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Fan and Lv give a compelling case for predictor screening based essentially on the strength of

marginal linear relationships. We have been working on screening methodology, called Screening

by Principal Fitted Components (SPFC; Cook, 2007), in the p � n context. Instead of using

marginal relations, or a forward regression of Y on x as in penalized least squares, we adopt

an inverse regression approach regressing x on Y . Using Fan and Lv’s assumption of spherical

predictors, consider the relatively simple inverse regression model

x = µ + Γλfy + ε. (1)

The term fy ∈ Rr is a user-selected function of y, µ ∈ Rp, Γ ∈ Rp×d, λ ∈ Rd×r has rank d ≤ r,

and ε ∼ N(0, σ2I). Cook (2007) showed that Y x|ΓTx. With d = 1, estimating the sparse

subspace span(Γ) is equivalent to estimating the sparse subspace span(β) in equation (1) of the

paper, the zero elements of Γ identifying the predictors to be eliminated. A value of p > n need

not severely hinder the estimation of span(Γ) in inverse regression models, particularly when

var(x|Y ) is a diagonal matrix.

Let Γ ∈ Rp, fy = y − ȳ, Φ = Γλ and XT = (x1, ...,xn). The MLE under the inverse model

(1) of the p×1 vector Φ = (φ1, φ2, ..., φp)T is XT (y− ȳ). After columnwise standardization of X

this corresponds to the p-vector ω of expression (2) in the paper. Consequently, SPFC reduces

to SIS with fy restricted to y− ȳ. Following Fan and Lv, we can select predictors by taking the

first [γn] with the largest standardized |φi|. But we can also tie the selection to a test statistic

for φi = 0, which automatically gives the same ordering.
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The inverse regression approach is more flexible than forward regressions. Unlike SIS or

penalized least squares, inverse regression models can easily accommodate a categorical response,

nonlinearities and non-constant variance var(Y |x) and still perform well. As an example, we

generated n = 70 observations on p = 500 independent predictors x = (X1, ..., Xp)T with

X1 ∼ Unif(1, 10) and Xi ∼ N(0, 4), i = 2, ..., p. The response was generated as y = (5X1)ε

where ε ∼ N(0, 1). We used SIS and generated 200 datasets to estimate the frequency that

the only active predictor X1 is among the first 35 (Fan and Lv’s γ = 0.5) with the largest

standardized |φi|. The result was as expected under random selection: SIS included X1 in the

first 35 predictors 12% of time. On the other hand, SPFC with a piecewise linear basis fy

captured X1 among the first two predictors 98% of the time. We have obtained qualitatively

similar differences with nonlinear mean functions and a constant variance. Our results so far

suggest that SPFC effective subsumes SIS.
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