Discussion of 'Sure Independence Screening for Ultrahigh Dimensional Feature Space' by J. Fan and J. Lv

May 28, 2008

Kofi Adragni and R. Dennis Cook (University of Minnesota)

Fan and Lv give a compelling case for predictor screening based essentially on the strength of marginal linear relationships. We have been working on screening methodology, called Screening by Principal Fitted Components (SPFC; Cook, 2007), in the $p \gg n$ context. Instead of using marginal relations, or a forward regression of Y on **x** as in penalized least squares, we adopt an inverse regression approach regressing **x** on Y. Using Fan and Lv's assumption of spherical predictors, consider the relatively simple inverse regression model

$$\mathbf{x} = \boldsymbol{\mu} + \boldsymbol{\Gamma} \boldsymbol{\lambda} \mathbf{f}_y + \boldsymbol{\varepsilon}. \tag{1}$$

The term $\mathbf{f}_y \in \mathbb{R}^r$ is a user-selected function of $y, \mu \in \mathbb{R}^p, \Gamma \in \mathbb{R}^{p \times d}, \lambda \in \mathbb{R}^{d \times r}$ has rank $d \leq r$, and $\boldsymbol{\varepsilon} \sim N(0, \sigma^2 \mathbf{I})$. Cook (2007) showed that $Y \perp \mathbf{x} | \mathbf{\Gamma}^T \mathbf{x}$. With d = 1, estimating the sparse subspace span($\boldsymbol{\Gamma}$) is equivalent to estimating the sparse subspace span($\boldsymbol{\beta}$) in equation (1) of the paper, the zero elements of $\boldsymbol{\Gamma}$ identifying the predictors to be eliminated. A value of p > n need not severely hinder the estimation of span($\boldsymbol{\Gamma}$) in inverse regression models, particularly when $\operatorname{var}(\mathbf{x}|Y)$ is a diagonal matrix.

Let $\mathbf{\Gamma} \in \mathbb{R}^p$, $\mathbf{f}_y = y - \bar{y}$, $\mathbf{\Phi} = \mathbf{\Gamma} \boldsymbol{\lambda}$ and $\mathbf{X}^T = (\mathbf{x}_1, ..., \mathbf{x}_n)$. The MLE under the inverse model (1) of the $p \times 1$ vector $\mathbf{\Phi} = (\phi_1, \phi_2, ..., \phi_p)^T$ is $\mathbf{X}^T (y - \bar{y})$. After columnwise standardization of \mathbf{X} this corresponds to the *p*-vector $\boldsymbol{\omega}$ of expression (2) in the paper. Consequently, SPFC reduces to SIS with \mathbf{f}_y restricted to $y - \bar{y}$. Following Fan and Lv, we can select predictors by taking the first $[\gamma n]$ with the largest standardized $|\phi_i|$. But we can also tie the selection to a test statistic for $\phi_i = 0$, which automatically gives the same ordering. The inverse regression approach is more flexible than forward regressions. Unlike SIS or penalized least squares, inverse regression models can easily accommodate a categorical response, nonlinearities and non-constant variance $\operatorname{var}(Y|\mathbf{x})$ and still perform well. As an example, we generated n = 70 observations on p = 500 independent predictors $\mathbf{x} = (X_1, ..., X_p)^T$ with $X_1 \sim \operatorname{Unif}(1, 10)$ and $X_i \sim N(0, 4), i = 2, ..., p$. The response was generated as $y = (5X_1)\epsilon$ where $\epsilon \sim N(0, 1)$. We used SIS and generated 200 datasets to estimate the frequency that the only active predictor X_1 is among the first 35 (Fan and Lv's $\gamma = 0.5$) with the largest standardized $|\phi_i|$. The result was as expected under random selection: SIS included X_1 in the first 35 predictors 12% of time. On the other hand, SPFC with a piecewise linear basis \mathbf{f}_y captured X_1 among the first *two* predictors 98% of the time. We have obtained qualitatively similar differences with nonlinear mean functions and a constant variance. Our results so far suggest that SPFC effective subsumes SIS.

References

Cook, R.D. (2007) Fisher Lecture: Dimension Reduction in Regression. *Statistical Science* **22**, 1-26