IS 651: Distributed Systems
Chapter 1: Distributed Systems
Introduction

Jianwu Wang

Spring 2019
What is this course about?

• Overview of the concepts, systems and techniques of distributed systems
 ▪ Basic concepts and principles of distributed systems, which are useful in many real-world applications/projects
 ▪ Lectures/readings, discussions, case studies, extensive hands-on exercises/homework
 ▪ By the end of this course, you will have a good technical understanding of many distributed system related technologies

• NOT a programming class
 ▪ We will use several languages (XML, JavaScript, XQuery, etc.), only the basics for exercises/homework
 ▪ No real programming. Only need to understand programs and make some changes

• More technical than MIS, more application-oriented than CS
Why this course is important?

• People are using distributed systems everyday
 ▪ Web sites: Gmail, Facebook, ...
 ▪ Distributed databases: MySQL Cluster, Hbase, ...
 ▪ Distributed file systems: NFS, AFS, ...
 ▪ Distributed scientific software: MPI, OpenMP, ...

• Knowing the knowledge might help your future career
 ▪ One of most actively evolving topic: Cloud, Big Data, Mobile, GPU, ...
 ▪ Design/implement a new distributed system
 ▪ Running data analytics on a distributed system
 ▪ Managing a distributed database
 ▪ ...

IS 651: Distributed Systems
Grading

• 10 discussions: 10*0.5=5 points for 5%
 ▪ Often open questions, no exact one correct answer
 ▪ Exchange ideas with your neighbors during discussion
 ▪ Write your final **brief** answer at blue book (a new page for each discussion)
 ▪ Return your blue book every class to be graded
 ▪ You can get full point as long as your answer is reasonable
 ▪ You are also welcome to write your feedback/suggestions

• 1 group case study: 10 points for 10%
 ▪ Form a group of 3-4 students: more on it later
 ▪ Select a topic and find a related paper or project interesting to your group
 ▪ Present your work at class

• 7 homework: 7*5=35 points for 35%
 ▪ Submit before deadline (the end of **Saturday**), it will be graded before the next class

• 3 exams: 15+20+15=50 points for 50%
How to Study Well?

• Good participation in class: question and discussion
• Good group collaboration for your case study
• Start exercise and homework early
• Read the requirements carefully
• Read book chapters, especially before exams
• If needed, ask for help early
 ▪ If you are experiencing any problems that affect your performance in this class, please contact instructor immediately
• Study hard from the beginning of the semester
Learning Outcomes

• After learning chapter 1, you should be able to
 ▪ Understand the basics of distributed systems and service oriented architecture (SOA)
 ▪ Understand the layered architecture of network
 ▪ Can access and navigate linux server (gl.umbc.edu)
Communication

• Piazza
 (http://piazza.com/umbc/spring2019/is651/home)
 ▪ You can use it through either website or smartphone app
 ▪ Folder for each chapter
 ▪ Send to instructor on private issues
 ▪ Better informed and faster responses

• Instructor/grader will try to reply within 24 hours
 ▪ Ask your questions early, not right before the deadline
Course Prerequisites

• Programming with systems analysis and design
• Networking
• Databases
Distributed Systems

• A distributed system consists of multiple autonomous computers that communicate through a computer network. The computers interact with each other in order to achieve a common goal.

• Definition: A distributed system is a collection of independent computers that appears to its users as a single coherent system.
Service-Oriented Architecture (SOA)

• SOA is an evolution of distributed computing

• SOA defines how two computing entities, such as programs, interact in such a way as to enable one entity to perform a unit of work on behalf of another entity.

• Service interactions are defined using a description language. Each interaction is self-contained and loosely coupled, so that each interaction is independent of any other interaction.

• This is an abstract architectural concept and no specific technology is assumed
SOA is still Very Popular in Real World

• Examples:
 • Amazon Web Services
 • Cloud computing follows XaaS architecture
 • Microservices
 • Service oriented manufacturing
 • MEAN (MongoDB, Express.js, AngularJS, and Node.js) stack for web application
 • ...

IS 651: Distributed Systems
SOA Concepts

- Top-down
- Bottom-up
- Loosely-coupled
- Interface, not application
XML Web Service

• XML Web Services are the current technology most associated with SOA

• A Web Service (XML Web Service) is a unit of code that can be activated using HTTP requests. Stated another way, a Web Service is an application component (in any language) that can be remotely callable using standard Internet Protocols such as HTTP and XML.

• Web Services came into existence to deliver distributed computing over the Internet.

• A major advantage of the Web services architecture is, it allows programs written in different languages on different platforms to communicate with each other in a standards-based way.
Traditional B2B Scenario

- To support the company's inventory query and supply ordering with no web services, the enterprise architecture requires that four systems be connected using three proprietary interfaces.

- Across organization communication.

B2B Scenario with SOA

• SOA opens up a number of new possibilities for conducting B2B commerce without significant reworking of the underlying systems.

• In addition to eliminating the proprietary interfaces, the SOA makes it easily possible for the first plant to check directly with the second plant and place orders *without* going through the HQ computer.
B2B Scenario with More SOA

- The manufacturer now wants to institute an electronic competitive bidding system for its orders.
- The suppliers who want to bid on the opportunity to win business from the manufacturer can connect to the bidding system through a Web service.
Networking - OSI Seven Layer Model

<table>
<thead>
<tr>
<th>Media/Host</th>
<th>Data Unit</th>
<th>Layer</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host</td>
<td>Data</td>
<td>7. Application</td>
<td>HTTP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Presentation</td>
<td>Representation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Session</td>
<td>Dialogue</td>
</tr>
<tr>
<td>Segment</td>
<td></td>
<td>4. Transport</td>
<td>End-to-end</td>
</tr>
<tr>
<td>Media</td>
<td>Datagram</td>
<td>3. Network</td>
<td>Routing</td>
</tr>
<tr>
<td></td>
<td>Frame</td>
<td>2. Data Link</td>
<td>MAC address</td>
</tr>
<tr>
<td></td>
<td>Bit</td>
<td>1. Physical</td>
<td>Signals</td>
</tr>
</tbody>
</table>
Networking - Peer-to-Peer (P2P) Communication

- Peer-to-peer communications through protocol data unit (PDU) headers
- The data unit of one layer is part of data unit of its underlying layer
Networking - TCP/IP

<table>
<thead>
<tr>
<th>TCP/IP model</th>
<th>Protocols and services</th>
<th>OSI model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>HTTP, FTP, Telnet, NTP, DHCP, PING</td>
<td>Application</td>
</tr>
<tr>
<td>Transport</td>
<td>TCP, UDP</td>
<td>Presentation</td>
</tr>
<tr>
<td>Network</td>
<td>IP, ARP, ICMP, IGMP</td>
<td>Session</td>
</tr>
<tr>
<td>Network Interface</td>
<td>Ethernet</td>
<td>Transport</td>
</tr>
</tbody>
</table>

IS 651: Distributed Systems
Networking - TCP/IP Headers

From http://www.tenouk.com/Module42a.html
Distributed Systems Topics

- **Architecture**: how distributed systems are put together to provide a single system abstraction from many separate parts.
- **Fault-tolerance**: how distributed systems can continue to provide service when some parts have failed to provide availability until they are recovered.
- **Consistency**: how distributed systems can maintain logical coherency when data is distributed.
- **Scalability**: how a distributed system can grow to meet demand in an efficient and effective way.
- **Performance**: how to optimize response time when components are distributed.
- **Security**: how to ensure data integrity and confidentiality is a distributed environment.
Eight Fallacies for Distributed Systems

• The network is reliable.
• Latency is zero.
• Bandwidth is infinite.
• The network is secure.
• Topology doesn't change.
• There is one administrator.
• Transport cost is zero.
• The network is homogeneous.
Unix/Linux Command-line

• Use of an SSH client
 • Mac: Terminal command line
 • Windows: Putty, Bitvise SSH Client

• Use of an SCP client
 • Mac: Terminal command line, cyberduck
 • Windows: cyberduck, Bitvise SSH Client, WinSCP

• Use of a small number of unix commands
 • ls, mkdir, cd, pwd, man, more, cat, wget, ...

• Edit a text file on a unix machine
 • pico, vi, nano, emacs, ...

• Navigation of your student account on gl.umbc.edu
Exercise/Homework Notes

• Exercises are demonstrated by instructor in class
 ▪ No grading for exercises

• You should do homework by yourself
 ▪ No communication before homework submission

• Same homework code from multiple students will be investigated and reported
 ▪ No cheating

• Make sure you submit your homework by the deadline (End of Saturday)
 ▪ You could get some general feedback if you submit an early version before Thursday
 ▪ It will be graded before

• Any time a homework asks you to put information into a file with a .txt extension, it must be a plain text file
 ▪ Never use a word processor format
 ▪ Most submissions are just urls.
Demonstration for exercise #0