Learning Outcomes

• After learning this chapter, you should be able to
 ▪ Understand the basics of Semantic Web and its techniques
 ▪ Be able to do simple SPARQL SELECT queries
The Semantic Web

• Syntax VS Semantics

• Web 3.0: Make the web easier to understand by computers
 - Web 2.0: user generated web contents, usability, and interoperability. Examples are blog, wiki, social network sites and mashup.

• Techniques/standards for Semantic Web
 - Resource description framework (RDF) - describing data with a global naming scheme (URIs)
 - RDF Schema (RDFS) - A standard way of describing the properties of that data
 - Web Ontology Language (OWL) - A standard way of describing relationships between data items.
 - RDF Stores and SPARQL - A standard way of storing and querying graphs.
From Current Web to Semantic Web

a) Current Web

b) Semantic Web
Resource Description Framework (RDF)

- **RDF** is a graph model built by triples: `<resource/subject, property/predicate, value/object>`
- RDF describes data with a global naming scheme (URIs)
- RDF is independent of any serialization
- Common RDF serialization notion/language are **N3** and **XML**
- Commonly used RDF vocabularies include **Dublin Core**, **FOAF**
 - You can define your own vocabularies
- **W3C's RDF Validation Service** for validation and graph representation
 - One graph representation example
N3 and XML Serialization for RDF

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema> .

<http:/userpages.umbc.edu/~jianwu/foaf.rdf>
foaf:name
"Jianwu Wang"^^xsd:string .

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:foaf="http://xmlns.com/foaf/0.1/"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <rdf:Description rdf:about="http://userpages.umbc.edu/~jianwu/foaf.rdf">
 <foaf:name>Jianwu Wang</foaf:name>
 </rdf:Description>
</rdf:RDF>
RDFSchema

- RDF Schema is an extension of the basic RDF vocabulary
- It provides a standard way of describing the properties of that data
- It adds the concept of class (sub-class), and associated properties (sub-property) to RDF triples
RDFSchema (2)

• The RDF Schema class and property system is similar to the type systems of object-oriented programming languages such as the Java language.

• A difference is RDF Schema defines a property separately/independently by its range class and domain class

• A specific resource is a type of a class
 ▪ UMBC is a type of university class

• You can find RDFSchema example in N3 at book chapter
OWL (Web Ontology Language)

• **OWL** is a language for defining and instantiating Web ontologies

• Ontology is a term borrowed from philosophy that refers to the science of describing the kinds of entities in the world and how they are related

• An OWL ontology may include descriptions of classes, properties and their instances

• Given such an ontology, the OWL formal semantics specifies how to derive its logical consequences, i.e. facts not literally present in the ontology, but *entailed* by the semantics
SPARQL

• **SPARQL** is a query language for RDF
 ▪ Recursive acronym: SPARQL Protocol and RDF Query Language

• Four types of SPARQL queries
 ▪ **SELECT**
 ▪ **CONSTRUCT**
 ▪ **ASK**
 ▪ **DESCRIBE**

• You can specify one or more SPARQL endpoints in SPARQL query
 • Endpoint list: https://www.w3.org/wiki/SparqlEndpoints
SPARQL Demo

- **SPARQL Explorer**

- An **SELECT** query example

```
PREFIX dbo: <http://dbpedia.org/property/>
SELECT ?name ?birth 
{ 
  ?person foaf:name ?name . 
FILTER (?birth < "1900-01-01"^^xsd:date) . } ORDER BY ?name

#People who were born in Berlin before 1900
```
RDF (Triple) Stores

• A RDF triple store is a purpose-built **graph** database for the storage and retrieval of RDF metadata

• RDF Store Software: [Jena](http://jena.apache.org), [RDF4J/Sesame](http://rdf4j.org), [Neo4j](http://neo4j.com), etc.
Linked Data

• A method of publishing and interlinking structured data so it can become more useful through semantic queries
• It builds upon HTTP, RDF and URIs
• This enables data from different sources to be connected and queried
• Famous linked data sets
 ▪ DBpedia for extracted data from Wikipedia
 ▪ FOAF for persons, their properties and relationships
Semantic Web Criticism

• Web is too vast and vague
 ▪ But what about specific areas?
• Too computer-friendly
Discussion #8

• Briefly explain how the implementation of catalog application looks like without following service-oriented architecture, and its differences from the current one.
 • How you would implement it before enrolling IS 651?