
IS 651: Distributed Systems
Chapter 2: The Evolution of

Distributed Systems

Jianwu Wang
Spring 2021

Notes
• Please use Piazza, not email, for questions

§ You are very welcome to reply others’ questions
§ You can have public/private posts
§ You can have pictures in your posts
§ Do not ask how to do the exercise/homework, ask clarification questions
§ Do not share your solutions with others
§ Show courtesy and update whether the help you got works

• Lecture videos will be on blackboard (Course Videos) once they are available

• Assignment presentation: To show diverse solutions, members in the same team should avoid
presenting the same assignment

• All homework/exercises are due on Thursday
• Course website is https://userpages.umbc.edu/~jianwu/is651/651.syll.s21.html, and reference

page is https://userpages.umbc.edu/~jianwu/is651/651.ref.s21.html

IS 651: Distributed Systems 2

https://userpages.umbc.edu/~jianwu/is651/651.syll.s21.html
https://userpages.umbc.edu/~jianwu/is651/651.ref.s21.html

Learning Outcomes

•After learning chapter 2, you should be able to
§ Understand the different generations of distributed systems and

the reason for the evolution
§ Understand new terms from the chapter: middleware, remote

procedure call (RPC), message-oriented, Transaction, etc.
§ Write XML documents and validate them using DTD

IS 651: Distributed Systems 3

Basic Timeline of Distributed System
Evolution

IS 651: Distributed Systems 4

Mainframe (1960s)

IS 651: Distributed Systems 5

Punch Card

A typical mainframe architecture

Client/Server (1970s)

• Minicomputers: smaller computers (not Personal Computer yet)
• Ethernet: form local-area networking (LAN)
• X.25: wide-area networking (WAN) service
• Client server architecture

§ A client is a requestor process and a server is a responder process
§ One machine could be both client and server

• Beginnings of the Internet
§ ARPANET
§ TCP/IP stack

IS 651: Distributed Systems 6

2 and 3-tier Systems (1980s)

IS 651: Distributed Systems 7

• Personal Computer
• NetWare file servers
• Network file system (NFS)
• Remote procedure call (RPC)
• 3-tier system: with an

architectural middle tier, called
the application server, and
associated middleware
• Middleware

A 2-tier system

Middleware

• Middleware is the software layer that
lies between the operating system and
the applications on each side of a
distributed computer network
• Middleware offers general services that

can be used by many applications
§ Remote procedural call (RPC)
§ Distributed cache
§ Message queue

• Major types of middleware
§ Remote procedural call middleware
§ Message-oriented middleware

IS 651: Distributed Systems 8

Remote Procedure Call (RPC) Middleware

IS 651: Distributed Systems 9

• The application calls the remote
procedure locally at the stub
• The stub intercepts calls that are for

remote servers
§ Marshalling: pack the parameters into a

message
§ Make a system call to send the message

• The RPC Runtime handles message
sending
• The interface definition language (IDL)

handles message translation
• RPC hides heterogeneity among the

computers and handles the
communication across network

Messaging Modes of Communication

• Synchronous (blocking)
§ RPC protocol is synchronous
§ When a client makes a remote

call, the calling process blocks
or waits until it gets a reply

• Asynchronous
§ The calling process just goes

back to processing and is
interrupted with a callback
message when it does get the
response

§ Message-oriented protocol
supports it

IS 651: Distributed Systems 10

communication from client to server
(for both synchronous and asynchronous)

Distributed File Systems

• A type of RPC middleware
• Allows users to mount

directories from remote
computers into their own
local directory, so they
appear as local
• NFS: network file system
• XDR: external data

representation

IS 651: Distributed Systems 11

NFS distributed file system protocol stack

Transaction Middleware

• A database RPC middleware
uses an explicit 3-tier
architecture
• Transaction processing

monitor (TPM) at
middleware tier

IS 651: Distributed Systems 12

Tier 1 Tier 2 Tier 3

Transactions
• All the participating operations on (distributed) resources should either

succeed or fail and recover together
• 2-Phase Commit

§ commit-request phase: TPM request all the servers to commit and wait
responses

§ commit phase: TPM decides either commit or abort based on responses
• A transaction is a unit of work with the following ACID properties

§ ATOMICITY: A transaction should be done or undone completely and
unambiguously

§ CONSISTENCY: A transaction should transform the system from one consistent
state to another consistent state

§ ISOLATION: Each transaction should appear to execute independently of other
transactions that may be executing concurrently in the same environment

§ DURABILITY: The effects of a completed transaction should always be persistent

IS 651: Distributed Systems 13

Object-Oriented RPC Middleware

• RPC-based distributed systems based on object-oriented
programming principles
• Two main technologies
• Common Object Request Broker Architecture (CORBA): a standard designed

to facilitate the communication of systems that are deployed on diverse
platforms
• Distributed Component Object Model (DCOM): a proprietary Microsoft

technology for software distributed across several networked computers to
communicate with each other

IS 651: Distributed Systems 14

CORBA

• Skeleton: stub for server object
• Object request broker (ORB)

§ Mediates a method call from one
object to another local/remote object

• Internet inter-ORB protocol (IIOP)
§ Allows ORBs from different vendors to

communicate over the Internet

• The client cannot tell whether the
target object it communicates with
is local or remote

IS 651: Distributed Systems 15

common object request broker architecture (CORBA)

Message-Oriented Middleware (MOM)

• Point-to-point messaging (PTP): 1 to 1
§ Messages are sent to a queue, rather than directly to the intended receiver

• Publish/Subscribe messaging (pub/sub): M to N
• MOM is based on RPC

• MOM uses queues to give asynchronous communication from the viewpoint of the
sender and receiver

IS 651: Distributed Systems 16

Message Queues (MQ).

Point-to-point Messaging (P2P) Example

• MQSeries shows how P2P
architecture and
asynchronous
communication are
achieved using RPC
protocols
• Message channel agent

(MCA): controls message
sending and receiving

IS 651: Distributed Systems 17

Pub/Sub

• The Pub/Sub model is an
excellent message delivery
model appropriate for
multiple senders and
multiple recipients
§ Each publisher can send out

messages for multiple topics
§ Each subscriber can decide

which topics he/she is
interested

IS 651: Distributed Systems 18

Database Access via ODBC

• It shows a client-side type of
middleware
• Open Database Connectivity

(ODBC)
§ A standard programming language

middleware API for accessing
database management systems

§ The same client application uses
the different ODBC drivers to
access different types of databases

• Java Database Connectivity
(JDBC): an API for Java

IS 651: Distributed Systems 19

N-tier Systems (1990s)

• N-tier systems are not a different approach than 3-tier systems, they
are just an elaboration of the same pattern
• Web server: serves content to the web using http protocol
• Application server: hosts and exposes business logic and processes

IS 651: Distributed Systems 20

LAMP Web Scripting with N-tier Systems

• L – the operating system. L stands for Linux as the most common one, but
any operating system can be used such as Windows.
• A – the web sever. A stands for Apache HTTP Server, as the most popular

open source web server, but any web server may be used.
• M – the database. M stands for MySql as a popular open-source

relational database, but any database may be used.
• P – the scripting language. P originally stood for Perl which is a popular

scripting language and oddly enough, many scripting languages begin
with P such as Python and PHP.
§ Any scripting language may be used, however, such as Ruby and JavaScript.
§ Scripting languages are characterized as interpreted and dynamically typed.

IS 651: Distributed Systems 21

MEAN Web Scripting with N-tier Systems

• M – MongoDB, a NoSQL database
• E – Express.js, a web application framework that runs on Node.js
• A – Angular, a JavaScript MVC (model, view, control) framework that

runs in browser JavaScript engines
• N – Node.js, an execution environment for event-driven server-side

and networking applications
• MEAN applications can be written in one language, namely

JavaScript, for both server-side and client-side execution
environments.
§ An open source project by IS students:

https://github.com/rogueriderhood/mean-project/

IS 651: Distributed Systems 22

https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/Express.js
https://en.wikipedia.org/wiki/Web_application_framework
https://en.wikipedia.org/wiki/AngularJS
https://en.wikipedia.org/wiki/Model-view-controller
https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/Event-driven_architecture
https://en.wikipedia.org/wiki/Server-side
https://en.wikipedia.org/wiki/Client-side
https://github.com/rogueriderhood/mean-project/

J2EE (Enterprise Edition) Application Server
• Java naming and directory interface (JNDI): A naming service for containers
• The Java messaging service (JMS): MOM service offered by Java frameworks
• Remote method invocation (RMI): Java framework version of object-oriented RPC
• Servlet Container: a server-side software component for objects to receive a

requests and generate responses. A servlet is often built as Java Server
Pages (JSPs)
• Enterprise JavaBeans (EJB) : a server-side software component for business logic
• It is still widely used and can provide Web services

IS 651: Distributed Systems 23

Services (2000s)
• Standard service contracts

§ Participants have agreements
§ They should also be discoverable by using some kind of registry or

directory
• Loose coupling

§ The participants have minimal dependencies on each other
• Encapsulation

§ Services should hide their logic from the outside world as a black box
§ This increases flexibility, reusability and increases composability
§ Services should also have location transparency where users do not

care where the services are located
• Statelessness

§ Keep track of as little state as possible
§ This is a requirement for loose coupling and encapsulation

IS 651: Distributed Systems 24

Principles in Distributed System Evolution

• A lot of concepts/components were developed to enable network-
based communication among distributed computers via messages
§ Marshalling, RPC Runtime, IIOP, IDL, message queue, MCA, etc.

• Some new techniques/models are built on top of existing
techniques/models
§ RPC -> MOM -> Pub/Sub
§ Many seemingly different techniques/models (NFS, ODBC, transaction

middleware, CORBA and DCOM) are all built on top of RPC
• Some new techniques/models are extensions of existing

techniques/models
§ 2 tier -> 3 tier -> n tier -> service

IS 651: Distributed Systems 25

Extensible Markup Language (XML)

• Markup language: text document with annotation (normally using
tags)
§ HyperText Markup Language (HTML)
§ EXtensible Markup Language (XML)
§ EXtensible HyperText Markup Language (XHTML)
§ etc.

• XML documents form a tree structure
• Well-formed XML VS. Valid XML
• XML validation

§ Document type definition (DTD)
§ XML Schema

IS 651: Distributed Systems 26

Well-formed XML

• It contains only properly encoded, legal Unicode characters
• None of the special syntax characters (<, &) appear except when

performing their markup-delineation roles
• The begin, end, and empty-element tags that delimit the elements

are correctly nested, with none missing and none overlapping
• The element tags are case-sensitive - the beginning and end tags

must match exactly
• There is a single "root" element that contains all the other elements
• Well-form check command: $>xmllint --noout shiporder.xml

IS 651: Distributed Systems 27

Valid XML
• The declaration in line 1 is contains question

mark characters and is called a processing
instruction. It refers the version and encoding
for the XML document

• Line 2 has a reference to an external DTD file
that contains the DTD
§ It can be replaced by embedding DTD content

• Line 3 is the root tag for the document. Note
that it contains an attribute. Any XML tag may
have an attribute and it must be quoted.

• Note that even though item is repeated, it
uses the same tag. Never create tags like
item1, item2, etc

IS 651: Distributed Systems 28

Document Type Definition (DTD)

• The declaration of the DTD in the XML document has the syntax where SYSTEM refers to that fact that the DTD is a private
implementation for this document rather than a standard. It would change to PUBLIC if it was a standard.
• <!DOCTYPE root-element SYSTEM "file.dtd" >

• DTDs do not have XML syntax. They have their own syntax.

• The !ELEMENT declares an element (also called a tag).

• The child elements of a tag are declared as an ordered list in parentheses. If an element can be repeated 1 or more times, it
must have a plus sign (+) after it. The character star (*) means 0 or more and so makes elements optional.

• A leaf node of the hierarchy is declared #PCDATA which means parsed character data and it is the text of the content.

• The < and > are XML built-in entities for the less than and greater than (< >) characters. XML markup characters cannot
be used because they would confuse a parser, so these pre-defined entities must replace them.

• There are no data types in DTDs. Everything is text.

• The !ATTLIST declares an attribute for an element and typically declares it as CDATA which means character data. This means
that the XML parser does not parse it.

• One can require a document to have an attribute in order to be valid by using #REQUIRED.

IS 651: Distributed Systems 29

DTD Example

• Validation command: $>xmllint --noout --valid shiporder.xml
IS 651: Distributed Systems 30

Demo

• Well-form check command
§ xmllint --noout shiporder.xml
§ xmllint --noout shiporder-not-well-formed.xml
§ xmllint --noout shiporder-well-formed-not-valid.xml

• Validation check command
§ xmllint --noout --valid shiporder.xml
§ xmllint --noout --valid shiporder-well-formed-not-valid.xml

IS 651: Distributed Systems 31

