
Proceedings of the Workshop on Agent Based Information Systems at Autonomous Agent Conference
(May 1-3, 1999), Seattle, WA.

AN AGENT-BASED APPROACH TO COLLABORATIVE SCHEMA DESIGN

Benjamin Kok Swee Khoo (khoo@gl.umbc.edu), University of Maryland, Baltimore County
Sriram Chandramouli (schandramouli@hns.com), Hughes Network Systems, Maryland

Abstract

Data modeling is a necessary step in the process of designing an efficient database. It is
enhanced if capabilities are provided for collaboration between different designers
working on different platforms at different locations but working on the same database
design. This paper describes a model of such a collaboration system that was developed
using an agent-based architecture communicating through the Internet. The agent
communication was developed using KQML in Java.

INTRODUCTION

Data modeling is a crucial step towards incorporating successful databases in an organization.
The design, operational behavior, and use of a database are affected by the meaning of the
information it manages. The cognitive capability of the human mind is rather complex; it has the
capability to visualize a problem domain in a variety of perspectives. It would be interesting to
conceive of an application, by which the best thoughts of human minds can be pooled together
to create a conceptual schema design for a database. Thus, the database design would be
enhanced if capabilities were provided for collaboration between different designers working on
different platforms at different locations and even at different times but working on the same
database design. This paper describes an agent-based approach, using an agent-based
architecture communicating through the Internet, which promotes the collaborative conceptual
schema design. The agent communication was to be developed using KQML (Knowledge
Query Manipulation Language) in Java. The prototype of the system developed captures only
the static properties of a system. The dynamic aspects of the operations are resolved by
considering certain additional aspects that are not exactly database objects, but are associated
with a database occurrence which changes as a result of an operation. These are
implementation issues that must be taken care by a database designer during the
implementation.

SYSTEM OVERVIEW

The intent of the collaborative schema design project is to enable different database
designers working on different platforms at different locations, and even at different times to
work on the same database design. This feature is achieved through an agent communication
paradigm that allows agents to broadcast their available services to prospective consumers.
The clients are provided with a GUI stub that enables them to type in text commands for
creating entities and the relationships between them. The longer term plan is to provide the
clients with a front-end Java enhanced graphical tool (to replace the GUI stub) that consists of a
workspace and a palette that can be used for creating various entities, and the relationships
between them.

Every client expresses his interest to messages broadcasted by registering with the
same group identity as the other design team members or clients. Messages can be shared
between clients, only, when the clients share the same group identity. When a client opens a
socket connection and registers with the MultiServer, the MultiServer creates a client identity
and an agent that speaks Knowledge Query Manipulation Language (KQML) is spawned off for
each client (for multi-clients, multi-threads of agents will be spawned). This agent will act as a
unique representative for that particular client. The communication henceforth will take place



Proceedings of the Workshop on Agent Based Information Systems at Autonomous Agent Conference
(May 1-3, 1999), Seattle, WA.

between the different agents that act as different client representatives. Each agent spools its
client request (typically SQL statements) to the Agent Server. The Agent Server invokes the
SQL statements on the Postgres95 database, thereby storing the entities, relationships and
attributes created or changed. On completion of the request, the Agent Server will return the
words "Success" or "Failure" to the originating agent. The originating agent then forwards the
packet to the other agents, which will in turn send it to their respective clients. In this way, any
changes to the database design by any client is "broadcast" to all other clients working on the
same database design. There will be some basic rules to control modification of the database
design.

These database integrity checks are enforced by the agent server (for example, clients
cannot create entities that already exist, and relationships cannot be defined between the same
set of entities, if a relationship already exists between them, etc). Since the collaborative
schema design allows entities and relationships to be shared across multiple clients, only the
client that creates an entity or a relationship has the rights to modify or delete them. In this way,
the notion of ownership has been enforced on the object created by the clients. The software
also ensures that entities are not deleted before deleting the relationships between them. It also
prevents entities to be deleted before deleting the attributes that may be contained within the
entity.

An agent server has an up-to-date information regarding the unified schema different
users attempt to model. It is imperative that the agent server enforces the consistency checks
between the different objects (Entities or Relationships) a client creates. When the agent
representatives share information with the agent server, the agent server caches connection
parameters from the agent representatives. Thus, an agent server also acts as an agent name
server, as it transparently locates the agent representative to which a packet must be routed. In
this way, the propagation of the packets is opaque to the clients participating in the unified
schema design.

An interesting scenario arises when a client goes temporarily out-of-service or de-
registers himself from the agent server. The client will no longer receive any packet broadcasted
by the agent server. But, when the client process starts up again, an agent that acts as a unique
representative to the client is spawned off, where it queries the agent server frequently to
extract the up-to-date information. The details of such a mechanism are discussed in a greater
detail in the subsequent sections.  

SYSTEM IMPLEMENTATION

The client was designed to be proactive, by frequently querying the agent server for new
packets. In this way, the client is able to obtain the information that is propagated by other
clients.  This functionality is achieved in the following way: every client issues a select request to
the agent server for querying new packets generated by other clients. Such requests can be
issued in a separate thread within the client process. The requests are issued once in every
time period, t. This involves running an event loop within a separate thread, that queries for new
packets. Since every client process runs a separate thread that issues a select request, multiple
threads from multiple clients have to be synchronized to prevent inconsistency in the resources
they try to access. The thread-locking feature in JAVA that allows event synchronization created
by different threads is utilized for this purpose.

Looking at the low-level design of the project, there are various packets generated by
the clients. These packets are transmitted to the agent server through an agent spawned off by
every client process (through the MultiServer), that acts as a unique representative of the client.
We identified nine different packets that capture the entire functionality needed for the



Proceedings of the Workshop on Agent Based Information Systems at Autonomous Agent Conference
(May 1-3, 1999), Seattle, WA.

conceptual schema design.

WORK COMPLETED AND FUTURE SCOPE

The entire communication aspect of the project that promotes group schema design has
been implemented. The software tools that were used are the JAVA Development Kit 1.1,
JACKAL, a JAVA API for creating agents that speak KQML, and a JAVA API for interfacing with
the Postgres95 database. Currently, GUI stubs act as substitutes to a fully functional GUI
interface, which is to be developed in the future. The GUI front end is going to be a graphical
module that provides clients with a workspace for modeling the conceptual schema design for
the database. Once the properties of the objects (Entities/Relationships) have been defined for
the object, the packets, as described before, can be generated and streamed across to the
agent server through the different agent representatives. The GUI module also runs a separate
thread that issues select requests frequently to query for packets generated by other clients.
Once the GUI front end receives a packet, it can translate a packet to a graphical object and
displays them on the client screen.

REFERENCES

COHEN, P and LEVESQUE, H. Communicative Actions for Artificial Agents. Computer science
department, Oregon Graduate Institute of Science and Technology, Portland, OR, 1996.

FININ, T, LABROU, Y and Mayfield, J. KQML as an agent communication language. Computer
science department, UMBC, MD, 1994.

LABROU, Y and FININ, T. Semantics for an Agent Communication Language. Computer
science department, UMBC, MD, 1996. 

NUNAMAKER, J.F, DENNIS, A.R, VALACICH, J.S., VOGEL, D.R. and GEORGE, J.F.
Electronic meeting systems to support group work. Communications of ACM, vol. 34, no.7,
1991, pp 40-61.

RAM, S and RAMESH, V. Collaborative conceptual schema design: A process model and
prototype system. Department of Information Systems, University of Arizona, Tucson, 1995, pp
17-20.


