
JSS Journal of Statistical Software
July 2012, Volume 50, Issue 5. http://www.jstatsoft.org/

GrassmannOptim: An R Package for Grassmann

Manifold Optimization

Kofi Placid Adragni
University of Maryland

R. Dennis Cook
University of Minnesota

Seongho Wu
Fannie Mae

Abstract

The optimization of a real-valued objective function f(U), where U is a p× d, p > d,
semi-orthogonal matrix such that U>U = Id, and f is invariant under right orthogonal
transformation of U, is often referred to as a Grassmann manifold optimization. Manifold
optimization appears in a wide variety of computational problems in the applied sciences.
In this article, we present GrassmannOptim, an R package for Grassmann manifold op-
timization. The implementation uses gradient-based algorithms and embeds a stochastic
gradient method for global search. We describe the algorithms, provide some illustra-
tive examples on the relevance of manifold optimization and finally, show some practical
usages of the package.

Keywords: Grassmann manifold, constrained optimization, simulated annealing.

1. Introduction

This article presents GrassmannOptim, an R (R Development Core Team 2012) package for
orthogonally constrained optimization. Let U be a p × d, d < p, semi-orthogonal matrix,
U>U = Id. The package aims to maximize a real-valued function f(U) that is invariant under
right orthogonal transformations of U: for any d × d orthogonal matrix O, f(U) = f(UO).
This invariance of f means that the argument of f can be any representative orthonormal
basis of the subspace spanned by the d columns of U. Thus, the optimization of f is performed
over the set of all d-dimensional linear subspaces of Rp. This set, denoted here by G(d,p), is
called a Grassmann manifold or Grassmannian.

The set of all one-dimensional subspaces of R2, G(1,2), is simply the set of all lines passing
through the origin, the set of all two-dimensional subspaces of R3, G(2,3) can be thought of
as the set of all planes, and the collection of all d-dimensional subspaces of Rp, G(d,p), can be
similarly viewed as the set of all d-dimensional hyperplanes. A single subspace in G(d,p) can

http://www.jstatsoft.org/

2 GrassmannOptim: Grassmann Manifold Optimization in R

be described uniquely by d(p − d) real angles, one angle being required to pick a line in R2

and two angles being required to uniquely specify a plane in R3. The function f(U) could
conceivably be parameterized and maximized in terms of these d(p−d) angles. However, using
the geometry of a Grassmann manifold allows one to move continuously and smoothly through
the subspaces and to develop efficient algorithms based on derivatives on the manifold.

For example, consider approximating a collection of n centered p dimensional vectors X1,
. . .,Xn,

∑n
i=1 Xi = 0, with a corresponding collection of vectors Zi that lie in a d-dimensional

subspace of Rp. The approximating vectors can be represented in the form Zi = UCi, where U
is a semi-orthogonal basis matrix for the d-dimensional subspace and Ci holds the coordinates
of Zi in terms of U. Using the Euclidean norm we wish to minimize

∑n
i=1 ‖Xi−UCi‖2. This

norm is minimized over Ci with U fixed by the value Ci = B>Xi and thus we need to
minimize

∑n
i=1 ‖Xi − UU

>
Xi‖2; equivalently, we need to maximize f(U) = Tr(UU>Σ̂),

where Σ̂ is the sample covariance matrix of the Xi’s. This f(U) is invariant under right
orthogonal transformations of U and so we have reduced the original problem to maximizing
over a Grassmann manifold. In this case it is known that f(U) is maximized by choosing the
column of U to be the first d eigenvectors of Σ̂. However, in more complicated problems an
analytic solution will not be available and numerical optimization becomes necessary.

Many different manifolds are found in the literature. While several are unnamed, the often
encountered are oblique manifold, Riemannian manifold, Stiefel manifold and Grassmann
manifold. Defining algorithms on manifolds requires endowing these manifolds with a dif-
ferentiable structure so that the computation of a gradient or the evaluation of an objective
function is meaningful. An element of a given Grassmann manifold is a subspace. The differ-
ential geometry of Grassmann manifolds has been well studied (Wong 1967; Edelman, Arias,
and Smith 1998; Chikuse 2003; Absil, Mahony, and Sepulchre 2004), and computations are
often carried out using matrices to represent corresponding subspaces. A subspace can be
specified non-uniquely by a basis. It also can be specified uniquely by a projection matrix.
In this article, we adopt the representation by a basis of the subspace.

Grassmann manifolds and Stiefel manifolds (set of all p × d orthonormal matrices in Rp)
have been used in practice in various fields. Gruber and Theis (2006) proposed a generalized
concept of k-means on a Grassmann manifold. Nilsson, Sha, and Jordan (2007) studied the
problem of discovering a manifold that best preserves information relevant to a non-linear
regression. The problem of computing eigenspaces and eigenvalues that is ubiquitous in
engineering can be identified as manifold optimization.

Grassmann manifolds are used to accommodate orthogonality constraints. These constraints
often add a layer of challenge to the optimization compared to unconstrained problems.
Methods abound in the literature to deal with optimization problems with linear constraints
(Fletcher 1987; Nocedal and Wright 1999), and the objective function to optimize is often
modified to allow unconstrained optimization. To our knowledge, techniques related to the
Lagrange multiplier and the Kuhn-Tucker theorem, simulated annealing and sequential pro-
cedures are often used in the search for orthonormal bases in constrained optimizations.
However, using the intrinsic geometry of Grassmann manifold allows for efficiency. Liu, Sri-
vastava, and Gallivan (2004) proposed a gradient algorithm that guided the development of
GrassmannOptim. It was originally developed for image analysis to find the optimal linear
representations of images for use in appearance-based object recognition. But the algorithm
finds applications in other research fields.

Journal of Statistical Software 3

Without extra care, a Grassmann optimization method may converge to a local optimizer
and this may not be the global optimizer. To illustrate this, let (U,V) be an orthogonal
matrix and consider the problem of maximizing f(U) = Tr(UU>Σ̂) mentioned previously.
The derivative on the manifold is the ordinary unconstrained derivative multiplied by V
(See Section 2): (∇f(U))>V = 2U>Σ̂V which is 0 when the columns of U are any set of
d eigenvectors of Σ̂. The function f(U) then has many stationary points which leads to
the problem of local optimizers. The geometry of Grassmann manifolds allows for Markov
chain Monte Carlo type algorithms for optimization. Although Liu et al. (2004) proposed a
stochastic gradient method to help locate the global maximization, we found a simpler version
proposed by Gallivan, Srivastava, Liu, and Dooren (2003), which is available as an option in
GrassmannOptim. As a gradient-based algorithm, it does not make use of the Hessian of the
objective function that is typical to Newton-type algorithms. But the gradient is required,
although its explicit analytical expression is optional.

Other algorithms are found in the literature. Edelman et al. (1998) published a seminal
manuscript on Stiefel and Grassmann manifold optimization of real-valued functions, where
Newton-type and conjugate gradient algorithms were developed. Their algorithms perform
a series of steps along a geodesic. Manton (2002) proposed algorithms similar to those of
Edelman et al. (1998), with complex-valued orthogonality constraints. He broke from moving
along geodesics and reformulated the constrained optimization problem as an unconstrained
one on a suitable manifold. To our knowledge, there is no publicly available R routine for
Grassmann manifold optimization. However, an existing package, called sg min, is available
for MATLAB (The MathWorks, Inc. 2010). It was written by Lippert (2007) and was adapted
from Edelman et al. (1998).

The remainder of this article is organized as follows. In Section 2, we give a brief description
of the algorithms proposed by Gallivan et al. (2003) and Liu et al. (2004) that guided the
programming of GrassmannOptim. In Section 3, we present three examples of problems where
manifold optimization can be used. Section 4 presents the usage of the package through some
examples. We present an application to a dataset in Section 5 and a discussion follows in
Section 6. The package is available from the Comprehensive R Archive Network at http:

//CRAN.R-project.org/package=GrassmannOptim.

2. The algorithm

2.1. The basic gradient algorithm

Let U be a p×d semi-orthogonal matrix and let f(U) be a real-valued function that is invariant
under right orthogonal transformation: for any d× d orthogonal matrix O, f(UO) = f(U).
Let SU denote the subspace spanned by the columns of U. We have

SU = {UO|O ∈ Rd×d,O>O = Id} ∈ G(d,p),

where G(d,p) is the Grassmann manifold of all d-dimensional subspaces in Rp. The goal is to

find the subspace ŜU such that

ŜU = arg max
SU∈G(d,p)

f(U).

http://CRAN.R-project.org/package=GrassmannOptim
http://CRAN.R-project.org/package=GrassmannOptim

4 GrassmannOptim: Grassmann Manifold Optimization in R

Steepest ascent is the closest numerical analogy to the Grassmann manifold algorithm de-
scribed in this article. Our algorithm is an iterative procedure that, given a point SU, com-
putes an ascent direction where an increase in f is found. However, this procedure on a
Grassmann manifold is not as straightforward as a steepest ascent method could be in a
Euclidean space.

En route to presenting the algorithm, a few terms need to be defined. Let V be a p× (p− d)
semi-orthogonal matrix that is a completion of U, such that Q = (U,V) is a p×p orthogonal
matrix. Let B = (∇f(U))>V, the d × (p − d) matrix that is the directional derivative of
f , which is the rate of change of f(U) in the direction of V. And finally, let A be a p × p
skew-symmetric matrix define as

A =

(
0d B
−B> 0p−d.

)
In a nutshell, the algorithm works by rotating the starting basis Q to a new basis by right
multiplication by an orthogonal matrix. A single step of the algorithm for a step size δ ∈ (0, 1)
involves the update

Qt+1 = Qt exp{δA}. (1)

The matrix A depends on the directional derivative B that changes at each iteration, and A
is updated during each iteration until a stopping criterion is met.

For ŜU to be the a maximizer of the objective function f , a necessary condition is that for
any tangent vector at ŜU, the directional derivative of f in the direction of that vector should
be zero. Practically, that means that ‖B‖, the norm of B should be sufficiently small. To
summarize, the algorithm is the following:

1. Provide an initial matrix p× p matrix Q0 at t = 0 and then

2. Do until ‖B‖ < ε

a. Compute the directional derivative B and form the matrix A

b. Update Qt+1 = Qt exp{δA} such that f(Ut+1) > f(Ut).

3. ŜU is the subspace spanned by the first d columns of Q at the last iteration.

Numerically, the choice of δ is not trivial. In our implementation, a discrete optimization of
f over the range of δ is used. Specifically at each iteration, a sequence of values of δ ∈ (0, 1)
is used to generate candidates Qt+1. The candidate that yields the largest f(Ut+1) greater
than f(Ut) is used.

This gradient method requires the directional derivative B = (∇f(U))>V of the objective
function. In some applications, an explicit analytical expression for B can be obtained. As
an example, consider the objective function f(U) = Tr{U>WU} where Tr{S} represents
the trace of the square matrix S. Differentiating f with respect to the elements of U yields
(W+W>)U. The analytical expression of the directional derivative is then U>(W+W>)V.
In many other cases an approximation of the directional derivative can be computed. Liu et al.
(2004) provided a method to approximate B = (αij) at any SU ∈ G(d,p) where

αij ≈
f(Ũ)− f(U)

ε
, i = 1, ..., d; j = 1, ..., p− d (2)

Journal of Statistical Software 5

for a small value of ε > 0 and Ũ = Q exp{εEij}J. The term Eij is a p × p skew-symmetric
matrix with all entries being 0 except 1 in position (i, j) and −1 in position (j, i) and J is the
p× d matrix of the first d columns of the p× p identity matrix.

2.2. Stochastic gradient

The basic gradient algorithm has the potential drawback to yield a local optimum at con-
vergence when the starting value is not properly chosen. To help avoid this possibility and
to reach a global optimum, we adapted the Markov chain-type simulated annealing process
proposed by Gallivan et al. (2003).

Let U0 be a representative of a starting subspace SU0 ∈ G(d,p). Set the iteration index t = 0
and choose an initial “temperature” T0.

1. Repeat m times

(a) Calculate the directional derivative matrix B of f .

(b) Generate d(p − d) independent realizations, wij ’s, from the standard normal dis-
tribution. Calculate a candidate value Y following Equation 1, starting from
Qt = (Ut,Vt) in the direction of B +

√
TtW where W is the d × (p − d) ma-

trix of (wij).

(c) Compute f(Y), f(Ut), and set df = f(Y)− f(Ut).

(d) Set Ut+1 = Y with probability min{exp{df/Tt}, 1}, else set Ut+1 = Ut.

2. Decrease the temperature Tt to Tt+1, with Tt+1 = Tt/τ where τ > 1 is the cooling ratio.

3. Set t = t+ 1 and go to Step 1 if Tt+1 is greater than a threshold. Stop otherwise.

Simulating annealing can be quite time-consuming. The user provides the maximum number
of iterations m, the cooling ratio τ specified in this algorithm and the initial temperature
T0. Ideally, m should be large enough to allow the Markov chain at each temperature to be
approximately in its stationary distribution before cooling. The cooling schedule should be
slow. Various cooling schedules are suggested in the literature. Nourani and Andresen (1998)
studied the performance of linear, logarithmic and exponential cooling schedules. Givens
and Hoeting (2005, Section 3.4.1.2) also mentioned various cooling schedules. In general, a
good cooling strategy should decrease the temperature rapidly at first and slowly over time.
But in the above algorithm, a simple linear cooling schedule is adopted. Here, we suggest
setting the cooling ratio τ close to 1. The value of the initial temperature T0 is problem-
dependent, but it must be chosen properly. A useful strategy is to choose T0 > 0 so that
exp{[f(Y1)− f(Y2)]/T0} is close to 1 for any pair of candidates matrices Y1 and Y2.

3. Relevance

Computing eigenspaces is a task that occurs in many research areas, including signal pro-
cessing (Comon and Golub 1990), data mining (Berry, Drmac, and Jessup 1999), and control
theory (Patel, Laub, and Van Dooren 1994). The overarching goal is to reduce the complexity
of a problem by focusing on a subset of relevant quantities that are dependent on eigenspaces.

6 GrassmannOptim: Grassmann Manifold Optimization in R

In statistics, a small number of principal components may be computed to capture the im-
portant variability in the data. Many eigenvalue problems are optimization problems on
manifolds (Absil et al. 2004; Edelman et al. 1998). In this section, we present three problems
that can be phrased as manifold optimization problems. The first is related to linear discrim-
inant analysis, the second is about independent components analysis and the third describes
Cook’s principal fitted components models.

3.1. Discriminant analysis

In a typical classification problem, let us suppose there are K classes that need to be separated
in p-dimensional space. When p is large, the information relevant to the separation of the
classes may be largely contained in a few directions α1, ...,αd ∈ Rp where d < p. One goal
of discriminant analysis is to identify these directions. Fisher’s linear discriminant analysis
(LDA) problem amounts to maximizing the function

f(α) =
α>Bα

α>Wα
(3)

over α ∈ Rp, where B is the between-class covariance matrix and W is the within-class
covariance matrix. Equivalently, we can find arg maxαα

>Bα subject to α>Wα = 1. To
estimate the d directions, standard practice in multivariate statistics is to use sequential
maximization of the objective function: Supposing that {α1, ...,αm−1} are the first m − 1
discriminant directions that maximize Equation 3, the next is αm = arg maxα f(α) subject to
α>Wαj = 0, j = 1, ...,m− 1. In fact, the sequential optimization of the function f(α), iden-
tified as a Rayleigh quotient, is a generalized eigenvalue problem that can be solved simultane-
ously on a manifold. To see this, let U = (α1, . . . ,αd) and consider the generalized Rayleigh
quotient f(U) = Tr{U>BU(U>WU)−1}. With the change of variables Y = W1/2U and
B∗ = W−1/2BW−1/2, maximizing f(U) is equivalent to maximizing Tr{Y>B∗Y} subject
to Y>Y = I. This maximum is achieved when span(Y) equals the span of the first d eigen-
vectors of B∗, which is the same as span(α1, . . . ,αd) from the usual sequential procedure.
Viewed as manifold optimization, there is nothing special about α1, . . . ,αd other than the
subspace they span.

In the case of Fisher’s linear discriminant, sequential and simultaneous optimization yield the
same subspace, but this equivalence will not always hold, as illustrated by the following two
examples. The first example is the LDA projection pursuit index for classification (Lee, Cook,
Klinke, and Lumley 2005). Based on Fisher’s LDA, the index expression is given by

f(U) =

{
1− |U>WU|

|U>(W+B)U| for |U>(W + B)U| 6= 0

0 for |U>(W + B)U| = 0,
(4)

where U is a (p×d) semi-orthogonal matrix. Using this index, the directions provided by the
subspace spanned by the columns of U that maximize f(U) reveal differences between classes.
For the second example, consider the optimal Bayes rule for classifying a new feature vector
x into one of K normal populations with known means µj and variances Σj , j = 1, . . . ,K,
based on d linear combinations y = U>x, where U is again a p × d matrix with rank d.
Using an optimal Bayes rule, the probability of correct classification is (Guseman, Peters,
and Walker 1975)

f(U) =

∫
Rd

max
1≤j≤K

Np(y|U>µj ,U
>ΣjU)dy,

Journal of Statistical Software 7

where Np is the p-dimensional normal density evaluated at y with the indicated mean and
variance. It can be seen that in both examples, f(U) depends only on span(U) and thus
maximizing f is again a Grassmann optimization problem. Sequential and simultaneous opti-
mization will not necessarily yield the same subspace for these objective functions. This might
be appreciated by recalling that sequential optimization requires an external inner product,
and there does not seem to be a clear choice for that inner product in these optimization
problems. Relatedly, Cook and Forzani (2010) discuss sequential versus full Grassmann opti-
mization, and present an example illustrating the potential downside of sequential methods.

3.2. Independent components analysis

The independent component analysis (ICA) of a random vector consists of searching for a
linear transformation that minimizes the statistical dependence between its components. Also
known as blind source separation or referred to as sources separation problem, it was, according
to Comon (1994), first proposed by J. Herault and C. Jutten around 1986. It has been used in
biomedical applications like image analysis and in signal processing. A recurring example of
the application of ICA is the cocktail party problem where the task is to recover p source signals
s(t) = {s1(t), ..., sp(t)}, supposed to be statistically independent, from recordings where they
appear as linear mixtures x(t) = {x1, ..., xn}. Mathematically, there is a mixing matrix A
such that x(t) = As(t) and the goal of ICA is to identify the mixing matrix.

The problem is often translated into finding an n × p de-mixing matrix W such that the
signals y(t) = W>x(t) are as independent as possible (Absil et al. 2004). The quantification
of the independence involves a cost function f such that f(WD) = f(W) for all nonsingular
diagonal matrices D. Because of the invariance property of f , its optimization must be
restrained to constrained sets corresponding to equivalence classes {WD : D diagonal}. A
possible choice for the constraint set is the oblique manifold

OB = {W ∈ Rn×p : Diag(WW>) = In}. (5)

Thus, algorithms for independence component analysis can be formulated in terms of mani-
folds (Douglas 2000; Pham 2001). See Comon (1994) and Yeredor (2002) for further details
on ICA.

3.3. Principal fitted components

One of the oldest and best known methods for reducing dimensionality in multivariate prob-
lems is principal component analysis (PCA). But PCA in a regression setting does not make
any use of the outcome in reducing the dimensionality of the predictors. Cook (2007) proposed
principal fitted component (PFC) models that can outperform PCA as a reductive method
for regression. In this section, we discuss one specific PFC model where parameter estimation
is carried over a Grassmann manifold.

Let X = (X1, ..., Xp)
> be a p-vector of random predictors and Y be the response. Cook

(2007), using the stochastic nature of the predictors, proposed the following model:

Xy = µ+ Γβfy + ε. (6)

Here, Xy denotes the conditional X given Y = y, fy ∈ Rr is a function of the response,
µ ∈ Rp, Γ ∈ Rp×d is a semi-orthogonal matrix and β ∈ Rd×r. The error term ε ∈ Rp is
assumed to be normally distributed with mean 0 and variance ∆.

8 GrassmannOptim: Grassmann Manifold Optimization in R

Essentially, this model can be seen as a way to partition the information in the predictors given
the response into two parts: one part (Γβfy = E(Xy −X)) is related to the response and the
other (µ+ε) that is not. The term that is related to y suggests that the translated conditional
means E(Xy − X) fall in the d-dimensional subspace SΓ. Under the appropriate structure
on ∆, the sufficient reduction is Γ>X, and thus X can be replaced by Γ>X without loss of
information about the regression of Y on X. Here, the concept of sufficient reduction follows
the definition of Cook (2007): A reduction R : Rp → Rd, d ≤ p is sufficient if Y X|R(X).
However, as Γ>X is a sufficient reduction, for any d × d orthogonal matrix O, (ΓO)>X is
also sufficient. Thus Γ is not estimable but the subspace spanned by its columns is estimable.
The goal of an analysis is then to estimate the subspace SΓ spanned by the columns of Γ.

The estimation of SΓ depends on the structure of ∆. Various structures for ∆ can be modeled,
including isotropic (σ2I), diagonal (σ2

1, ..., σ
2
p), and general unstructured ∆ > 0 cases. The

data structure dictates the variance structure to be used. While an isotropic structure of
the variance may be appropriate for conditionally independent predictors that are on the
same numerical scale, a diagonal structure may fit better when on different measurement
scales, and an unstructured variance could be considered with predictors that are conditionally
dependent. An interesting case arises with heterogeneous errors yielding

∆ = ΓΩΓ> + Γ0Ω0Γ
>
0 , (7)

where Γ0 is the orthogonal completion of Γ such that (Γ,Γ0) is a p×p orthogonal matrix. The
matrices Ω ∈ Rd×d and Ω0 ∈ R(p−d)×(p−d) are assumed to be symmetric and full-rank. Under
model (6) with covariance structure (7), Y is independent of X given Γ>X and consequently
Γ>X carries all the predictive information that X has about Y .

We now turn to the maximum likelihood estimation of SΓ which involves a Grassmann mani-
fold optimization. Assuming that a set of n data points is observed, let X̄ be the sample mean
of X and let X denote the n× p matrix with rows (X− X̄)>. Let F denote the n× r matrix
with rows (fy − f̄)> and set PF to denote the linear operator that projects onto the subspace

spanned by the columns of F. Also let X̂ = PFX denote the n× p matrix of the fitted values
from the multivariate linear regression of X on fy. Setting Σ̂ = X>X/n and Σ̂fit = X̂>X̂/n,

we let Σ̂res = Σ̂− Σ̂fit. Then the maximum likelihood estimator of SΓ is

ŜΓ = arg max
SU∈G(d,p)

f(U), (8)

where
f(U) = −(n/2) log |U>Σ̂resU| − (n/2) log |V>Σ̂V| (9)

and V is an orthogonal completion of U. The objective function is a real-valued function with
its argument being a p × d semi-orthogonal matrix. The invariant property of f , f(UO) =
f(U) for any d×d orthogonal matrix O, and the orthogonal constraint U>U = Id set up the
optimization of f to be carried over the Grassmann manifold G(d,p), which is the parameter
space for SΓ.

Optimization over a Grassmann manifold is used in several other statistical models for di-
mension reduction, including covariance reducing models (Cook and Forzani 2008), envelope
models (Cook, Li, and Chiaromonte 2010), generalized PFC (Cook and Li 2009), and likeli-
hood acquired directions (Cook and Forzani 2009). In Section 5, an application to a set of
data is presented where LAD is reviewed briefly and used.

Journal of Statistical Software 9

4. The R package GrassmannOptim

In this section we give specific examples on how to use GrassmannOptim. The main visible
function of this package is of the same name as the package name. To use this function,
the user needs to provide the objective function; providing the analytical expression of the
directional derivative is not required.

The call of the function, as described in the package manual, is

GrassmannOptim(objfun, W, sim_anneal = FALSE, temp_init = 20,

cooling_rate = 2, max_iter_sa = 100, eps_conv = 1e-05, max_iter = 100,

eps_grad = 1e-05, eps_f = .Machine$double.eps, verbose = FALSE)

As an illustration on the use of GrassmannOptim, we consider the statistical model described
in Section 3.3. The directional derivative B of f(U) is

B = 2{(U>Σ̂resU)−1U>Σ̂resV −U>Σ̂V(V>Σ̂V)−1}. (10)

We generated a dataset following model (6), with y generated using Y = U + e where U ∼
uniform(−2, 2) and e ∼ N(0, 0.1). We set fy = (y, y2, y3)> and used eight predictors with
300 observations. We set Γ to be the first three columns and Γ0 to be the last 5 columns
of the identity matrix I8, β = 3Diag(1, 0.4, 0.4), and Ω0 = 4I5. With σ = 1.5, ρ = 0.5 and
J3 = (1, 1, 1)>, Ω was set to σ2I3 + ρσ2(J3J

>
3 − I3). The term ρ controls the correlation

between the first three predictors of Xy. The following code is used to generate the data,
using the mvtnorm (Genz et al. 2012) package:

R> library("mvtnorm")

R> set.seed(123)

R> p <- 8

R> nobs <- 300

R> d <- 3

R> sigma <- 1.5

R> sigma0 <- 2

R> rho <- 0.5

R> y <- array(runif(n = nobs, min = -2, max = 2), c(nobs, 1)) +

+ rnorm(n = nobs, sd = 0.1)

R> fy <- scale(cbind(y, y^2, y^3), TRUE, FALSE)

R> Gamma <- diag(p)[, 1:3]

R> Gamma0 <- diag(p)[, -(1:3)]

R> Omega <- sigma^2 * matrix(rho, ncol = 3, nrow = 3)

R> diag(Omega) <- sigma^2

R> Delta <- Gamma %*% Omega %*% t(Gamma) + sigma0^2 * Gamma0 %*% t(Gamma0)

R> Err <- t(rmvnorm(n = nobs, mean = c(rep(0, p)), sigma = Delta))

R> beta <- diag(3 * c(1, 0.4, 0.4))

R> X <- t(Gamma %*% beta %*% t(fy) + Err)

With this simulated data, the first three predictors are related to the response y with re-
spectively a linear, quadratic and cubic relationship. The last 5 predictors are not related to
the response. The following code is used to obtain Figure 1(left) which shows a scatter plot
matrix of the first four predictors with the response.

10 GrassmannOptim: Grassmann Manifold Optimization in R

X1

−4 −2 0 2 4 −4 −2 0 2 4

−
10

−
5

0
5

−
4

−
2

0
2

4

X2

X3

−
10

0
5

10

−
4

−
2

0
2

4

X4

−10 −5 0 5 −10 −5 0 5 10 −2 −1 0 1 2

−
2

−
1

0
1

2

y

V1

−4 −2 0 2 4

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●
●●

●
●

●

●

●

●

●
●●

● ●

●●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

● ●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●●

●

●

● ●

●

●
●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●
● ●

●
●

●

●

●

●

●
●●

● ●

● ●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●● ●
●

−4 0 2 4 6

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●● ●

●

●

●●

●

●
●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●
● ●

●
●

●

●

●

●

●
● ●

●●

●●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

● ●●
●

−
10

0
5

10

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●
● ●

●
●

●

●

●

●

●
●●

● ●

● ●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

● ●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●● ●
●

−
4

−
2

0
2

4

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●
V2 ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

● ●
●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

● ●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

● ●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●
● ●

●

●

●●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●●

●

●

●●

●

● ●

●●

● ●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●
●●

●

●

● ●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●●

●

●

●●

●

● ●

●●

●●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

● V3
●

● ●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●
●●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●

●

● ●

●

●

●●

●

● ●

● ●

●●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

−
10

0
5

●

● ●

●

●

●

●
● ●

●

●

●
●

●

●
●
●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●
●●

●

●

●●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●

●

● ●

●

●

●●

●

●●

●●

●●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

−
4

0
2

4
6

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●●
●

●●

●

●

●●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●
●●

●

●● ●

●

●
● ●

● ●
●

●

●

●

●●

●

●

●

●

●●

●

●●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●●

●

●●

●
●

●

●

●●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

● ●
●

●●

●

●

● ●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●
● ●

●

● ●●

●

●
● ●

●●
●

●

●

●

●●

●

●

●

●

●●

●

● ●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●●

●

● ●

●
●

●

●

● ●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●●
●

●●

●

●

●●

●

● ●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●
● ●

●

● ●●

●

●
●●

●●
●

●

●

●

● ●

●

●

●

●

● ●

●

●●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●●

●

● ●

●
●

●

●

● ●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

●●

●

●

●

V4
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●●
●

●●

●

●

●●

●

● ●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●
● ●

●

● ●●

●

●
●●

● ●
●

●

●

●

● ●

●

●

●

●

● ●

●

●●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●●

●

● ●

●
●

●

●

● ●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

●●

●

●

●

−10 0 5 10

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

−10 0 5

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

y

Figure 1: Scatter plots matrix of the first four predictors and the response (left), and the
projected data onto the first four directions of the Grassmann optimization solution and the
response (right).

R> x <- data.frame(cbind(X[, 1:4], y))

R> colnames(x) <- c("X1", "X2", "X3", "X4", "y")

R> pairs(x)

The fitting procedure requires the computation of some terms that are shown next.

R> P_F <- fy %*% solve(t(fy) %*% fy) %*% t(fy)

R> Xc <- scale(X, TRUE, FALSE)

R> S_fit <- t(Xc) %*% P_F %*% Xc/nobs

R> S <- t(Xc) %*% Xc/nobs

R> S_res <- S - S_fit

R> sigmas <- list(S = S, S_fit = S_fit, S_res = S_res, p = p, nobs = nobs)

We provided the objective function (f) and the directional derivative (Gradient) as follows:

R> f <- function(W) {

+ Qt <- W$Qt

+ d <- W$dim[1]

+ p <- ncol(Qt)

+ Sigmas <- W$sigmas

+ U <- matrix(Qt[, 1:d], ncol = d)

+ V <- matrix(Qt[, (d + 1):p], ncol = (p - d))

+ return(-log(det(t(V) %*% Sigmas$S %*% V)) -

+ log(det(t(U) %*% Sigmas$S_res %*% U)))

+ }

R> Gradient <- function(W){

+ Qt <- W$Qt

+ d <- W$dim[1]

Journal of Statistical Software 11

+ p <- ncol(Qt)

+ Sigmas <- W$sigmas

+ U <- matrix(Qt[, 1:d], ncol = d)

+ V <- matrix(Qt[, (d + 1):p], ncol = (p-d))

+ terme1 <- solve(t(U) %*% Sigmas$S_res %*% U) %*%

+ t(U) %*% Sigmas$S_res %*% V

+ terme2 <- t(U) %*% Sigmas$S %*% V %*% solve(t(V) %*% Sigmas$S %*%V)

+ return(2 * (terme1 - terme2))

+ }

Both functions are called within the function called objfun that returns values of the objective
function and the directional derivative for a specified set of arguments.

R> objfun <- function(W) list(value = f(W), gradient = Gradient(W))

The call of the function GrassmannOptim requires a minimum set of arguments. Other than
objfun, the object W, which is of type list, is needed. As a list object, it may contain the
optional initial starting matrix Qt that is a p× p orthogonal matrix. Regardless of Qt being
provided or not, W must contain at least two components: the first is dim = c(d, p) where d
is the dimension of the subspace sought and p is the number of predictors (d < p); the second
is any list of arguments to be passed to the objective function f and the directional derivative
Gradient. In the case of the current example, that list is sigmas.

We present three scenarios to illustrate the use of GrassmannOptim. In the context of this
application, d = 3 is the number of columns of Γ and p = 8. In the first, no initial matrix is
provided. The call is:

R> W <- list(dim = c(d, p), sigmas = sigmas)

R> ans <- GrassmannOptim(objfun, W, eps_conv = 1e-4, verbose = TRUE)

Initialization...

iter Loglik Gradient

1 -1.0027e+01 5.2477e+00

2 -9.9171e+00 4.5877e+00

3 -9.5656e+00 1.4027e+00

...

26 -8.3892e+00 1.9602e-04

29 -8.3892e+00 4.0443e-05

R> ans$converged

[1] TRUE

In this case, when no starting matrix is provided, a random starting matrix is used. With
verbose = TRUE, iteration results are shown with the iteration number iter; the values of
the objective function are shown under Loglik and the norms of the directional derivative
are shown under Gradient. If convergence is reached, then the component converged of the
output list is TRUE.

12 GrassmannOptim: Grassmann Manifold Optimization in R

In many scenarios, there might be good guesses for starting matrices. For this particular
example, it is worth using the matrix of eigenvectors of the fitted covariance matrix Σ̂fit.

R> Qt <- svd(S_fit)$u

R> W <- list(Qt = Qt, dim = c(d, p), sigmas = sigmas)

R> ans <- GrassmannOptim(objfun, W, eps_conv = 1e-4, verbose = TRUE)

Initialization...

iter Loglik Gradient

1 -8.4266e+00 2.6095e-01

2 -8.4010e+00 2.5774e-01

3 -8.3905e+00 1.3484e-02

4 -8.3895e+00 6.8860e-03

5 -8.3893e+00 6.7825e-04

6 -8.3892e+00 2.6774e-04

7 -8.3892e+00 1.1446e-04

8 -8.3892e+00 9.7860e-05

R> ans$converged

[1] TRUE

Here convergence is reached much faster than by using a random start. When there is no
good guess for the starting matrix, the simulated annealing method may become handy and
quite powerful, although it requires more computing time.

R> W <- list(dim = c(d, p), sigmas = sigmas)

R> ans <- GrassmannOptim(objfun, W, eps_conv = 1e-4, sim_anneal = TRUE,

+ max_iter_sa = 100, verbose = TRUE)

iter Loglik Gradient

1 -8.3892e+00 3.4433e-04

2 -8.3892e+00 1.4293e-04

4 -8.3892e+00 1.2478e-04

6 -8.3892e+00 7.3144e-05

R> ans$converged

[1] TRUE

The process converges after only a handful iterations at the cost of the long simulated anneal-
ing process. At convergence, the first d components of the matrix output Qt is the solution to
the optimization problem. This matrix is the basis of the estimate of the three dimensional
subspace SΓ in R8.

R> ans$Qt[, 1:3]

Journal of Statistical Software 13

[,1] [,2] [,3]

[1,] -0.2278 -0.2017 -0.9509

[2,] 0.0895 -0.9716 0.1882

[3,] -0.9694 -0.0406 0.2413

[4,] 0.0033 0.0556 0.0092

[5,] -0.0087 -0.0749 0.0208

[6,] 0.0138 0.0283 0.0208

[7,] -0.0074 -0.0134 -0.0307

[8,] -0.0056 -0.0633 -0.0142

The projected data onto the directions given by first three columns of Qt are plotted on
Figure 1(right) using the following code.

R> x <- data.frame(cbind(X %*% ans$Qt[, 1:4], y))

R> colnames(x) <- c("V1", "V2", "V3", "V4", "y")

R> pairs(x)

The similarity between these two plots seems evident, where the newly obtained variables V1,
V2 and V3 appear to display respectively a cubic, a quadratic, and a linear relationship with
the response. The graph of the last variable V4 on the response shows a null plot with no
relationship as expected.

5. Application

We applied GrassmannOptim to a dataset used by Cook and Forzani (2009) in their devel-
opment and exposition of LAD, which requires Grassmann manifold optimization. Cook and
Forzani (2009) carried out the optimization using the MATLAB (The MathWorks, Inc. 2010)
program sg min (Lippert 2007), which enables us to contrast results from GrassmannOp-
tim with those from a different code written in a different language. We briefly review the
optimization portion of LAD and then turn to the example.

5.1. Likelihood acquired direction

Consider a regression in which the response Y is discrete with support SY = {1, 2, ..., h}.
Following standard practice, continuous response can be sliced into finite categories to meet
this condition. Let Xy ∈ Rp denote a random vector of predictors distributed as X|(Y =
y) and assume that Xy ∼ N(µy,∆y), y ∈ SY . Let µ = E(X) and Σ = var(X) denote
the marginal mean and variance of X and let ∆ = E(∆Y) denote the average covariance
matrix. Given ny independent observations of Xy, y ∈ SY , the goal is to obtain the maximum
likelihood estimate of the d-dimensional central subspace SY |X, which is defined informally
as the smallest subspace such that Y is independent of X given its projection PSY |XX onto
SY |X.

Let Σ̃ denote the sample covariance matrix of X, let ∆̃y denote the sample covariance matrix

for the data with Y = y, and let ∆̃ =
∑h

y=1 fy∆̃y where fy is the fraction of cases observed
with Y = y. The maximum likelihood estimator of SY |X maximizes over S ∈ G(d,p) the

14 GrassmannOptim: Grassmann Manifold Optimization in R

log-likelihood function

L(S) =
n

2
log |PSΣ̃PS |0 −

n

2
log |Σ̃| − 1

2

h∑
y=1

ny log |PS∆̃yPS |0, (11)

where |A|0 indicates the product of the non-zero eigenvalues of a positive semi-definite sym-
metric matrix A and PS indicates the projection onto the subspace S in the usual inner
product. The desired reduction is then η̂>X, where the columns of η̂ are a basis for the
maximum likelihood estimate of SY |X.

5.2. Is it a bird, a plane or a car?

The dataset is from a pilot study to assess the possibility of distinguishing birds, planes and
cars by the sounds they make. The goal of the study was the reconstruction of sonic maps
that identify both the level and source of sound.

A two-hour recording was made in a city, and then five second snippets of sounds were selected.
This resulted in 58 recordings identified as birds, 43 as cars and 64 as planes. Each recording
was processed and ultimately represented by 13 SDMFCCs (Scale Dependent Mel-Frequency
Cepstrum Coefficients). The focus was on reducing this dimension of the 13-dimensional
feature vector.

We applied LAD to estimate the central subspace via Grassmann manifold optimization using
our package. The first two columns of the estimated basis matrix were used to form the two
LAD predictors. These two LAD predictors, shown in Figure 2, nicely separate the sound
sources. Figure 2 is quite similar to the one found in Cook and Forzani (2009). The orientation
here is different than that found by Cook and Forzani (2009), but this is to be expected since
the goal is to estimate a subspace and not a particular basis.

Cook and Forzani (2009) and Cook, Forzani, and Tomassi (2011) adapted Lippert (2007)’s
sg min 2.4.1 MATLAB (The MathWorks, Inc. 2010) package for Grassmann optimization
with analytical first derivatives and numerical second derivatives, using Newton-Raphson
iteration on G(d,p). With GrassmannOptim, we used only numerical first derivatives with no
use of the second derivatives. We also used the simulated annealing procedure to help reach
a global optimum. Given these distinctions and other potentially relevant differences like
starting values, we found the agreement between out results and those found by Cook and
Forzani (2009) to be remarkable. The full R code used to obtain Figure 2 is provided in the
online supplements. (More optimization examples using GrassmannOptim are available at
http://www.math.umbc.edu/~kofi/GrassmannOptim/.)

6. Discussion

We have introduced GrassmannOptim, an R package for Grassmann manifold optimization,
and described how many subspace optimization problems can be identified as manifold op-
timization. The current package uses a gradient-based algorithm. Minimally, the user is
required to provide the objective function and the dimensions of the basis of the subspace
to be estimated. Analytical expressions of the directional derivative typically result in more
efficient estimation. However, analytic derivatives are not required.

http://www.math.umbc.edu/~kofi/GrassmannOptim/

Journal of Statistical Software 15

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

0.00 0.05 0.10 0.15 0.20 0.25

−
0.

1
0.

0
0.

1
0.

2

Dir1

D
ir2

Figure 2: Plot of the first two LAD directions: cars (blue ◦’s), planes (black �’s), and birds
(green .’s).

Limited theoretical results are available to analyze the convergence of the algorithm. But in
practice, the convergence appears linear. The dimension of the Grassmann manifold affects
greatly the speed of the package. We are dealing with a space where a single object is a
subspace of dimension d × (p − d). When p is large, the algorithm becomes memory-greedy
and slow.

A simulated annealing method was added to the package to help a global search. Without
it, there is a chance that the algorithm could convergence to a local maximum. A good
starting value can also help avoid local minima. As a Markov chain method, the processing
time for simulated annealing depends on many elements, including the cooling schedule, the
number of iterations at each stage of the Markov chain and the dimension of the subspace
to optimize. The choice of the initial temperature, the cooling schedule and the maximum
number of iterations at each temperature are left to the discretion of the user.

Acknowledgments

We are thankful to the two anonymous referees whose comments helped improve the content of
this article. The authors’ research was supported by grant T32HL072757 from the National
Heart, Lung, and Blood Institute and by grant DMS-1007547 from the National Science
Foundation. The content is solely the responsibility of the authors and does not necessarily
represent the official views of the National Heart, Lung, and Blood Institute, the National
Institutes of Health, the National Science Foundation or Fannie Mae.

16 GrassmannOptim: Grassmann Manifold Optimization in R

References

Absil P, Mahony R, Sepulchre R (2004). Optimization Algorithms on Matrix Manifolds.
Princeton University Press, Princetion.

Berry MW, Drmac Z, Jessup ER (1999). “Matrices, Vector Spaces, and Information Retrieval.”
SIAM Review, 41(2), 335–362.

Chikuse Y (2003). Statistics on Special Manifolds. Number 174 in Lecture Notes in Statistics.
Springer-Verlag.

Comon P (1994). “Independent Component Analysis, A New Concept?” Signal Processing,
36, 287–314.

Comon P, Golub GH (1990). “Tracking a Few Extreme Singular Values and Vectors in Signal
Processing.” IEEE Proceedings, 78(8), 1327–1343.

Cook RD (2007). “Fisher Lecture: Dimension Reduction in Regression.” Statistical Science,
22(1), 1–26.

Cook RD, Forzani LM (2008). “Covariance Reducing Models: An Alternative to Spectral
Modelling of Covariance.” Biometrika, 95(4), 799–812.

Cook RD, Forzani LM (2009). “Likelihood-Based Sufficient Dimension Reduction.” Journal
of the American Statistical Association, 104(485), 197–208.

Cook RD, Forzani LM (2010). “Letter to the Editor: Reply to Zhu and Hastie.” Journal of
the American Statistical Association, 105(490), 881.

Cook RD, Forzani LM, Tomassi DR (2011). “LDR: A Package for Likelihood-Based Sufficient
Dimension Reduction.” Journal of Statistical Software, 39(3), 1–20. URL http://www.

jstatsoft.org/v39/i03/.

Cook RD, Li B, Chiaromonte F (2010). “Envelope Models for Parsimonious and Efficient
Multivariate Linear Regression.” Statistica Sinica, 20(3), 927–1010.

Cook RD, Li L (2009). “Dimension Reduction in Regression with Exponential Family Pre-
dictors.” Journal of Computational and Graphical Statistics, 18(3), 774–791.

Douglas SC (2000). “Self-Stabilized Gradient Algorithms for Blind Source Separation with
Orthogonality Constraints.” IEEE Transactions on Neural Networks, 11(6), 1490–1497.

Edelman A, Arias T, Smith S (1998). “The Geometry of Algorithms with Orthogonality
Constraints.” SIAM Journal of Matrix Analysis and Applications, 20(2), 303–353.

Fletcher R (1987). Practical Methods of Optimization. 2nd edition. John Wiley & Sons,
Hoboken.

Gallivan K, Srivastava A, Liu X, Dooren P (2003). “Efficient Algorithms for Inferences on
Grassmann Manifolds.” In Proceedings of the 12th IEEE Workshop on Statistical Signal
Processing, pp. 301–304.

http://www.jstatsoft.org/v39/i03/
http://www.jstatsoft.org/v39/i03/

Journal of Statistical Software 17

Genz A, Bretz F, Miwa T, Mi X, Leisch F, Scheipl F, Hothorn T (2012). mvtnorm: Mul-
tivariate Normal and t Distributions. R package version 0.9-9992, URL http://CRAN.

R-project.org/package=mvtnorm.

Givens G, Hoeting J (2005). Computational Statistics. John Wiley & Sons, Hoboken.

Gruber P, Theis F (2006). “Grassmann Clustering.” In Proceedings of the European Signal
Processing Conference.

Guseman LF, Peters BC, Walker HF (1975). “On the Probability of Misclassification for
Linear Feature Selection.” The Annals of Statistics, 3, 661–668.

Lee EK, Cook RD, Klinke S, Lumley T (2005). “Projection Pursuit for Exploratory Supervised
Classification.” Journal of Computational and Graphical Statistics, 14(4), 831–846.

Lippert R (2007). “sg min: Stiefel Grassmann Optimization.” MATLAB package version 2.4.1,
URL http://www-math.mit.edu/~lippert/sgmin.html.

Liu X, Srivastava A, Gallivan K (2004). “Optimal Linear Representations of Images for
Object Recognition.” IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(5), 662–666.

Manton JH (2002). “Optimization Algorithms Exploiting Unitary Constraints.” IEEE Trans-
actions on Signal Processing, 50(3).

Nilsson J, Sha F, Jordan M (2007). “Regression on Manifolds Using Kernel Dimension Reduc-
tion.” In Proceedings of the 24th International Conference on Machine Learning. Corvallis.

Nocedal J, Wright S (1999). Numerical Optimization. Springer-Verlag, New York.

Nourani Y, Andresen B (1998). “A Comparison of Simulated Annealing Cooling Strategies.”
Journal of Physics A: Mathematical and General, 31, 8373–8385.

Patel RV, Laub AJ, Van Dooren PM (1994). Numerical Linear Algebra Techniques for Systems
and Control. IEEE Press, Piscataway.

Pham DT (2001). “Joint Approximate Diagonalization of Positive Definite Hermitian Matri-
ces.” SIAM Journal of Matrix Analysis and Applications, 22(4), 1136–1152.

R Development Core Team (2012). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

The MathWorks, Inc (2010). MATLAB – The Language of Technical Computing, Ver-
sion 7.10. The MathWorks, Inc., Natick, Massachusetts. URL http://www.mathworks.

com/products/matlab/.

Wong YC (1967). “Differential Geometry of Grassmann Manifolds.” In Proceedings of the
National Academy of Science, volume 57, pp. 589–594. USA.

Yeredor A (2002). “Non-Orthogonal Joint Diagonalization in the Least-Squares Sense with
Application in Blind Source Separation.” IEEE Transactions on Signal Processing, 50(7),
1545–1553.

http://CRAN.R-project.org/package=mvtnorm
http://CRAN.R-project.org/package=mvtnorm
http://www-math.mit.edu/~lippert/sgmin.html
http://www.R-project.org/
http://www.R-project.org/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/

18 GrassmannOptim: Grassmann Manifold Optimization in R

Affiliation:

Kofi Placid Adragni
Department of Mathematics & Statistics
University of Maryland, Baltimore County
1000 Hilltop Circle
Baltimore, MD 21250, United States of America
E-mail: kofi@umbc.edu
URL: http://www.math.umbc.edu/~kofi/
Phone: +1/410/455-2406
Fax: +1/410/455-1066

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 50, Issue 5 Submitted: 2010-02-09
July 2012 Accepted: 2012-05-08

mailto:kofi@umbc.edu
http://www.math.umbc.edu/~kofi/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	The algorithm
	The basic gradient algorithm
	Stochastic gradient

	Relevance
	Discriminant analysis
	Independent components analysis
	Principal fitted components

	The R package GrassmannOptim
	Application
	Likelihood acquired direction
	Is it a bird, a plane or a car?

	Discussion

