
San Diego Supercomputer Center, !
University of California, San Diego!

11/17/13! DataCloudʼ13! 1!

Jianwu Wang, Daniel Crawl,
Ilkay Altintas!

Comparison of Distributed Data-
Parallelization Patterns for Big Data

Analysis: A Bioinformatics Case
Study!

Technische Universität Berlin!

Kostas Tzoumas,
Volker Markl!

Background – DDP Patterns!

•  Distributed Data-Parallelization (DDP)
Patterns !
– Many identified DDP Patterns: Map, Reduce,

Match, CoGroup, and Cross (a.k.a. All-Pairs). !
– Reusable practices for efficient design and

execution of big data analysis and analytics
applications. !

– Combine data partition, parallel computing
and distributed computing technologies. !

11/17/13! DataCloudʼ13! 2!

Background – Details on Some
Identified DDP Patterns	

11/17/13	 DataCloud’13	 3	

Challenges!

•  Which DDP patterns fit for a specific
program? Which one is the best? What
are the main factors affecting the
performance?!
– Comparisons of different DDP patterns on

performance when applied to the same tool
and the main factors affecting such
performance have not been well studied.!

11/17/13! DataCloudʼ13! 4!

Work Summary!

•  Using an existing bioinformatics tool as
an example, called CloudBurst,
demonstrate multiple feasible DDP
options for the same tool.!

•  Identify two key factors affecting the
performances of different DDP options.!

•  Demonstrate the feasibility of the
identified factors and show that switching
DDP option could speed up performance
by over 1.8 times. !

11/17/13! DataCloudʼ13! 5!

A Bioinformatics Case Study -
Background!

•  Sequence Mapping Tools!
– Map query sequences to reference sequences to

know whether there are similar fragments in
reference data for each query sequence and their
locations. !

•  Seed-and-Extend Algorithm for Sequence
Mapping !
– First finds sub-strings called seeds with exact

matches in both query and reference sequences;!
– Then extends the seeds into longer, inexact

matches. !
11/17/13! DataCloudʼ13! 6!

A Bioinformatics Case Study -
CloudBurst!

•  CloudBurst : a Parallel Seed-and-Extend
Sequence Mapping Tool!
–  Its scalability and performance speedup in

distributed environments have been verified.!
–  Its original implementation is based on

MapReduce.!
– We re-implemented it using MapReduce,

MapCoGroup, MapMatch.!

11/17/13! DataCloudʼ13! 7!

Original CloudBurst using
MapReduce!

11/17/13! DataCloudʼ13! 8!

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Map! Reduce !

Query and reference datasets of CloudBurst have to be
distinguished throughout the phases. !

CloudBurst using MapCoGroup!

11/17/13! DataCloudʼ13! 9!

Map! CoGroup!

Seed Extraction Seed ExtensionData Shuffle
<kr

1, vr
1>

...

<kr
m, vr

n>

<k1, lr1, lq1>

...

Ref

...

Ref
...

Qry

Qry

...

<kq
1, vq

1>

<kq
i, v

q
j>

<k2, lr2, lq2>

<km, lrm, lqm>

map (key, value)
emit <seed, seedInfo>
for every seed

map (key, value)
emit <seed, seedInfo>
for non-overlapping
seed

cogroup (k, lr, lq)
 for each q in lq

for each r in lr
extend(q,r)

Map: Two Map functions for query and reference separately. !
CoGroup: Each instance gets a reference list and a query list
for the same key, so it has one less loop compared to
CloudBurst using MapReduce.!

CloudBurst using MapMatch!

11/17/13! DataCloudʼ13! 10!

Map! Match!
Map: Two Map functions for query and reference separately. !
Match: Each instance gets one query value and one
reference value for the same key, it does not need any of the
loops in CloudBurst using MapReduce.!

<kr
1, vr

1>

...

<kr
m, vr

n>
...

<kq
1, vq

1>

<kq
i, v

q
j>

Seed ExtensionData Shuffle

<k1, vr
1, vq

1>

...
<k1, vr

1, vq
2>

<kx, v
r
y, v

q
z>

Seed Extraction
map (key, value)

emit <seed, seedInfo>
for every seed

map (key, value)
emit <seed, seedInfo>
for non-overlapping
seed

match (k, q, r)
extend(q,r)

Ref

...

Ref
...

Qry

Qry

DDP Performance Comparison !

•  Main difference of the above three
implementations!
– How the Map output data is read into and

processed in Reduce/CoGroup/Match?!
•  Total execution time of Reduce/

CoGroup/Match includes two main parts !
– User function execution time !
– User function execution number!

11/17/13! DataCloudʼ13! 11!

The First Performance Factor!

•  The difference between the numbers of keys
in the two input data, denoted as p. !
–  It reflects the balance of the two input datasets. !
–  If one dataset is much larger than the other one, their

key sets will have less common keys. !
–  If a key only exists in one dataset,!

•  Match will not have user function executions for it. !
•  Reduce still needs to run user function executions for it. !

– Reduce is more suitable for balanced input datasets
and Match is more suitable for imbalanced ones. !

11/17/13! DataCloudʼ13! 12!

The Second Performance Factor!

•  The average number of values per query/
reference key, denoted as q. !
–  It reflects the sparseness of the values for each key. !
–  If a key has a lot of values, !

•  Match has to have a separate user function instance for each
possible value pairs. !

•  Reduce only needs one execution to process all values for the
same key. !

•  Reduce has less user function execution number.!
– Reduce is more suitable for condensed values per key

and Match is more suitable for sparse values per key. !
11/17/13! DataCloudʼ13! 13!

Performance Analysis for CoGroup!

•  User function execution time!
– CoGroup takes less time than Reduce since it does

not need the first loop in Seed Extension phase. !
–  It takes more time than Match because it have

unnecessary executions with empty set from one
input. !

•  User function execution number!
– This number for CoGroup is the same with

Reduceʼs and less than Matchʼs. !
•  Overall, its total execution time should be

between those of Reduce and Match. !
11/17/13! DataCloudʼ13! 14!

Questions to be Answered by
Experiments!

•  Would changing the DDP pattern to
execute the same function have a big
influence on the performance? !

•  Can the two factors identified above
adequately explain the performance
differences? !

11/17/13! DataCloudʼ13! 15!

Experiment Information (1)!

•  DDP Execution Engine!
– We use Stratosphere (version 0.2) because it

supports Map, Reduce, CoGroup and Match directly.!
•  Test Bed !
–  It is done on five compute nodes in a compute

Cluster environment.!
– Each node has two four-core CPUs. !
– We only run the programs with a static environment

because the target is to compare performance
differences of the DDP patterns, not scalability.!

11/17/13! DataCloudʼ13! 16!

Experiment Information (2)!

•  Execution Parameter for CloudBurst!
– mismatches (k) specifies the maximum allowed

length of differences. It affects the results greatly.!
– Both values of p and q will change accordingly

when k value changes. !
– So we tested different executions of the same

program and parameters except k value. !
•  Parallelization Parameter!
– All experiments are done with 12 parallel instances

for Map, Reduce, Match and CoGroup. !
11/17/13! DataCloudʼ13! 17!

Experiment Information (2)!

•  Experimental Data !
– The first experiment processes two large

datasets from real projects. !
•  Query dataset: over nine million sequences.!
•  Reference dataset: over 1.2 million sequences.!

– The second experiment processes only a large
reference dataset. !
•  Query dataset: only include the first 5000 sequences

used above.!
•  Reference dataset: the same as above.!

11/17/13! DataCloudʼ13! 18!

Experiment Results for Execution
Times (1)!

11/17/13! DataCloudʼ13! 19!

Mismatch number (k)! 0! 1! 2! 3!
MapReduce! 2.786! 3.405! 3.537! 8.622!

MapCoGroup! 1.564! 1.916! 2.477! 24.640!

MapMatch! 1.474! 1.883! 2.689! 47.393!

The execution times (unit: minute) of different DDP
implementations of CloudBurst for large query and reference. !

Finding: !
1.  The performances of MapMatch is better than those of

MapReduce for k = 0, 1, 2; but much worse when k = 3. !
2.  MapCoGroupʼs execution times are always between

those of MapReduce and MapMatch.!

Experiment Results for Execution
Times (2)!

11/17/13! DataCloudʼ13! 20!

Mismatch number (k)! 0! 1! 2! 3!
MapReduce! 1.920! 2.313! 2.565! 2.538!

MapCoGroup! 1.523! 1.754! 1.907! 1.888!
MapMatch! 1.453! 1.690! 1.763! 1.799!

The execution times (unit: minute) of different DDP
implementations of CloudBurst for only large reference. !

Finding: !
1.  The performances of MapMatch are always better than

those of MapReduce for this experiment. !
2.  MapCoGroupʼs execution times are always between

those of MapReduce and MapMatch.!

Finding Summary!

•  Different DDP patterns have great impact
on the execution performance of
CloudBurst. !

•  No DDP pattern combination is always
the best, even only for different
parameter values of the same tool. !

•  DDP pattern selection of the same tool
could be very important for its
performance. !

11/17/13! DataCloudʼ13! 21!

Experiment Results for Factors!

11/17/13! DataCloudʼ13! 22!

Mismatch number (k)! 0! 1! 2! 3!

Key set size difference (p) (unit: million)! 167! 163! 116! 0.28!

Average value number per key (q)! 1.6E-5! 1.6E-2! 6.05E-1! 2.73E3!
Speedup ratio of MapMatch to

MapReduce! 1.890! 1.704! 1.201! 0.181!

Relationship between execution speedup and its factors for large
query and reference. !

Relationship between execution speedup and its factors for only
large reference. !

Mismatch number (k)! 0! 1! 2! 3!

Key set size difference (p) (unit: million)! 179! 189! 149! 4.16!

Average value number per key (q)! 0! 1.8E-5! 4.6E-4! 1.74!
Speedup ratio of MapMatch to

MapReduce! 1.321! 1.369! 1.455! 1.411!

Finding Summary!

•  The values of the two factors greatly
affect which DDP pattern has better
performance. !

•  Most speedup ratios decrease along
with the decrease of p values and the
increase of q values.!

11/17/13! DataCloudʼ13! 23!

Conclusions

•  Different DDP patterns could have a great
impact on the performances of the same tool. !

•  MapReduce can be used for wider range of
applications with either one or two input
datasets. But it is not always the best choice
for application complexity and performance. !

•  Two affecting factors, namely input data
balancing and value sparseness, can explain
their performance differences. !

11/17/13! DataCloudʼ13! 24!

Future Work

•  Investigate more tools for multiple DDP
patterns and their performances on
other DDP engines to generalize our
findings. !

•  Study how to utilize the identified
factors to automatically select the best
DDP pattern combination from multiple
available ones. !

11/17/13! DataCloudʼ13! 25!

•  Acknowledgements!
– NSF ABI Award DBI-1062565 for bioKepler !
– The Gordon and Betty Moore Foundation award

to Calit2 at UCSD for CAMERA!
– The rest of bioKepler and Stratosphere teams for

their collaboration !
– FutureGrid project for experiment environment

support !
•  Contact!
–  jianwu@sdsc.edu !

11/17/13! DataCloudʼ13! 26!

