e Pollution. f Pyrimidine
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Table 1 Mean squared prediction error for unstructured PFC model (Unstr.), model selected by cross-
validation (CV), and for the model selected by AIC, BIC and LRT

Data sets [n, p] Unstr. CV AIC BIC LRT

Baseball [337, 16] 0.47 0.39 (9) 0.47 (1) 0.47 (1) 0.47 (1)

Big-Mac [45, 9] 0.82 0.42 (8) 0.76 (2) 0.72 (3) 0.76 (2)

Cardio [63 ,143] 0.30 0.19 (136) 0.30 (1) 0.30 (1) 0.26 (12)

Diabetes [442, 10] 0.51 0.51 (1) 0.51 (1) 0.51 (1) 0.51 (1)

Pollution [60, 15] 0.70 0.46 (5) 0.70 (1) 0.70 (1) 0.70 (1)

Pyrimidine [74, 26] 0.88 0.55 (13) 0.88 (1) 0.72 (2) 0.88 (1)

The number of clusters for the selected model is in parentheses

The diabetes data set has 442 observations for ten predictors, and all four methods
agreed on the structure of �. For the baseball data set, there was a slight gain in
prediction using nine clusters instead of one cluster suggested by AIC, BIC and LRT.
For the other four data sets, the sample sizes are too small for AIC, BIC and LRT to
be trustworthy, and cross-validation would be relied upon.

6 Group-wise SDR with other methods

We have considered a few existing SDR methods for group-wise sufficient dimension
reduction. If the grouping information of the predictors is known, Li’s method (Li
2009) applies tomost sufficient dimension reductionmethods directly. However, when
this grouping information is unavailable, PFC seems best suited to help evaluate the
conditional independence of predictors, and also to evaluate the subsequent models
via likelihood-based procedures.

The method devised in this article to obtain the group-wise SDR in the absence of
grouping information is a two-stage procedure. The first stage is to obtain the sets of
clusters of conditionally independent predictors based on � = Cov(X |Y = y). The
second stage is to evaluate the models under the different structures of � induced by
the clustering. In our investigation, we have considered developing a similar procedure
for the following methods: SIR of Li (1991), SAVE of Cook and Weisberg (1991),
LAD of Cook and Forzani (2009), and MAVE of Xia et al. (2002). However, major
issues arose. For SIR and SAVE, normality is not assumed. Thus, zero correlation
among the predictors does not imply independence. Even if we assume normality,
it is not obvious to us how to incorporate the structured conditional covariance into
the estimation of the central subspace. MAVE is built upon a local regression of
Y |X . It does not make any assumption on X , which is essentially treated as fixed.
LAD is a likelihood-based method that relies on the normality assumption of X |Y .
It estimates the central subspace using the conditional mean E(X |Y ) and conditional
variance function Var(X |Y ) that are both assumed to be dependent on Y . For LAD, the
conditional independence could change as Y varies in its sample space, which carries
an extra layer of complication. We were unable to devise modifications of the four
aforementioned SDR methods that would incorporate the conditional independence
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of predictors into the estimation of the central subspace. Nevertheless, we conducted a
simulation study to compare the performanceof group-wisePFC to these fourmethods.

Three simulations are herein reported. For each of the three simulations, 100 data
replications were generated. For each data set, the total number of predictors is p,
and the number of observations was n. The predictors are grouped into three sets with
p1, p2, and p3 predictors where p1 + p2 + p3 = p. Group-wise PFC, LAD, MAVE,
SAVE and SIR were used to estimate the central subspace, which is compared to the
true population central subspace.

The data sets were obtained as follows: we first generated the n response obser-
vations Y from the normal distribution with mean 0 and standard deviation σ .
The predictors, given the response, were obtained as X = f (Y)GT + δE, where
f (Y) ∈ R

n×r are provided, G ∈ R
p×r is a fixed semi-orthogonal matrix, and

E ∈ R
n×p are obtained from a normal with mean zero and a structured covariance

�, and δ ∈ R. The covariance � was obtained as a block diagonal matrix with three
blocks �11 for the first five predictors, �22 for the next five, and �33 for the last five.
The blocks were obtained as

�i i = σ 2
(
ρi1pi 1

T
pi + (1 − ρi )Ipi

)
.

In all cases, we used n = 300, pi = 5, i = 1, 2, 3, (ρ1, ρ2, ρ3) = (0, 0.4, 0.8)
Following are the specificities for each simulation. For simulation 1: σ = 3, δ = 1,
f (Y) = 2(Y − Y); for simulation 2: σ = 2, δ = 2, f (Y) = 2(Y3 − Y3); and for
simulation 3: σ = 2, δ = 2, f (Y) = 2(Y2 − Y2). In all three cases r = 1 and
f (Y) ∈ R

n .
The true central subspace is spanned by the column of�−1G. All of the simulations

were carried out in the statistical software R (R Core Team 2015). We obtained the
estimates of the central subspace via SIR and SAVE using the R package dr of
Weisberg (2002). The central subspace was also estimated by LAD using the package
ldr ofAdragni andRaim (2014a).We implemented the algorithmofMAVE following
Xia et al. (2002). Figure 7 shows the angle in degrees between the true and the estimated
central subspaces, both of dimension one in R

15. As a reference, the average angle
between two randomly generated directions in R

15 is 77◦.

PFC SIR SAVE LAD MAVE

0
20

40
60

80
10

0

A
ng

le
s 

in
 d

eg
re

es

PFC SIR SAVE LAD MAVE

0
20

40
60

80
10

0

PFC SIR SAVE LAD MAVE

0
20

40
60

80
10

0

(a) (b) (c)

Fig. 7 Angle in degrees between the true and the estimated central subspaces. a Simulation 1. b Simulation
2. c Simulation 3
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Overall, the simulation results show the superior performance of group-wise PFC
compared to the other four listed SDR methods. Its performance is followed by that
of LAD in all three simulations. SIR performed relatively well in simulation 1 shown
in Fig. 7a, whereas SAVE gave the worse performance. The first reduction direction
of both SIR and SAVE also failed to capture the true direction in simulation 2 shown
on Fig. 7b and in simulation 3 shown on Fig. 7c. It is known that SIR fails to find
the reduction directions when Y = f (BT X) + ε, where f is a symmetric function of
BT X , and SAVE was designed to handle this case. These simulations provide another
look at cases where both SIR and SAVE seem to be failing. Finally, MAVE performed
well as expected when X is linearly related to Y , but its performance worsens when X
is related to Y 2 or to Y 3. This behavior ofMAVEwas not a surprise since the data were
generated under an inverse regression setting. Intrinsically, the data do not follow the
model upon which MAVE directions were obtained.

7 Concluding remarks

We have developed a procedure to obtain a group-wise sufficient dimension reduction
of the predictors when the grouping information is unknown. The methodology uses
a clustering algorithm based on the correlation structure of the conditional predictors
Xy . Information criteria and a likelihood ratio test were investigated for use in finding
the proper structure.

Our simulation studies showed that none of the three methods AIC, BIC, and LRT,
uniformly performed better than others in selecting the true structure. However, at
least one of the three methods would perform adequately well when the sample size
is large enough. In all cases, LRT exhibits greater stability compared to AIC and BIC
across the different structures of � and dimensionality p. Smaller sample sizes tend
to induce spurious high correlations between the predictors; consequently all three
methods tend to select an unstructured �. In these cases of smaller sample sizes, a
leave-one-out cross-validation is recommended.

The application of the methodology showed great advantages for prediction of the
response; the prediction errors were substantially reduced for several data sets. Finally,
we note that a cross-validation method can always be used regardless of the dimension
p and the sample size n. Its main drawback is that it can be computationally expensive
when n is large.

References

Adragni KP (2015) Independent screening in high-dimensional exponential family predictors’ space. J Appl
Stat 42(2):347–359

Adragni KP, Cook RD (2009) Sufficient dimension reduction and prediction in regression. Philos Trans R
Soc Ser A 367:4385–4405

Adragni KP, Raim A (2014a) An R software package for likelihood-based sufficient dimension reduction.
J Stat Softw, 61(3). http://www.jstatsoft.org/v61/i03

Adragni KP, Raim A (2014b) ldr: methods for likelihood-based dimension reduction in regression. http://
cran.r-project.org/web/packages/ldr/index.html. R package version 1.3

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to
multiple testing. J R Stat Soc Ser B 57(1):289–300

123

http://www.jstatsoft.org/v61/i03
http://cran.r-project.org/web/packages/ldr/index.html
http://cran.r-project.org/web/packages/ldr/index.html


Group-wise sufficient dimension reduction with principal. . .

Boos D (2014) Boos-stefanski variable selection home. http://www4.stat.ncsu.edu/~boos/var.select/
Cook RD (1998) Regression graphics. Wiley, Hoboken
Cook RD (2007) Fisher lecture—dimension reduction in regression (with discussion). Stat Sci 22(1):1–26
Cook RD, Forzani L (2008) Principal fitted components for dimension reduction in regression. Stat Sci

23(4):486–501
Cook RD, Forzani L (2009) Likelihood-based sufficient dimension reduction. J Am Stat Assoc

104(485):197–208
CookRD,Weisberg S (1991)Discussion of sliced inverse regression byKCLi. J AmStat Assoc 86:328–332
Cornish KM, Li L, Kogan CS, Jacquemont S, Turk J, Dalton A, Hagerman RJ, Hagerman PJ (2008) Age-

dependent cognitive changes in carriers of the fragile x syndrome. Cortex 44:628–636
Efron B (2010) Large-scale inference empirical bayes methods for estimation, testing, and prediction.

Cambridge University Press, Cambridge
Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Stat 32(2):407–499
Enz R (1991) Prices and earnings around the globe: a comparison of purchasing power in 48 cities. Union

Bank of Switzerland, Economic Research Dept., Zurich
Friedman J, Hastie T, Tibshirani R (2007) Sparse inverse covariance estimation with the graphical lasso.

Biostatistics 9:432–441
Guo Z, Li L, Lu W, Li B (2014) Groupwise dimension reduction via envelope method. J Am Stat Assoc.

http://dx.doi.org/10.1080/01621459.2014.970687
Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning: data mining, inference and

prediction. Springer, New York
Li B, Wang S (2007) On directional regression for dimension reduction. J Am Stat Assoc 102:997–1008
Li KC (1991) Sliced inverse regression for dimension reduction (with discussion). J Am Stat Assoc 86:316–

342
Li L (2009) Exploiting predictor domain information in sufficient dimension reduction. Comput Stat Data

Anal 53(7):2665–2672
Li L, Li B, Zhu L (2010) Groupwise dimension reduction. J Am Stat Assoc 105(491):1188–1201
Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2015) Cluster: cluster analysis basics and

extensions, R package version 2.0.3
McDonald G, Schwing R (1973) Instabilities of regression estimates relating air pollution to mortality.

Technometrics 15:463–481
R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical

Computing, Vienna, Austria. http://www.R-project.org/
Weisberg S (2002) Dimension reduction regression in R. J Stat Softw 7(1):1–22. http://www.jstatsoft.org/

v07/i01
Xia Y, Tong H, Li WK, Zhu L (2002) An adaptive estimation of dimension reduction space. J R Stat Soc

Ser B 64(3):363–410

123

http://www4.stat.ncsu.edu/~boos/var.select/
http://dx.doi.org/10.1080/01621459.2014.970687
http://www.R-project.org/
http://www.jstatsoft.org/v07/i01
http://www.jstatsoft.org/v07/i01

	Group-wise sufficient dimension reduction with principal fitted components
	Abstract
	1 Introduction
	2 Sufficient dimension reduction with known grouping
	2.1 Joint sufficient dimension reduction
	2.2 A structured PFC model for a grouped SDR

	3 Dimension reduction with unknown grouping
	3.1 Hierarchical agglomerative clustering
	3.2 Model selection

	4 Numerical studies
	5 Applications
	6 Group-wise SDR with other methods
	7 Concluding remarks
	References




