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CLINICAL
TRIALS

ARTICLE Clinical Trials 2013; 0: 1–10

Risk-stratified imputation in survival analysis

Richard E Kennedya, Kofi P Adragnib, Hemant K Tiwaria, Jenifer H Voeksc, Thomas G Brottd

and George Howarda

Background Censoring that is dependent on covariates associated with survival

can arise in randomized trials due to changes in recruitment and eligibility criteria to

minimize withdrawals, potentially leading to biased treatment effect estimates.

Imputation approaches have been proposed to address censoring in survival analy-

sis; while these approaches may provide unbiased estimates of treatment effects,

imputation of a large number of outcomes may over- or underestimate the asso-

ciated variance based on the imputation pool selected.

Purpose We propose an improved method, risk-stratified imputation, as an alterna-

tive to address withdrawal related to the risk of events in the context of time-to-

event analyses.

Methods Our algorithm performs imputation from a pool of replacement subjects

with similar values of both treatment and covariate(s) of interest, that is, from a risk-

stratified sample. This stratification prior to imputation addresses the requirement of

time-to-event analysis that censored observations are representative of all other

observations in the risk group with similar exposure variables. We compared our

risk-stratified imputation to case deletion and bootstrap imputation in a simulated

dataset in which the covariate of interest (study withdrawal) was related to treat-

ment. A motivating example from a recent clinical trial is also presented to demon-

strate the utility of our method.

Results In our simulations, risk-stratified imputation gives estimates of treatment

effect comparable to bootstrap and auxiliary variable imputation while avoiding

inaccuracies of the latter two in estimating the associated variance. Similar results

were obtained in analysis of clinical trial data.

Limitations Risk-stratified imputation has little advantage over other imputation

methods when covariates of interest are not related to treatment. Risk-stratified

imputation is intended for categorical covariates and may be sensitive to the width

of the matching window if continuous covariates are used.

Conclusions The use of the risk-stratified imputation should facilitate the analysis of

many clinical trials, in which one group has a higher withdrawal rate that is related

to treatment. Clinical Trials 2013; 0: 1–10. http://ctj.sagepub.com

Introduction

A central assumption of survival analysis is that cen-
soring is independent of exposure variables

associated with survival, implying that the exposure
variable for individuals who are censored is
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representative of all other individuals in the risk
group [1]. This assumption is not always met in the
analysis of time-to-event randomized clinical trials,
in which censoring is dependent on covariates that
are also associated with survival, such as sympto-
matic status.

Censored data in survival analysis are comparable
to missing (or coarsened) data in other types of ana-
lyses. Multiple imputation is a powerful method for
dealing with missing or coarsened data that are
applicable in a variety of contexts [2]. Taylor et al.
[3] developed a modification of multiple imputation
specific to survival analysis. Under their method,
the follow-up time and outcome (event/non-event
at that follow-up time) for a censored individual is
randomly selected from other individuals in the risk
set at the time of censoring, a form of hot-deck
imputation [4]. Imputation proceeds from the parti-
cipant with the smallest censoring time to the lar-
gest censoring time, so that an observation that is
imputed as censored is not subsequently imputed
again (regardless of whether the selected observation
in the hot-deck process was censored at a later time),
and imputed values are not included in the risk set
for imputation of other censored individuals. Multi-
ple imputation is achieved by repeatedly generating
bootstrap samples from the original dataset, with
each bootstrap sample undergoing the imputation
procedure. The multiple datasets are then combined
using standard formulae. Hsu et al. [5] modified this
approach to include auxiliary variables in the impu-
tation process. Their method focuses on continuous
auxiliary variables, defining two risk scores based on
the relationship of the auxiliary variables to the fail-
ure time and the censoring time. These risk scores
are then used to define a neighborhood around the
individual to be imputed, from which the imputa-
tion values are randomly selected using the method
of Taylor et al. [3]

Multiple imputation also depends critically on
the data coarsening mechanism, which is usually
assumed to be coarsened completely at random
(CCAR) or coarsened at random (CAR) using the ter-
minology of Heitjan and Rubin [6] and Tsiatis [7].
Violations of these assumptions would presumably
lead to biased estimates under multiple imputation,
although it is often difficult to identify such viola-
tions in practice [8,9]. In this article, we describe a
motivating example from the Carotid Revasculariza-
tion Endarterectomy versus Stenting Trial (CREST)
[10], where the withdrawal mechanism was related
to measured exposure variables, corresponding to
the CAR mechanism. In contrast to the approach of
Taylor et al. [3], we distinguish between censored
observations, in which the event does not occur
during the study period (type 1 censoring), and
withdrawals, in which the subject terminates parti-
cipation prior to the end of the study period (type 2

and random censoring). We then consider two fac-
tors as potentially influencing the likelihood of cen-
soring: (1) the factor of interest (i.e., the ‘treatment’)
that is the focus of the randomized trial, and (2) a
‘nuisance’ covariate that is not the focus of the ran-
domized trial, but which may be associated with the
risk of outcome events.

We envision five potential scenarios:

1. Neither differences in outcome nor the risk of
withdrawal was related to treatment or the
covariate.

2. Treatment, but not the covariate, is related to
outcome events, but neither the treatment nor
covariate affects the likelihood of withdrawal.

3. Both treatment and the covariate are related to
outcome events, but the likelihood of withdra-
wal is not related to either treatment or the
covariate.

4. Both treatment and the covariate are related to
the outcome, and withdrawal was related to
treatment but not the covariate.

5. Both the treatment and the covariate are related
to both the outcome and withdrawal.

The first three scenarios correspond to a CCAR
mechanism, while the last two correspond to a CAR
mechanism, so that sensitivity of the methods to
the analytical assumptions can be evaluated. Stan-
dard analytical approaches for survival analysis in
clinical trials assume one of the first three cases, spe-
cifically that censoring is not related to the treat-
ment. The imputation methods such as those of
Taylor et al. [3] are readily applied to the first four
cases. However, the last case was not addressed by
the approach of Taylor, and his proposed bootstrap
imputation may not be suitable. In general, the use
of hot-deck imputation for a large number of indivi-
duals can underestimate the variance, as the range
of sample variability is restricted by the variability
in the replacement set [11]. This underestimation
would be accentuated in a hot-deck procedure that
does not properly account for the effects of the cov-
ariate on the outcome and censoring. Alternatively,
the imputation of a large number of outcomes may
overestimate the variance if the pool from which
the imputed values are drawn is not sufficiently
similar to the individual whose values are being
imputed.

Herein, we describe the properties of a multiple
imputation approach, risk-stratified imputation, that
we demonstrate to have the potential to reduce or
remove the bias arising from withdrawals related to
measured exposure variables, as well as the over- or
underestimation of the variance in other imputation
approaches. This is a specific implementation, focus-
ing on categorical covariates, of the multiple impu-
tation procedures described in the recent National
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Research Council report on missing data [12] applied
to withdrawals in clinical trials. In addition, because
randomization implies equal exposure to the chan-
ging risk of events introduced through changes in
eligibility, the approach can remove the bias intro-
duced by both measured and unmeasured character-
istics of eligibility (i.e., it is not required to identify
symptomatic status as the factor that potentially
changes the risk of events over the course of the
trial). Hence, as shown in later sections, the use of
our approach can potentially correct for biases intro-
duced by desired changes to reduce withdrawals,
and changes in eligibility criteria when the associa-
tion with the risk of events is not fully described,
and thereby reduce or avoid a systematic bias fre-
quently ignored in randomized trials. We illustrate
the properties of the risk-stratified imputation
through a series of simulation studies. These meth-
ods were also applied to the CREST data and demon-
strate that the magnitude of this particular bias in
this particular trial was minimal (perhaps because of
a lack of differences in treatment efficacy).

Methods and simulation studies
Survival model

Let T1, T2, . . . , Tn denote the event times for the n
subjects in the study. In the survival model, an
observation will be considered censored if the event
does not occur during the study period, that is, the
subject completes the study without an event. An
observation will be considered withdrawn if the sub-
ject terminates participation prior to the end of the
study period and prior to the occurrence of an event.
(This is in contrast to many survival analyses, where
withdrawals are counted as part of the censoring
process.) An observation will be considered a failure
if an event occurs prior to the censoring and with-
drawal times. Let C1, C2, . . . , Cn and W1, W2, . . . , Wn

denote the corresponding potential censoring and
withdrawal times, respectively. The observed data
for subject i are Yi =min Ti, Ci, Wið Þ. Thus, the classi-
fication of an individual as failure, withdrawn, or
censored is as in Table 1.

The survival data were generated using a model
with a separate event hazard h(t) and withdrawal

hazard w(t) as a function of time t. The hazard
functions incorporated both a treatment x1 and a
covariate x2 given by the functions c and f as

c x1, x2ð Þ= a0 + a1x1 + a2x2

f x1, x2ð Þ= b0 + b1x1 + b2x2

where a0, a1, and a2 are the coefficients associated
with events, and b0, b1, and b2 are the coefficients
associated with withdrawals. The treatment and
covariate were categorical variables with two levels
(0, 1) and three levels (21, 0, 1), respectively. The
event times and withdrawal times were generated
using exponential hazard functions

h tð Þ= h0 tð Þexp t1c xð Þ½ �

w tð Þ= U 0, t2½ � � exp f tð Þ½ �

The tuning parameters t1 and t2 were chosen so
that about 10%–15% of the subjects would have
failure, about 10% would withdraw, and the remain-
ing 75%–80% would be censored by the end of the
study, where these parameter values were chosen to
provide proportions that are similar to the propor-
tions in our motivating example.

The five scenarios discussed above can be imple-
mented by appropriate choices of the a and b para-
meters, specifically:

1. Both the event hazard and withdrawal hazard
were independent of the treatment and of
the covariate, so that a1 =0, a2 =0, b1 =0, and
b2 =0.

2. The event hazard was dependent on the treat-
ment, while the withdrawal hazard was inde-
pendent of the treatment and the covariate, so
that a1 = 1, a2 = 0, b1 = 0, and b2 =0:

3. The event hazard was dependent on the treat-
ment and the covariate, while the withdrawal
hazard was independent of the treatment and
the covariate, so that a1 =1, a2 =1, b1 =0, and
b2 =0.

4. The event hazard was dependent on the treat-
ment and the covariate, while the withdrawal

Table 1. Classification of individuals within the survival model

Ti�Ci Ti � Ci

Wi.Ti Wi�Ti Wi�Ti Wi.Ti

Wi�Ci Wi.Ci

Event type Failure Withdraw Withdraw Censored Censored
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hazard was dependent on the treatment, so that
a1 =1, a2 =1, b1 =1, and b2 =0.

5. Both the event hazard and the withdrawal
hazard were dependent on the treatment and
the covariate, so that a1 =1, a2 =1, b1 =1, and
b2 =1.

A series of r =10,000 replicates were generated for
each scenario. There were 200 observations (sub-
jects) for each level of the treatment and covariate
for a total sample size of 1200 for each replication.

Imputation

In addition to straightforward analyses of the result-
ing data, three different imputation strategies were
used. The first was the bootstrap imputation
described by Taylor et al. [3], where a bootstrap sam-
ple (of the same size as the original data) was created
by selecting with replacement from observations in
the original simulated data. For each censored sub-
ject (either from withdrawal or lack of an event dur-
ing the study period), a pool of observations was
created consisting of all individuals experiencing
failure or censoring with time greater than the cen-
soring time for the subject to be imputed. A single
subject was randomly selected from the pool, and
the values for the subject to be imputed were then
set to the outcome (observed event versus censored
outcome) and follow-up time (at the time of the
outcome) for the selected subject. In the bootstrap
imputation, bootstrapping was used to introduce
uncertainty to the observed data being employed
for imputation. This differs from the typical applica-
tion of bootstrapping to approximate a distribution
nonparametrically and requires only a small num-
ber of bootstrap samples. For this analysis, the boot-
strapping was performed m =10 times. The second
strategy was the auxiliary variable imputation
described by Hsu et al. [5]. Using a proportional
hazards (PH) model, two risk scores were defined
based on the relationship of the auxiliary variables
to the failure time and the censoring time, respec-
tively. These risk scores are weighted and then used
to define a nearest neighborhood (NN = 10 based
on the original description of the algorithm) around
the individual to be imputed, from which the impu-
tation values are randomly selected using the
method of Taylor et al. [3]. The third strategy was
the risk-stratified imputation, our proposed new
approach. For this approach, a pool of observations
was created consisting of all individuals with the
same treatment and covariate values as the subject
being imputed and experiencing failure or censoring
with an event or censoring time greater than the
withdrawal time for the subject being imputed to
condition on survival up to the time of withdrawal.

A single subject was randomly selected from the
pool, and the values for the subject to be imputed
were then set to the values for the selected subject.
The risk-stratified imputation was performed m =10
times. Hence, one difference between our approach
and that of Taylor is that rather than selecting a ran-
dom person from the treatment group, we select a
random person from the treatment group with a
similar value of the covariate associated with both
outcome and censoring (in the motivating example,
person with the same treatment and symptomatic
status). The bootstrap, auxiliary variable, and risk-
stratified imputation are depicted in Figure 1(a) to
(c) to illustrate these differences.

Analysis

Data were analyzed using a Cox PH model [13] with
the treatment and covariate. Model fitting was per-
formed using the survival package version 2.35 [14]
in the R programming environment version 2.10
[15]. For the three imputation methods, each
imputed dataset was analyzed separately. The m
imputed datasets were then combined using Rubin’s
formulae [16]. For comparison, a fourth analysis was
conducted on the original simulated data by remov-
ing subjects who withdrew (case-wise deletion).

Performance comparison

Performance of the four analytic approaches was
evaluated using the root mean square error (RMSE),
percent coverage for the treatment effect, and the
average length of the 95% confidence interval. The
RMSE is a standardized metric for assessing the per-
formance of an estimate relative to a known value,
computed as

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr
i =1

âi � a1ð Þ2

r

vuuut

where a1 is the true value of the coefficient for treat-
ment effect, and âi is the estimated coefficient on
the ith of r replications. Smaller values of the RMSE
indicate statistics with reduced bias compared to lar-
ger values. A second measure of performance was
the coverage. For each of the r replicates, the mean
and standard error for the estimated âi in the Cox
model were used to construct a 95% confidence
interval across the m imputations using Rubin’s for-
mulae [16]. The percent coverage, which assesses
the accuracy of the variance estimate, was the per-
centage of confidence intervals containing the true
value of a1, computed as
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Figure 1. (Continued)
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Coverage =

Pr
i =1

# CL, i�a1�CU , if g

r

where # is the count of members in the set, and CL, i

and CU , i are the lower and upper boundaries of the
95% confidence interval for a1 respectively on the
ith replicate, so that the coverage should be 95% for
our analyses. Lower coverage would indicate falsely
reduced variance estimates, resulting in an excessive
(inappropriate) number of positive test results, while
higher coverage would indicate overestimation of
the variance, resulting in a loss of power to detect
significant treatment differences. The average length
of the confidence interval was calculated as

Mean CI Interval=

Pr
i =1

CU , i � CL, ij j

r

with smaller values for the average interval indicating
tighter confidence bounds and increased statistical
power to detect significant treatment differences.

Results

Results for each of the four analytic strategies (case-
wise deletion, Taylor’s bootstrap imputation, Hsu’s
auxiliary variable imputation, and our proposed risk-
stratified imputation) for each of the five simulation
scenarios are given in Table 2. For the first three sce-
narios (where the assumptions of survival analysis
are uniformly met), the rate of withdrawal did not
depend on the treatment or the covariate, corre-
sponding to a CCAR pattern of withdrawals. As
expected, all four analytic strategies gave accurate
estimates of the treatment effect. When the rate of
withdrawal depended on the treatment or on the
treatment and the covariate, analysis using only the
complete data (after removing withdrawals) led to
bias in estimation of the treatment effect, which
would also be expected. All three imputation strate-
gies led to accurate estimates of the treatment effect,
although the RMSE statistic indicates that the risk-
stratified imputation slightly outperformed the boot-
strap and auxiliary variable imputation in accuracy.
Of concern, the bootstrap imputation consistently

Figure 1. (a) Graphical flowchart of the bootstrap imputation, illustrating the imputation of all censored observations (including with-

drawals) and lack of stratification. (b) Graphical flowchart of the auxiliary variable imputation, illustrating the imputation of all censored
observations (including withdrawals) and lack of stratification. (c) Graphical flowchart of the risk-stratified imputation, illustrating the
imputation of only withdrawals after stratification based on covariate(s) of interest.
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had larger than expected coverage and average confi-
dence interval length across all five scenarios, imply-
ing that the Taylor’s approach appears to be
uniformly liberal in testing. This appears to be due to
a combination of greater error in estimating the
mean and overestimation of the variance using this
method. The performance of auxiliary variable impu-
tation was more complex, with larger than expected
coverage in the first two scenarios, but smaller than
expected coverage for the last two scenarios where
withdrawal was related to treatment and the covari-
ate. This appears to be due to greater error in estimat-
ing the mean, together with overestimation of the
variance in the first two scenarios and excessive
reduction in variance in the last two scenarios.

Application of method to true CREST
data

We applied the multiple imputation approach devel-
oped herein to the CREST, which compared carotid

artery stenting (CAS) to carotid endarterectomy
(CEA) to reduce cardiovascular outcomes in 2502
patients with high-grade carotid stenosis [10]. In this
study, the proportion of patients withdrawing was
related to treatment (p = 0.0019), with 68 (5.4%) of
the 1262 patients randomized to receive stenting
(CAS) withdrawing consent or being lost to follow-
up, compared to 106 (8.6%) of the 1240 assigned to
CEA doing so [17]. Enrollment was initially limited
to symptomatic patients; after approximately 30%
of the patients had been recruited, eligibility was
broadened to enrollment of asymptomatic patients
to reduce withdrawals. This implied that asympto-
matic patients were recruited disproportionately
during the period in which withdrawals from the
study had been minimized, creating a covariate
(symptomatic vs asymptomatic status) that was asso-
ciated with a lower (p = 0.0043) proportion of with-
drawal for the asymptomatic patients (5.4%) than
for the symptomatic patients (8.3%). The combined
effect of a higher withdrawal rate in the CEA
treatment group and a higher withdrawal of

Table 2. Estimated values for the treatment effect (a1) and performance measures under each of the five simulation scenarios

Complete

data

Risk-

stratified

imputation

Bootstrap

imputation

(Taylor et al. [3])

Auxiliary

variable

imputation

(Hsu et al. [5])

Scenario 1:

a0 =1, a1 =0, a2 =0;

b0 =1, b1 =0, b2 =0

Failure: 19%;

withdraw: 7%;

censored: 75%

Mean

(SE)

0.00042

(0.0949)

0.00049

(0.0950)

0.00057

(0.1007)

0.00074

(0.0921)

RMSE 0.0949 0.0950 0.1006 0.0921

Coverage 95.0 94.9 99.2 98.8

Mean CI length 0.3692 0.3696 0.5746 0.4954

Scenario 2:

a0 =0, a1 =1, a2 =0;

b0 =1, b1 =0, b2 =0

Failure: 13%;

withdraw: 7%;

censored: 80%

Mean

(SE)

1.0039

(0.0013)

1.0058

(0.0013)

1.0098

(0.0013)

0.9534

(0.0013)

RMSE 0.1261 0.1265 0.1336 0.1357

Coverage 95.0 94.9 99.2 97.6

Mean CI length 0.4928 0.4934 0.7565 0.6671

Scenario 3:

a0 =0, a1 =1, a2 =1;

b0 =1, b1 =0, b2 =0

Failure: 17%;

withdraw: 7%;

censored: 76%

Mean

(SE)

0.9983

(0.0011)

1.0019

(0.0011)

1.0056

(0.0012)

0.9081

(0.0011)

RMSE 0.1102 0.1103 0.1180 0.1416

Coverage 95.1 95.2 99.3 94.7

Mean CI length 0.4344 0.4349 0.6780 0.5811

Scenario 4:

a0 =0, a1 =1, a2 =1;

b0 =0, b1 =1, b2 =0

Failure: 16%;

withdraw: 13%;

censored: 71%

Mean

(SE)

0.9230

(0.00114)

0.9968

(0.00114)

0.9335

(0.00122)

0.8532

(0.00113)

RMSE 0.1373 0.1143 0.1386 0.1850

Coverage 88.8 94.5 98.2 88.2

Mean CI length 0.4451 0.4449 0.6916 0.6050

Scenario 5:

a0 =0, a1 =1, a2 =1;

b0 =0, b1 =1, b2 =1

Failure: 16%;

withdraw: 18%;

censored: 66%

Mean

(SE)

0.9383

(0.00114)

0.9912

(0.00115)

0.9522

(0.00122)

0.8757

(0.00114)

RMSE 0.1293 0.1150 0.1306 0.1683

Coverage 90.8 94.9 98.5 91.5

Mean CI length 0.4419 0.4412 0.6849 0.6065

RMSE: root mean square error; SE: standard error; CI: confidence interval.

a0, a1, and a2 represent the intercept (base rate), treatment effect, and nuisance covariate effect on the rate of events, respectively, while b0, b1, and b2

represent the corresponding effects on the rate of withdrawals.
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symptomatic patients implies that a higher propor-
tion of high-risk patients have been removed from
the CEA group relative to the CAS group, thereby
systematically biasing the study to the benefit of the
CEA group. Under the alternative hypothesis that
treatment affected outcome, this would be similar to
the fifth scenario in our simulations. In the original
analysis of the CREST dataset, the Kaplan–Meier esti-
mate of the hazard ratio was not significantly differ-
ent between the two groups (hazard ratio for
stenting versus endarterectomy = 1.11; 95% confi-
dence interval = 0.81–1.51; p = 0.51). Reanalysis of
the CREST data using risk-stratified imputation with
symptomatic status as the covariate for stratification
gave an estimated hazard ratio associated with treat-
ment of 1.10 (95% confidence limits about this esti-
mated hazard were 0.54–2.23), while bootstrap
imputation gave a slightly higher hazard ratio of
1.16 (and wider 95% confidence limits of 0.49–
2.77). As such, while withdrawals related to sympto-
matic status could potentially introduce bias, these
findings support that this is not the case for the
CREST study. In this motivating example, the differ-
ences in treatment efficacy were not apparent, and
this may contribute to the lack of differences in
results from the alternative approaches. However,
this lack of difference provided support for the claim
made in the primary study paper that the treatments
did not differ.

Discussion

In clinical trials (and other longitudinal studies), a
substantial number of subjects may withdraw prior
to the conclusion of the study. Such subjects must
be properly dealt with in the analytic phase to pre-
vent biased estimates of the treatment effect. In
addition, issue could be raised that not including
withdrawals from trials in the analysis is a violation
of the intention to treat principle (where all rando-
mized patients should be included in the analysis in
their assigned treatment group). We have raised the
issue of changing enrollment criteria specifically in
the CREST, but would suggest most trials have poli-
cies that could naturally lead to changing withdra-
wal rates over time. It is common for trials to strive
to improve methods to reduce withdrawals; as such,
as a study progresses, a goal is to constantly work to
have the withdrawal (censoring) rates change to
lower levels. The alternative, not constantly striving
to reduce the proportion of patients withdrawing
from a study, is simply not consistent with good
trial conduct. However, maintaining a constant
high withdrawal rate across the duration of the
study would avoid this issue addressed herein. In
addition, it is common (as in the CREST) that elig-
ibility criteria will change, reflecting experience in

recruitment as the trial progresses. In the CREST, the
broadened eligibility criteria were important to
ensure the generalizability of the results (approxi-
mately 80% of revascularizations performed in the
United States are done in asymptomatic patients,
who were initially excluded from our trial) and to
assist in meeting recruitment goals (recruitment was
lagging substantially when eligibility was broadened
to include asymptomatic patients). To the extent
that the eligibility criteria are associated with event
rates, the combination of the successful changes
during the conduct of the trial to reduce withdra-
wals and changes also during the conduct of the
trial in eligibility criteria holds the possibility to bias
many randomized trials.

In survival analysis, withdrawals are often viewed
as a form of censoring. If the withdrawal mechan-
ism is not related to survival, the usual methods
may be applied to the data, but withdrawal that is
dependent on covariates related to survival requires
adjustments to reduce bias due to differential cen-
soring among groups. Robins and Finkelstein [18]
proposed a method for censoring that depends on
covariates related to survival, the inverse probability
of censoring weighted (IPCW) method, in which
each observation is weighted by the inverse of the
individual being censored at time t. Weights are
constructed using a PH model of the relationship
between censoring and auxiliary variables and
appear more sensitive to misspecification of the cen-
soring model than other methods. An alternative
approach is that of multiple imputation, which is
commonly used in fields outside of survival analy-
sis. Taylor et al. [3] proposed a bootstrap imputation
procedure to replace censored and withdrawn obser-
vations in survival analysis. For this and other impu-
tation methods, it should not be assumed that
subjects drop out for reasons unrelated to the treat-
ment; we have provided the example of the CREST
study to demonstrate how this assumption may be
violated. We also describe a modified imputation
procedure, the risk-stratified imputation, to address
the problem that arises in studies where withdrawal
depends on the treatment.

Our imputation procedure extends the approach
of Taylor et al. [3] in two critical ways:

1. The bootstrap imputation imputes values for all
censored patients, corresponding to both cen-
sored and withdrawal groups in our classifica-
tion scheme. In contrast, the risk-stratified
imputation imputes values only for the withdra-
wal group; there is no imputation for those in
the censored group. The former imputes a sub-
stantial portion of the individuals, requiring a
large pool from which imputed values may be
drawn. An insufficiently large pool could falsely
reduce the variance estimates and give an
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inflated amount of power. The latter will impute
only values for subjects who withdraw but not
for subjects who are censored. This greatly
increases the pool of potential subjects from
which the imputed value may be drawn and, as
seen in our simulations, would potentially avoid
the false reduction in variance that can occur
with the bootstrap imputation. This modifica-
tion also makes the bootstrapping step of Taylor
et al. [3] unnecessary.

2. The bootstrap imputation imputes by randomly
selecting a subject from the study, who is still
active at the time of censoring. Our procedure
stratifies the risk of the subjects as a function of
the covariate and imputes by randomly selecting
a subject with a similar value of the covariate. If
the covariate is related to the risk of events, this
procedure imputes data for the withdrawn per-
son using a person who is at similar risk, so that
we are using a risk-stratified random person. In
addition, by stratifying based on treatment, the
risk-stratified imputation only selects from a
pool of individuals within the same treatment
group to estimate the survival time if a subject
had not withdrawn but without consideration
of whether the individual remained on his or
her assigned treatment. In contrast, the boot-
strap imputation selects from a pool of indivi-
duals at risk at the time a subject withdrew,
which may include individuals from different
treatment groups. Although the former pool
would naturally seem to be more representative
of the withdrawn subject than the latter pool,
there is no empirical data to justify one over the
other.

Hsu et al. [5] proposed modifications to the
approach of Taylor et al. [3] to include auxiliary vari-
ables in the imputation process. Although catego-
rical variables can be used, their method primarily
focuses on continuous auxiliary variables. This dif-
fers from our risk-stratified imputation focused on
categorical auxiliary variables, in which the pool
of potential values consists of all individuals
within the stratum. Furthermore, Hsu et al. [5] per-
form imputation for all censored patients, while
the risk-stratified imputation only imputes values
for the withdrawal group. Wang et al. [19] propose
an alternative approach for hot-deck imputation
using predictive mean matching (PMM) to include
covariates in the imputation process, albeit in the
context of imputing recurrent unobserved events
rather than a single terminal event. As with Hsu
et al. [5], this method focuses primarily on contin-
uous covariates and performs imputation for all
missing events.

As seen in Table 2, all three methods for dealing
with coarsened data perform well when the

withdrawal is unrelated to the treatment. In such cir-
cumstances, it is well known that analysis of com-
plete cases is sufficient for obtaining unbiased
estimates of the treatment effect [18]. Analysis of
complete cases is also well known to be inappropri-
ate when withdrawal is related to treatment or to a
related covariate [20]. However, the appropriateness
of various imputation methods is unclear. In our
simulations, all three imputation methods lead to
unbiased estimates of the treatment effect when the
withdrawal depends on treatment. The RMSE statis-
tic favors estimates from the risk-stratified imputa-
tion over the bootstrap imputation and auxiliary
variable imputation, although the difference
between the first two is not large. However, the
bootstrap imputation and auxiliary variable imputa-
tion also lead to problems in estimating the var-
iance, reflected by excessively large or excessively
small coverage. In the former case, the imputation
of a large number of individuals (particularly with-
out stratification) may lead to pools for imputation
containing individuals sufficiently dissimilar to the
one being imputed to affect results. In the latter case,
the imputation of a large number of individuals in
these procedures may falsely reduce the variance of
the sample, and the bootstrapping step may not be
sufficient to address this problem. Although the lat-
ter was only observed with auxiliary variable impu-
tation in our simulations, it has been reported with
bootstrap imputation with a censoring rate lower
than we used [3]. In contrast, our risk-stratified
imputation imputes only the much smaller number
of individuals who withdrew, so that the variance
and coverage remain appropriate. The use of risk
stratification in selecting the imputed values
addresses the requirement for survival analysis that
the individuals who withdrew are representative of
all other individuals in the risk group with similar
exposure variables. However, as with other uses of
stratification, our risk-stratified imputation is appro-
priate for a small number of categorical covariates;
use of high-dimensional covariates would naturally
lead to excessively small pools for imputation and
corresponding increase in the variance. Conversely,
use of a small number of covariates could potentially
lead to biased estimates due to large pools for impu-
tation that contain individuals dissimilar to the sub-
ject whose values are to be imputed, but the low
values of the RMSE and appropriate coverage in our
simulations suggest this effect is minimal. Reanalysis
of the CREST data shows that both the bootstrap
imputation and the risk-stratified imputation give
similar hazard ratio estimates as the original analy-
sis. It is likely that the imputation techniques do not
show a strong advantage over the original analytic
method due to the lack of differences in efficacy
between the two treatments. This is similar to Hsu
et al. [5] who found no difference between treatment
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and placebo in AIDS data from the AIDS Clinical
Trial Group–019 (ACTG-019) clinical trial using mul-
tiple imputation. However, as with our simulations,
the bootstrap imputation leads to wider confidence
limits than the risk-stratified imputation in the
CREST data. This provides evidence favoring the
risk-stratified imputation in a real dataset and
further strengthens the conclusion drawn from our
simulation studies.

Conclusion

We propose a risk-stratified imputation procedure
for addressing the problem of nonrandom withdra-
wals in the context of survival analysis. This
approach eliminates the bias present using analyses
that assume random withdrawal, while avoiding the
over- or underestimation of the variance that can
occur with bootstrap and auxiliary variable imputa-
tion. The risk-stratified imputation will facilitate the
analysis of many clinical trials involving time-to-
event data, in which one group experiences a higher
withdrawal rate and the withdrawal rate is related to
treatment.
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