
Provenance for MapReduce-based Data-Intensive
Workflows

Daniel Crawl, Jianwu Wang, Ilkay Altintas
∗

San Diego Supercomputer Center
University of California, San Diego

9500 Gilman Drive
La Jolla, CA 92093-0505

{crawl, jianwu, altintas}@sdsc.edu

ABSTRACT
MapReduce has been widely adopted by many business and
scientific applications for data-intensive processing of large
datasets. There are increasing efforts for workflows and sys-
tems to work with the MapReduce programming model and
the Hadoop environment including our work on a higher-
level programming model for MapReduce within the Kepler
Scientific Workflow System. However, to date, provenance
of MapReduce-based workflows and its effects on workflow
execution performance have not been studied in depth. In
this paper, we present an extension to our earlier work on
MapReduce in Kepler to record the provenance of MapRe-
duce workflows created using the Kepler+Hadoop frame-
work. In particular, we present: (i) a data model that is
able to capture provenance inside a MapReduce job as well
as the provenance for the workflow that submitted it; (ii)
an extension to the Kepler+Hadoop architecture to record
provenance using this data model on MySQL Cluster; (iii)
a programming interface to query the collected information;
and (iv) an evaluation of the scalability of collecting and
querying this provenance information using two scenarios
with different characteristics.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distribu-
ted Systems—Distributed Applications; H.2.4 [Database
Management]: Systems—Distributed Databases

General Terms
Design, Experimentation, Performance

Keywords
MapReduce, Provenance, Scientific Workflows

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WORKS’11, November 14, 2011, Seattle, Washington, USA.
Copyright 2011 ACM 978-1-4503-1100-7/11/11 ...$10.00.

1. INTRODUCTION
A very large amount of scientific data is generated daily

with applications in genomics, metagenomics, biological and
biomedical sciences, environmental sciences, geosciences, ecol-
ogy, and many other fields, posing new challenges in data,
computation, network, and complexity management areas.
Efficient and comprehensive analysis of the generated data
requires distributed and parallel processing capabilities. New
computational techniques and efficient execution mechanisms
for these data-intensive workloads are needed.

Recently, many concrete distributed execution (mostly da-
ta parallel) patterns, e.g., MapReduce [5], All-Pairs [17],
MasterSlave [18] (also called MasterWorker [15]), have been
identified and supported by corresponding frameworks, e.g.,
Twister [6], Sector/Sphere [11], DryadLINQ [13], and Ha-
doop1. The advantages of these patterns include: (i) a
higher-level programming model to parallelize user programs
automatically; (ii) support for parallel data processing; (iii)
good scalability and performance acceleration when execut-
ing on distributed resources; (iv) support for run-time fea-
tures such as fault tolerance and security; and (v) simplifica-
tion of the difficulty for parallel programming in comparison
to traditional parallel programming interfaces such MPI [10]
and OpenMP [3].

MapReduce [5] has been widely adopted by many business
and scientific applications for data-intensive processing of
large datasets. There are increasing efforts for workflows,
e.g., [21, 7], including our previous work [19, 20], and other
systems, e.g., Oozie2, Azkaban3 and Cascading4, to work
with the MapReduce programming model and the Hadoop
environment. However, none of these early studies discuss
provenance support for MapReduce-based workflows.

There have been a few recent studies to explore storing
and querying MapReduce related provenance in distributed
environments. Franke et al. [8] compare multiple queries
against the provenance stored in HBase5 and MySQL Clus-
ter.6 However, in these experiments, provenance informa-
tion is loaded from existing data sources instead of live
workflow executions. Ikeda et al. [12] discuss how to cap-
ture provenance during the execution of MapReduce work-
flows and supports backward and forward traversal of data

1http://hadoop.apache.org/core/, 2011.
2http://yahoo.github.com/oozie/index.html, 2011.
3http://sna-projects.com/azkaban, 2011.
4http://www.cascading.org, 2011.
5http://hbase.apache.org/, 2011.
6http://www.mysql.com/products/cluster/, 2011.

21

dependencies. However, this framework does not capture
provenance inside MapReduce tasks.

Contributions. This paper extends our earlier work [19]
on MapReduce in Kepler [14] with the ability to record the
provenance of MapReduce workflows created using the Ke-
pler+Hadoop framework. In particular, we present: (i) a
data model that captures provenance inside a MapReduce
job as well as the provenance for the workflow that submit-
ted it; (ii) an extension to the Kepler+Hadoop architecture
to record provenance using this data model on a MySQL
Cluster; (iii) a programming interface to query the collected
information; and (iv) an evaluation of the scalability of col-
lecting and querying this provenance information using two
scenarios with different characteristics.

Outline. The rest of this paper is organized as follows.
In Section 2, we provide an extended architecture to design,
execute, and record provenance for MapReduce workflows in
Kepler. Section 3 describes the provenance data model and
querying interface used by this architecture. In Section 4,
we provide two example usecases and discuss their charac-
teristics for why they are chosen as application scenarios. In
Section 5, we explain our experimental framework and show
the results of our experiments for recording and querying
provenance using MySQL Cluster. Section 6 discusses our
conclusions and future work.

2. ARCHITECTURE
In [19], we presented the Kepler+Hadoop framework for

executing MapReduce-based Kepler workflows on Hadoop.
This architecture consists of three layers: (i) the Kepler
GUI, (ii) the Hadoop Master, and (iii) the Haoop Slaves
for Map and Reduce tasks. During the initialization of the
MapReduce actor, the input data stored on the local file
system will be first transferred to the Hadoop File System
(HDFS) which automatically partitions and distributes the
data to Map tasks. After the data stage-in phase, the Kepler
execution engine and the Map and Reduce sub-workflows
in the MapReduce actor will be distributed to the slave
nodes for the MapReduce tasks. The Map and Reduce
sub-workflows will be executed with the data blocks on the
slaves. Throughout execution, Hadoop provides fault-toler-
ance through slave monitoring and data replication mecha-
nisms. After execution completes on the Hadoop slaves, the
MapReduce actor automatically transfers any output data
from HDFS to the local file system for processing by down-
stream actors of the workflow.

In this section, we present an extension of the architec-
ture in [19] to include distributed provenance recording using
MySQL Cluster and a separate client interface for querying
and visualizing the collected provenance information. These
extensions are illustrated in Figure 1, consisting of the fol-
lowing components that execute either on a client or in a
cluster or cloud environment:

• Kepler Scientific Workflow System

The Kepler scientific workflow system [14], is devel-
oped by a cross-project collaboration and inherited
from Ptolemy II7. Kepler provides a graphical user in-
terface (GUI) for designing workflows composed of a
linked set of components, called Actors, that may ex-
ecute under different Models of Computations (MoCs)

7http://ptolemy.berkeley.edu/ptolemyII, 2011.

Provenance Querying
& Visualization

Kepler

Workflow Design

Execution Control

Provenance Recording

Master

Hadoop Job Tracker

MySQL Manager

Slave

Hadoop Task Tracker

NDB Data Server

MySQL Server

Kepler Execution Engine

Client

Cluster

Figure 1: MapReduce provenance architecture.

[9] implemented as Directors. Actors are the imple-
mentations of specific functions that need to be per-
formed and communication between actors takes place
via tokens that contain both data and messages. Direc-
tors specify what flows as tokens between the actors;
how the communication between the actors is achieved;
when actors execute (a.k.a. fire); and when the overall
workflow can stop execution. The designed workflows
can then be executed through the same user interface
or in batch mode from the command-line or other ap-
plications. In addition, Kepler provides a provenance
framework [1, 4] that keeps a record of chain of custody
for data and process products within a workflow design
and execution. This facilitates tracking the origin of
scientific end-products, and validating and repeating
experimental processes that were used to derive these
scientific products.

In this architecture, the Kepler GUI is used for design-
ing MapReduce workflows, starting and stopping the
workflow execution, and recording the provenance for
the part of the workflow running on the client machine.
The sub-workflows in the MapReduce actor execute on
the Cluster in the Hadoop Task Trackers as Map or
Reduce tasks. Provenance for these sub-workflows is
stored on the MySQL Cluster running on the Cluster.

Extensions to the Kepler Provenance Frame-
work. We made several updates to the provenance
framework [1] to capture provenance in MapReduce
jobs. The existing framework records both data and
dependencies between actors executing on the same
machine. However, in a MapReduce job, data can be
transferred between nodes, e.g., the output of a Map
task may be read by a Reduce task running on a differ-
ent node. To capture these inter-node data dependen-
cies, or transfer events, we extended the provenance
recording API. When an actor creates data that will
be transferred to another node, the actor first registers
the data to get a unique identifier. Next, this identi-
fier is transferred along with the data to other nodes.
Finally, each actor that reads the data on a receiving
node uses the identifier to notify the provenance sys-
tem that the actor is reading the transfer event. The
MapReduce actor uses transfer events to capture three

22

sets of dependencies: the inputs to each Map task, the
outputs of each Map task that are read by Reduce
tasks, and the output of each Reduce task. Unlike the
implicit recording of data dependencies during work-
flow execution, actors must explicitly invoke the prove-
nance API to manage transfer events. Section 4.1 gives
examples of the MapReduce actor’s transfer events.

Several updates to the provenance framework were im-
plemented to reduce execution overhead. All writes to
provenance storage are performed asynchronously,
which allows the workflow to execute uninterrupted
while provenance is captured. Further, writes are made
in batches. While this adds a minor delay between
the time provenance is captured and made available
for querying, it significantly reduces the amount of
network communication and processing done by the
provenance storage servers.

• Provenance Querying and Visualization

This component is used for querying the collected prove-
nance information using the Kepler Query API (see
Section 3.3) and visualizing the results of these queries.
It is currently implemented as a stand-alone desktop
application.

• Master

The Master node runs management servers and con-
sists of: (i) the Hadoop Job Tracker that manages and
monitors the Hadoop Task Trackers on slave nodes,
and distributes the Map and Reduce sub-workflows to
slave nodes; and (ii) the MySQL Manager that moni-
tors the MySQL Server and NDB Data Server on slave
nodes.

• Slave

The architecture uses slave nodes in a cluster or cloud
environment, each consisting of: (i) the Hadoop Task
Tracker that runs Map and Reduce tasks, which in
turn execute the Map and Reduce sub-workflows in the
Kepler execution engine; (ii) the MySQL Server that
handles SQL commands from the provenance recorder
of the Kepler execution engine, and reads and writes
data to NDB Data Servers; and (iii) the NDB Data
Server that provides a distributed storage engine for
MySQL with load-balancing and data replication for
fault-tolerance. (All of our experiments used a repli-
cation factor of two.)

3. PROVENANCE DATA MODEL
The provenance data model records the values of all data

passed between actors during workflow execution, as well as
the dependencies between data and actor executions. We
use terminology from the Open Provenance Model [16] to
describe the captured entities and relationships: an artifact
is an immutable piece of data, and a process is a series of
actions performed on artifacts possibly resulting in new ar-
tifacts. In our architecture, tokens and transfer events are
artifacts, and actor executions (a.k.a. invocations) are pro-
cesses.

3.1 Entity Identifiers
Artifacts and processes are represented by identifiers in

the data model. The format of the identifier must meet

three requirements: unique, small, and fast to gener-
ate. Each artifact and process is assigned a unique iden-
tifier to distinguish it from other entities generated during
the same workflow execution and entities generated during
other executions. Since MapReduce workflows processing
large amounts of data may have millions of artifacts and
tens of thousands of processes, the identifier should be as
small as possible to minimize the size of provenance stor-
age. Further, identifiers should be fast to generate to reduce
workflow execution overhead.

Several choices for the identifier format were considered.
One option is counters provided by the RDBMS (either Se-
quences or autoincrement columns). Counters are unique
and small, but locking them to atomically increment and
read their values creates a significant overhead when many
MapReduce tasks running in parallel try to access it. An-
other identifier format is the Universally Unique Identifier
(UUID). While UUIDs are unique, they are slow to generate
and 128-bit in size.

In order to meet all three requirements, we created a new
identifier format. For artifacts, the format is Aid = R S N ,
where R is the workflow execution (a.k.a. run) number, S
the identifier of the MapReduce task within the MapReduce
job (a.k.a. sub-run) andN the artifact number within S. An
identifier in this format is unique since R is different for each
workflow execution, S is generated by Hadoop to uniquely
identify each MapReduce task, and N is unique within the
MapReduce task S. The format is also small, requiring only
a few characters, and fast to generate: R is generated us-
ing a counter from the RDBMS, but only needs to be done
once per workflow execution; S is automatically created by
Hadoop; and N is an atomic counter only incremented and
read within a single MapReduce task.

The identifier format for processes is Pid = R S T F
where R is the run number, S the sub-run, T the actor
number, and F the number of times actor T has executed
during S. The actor number T uniquely identifies the actor
in the workflow, and since the workflow definition does not
change during execution, T can be generated once before ex-
ecution starts. Similar to the artifact number N in Aid, the
execution number F can be generated by using an atomic
counter within each MapReduce task.

3.2 Model Schema
Provenance data is stored in a relational schema defined

as:

• artifact(Aid, V, C) denotes that artifact Aid has a value
V and the checksum of the value is C.

• compress(C,M) denotes that a checksumC has a com-
pressed value M .

• actor(E,T, R) denotes that an actor named E has a
number T for workflow run R.

• dependency(Aid, Pid, D) denotes that artifact Aid was
read or written, specified by D, by process Pid.

During workflow execution, artifact values are written to
the artifact table. However, many artifacts may have the
same value and removing duplicates saves space. After the
workflow execution has completed, a post-processing step
removes duplicated values from the artifact table and adds
one copy to the compress table. The value for an artifact

23

can be found in the compress table by using the value’s
checksum, which is stored in both tables.

Artifact values are also compressed. For some types of
MapReduce workflows, this can reduce storage size dramat-
ically. For example, in Word Count (see Section 4.1), many
artifacts are sequences of numbers representing the occur-
rences of words in a file. These sequences can have high
compression ratios since they often contain many repeating
numbers.

The dependency table stores the relationships between ar-
tifacts and processes, i.e., which artifacts were read and
written by each process. As defined above, the artifact
and process identifier formats are Aid = R S N and Pid =
R S T F , respectively. Several fields are the same in both
identifiers, and storage space can be reduced by not dupli-
cating these fields when they have the same values. We
therefore define a dependency table without duplication:

• dependency nodup(R,S,N, T, F,D) denotes that in a
workflow run R and sub-run S, artifact number N was
read or written, specified by D, by execution F of actor
number T .

By storing the artifact and process identifier fields separately
in the table, only one copy of R and S are required for each
dependency when R and S are the same for the artifact and
process.

3.3 Querying
The Kepler Query API provides an interface to retrieve

provenance information that is independent of the prove-
nance data model used to store data. Applications using
this API do not have to be changed to query provenance
from different data models. The following list describes a
few example queries:

1. getArtifactsForProcess(p, false) returns the arti-
fact(s) written by process p.

2. getProcessesForArtifact(a, true) returns the pro-
cess(es) that read artifact a.

3. getDataValue(a) returns the data value of artifact a.

We created an implementation of the Query API for the
relational data model described in the previous section. This
implementation is realized using SQL queries. The following
are the SQL queries for the above examples:

1. SELECT artifact FROM dependency WHERE process =

p AND isread = false

2. SELECT process FROM dependency WHERE artifact =

a AND isread = true

3. SELECT value from artifact WHERE id = a8

Visualization. We created an application to display
provenance graphs of workflow executions. This applica-
tion uses the Query API to traverse the dependencies in the
graph and retrieve artifact values and process names. A
provenance graph provides insights into the workflow exe-
cution and facilitates debugging workflow components. We
describe an example graph in the next section.

8The artifact’s value may be stored in the compress table; in this
case a second query is performed and not shown here.

4. APPLICATIONS
In this section we present two applications that were built

using the MapReduce actor, and several example types of
provenance information we can query by executing these ap-
plications in our architecture.

4.1 Word Count

(a) Top level

(b) Map

(c) Reduce

Figure 2: Word Count workflow.

Word Count is the canonical example for the MapReduce
programming model [5]. This application counts the number
of occurrences of each word in a large collection of text docu-
ments. Figure 2 shows the implementation of Word Count as
a Kepler workflow, which uses the MapReduce actor to exe-
cute Map and Reduce sub-workflows in Hadoop. The input
to the MapReduce actor is the directory name containing
the input text documents. The Map sub-workflow shown
in Figure 2(b) counts the occurrences for a single file, and
produces a list of key-value pairs of each word and count.
The Reduce sub-workflow shown in Figure 2(c) adds the oc-
currences for each word read in Map, and outputs the total
sum. Once the Hadoop job completes, the MapReduce actor
writes the output directory and a boolean value to denote if
the job was successful.

24

{key = foo, value = 1}
{key = bar, value = 1}

{key = foo, value = 1} {key = bar, value = 1}

ReduceInput

Sum4EachKey

ReduceOutput

{1, 1} foo

Reduce 1

2

MapInput

SetValue4EachWord

MapOutput

foo file1.txt

{key = foo, value = 1}

Map 1 MapInput

SetValue4EachWord

MapOutput

foo, bar file2.txt

{key = foo, value = 1}
{key = bar, value = 1}

Map 2 MapInput

SetValue4EachWord

MapOutput

bar file3.txt

{key = bar, value = 1}

Map 3

ReduceInput

Sum4EachKey

ReduceOutput

{1, 1} bar

Reduce 2

2

2 2

fullOutputDirPath success

Display Display2

MapReduce

OutputPath InputPath

/hadoop/in/412562//hadoop/out/

/hadoop/out/832548/ true

Figure 3: Provenance graph of Word Count work-
flow execution.

Figure 3 displays the provenance graph of Word Count
reading three text files. In this graph, circles represent arti-
facts, rectangles are processes, and arrows denote read/write
dependencies between artifacts and processes. In this ex-
ample, the input directory contains three files, file1.txt,
file2.txt, and file3.txt, and each is read by a separate
Map task: Map 1 reads file1.txt, which contains a sin-
gle occurrence of foo; Map 2 reads file2.txt, which con-
tains a single occurrence of foo and bar; and Map 3 reads
file3.txt, which contains a single occurence of bar. Since
there are two unique words in the input files, there are two
Reduce tasks: Reduce 1 adds the occurrences for foo; and
Reduce 2 adds the occurrences for bar.

Figure 3 contains several transfer events that are repre-
sented as circles with dashed lines. As described in Section 2,
a transfer event is an inter-node data dependency, and the
MapReduce actor captures three sets of these dependencies:
Map tasks read the directory containing the input dataset,
/hadoop/in/412562/; Reduce tasks read the outputs of the

Map tasks; and the MapReduce actor reads the outputs of
the Reduce task.

4.2 BLAST
BLAST [2] discovers the similarities between two biologi-

cal sequences, and is one of the most widely used algorithms
in bioinformatics. Executing BLAST can be a data-intensive
process since the query or reference data can have thousands
to millions of sequences.

We have created a BLAST workflow using the MapReduce
actor to achieve parallel processing by splitting the input
query data. The MapReduce actor in Figure 4(a) includes
sub-workflows for Map and Reduce, as shown in Figures
4(b) and 4(c), respectively. Each Map sub-workflow runs
BLAST to process a subset of the query sequences against
the reference database. In the Reduce sub-workflow, the
outputs for each subset are merged into one output.

(a) Top level

(b) Map

(c) Reduce

Figure 4: BLAST workflow.

4.3 Queries for the Applications
There are several provenance queries that can be answered

for these applications:

• Q1: What is the dependency graph that led to each
output artifact?

25

• Q2: What is the dependency graph that was derived
from each input artifact?

• Q3: What are the input arguments to the BLAST
program?

• Q4: How many times does a specific word occur in
each input document in Word Count?

The data lineage captured in provenance can identify the
input artifacts that led to a specific output artifact and vice
versa. Q1 follows the dependencies for all outputs back to
the initial inputs, and Q2 follows the derivations for each
input forward to the final outputs. Q1 and Q2 can be used
to measure the time traversing backwards and forwards over
all the dependencies stored in provenance.

In addition to capturing the dependencies between arti-
facts and processes, a provenance framework can record the
configuration used by a process. In our architecture, process
configuration is recorded as input artifacts. Q3 can be an-
swered by finding the inputs to all the processes that ran the
BLAST program, and this requires capturing the provenance
within the Map sub-workflow. Since the BLAST program
has over 40 different command-line options9, it is important
to capture and be able to query this information so that
users can know exactly how BLAST was run in previous
executions of the workflow.

The output of Word Count tells how many times each
word occurs in all the input documents. However, for a
given word, we might want to know how many times it oc-
curs in each document. Q4 can be answered by first find-
ing the Reduce task that handled the word. (The input to
each Reduce task are a key and list of values. For Word
Count, the key is a word, and the list of values are a list
of occurrences.) Once we find the Reduce key containing
the word, we can follow the dependencies backwards to the
Map task(s) that counted the word. The artifacts captured
in each Map task provide the document name, as well as the
number of occurrences in that document.

5. EXPERIMENTAL RESULTS
In this section we describe the experiments performed

to measure the overall performance of our architecture and
provenance data model. We measured the execution over-
head when capturing provenance, the amount of space used
to stored provenance information, and the time to execute
the queries described in Section 4.3.

Environment. The experiments were performed on a
cluster where each node has two quad-core Intel Xeon E5530
Nehalem 2.4 GHz processors and 24 GB of memory. We
used Hadoop 0.20.2, NDB Data Server 7.1.13, and MySQL
Server 5.1.56. Hadoop was configured so that each Map and
Reduce task used a maximum of 4 GB of memory. NDB
Data Server was configured to use two execution threads,
and a maximum of 9 GB of memory for data and 1 GB for
indexes. Additionally, data was replicated twice for fault-
tolerance. The provenance framework was configured to use
a maximum batch size of 500 writes requests, and execute
them in the same number of threads as the number of slave
nodes.

9http://www.ncbi.nlm.nih.gov/staff/tao/URLAPI/
blastall.html#3, 2011.

2 3 4 5 6 7 8

0
10

20
30

40
50

Slave Node

T
im

e
(m

in
ut

es
)

●

●

●

●

300MB w/ provenance
200MB w/ provenance
100MB w/ provenance
300MB w/o provenance
200MB w/o provenance
100MB w/o provenance

Figure 5: Word Count workflow execution times.

Application Configuration. Word Count and BLAST
were chosen as application scenarios due to the different
characteristics of these workflows. The number of Reduce
tasks for Word Count was the same as the number of slave
nodes to enable parallel Reduce execution. However, BLAST
only had one Reduce task since the Reduce sub-workflow
merges the results into a single output file on a shared NFS
file system.

Word Count was executed with 100 MB, 200 MB, and
300 MB datasets containing 392, 782, and 1175 files, re-
spectively. All input data were staged into HDFS before
execution.

For BLAST, we split the query sequences into 160 files,
each containing 125 sequences, to enable independent and
parallel BLAST executions. The reference database was
AntarcticaAquatic: All Metagenomic 454 Reads10, which
was 20 GB. The query sequences were staged into HDFS
and captured in provenance. The reference database was
stored on a shared NFS file system, and not staged into
HDFS. The path of the reference database was captured in
provenance, but not its contents.

5.1 Provenance Capture
We executed each application configuration with and with-

out provenance support. The execution times for Word
Count and BLAST are shown in Figures 5 and 6, respec-
tively. As the number of slave nodes increases, the execution
times of all workflows decrease. Word Count takes about
2.5 times longer to execute when capturing provenance, and
BLAST take 1.03 times longer. These ratios do not ap-
pear to decrease as the number of slave nodes increase. The
overhead for Word Count is higher than BLAST since the
former’s input datasets are much larger.

10http://camera.calit2.net/camdata.shtm, 2011.

26

Word Count BLAST
Input Data (MB) 100 200 300 2.6
Provenance Data (MB) 509 1,001 1,494 3.2
Artifacts 66,572 85,068 95,740 2,248
Processes 49,931 63,803 71,807 1,608
Dependencies 5,518,978 10,907,935 16,317,464 4,493

Table 1: Provenance information for each input data configuration.

2 3 4 5 6 7 8

2
3

4
5

6
7

8

Slave Node

T
im

e
(h

ou
rs

)

●

●

●

●

BLAST w/ provenance
BLAST w/o provenance

Figure 6: BLAST workflow execution times.

Table 1 shows the amount of provenance information cap-
tured for the experiments.11 The Input Data row shows only
the amount of data read as tokens in the Map tasks. These
values do not include all the data read by workflow pro-
cesses, e.g., the BLAST program reads the 20 GB reference
database. The amount of captured provenance information
is roughly five times larger than the input for Word Count
and 1.5 times for BLAST. The next three rows show the
number of artifacts, processes, and dependencies for each
configuration.

5.2 Provenance Queries
We ran queries Q1 − Q4 described in Section 4.3 on the

collected provenance data. The execution times for each
query are shown in Figure 7 for Word Count and Figure 8
for BLAST.

Queries Q1 and Q2 traverse all dependencies in the prove-
nance graph. Additionally, the data value for each artifact
is downloaded to the client. For the Word Count workflow,
the query times appear to slightly decrease as the number
of slave nodes increases. However, the query times for the
BLAST workflow are the smallest for two nodes and greatest

11The sizes reported are the amount of data stored in the relational
tables. We were unable to get an accurate measure of the indexes’
sizes.

2 3 4 5 6 7 8

0
10

0
20

0
30

0
40

0
50

0

Slave Node

T
im

e
(s

ec
on

ds
)

● ●

●

●

Q1 300MB
Q1 200MB
Q1 100MB
Q2 300MB
Q2 200MB
Q2 100MB
Q4 300MB
Q4 200MB
Q4 100MB

Figure 7: Word Count workflow provenance query
times.

for four nodes. Since the amount of data retrieved during
the queries of the BLAST workflow is very small, network
communication times between NDB Data Servers takes the
majority of the time. In the experiments with two slave
nodes, MySQL Server can answer any query without con-
tacting other nodes since each node has the entire set of
data. However, in the experiments with four and eight slave
nodes, MySQL Server must retrieve the data from different
nodes.

Query Q3 finds the command-line arguments used to run
the BLAST program. This query takes less time than Q1
and Q2 since it can be answered using fewer SQL queries:
find all the processes that ran the BLAST program, find the
input artifacts for these processes, and finally get the values
for these artifacts.

Query Q4 finds the occurrences of a specific word in each
input document. We ran this query for a word that occurred
a total of 1,489,296, 2,969,136, and 4,458,348 times in the
100 MB, 200 MB, and 300 MB input datasets, respectively.
Similar to Q3, Q4 is faster than Q1 and Q2 since Q4 can be
answered using fewer SQL queries. These SQL queries are
described in Section 4.3.

27

2 3 4 5 6 7 8

0
5

10
15

Slave Node

T
im

e
(s

ec
on

ds
)

●

●

●

●

Q1: Backward traversal
Q2: Forward traversal
Q3: BLAST program inputs

Figure 8: BLAST workflow provenance query times.

6. CONCLUSIONS
This paper presents an architecture and data model for

capturing and querying provenance in data-intensive work-
flows. Provenance is captured for Map and Reduce tasks
executing Kepler sub-workflows. We have described two
data-intensive applications, Word Count and BLAST, im-
plemented in Kepler using the MapReduce actor, and sev-
eral related provenance queries. By capturing provenance
inside Map and Reduce tasks for these applications, we are
able to answer important queries for users, e.g., find the
command-line arguments used for the BLAST program.

We evaluated the feasibility of our approach by execut-
ing Word Count and BLAST with several different input
datasets and hardware configurations using MySQL Cluster
to store provenance information. To the best of our knowl-
edge, this is the first time such a study has been conducted.
Based on the experimental results, we observe:

1. Provenance capturing scales well as the number of nodes
increase (see Figure 5 and Figure 6).

2. Execution overhead and provenance storage size are
workflow specific and increase with the input data size
(see Table 1).

3. The query performance does not significantly decrease
as the number of compute nodes increases (see Figure 7
and Figure 8).

As future steps, we plan to further optimize our data
model to reduce execution overhead and storage space. Ad-
ditionally, we are investigating the performance of storing
provenance in other “shared-nothing” storage systems such
as HBase and comparing the results of different storage ar-
chitectures.

7. ACKNOWLEDGEMENTS
The authors would like to thank the rest of the Kepler

team for their collaboration. This work was supported by
NSF SDCI Award OCI-0722079 for Kepler/CORE and ABI
Award DBI-1062565 for bioKepler, DOE SciDAC Award
DE-FC02-07ER25811 for SDMCenter, the UCGRID Project,
and an SDSC Triton Research Opportunities grant.

8. REFERENCES
[1] I. Altintas, O. Barney, and E. Jaeger-Frank.

Provenance Collection Support in the Kepler Scientific
Workflow System. In L. Moreau and I. Foster, editors,
Provenance and Annotation of Data (IPAW 2006,
Revised Selected Papers), volume 4145 of Lecture
Notes in Computer Science, pages 118–132. Springer
Berlin / Heidelberg, 2006.

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and
D. J. Lipman. Basic Local Alignment Search Tool.
Journal of Molecular Biology, 215(3):403 – 410, 1990.

[3] B. Chapman, G. Jost, R. van der Pas, and D. Kuck.
Using OpenMP: Portable Shared Memory Parallel
Programming. The MIT Press, Cambridge, MA, USA,
2007.

[4] D. Crawl and I. Altintas. A Provenance-Based Fault
Tolerance Mechanism for Scientific Workflows. In
J. Freire, D. Koop, and L. Moreau, editors,
Provenance and Annotation of Data and Processes
(IPAW 2008, Revised Selected Papers), volume 5272 of
Lecture Notes in Computer Science, pages 152–159.
Springer, 2008.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. Commun. ACM,
51:107–113, January 2008.

[6] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H.
Bae, J. Qiu, and G. Fox. Twister: A Runtime for
Iterative MapReduce. In The First International
Workshop on MapReduce and its Applications
(MAPREDUCE’10) - HPDC2010. 2010, 2010.

[7] X. Fei, S. Lu, and C. Lin. A MapReduce-Enabled
Scientific Workflow Composition Framework. In Web
Services, 2009. ICWS 2009. IEEE International
Conference on, pages 663–670, July 2009.

[8] C. Franke, S. Morin, A. Chebotko, J. Abraham, and
P. Brazier. Distributed Semantic Web Data
Management in HBase and MySQL Cluster. In Proc.
of the 4th IEEE International Conference on Cloud
Computing (CLOUD’11), pages 105–112, Washington
DC, USA, July 2011.

[9] A. Goderis, C. Brooks, I. Altintas, E. A. Lee, and
C. A. Goble. Heterogeneous Composition of Models of
Computation. Future Generation Computer Systems,
25(5):552–560, 2009.

[10] W. Gropp, E. Lusk, and A. Skjellum. Using MPI:
Portable Parallel Programming with the Message
Passing Interface. Scientific And Engineering
Computation Series. MIT Press, Cambridge, MA,
USA, 2nd edition edition, 1999.

[11] Y. Gu and R. Grossman. Sector and Sphere: The
Design and Implementation of a High Performance
Data Cloud. Philosophical Transactions of the Royal
Society A, 367(1897):2429–2445, June 2009.

28

[12] R. Ikeda, H. Park, and J. Widom. Provenance for
Generalized Map and Reduce Workflows. In
Proceedings of CIDR’2011, pages 273–283, 2011.

[13] M. Isard and Y. Yu. DryadLINQ: A System for
General-Purpose Distributed Data-Parallel Computing
Using a High-Level Language. In SIGMOD ’09:
Proceedings of the 35th SIGMOD international
conference on Management of data, pages 987–994,
New York, NY, USA, 2009. ACM.

[14] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins,
E. Jaeger-Frank, M. Jones, E. Lee, J. Tao, and
Y. Zhao. Scientific Workflow Management and the
Kepler System. Concurrency and Computation:
Practice and Experience, Special Issue on Scientific
Workflows, 18(10):1039–1065, 2006.

[15] T. G. Mattson, B. A. Sanders, and B. Massingill.
Patterns for Parallel Programming. Addison-Wesley,
2005.

[16] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil,
P. Groth, N. Kwasnikowska, S. Miles, P. Missier,
J. Myers, B. Plale, Y. Simmhan, E. Stephan, and
J. Van den Bussche. The Open Provenance Model core
specification (v1.1). Future Generation Computer
Systems (FGCS),
27(doi:10.1016/j.future.2010.07.005):734–756, 2011.

[17] C. Moretti, H. Bui, K. Hollingsworth, B. Rich,
P. Flynn, and D. Thain. All-Pairs: An Abstraction for
Data-Intensive Computing on Campus Grids. IEEE
Transactions on Parallel and Distributed Systems,
21:33–46, 2010.

[18] J. Wang, I. Altintas, C. Berkley, L. Gilbert, and M. B.
Jones. A high-level distributed execution framework
for scientific workflows. In IEEE International
Conference on eScience, pages 634–639, Los Alamitos,
CA, USA, 2008. IEEE Computer Society.

[19] J. Wang, D. Crawl, and I. Altintas. Kepler + Hadoop:
A General Architecture Facilitating Data-Intensive
Applications in Scientific Workflow Systems. In
WORKS ’09: Proceedings of the 4th Workshop on
Workflows in Support of Large-Scale Science, pages
1–8, Portland, Oregon, 2009. ACM New York, NY,
USA.

[20] J. Wang, P. Korambath, and I. Altintas. A Physical
and Virtual Compute Cluster Resource Load
Balancing Approach to Data-Parallel Scientific
Workflow Scheduling. In IEEE 2011 Fifth
International Workshop on Scientific Workflows
(SWF 2011), at 2011 Congress on Services (Services
2011), Washington, DC, USA, July 2011.

[21] C. Zhang and H. De Sterck. CloudWF: A
Computational Workflow System for Clouds Based on
Hadoop. In M. Jaatun, G. Zhao, and C. Rong, editors,
Cloud Computing, volume 5931 of Lecture Notes in
Computer Science, pages 393–404. Springer Berlin /
Heidelberg, 2009.

29

