Learning Outcomes

• After learning this chapter, you should be able to
 ▪ Understand each technique (why we need it, how it works)
 ▪ Understand differences between similar techniques
Distributed Systems Basics

• Caching
• Load-balancing
• Distributed naming
• Database replication
• Processes and threads
• Push technology
• Microservice
• Server virtualization (see Chapter 13)
Caching

• Caching is an optimization for distributed systems that reduces latency and decreases network traffic

• There are two categories of this kind of network-based cache:
 ▪ Web caching
 ▪ Application caching
Web Caching

• There are four locations for web cache:
 • Web browser cache (see figure)
 • Forward proxy cache
 • Open proxy cache
 • Reverse proxy cache

• A proxy (server) acts as an intermediary for requests from clients seeking resources from other servers
Forward Proxy Cache

• A forward proxy cache is located at the organization (as at UMBC) or at the internet service provider (ISP)

• Two approaches used by forward proxy cache
 ▪ Configure the browser
 ▪ Interception caching
Reverse Proxy Cache

- A reverse proxy cache is on the internal network of the server
 - Can reduce load on its origin servers
 - Can distribute the load from incoming requests to several servers (see load-balancing)
Cache Info in HTTP Response Headers

• Date: response time
• Cache-Control: directives that MUST be obeyed
• Expires: how long the cache should be kept before the cache refreshes
• Last-Modified
• ETag (Entity Tags): a short unique identifier that the server generates for each object such as a web page
Content Delivery Network (CDN)

- This improves access to data by locating content in various places on the Internet in order to get it closer to clients
 - Example: Netflix
Application Caching

• Application caching is caching that is managed by the application itself to improve performance rather than the web and Internet infrastructure.
Load-balancing

• Load-balancing is a technique to make many servers appear as one server to clients and thereby getting performance increase

• Three major methods of load balancing
 ▪ Round-robin Domain Name System (RRDNS)
 ▪ Load-balancing switches
 ▪ Application servers
Round-Robin Domain Name System (RRDNS)

- RRDNS is a low cost (in fact, free!), low performance way to load-balance
- Multiple IP addresses and servers for the same domain name
 - A new request uses the next IP address, until it wraps around to the first IP address again
Load-Balancing Switches

• Load-balancing switches are the highest performance and most common method
Application Servers

- Application server load balancing approaches use the server to control the load-balancing.
Distributed Naming

- There are two major types of distributed naming systems:
 - Structured naming (NFS, AFS, DNS)
 - Attribute-based naming
Network File System (NFS)

• A network file system protocol originally developed by Sun Microsystems in 1984, allowing a user on a client computer to access files over a network in a manner similar to how local storage is accessed

• AFS is a more modern version
 ▪ We use it at UMBC

<table>
<thead>
<tr>
<th>Layer</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>application</td>
<td>NFS</td>
</tr>
<tr>
<td>presentation</td>
<td>XDR</td>
</tr>
<tr>
<td>session</td>
<td>RPC</td>
</tr>
<tr>
<td>transport</td>
<td>UDP/TCP</td>
</tr>
<tr>
<td>network</td>
<td>IP</td>
</tr>
<tr>
<td>data link</td>
<td></td>
</tr>
<tr>
<td>physical</td>
<td>network interface</td>
</tr>
</tbody>
</table>
Domain Name System (DNS)

- It is the most widely used distributed naming system since it is used for looking up the addresses of hosts on the Internet
- Two roles
 - Server: respond to requests to convert names to IP addresses or the reverse
 - Client (resolver): ask other name servers to convert names to IP addresses
- Two optimizations: caching and replication
- Two resolver modes: recursive and iterative
Attribute-based Naming

• Attribute-based naming is known as directory services
• Allows searches by attributes
 - ldap[s]://<hostname>[:<port>]/<base_dn>?<attributes>?<scope>?<filter>
• Implementations/standards
 - X.500
 - Lightweight Directory Access Protocol (LDAP)
 - Active Directory

X.500 demo
Replication

• General optimization on any network for scalability and fault-tolerance
 • making copies of information on different nodes on a network
 • having consistency mechanism between the replicas

• Eventual consistency
Processes and Threads

- Thread is often a component within a process
- Multiple threads can exist within one process, and share resources such as memory
- Benefits of Threads:
 - Less time to create a new thread
 - Less time to terminate a thread
 - Less time to switch between two threads within the same process
 - Less communication overheads
Processes and Threads (2)
Benefits of Multithreading

• Improve application responsiveness
 ▪ The user of a multithreaded GUI does not have to wait for one activity to complete before starting another.

• Use multiprocessors more efficiently
 ▪ Numerical algorithms and applications with a high degree of parallelism, such as matrix multiplications, can run much faster when implemented with threads on a multiprocessor.

• Improve program structure
 ▪ Many programs are more efficiently structured as multiple independent or semi-independent units of execution instead of as a single, monolithic thread.

• Use fewer system resources
 ▪ Each process has a full address space and operating systems state.
 ▪ The inherent separation between processes can require a major effort by the programmer to communicate between the threads in different processes, or to synchronize their actions.
Asynchronous Event Loop

• Web server normally uses multi-threading for different requests, which has one problem
 ▪ It creates a new thread for each synchronous request is that it is very memory intensive and Disk I/O (input/output) bound.
 ▪ Each thread cannot respond to client until the data is read from disk.

• Asynchronous event loop is a new model to deal with the problem
 ▪ These servers run as a single threaded process asynchronously.
 ▪ The server just runs an event loop that gets requests and passes them on to other processes.
 ▪ A callback mechanism informs the server process when data is ready.

• Node.js is an open-source runtime environment based on this model
Push Technology

- Push technology, or server push: a style of Internet-based communication where the request for a given transaction is initiated by the publisher or server.
- Pull technology: the request for information transmission is initiated by the receiver/client.
- (short) polling: the client periodically (every few seconds) makes a request to check for new data.
- WebSockets provides for a bi-directional, full-duplex communications channel over a TCP socket.
Microservice

• A system design pattern that follows Service-Oriented Architecture.

• Compared to monolithic applications where different functionalities are combined into a single program, microservice applications are easier to design, implement, deploy and maintain.

From https://martinfowler.com/articles/microservices.html