
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2951189, IEEE
Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2019.DOI

Training Back Propagation Neural
Networks in MapReduce on
High-dimensional Big Datasets with
Global Evolution
WANGHU CHEN1, JING LI1, XINTIAN LI1, LIZHI ZHANG1, JIANWU WANG2
1College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China (e-mail: {chenwh, lij, lixt, zhanglz}@nwnu.edu.cn)
2Department of Information Systems, University of Maryland, Baltimore County, MD 21250, U.S.A. (e-mail: jianwu@umbc.edu)

Corresponding author: Wanghu Chen (e-mail: chenwh@nwnu.edu.cn).

This work is supported by the National Natural Science Foundation of China under Grant 61967013 and 61462076.

ABSTRACT Owing to its scalability and high fault-tolerance even on a distributed environment built up
with personal computers, MapReduce has been introduced to parallelise the training of Back Propagation
Neural Networks (BPNNs) on high-dimensional big datasets. Based on the evolution of local BPNNs
produced by distributed Map tasks with different data splits, the paper proposes a novel approach to the
distributed data-parallel training of BPNNs in MapReduce. The approach provides a reasonable measure
to get global convergent BPNN candidates from local BPNNs only convergent on the specific data splits.
Further, it not only can reduce the iterations to get the global convergent BPNN, but also shows great
advantages in avoiding the training to get trapped into a local optimum on high-dimensional big datasets. To
improve the training efficiency further, local BPNNs from the same computing node are merged based on
the average of their weight matrices before they act as individuals of the population for the global evolution.
Our approach also leverages Random Project based sampling techniques to evaluate the fitness of each
individual in order to lower the computation cost in the evolution stage. Experiments show that our proposed
approach improves the training efficiency highly compared to the stand-alone or traditional MapReduce
BPNN training, and improves model accuracy for larger datasets. The comparison with 23 other popular
classification approaches also shows that our proposed approach has big advantages in accuracy.

INDEX TERMS Convergency, Distributed Data-Parallelism, Evolution, MapReduce, Neural Network

I. INTRODUCTION

A

N Artificial Neural Network (ANN) is a computer
model to essentially mimic the knowledge acquisition

and organisational skills of the human brain, which consists
of a number of interconnected processing elements called
neurons [1]. The neurons of an ANN are usually arranged
into two or more layers logically, and interact with each
other via weighted connections. These scalar weights deter-
mine the nature and strength of the influence between the
interconnected neurons. Each neuron can be connected to
all the neurons in the next layer. There is an input layer
where data are presented to the neural network, and an output
layer that holds the response of the network to the input. It
is the intermediate layers, also known as hidden layers, that
enable these networks to represent and compute complicated

associations between patterns.
Neural networks essentially learn through the adaptation

of their connection weights according to input data [2].
Back Propagation Neural Network (BPNN), one of the most
popular ANNs, employs the back-propagation algorithm for
its connection weight adaptation and can approximate any
continuous nonlinear functions by arbitrary precision with
enough number of neurons [3]. We call this process the
training of a neural network and the input data containing
potential patterns is called training samples.

In the past decades, ANNs have been widely used to
model uncertain nonlinear functions [4] [5], and have shown
great advantages in pattern recognition, classification and
modelling of nonlinear relationships involving a multitude of
variables [6].

VOLUME 4, 2016 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2951189, IEEE
Access

Wanghu Chen et al.: Training Back Propagation Neural Networks in MapReduce on high-dimensional Big Datasets with Global Evolution

A. A REAL WORLD APPLICATION AND CHALLENGES
The following is a real-world scenario. To take targeted
measures in poverty alleviation in a province of China, infor-
mation about millions of poor families is gathered to analyse
the possible reasons for their poverties and recommend the
most proper measures to them. One of such measures is that
some families can apply an interest-free loan every year. So,
it is essential for the government to determine the families
that enjoying such loans will be the most proper measure to
help them to alleviate their poverties. At the same time, if a
family is suitable to get the interest-free loan, the loan amount
needs to be evaluated and the profit in next few years also
needs to be predicted.

Considering the simplicity and wide applications of
BPNNs, we tend to design a BPNN to learn patterns in
the data. We are provided with 3-year’s information about
a million of poor families for the training of the BPNN.
The data describing each poor family has 53 dimensions and
covers information about family size, member composition,
education levels, healthy status, labor powers, financial sta-
tus, family assets, living environments and so on. We found
there are two challenges to apply BPNN in the application.
(1) The stand-alone training of such a BPNN on the big and
high-dimensional dataset is very time-consuming. (2) It is
full of challenges to avoid the training process to get trapped
into a local optimum on a big and high-dimensional dataset.
Though we always search for a globally optimal solution,
while a gradient descent algorithm can only find a local
optimum in a neighbourhood of the initial solution [3].

B. EXISTING SOLUTIONS AND REMAINING
CHALLENGES
As the discussion above, on a high-dimensional big dataset,
it is essential to parallelise the training of BPNNs. In the
past decades, MPI has been applied to the parallel training of
BPNNs usually on supercomputers with distributed memory
sharing system [7]. On the other way, GPU is also utilised
to implement ANN training algorithms usually on a cluster
of GPGPUs [8]. Besides the special programming necessary,
such devices are also not so accessible to some users. More
importantly, the fault tolerance of an MPI based approach
will be affected largely in an unreliable environment, because
processes on different nodes need to communicate each other,
and all intermediate data are stored in the memory.

As a kind of data-parallel programming paradigms for
distributed applications, MapReduce has become one of the
de facto programming standards in big data applications.
It supports distributing a big dataset on a Distributed File
System (DFS) cross multiple computing nodes of a cluster.
Then, lots of Map tasks are configured and scheduled on each
computing node. The < key, value > pairs generated by
each Map task will be serialised into files and some Reduce
tasks will pull them to get the final result. Because all Map
and Reduce tasks do not need to communicate each other
and all intermediate results are serialised into files on DFS,
when such a task fails unexpectedly, it will be re-scheduled to

another node transparently, but the whole job does not need
to restart. So, it can get high performance and fault tolerance
even on a cluster composed of personal computers compared
to other traditional program paradigms.

Therefore, in recent years, MapReduce has been intro-
duced to parallelise the training of BPNNs. For example, the
approaches proposed in [9] and [10] utilise parallel Map tasks
for forward propagation, and parallel Reduce tasks for both
error back propagation and connection weight adaptation.
Compared to the stand-alone training, this can really improve
the efficiency. However, if all Map tasks share a same global
BPNN, the necessary synchronisation will still be the bot-
tleneck of the training efficiency. If each Map task has its
own local BPNN, it is still a challenge on how to generate
convergent global BPNN on the whole training dataset. An
interesting approach is proposed in [11], which implements
the weight adaptation of the global convergent BPNN in a
Reduce task based on the average of the weights of local
BPNNs produced by all Map tasks. Nevertheless, there is
little evidence to show it can speed up the convergence
process as the training iteration increase. Moreover, these
approaches did not discuss how to avoid the training process
to get trapped into a local optimum. The approach proposed
in [12] produces lots of local BPNNs on each node by Map
tasks and has to do predictions based on the voting of these
local models in an application. This will make the model
more complex and affect the prediction efficiency. In [13],
Genetic algorithm is used only to find appropriate initial
weights of BPNN.

As the analyses above, in MapReduce training of a BPNN,
because each local BPNN whose connection weighs are
adjusted by a specific Map task is only convergent on a
specific splits of the training dataset, the generation of a
global BPNN candidate that may be convergent on the whole
training dataset is still essential to be explored. At the same
time, how to avoid the training process to get trapped into a
local optimum is also an important problem to be addressed.

According to the discussion above, it is interesting and
meaningful to explore the BPNN parallelisation based on
MapReduce. The reasons include: (1) It is an interesting
topic to verify whether MapReduce is feasible and efficient
to support BPNN parallelism in big data applications. (2)
MapReduce can get high fault tolerance even on an unreliable
cluster. For big data applications, it is very important that the
whole job does not need to restart or trap into waiting when
a process on a single node halts abnormally. (3) MapReduce
jobs can run on a cluster composed of cheap personal com-
puters. So it is more convenient to some users. (4) Moreover,
current BPNN training approaches based on MapReduce
have not given an effective and efficient measure for global
convergent BPNN generation, and focus little on avoiding the
training process to get trapped into a local optimum. These
problems are still essential to be addressed.

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2951189, IEEE
Access

Wanghu Chen et al.: Training Back Propagation Neural Networks in MapReduce on high-dimensional Big Datasets with Global Evolution

C. OUR APPROACH AND CONTRIBUTIONS
As a subset of evolutionary computation, Evolution Algo-
rithm is a famous generic population-based meta-heuristic
optimisation algorithm [14]. It uses mechanisms inspired by
biological evolution, such as reproduction, mutation, recom-
bination and selection. Candidate solutions to the optimisa-
tion problem play the role of individuals in a population, and
the fitness function determines the quality of the solutions.
The evolution of the population takes place after the repeated
application of the above operators. Therefore, taking each
local BPNN convergent on the splits of a Map task as an
individual, the evolution of local BPNNs is an ideal way
to generate the global BPNN candidate. Moreover, because
EA has a great advantage in global optimum search and is
much less sensitive to initial conditions, though it is rather
inefficient in fine-tuned local search, so along with the gra-
dient descent algorithms of BPNN [14], it can improve the
efficiency to find the global convergent BPNN candidate and
has the strong abilities to avoid falling into local optimum.

Therefore, in this paper, based on the evolution of local
BPNNs, we intend to find an ideal solution to train BPNNs
in MapReduce on high-dimensional big datasets to improve
the training efficiency and accuracy.

The contributions of this paper are as follows. (1) A 3-stage
mechanism for MapReduce training of a BPNN on a high-
dimensional big dataset is proposed. Merging local BPNNs
on the same node and the evolution of the merged BPNNs
from all cluster nodes make the mechanism very effective.
The concept may be used to facilitate the training of other
ANNs on other data-parallel computing platforms. (2) Based
on the evolution of local BPNNs produced by all Map tasks, a
reasonable measure to generate the global convergent BPNN
candidate is proposed. It can greatly reduce the number of
iterations to find the global convergent BPNN candidate and
has high abilities to avoid the training to get trapped into
a local optimum. (3) An algorithm for MapReduce training
of BPNNs based on the evolution of local BPNNs is de-
signed. Random Project is introduced to improve the training
efficiency further. Experiments show that the algorithm can
improve the training efficiency and accuracy remarkably on
a high-dimensional big dataset.

The next sections of the paper are arranged as follows.
In section II, related work about the parallelism of ANN
training is discussed. Then, BPNN and its traditional training
are analysed in section III. In section IV, focusing on the
challenges in MapReduce training of BPNN, the proposed
approach based on the evolution of local BPNNs is discussed
in details. The experimental verification and related analyses
are shown in section V, and conclusions are given in section
VI.

II. RELATED WORK
A. MPI BASED PARALLEL LEARNING OF ANNS
Message Passing Interface (MPI) is widely used for the com-
munication among processes that model a parallel program
running on a distributed memory system. Experiments have

shown that in a distributed memory sharing environment,
BPNNs implemented with MPI have good efficiencies [7].

Using different parallel programming standards or mes-
sage passing mechanisms, such as MPI, OpenMP and
MPICH-G2, many studies have explored the training of
ANNs in different computing environments [15]–[18]. For
example, a parallel batch-pattern back propagation training
algorithm for Recirculation Neural Network on many-core
high performance computing systems is proposed in [15].
An approach to training ANNs in a grid distributed memory
environment and that to accelerating neuromorphic models
on a cluster of GPGPUs are proposed in [16] and [17]
respectively.

A parallelisation scheme for the computation of the fitness
function is proposed in [19], which leverages the advan-
tages of differential evolution to improve the training of
feed-forward neural networks. The approach proposed in
[20] incorporates distributed parallel computing technique to
modelling neural networks. MPI is utilised for both data gen-
eration and neural network training in parallel. In [21], load
balancing on heterogeneous LAM/MPI clusters is explored
based on average evaluation time and communication delay
feedback estimates from slaves. It shows that considerable
speed-ups can be achieved using the proposed fuzzy con-
troller.

According to the analyses above, MPI based approaches
can improve the learning efficiency of ANNs remarkably,
and show advantages in load balancing and speed-up as
well. However, because processes on different nodes need
to communicate each other during the running of an MPI
program, if one process halted abnormally, the whole pro-
gram would trap into waiting. Moreover, because all inter-
mediate data keep stay in the memory, if any fault happens
on a node, an MPI computation needs to restart from the
beginning. To a big data application, such cost may be very
high sometimes. At the same time, MPI programs regularly
run on supercomputers with distributed memory. Compared
with MPI, MapReduce has high fault tolerance even on an
elementary cluster composed of personal computers. So, it
is still meaningful to explore the effective approaches to
training ANNs in MapReduce.

B. GPU BASED ANN LEARNING
Graphics Processing Unit (GPU) has been widely used in the
implementation of algorithms that are not related to computer
graphics. Especially, lots of studies utilised GPU to improve
the learning of ANNs in the past decades.

Most of these proposed approaches use GPU to implement
the multiplication between the weights and the input vectors
in each layer, which is well known as the inner-product,
but to do the training phase off-line based on the CPU
implementation of the training algorithm [8]. For example,
a GPU-based implementation of matrix algebra operations is
employed in [22], and is used to implement a GPU simulator
of a feedforward complex-valued neural network. It shows
big advantages in speeding up the learning of ANNs on

VOLUME 4, 2016 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2951189, IEEE
Access

Wanghu Chen et al.: Training Back Propagation Neural Networks in MapReduce on high-dimensional Big Datasets with Global Evolution

big datasets. Many studies concentrate on the performance
improving of convolutional neural networks using GPU [23],
especially on exploring low-overhead and efficient hardware
mechanisms that can skip multiplications always giving zero
results regardless of input data [24]. In [25], the implemen-
tation of a multichannel structure of Hopfield Network on
GPU platforms is explored, and a kind of parallelism is
also proposed to explore the peak computing capacity of a
GPU device. Current studies also show that GPU performs
well on scaling up neural networks [26], and running DNN
applications on mobile device [27].

According to the discussion above, GPU shows its big
advantages in computation performance on inner-product and
other matrix algebra operations during the ANN learning,
as well as in scaling up some ANNs owing to its hardware
mechanism. Nevertheless, considering that the special GPU
programming on neural network learning algorithms may be
needed, and GPU devices sometimes are not so convenient
for some users, our studies in this paper are still interesting
and meaningful.

C. MAPREDUCE BASED ANN LEARNING
Just as it is mentioned in the introduction, MapReduce has
been introduced to parallelise the training of BPNNs [9]–
[12]. Combining with various domain applications, different
approaches to BPNN learning based on MapReduce are
explored in [28]–[30]. These studies show that MapReduce
based approaches can improve the efficiency of the BPNN
training greatly, and the accuracy of a BPNN model learning
from a big training dataset is much higher than that from
a small one. There are also many studies to explore the
training of various ANNs based on MapReduce, such as those
represented in [31] and [32].

From the perspective of model learning process, these
approaches fall into three categories as follows. One kind
of them can be considered to share a global BPNN by all
Map tasks [9] [10]. So, to adjust the connection weights
of the global BPNN, Map/Reduce tasks may need to do
synchronisations. Obviously, the training efficiency and the
fault tolerance will be affected. Another type of these studies
intends to get the global BPNN candidate based on the
average of those produced by all Map tasks [11]. Though the
idea is very interesting, there is little evidence to show that it
can speed up the convergence process as the training iteration
increase. The other type of novel approaches intends to pro-
vide an ensemble BPNN classifier after the distributed train-
ing, which usually leverages the bootstrapping of samples,
and does future classification based on majority voting [12].
Though it can improve the training efficiency, it increases
the cost in the prediction stage and makes final model more
complex. More importantly, the approaches mentioned above
give little concern on how to avoid the training process to get
trapped into a local optimum.

Recently, other approaches such as those based on Spark
and other data-parallel platforms are explored [33]–[35], but
the challenges faced by the approaches based on MapRe-

duce still exist. In [36]–[38], NN based decentralised control
systems are represented. The ideas of these approaches are
helpful to explore the ensemble classifiers based on the data-
parallel training of BPNNs as shown in [12].

In this paper, we study how to better parallel BPNN
training in MapReduce on high-dimensional big datasets.
How to get the global BPNN effectively and how to avoid
the training to get trapped into local optimum are the main
challenges to be addressed. This paper extends our work
in [39] through the following aspects. (1) We propose a 3-
stage BPNN training approach in MapReduce, which merges
the local BPNNs on the same node based on their weight
average before the evolution of these merged local models.
It can greatly improve the training efficiency and avoid the
training to get trapped into a local optimum. At the same
time, compared to our former work, local BPNN training and
global evolution are finished within one MapReduce job. (2)
In global evolution stage, we introduce Random Project to
get samples for fitness computation from the original datasets
in this paper. It can further reduce the training time without
affecting the model’s accuracy. (3) The extended policy for
the evolution of local BPNNs is also discussed in detail, and
the algorithm supporting the proposed approach is given. (4)
In experiments, we compare our proposed approach with 23
other popular classification approaches to verify its effec-
tivity. Moreover, a BPNN with 2 hidden layers is used in
this paper to discuss whether our proposed approach is still
feasible and efficient. (5) We further evaluate the speed-up
ratio of our proposed approach on a Hadoop cluster in this
paper.

III. BPNN AND ITS TRADITIONAL TRAINING
A. BPNN AND BP ALGORITHM
Fig. 1 illustrates a BPNN model with 1 input layer, h
hidden layers and 1 output layer, which receives a vector
(x1, x2, ..., xn

) as input and outputs (y1, y2, ..., ym) after a
series of computation. As shown in Fig. 1, the input layer
is composed of n neurons, the output layer has m neurons,
and the ith hidden layer has n

i

neurons, where 1  i  h.
For a BPNN, the neurons of a layer will connect to all those
of the next layer. So, the input layer is the preceding of the
first hidden layer, and the output layer is next to the last hid-
den layer. The connection weights between neurons of two
neighbouring layers can be denoted as a matrix W (i), where
1  i  h + 1. Obviously, W (1) is the connection weight
matrix between the input layer and the first hidden layer, and
W (h+1) is that between the last hidden layer and the output
layer. Because the structure of the BPNN can be specified by
a series of such weight matrices, to be more concise, a BPNN
can be denoted as BP = (W (1),W (2), ...,W (h+1)).

The learning process of BP algorithm contains two steps.
(1) Forward propagation: the output of a specific layer trans-
fers to the next layer as its input. For example, for a three
layer BPNN, the output of the jth neuron of the hidden layer
is o

j

= f(
P

w
ji

x
i

+ ✓
j

), where w
ji

is the element of the
matrix W (1), x

i

is an element of the input vector, and ✓
j

is the

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2951189, IEEE
Access

Wanghu Chen et al.: Training Back Propagation Neural Networks in MapReduce on high-dimensional Big Datasets with Global Evolution

FIGURE 1. An example of a BP neural network

threshold of the jth neuron of the hidden layer. Importantly,
f is an activation function, which usually uses Sigmoid
function f(x) = 1/(1+ e�x). Similarly, for the output layer,
there is o

k

= f(
P

w
kj

o
j

+ ✓
k

), where w
kj

is the element
of the matrix W (2), o

j

is the output of the jth neutron of
the hidden layer, and ✓

k

is the threshold of the kth output
neuron. (2)Reverse propagation of error: the error signal will
be returned along the original neural network. During the re-
turning, each weight value will be modified, so as to minimise
the sum of squares error E = 1

2

P
p

P
k

(y
pk

�o
pk

)2 between
the actual output and supposed output of the network, where
p is the index of a sample, k is the index of an output
neuron, y

pk

is the supposed output of the kth neuron with
the pth sample and o

pk

is the actual output correspondingly.
When E satisfies the expected threshold, we call the BPNN
is convergent on the training dataset. Then, a test dataset will
be used to verify the accuracy of the BPNN.

B. TRADITIONAL MAPREDUCE TRAINING
Given a small size BPNN, when the training dataset is also
in a small scale, it usually can learn with a hight efficiency
stand-alone (on one single machine). However, for a large
scale BPNN with a large training dataset, it often takes a
very long time to finish learning stand-alone. Just as our
discussion above, MapReduce training of BPNNs will be a
good choice in such a condition.

The traditional training process of BPNNs in MapReduce
is shown in Fig. 2. The training dataset is divided into a
series of splits, and then Map tasks are scheduled to each
machine node of a cluster where some splits are distributed.
Each Map task will get an initial BPNN whose connection
weights are generated randomly in the first run of training,
and finish the training of its BPNN with a specific split on
the node. When all the Map tasks finish the training of their
own BPNN, BPNNs of all these Map tasks are gathered by
a Reduce task. Obviously, in Fig. 2, the ith local BPNN may
be only convergent on the ith split of the training dataset.

Therefore, how to generate a global BPNN that is con-
vergent on the whole training dataset from all these local
convergent BPNN reasonably is a big challenge. To the best
of our knowledge, there is still no such an effective approach.
Current approaches usually realise this with the average of
local BPNNs’ connection weights. However, there is little

solid arguments to show their advantages in speeding up
the global convergency of the BPNN candidate. So, their
effectivity and efficiency still need to be verified, and the
problem is still essential to be addressed.

IV. DATA-PARALLEL TRAINING WITH THE EVOLUTION
OF LOCAL BPNNS
Considering the good performance of the evolution algorithm
in global optimum search, in this paper, we introduce the
evolution of local BPNNs into the data-parallel training of
a BPNN to conquer the challenges mentioned above, and
propose a novel approach called MREvolution.

A. OVERVIEW OF THE PROCESS
As shown in Fig. 3, the proposed approach can be divided
into three stages logically. All input and intermediate data
generated during the BPNN training are all stored in a
Distributed File System like Hadoop HDFS, besides weight
matrices of local BPNNs.

Stage 1: Local Training Stage. In this stage, the training
dataset is divided into lots of splits and distributed on nodes
of a cluster with a specific policy. Then, the MapReduce
engine will schedule Map tasks onto these nodes of the
cluster. Each Map task reads a split on the local node and
an initial global BPNN candidate from a specific file in the
DFS, and takes each sample in the split to train the BPNN
with Gradient Descent Algorithm(see in section III-A). When
a local training process is finished by a Map task, a local
convergent BPNN will be serialised into the DFS. The ini-
tial global BPNN candidate read by each Map is generated
randomly in the first run of training, and will be replaced by
the current global BPNN candidate in the next turn of training
(see in the Test stage in Fig. 3).

Because the BPNN can be specified by all its connection
weights, it can be notated as weight matrices between all
neighbouring layers. To be convenient to discuss, the BPNN
for each Map task is notated as LM (Fig. 3). So, BPNN and
its weight Matrices have the same meaning in this paper.

Therefore, if the training dataset is divided into m splits
{S1, S2, ..., Sm

}, m local BPNNs {LM1, LM2, ..., LMm

}
will be produced by Map tasks when the training process
finished. Each LM

i

produced by the ith Map task is only
convergent on the specific split S

i

. Before a Reduce task pulls
local convergent BPNNs to generate the global convergent
BPNN candidate, local BPNNs on the same node will be
merged with the average of their connection weights in the
Merge stage of the MapReduce job. This can reduce the I/O
cost and improve the efficiency highly. Eventually, n pairs
{< K

i

, LM
i

> |1  i  n} will be written into files in the
DFS, where K

i

corresponding to the ID of the current node
is the key of the local BPNN LM

i

, and n is the number of
nodes of the current cluster.

Because all Map tasks run in data-parallelism on the nodes
of a cluster, this process is highly efficient. At the same time,
because all Map tasks need not to communicate each other,
when a Map task halted abnormally, it will be scheduled to

VOLUME 4, 2016 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2951189, IEEE
Access

Wanghu Chen et al.: Training Back Propagation Neural Networks in MapReduce on high-dimensional Big Datasets with Global Evolution

FIGURE 2. Traditional MapReduce training of BPNNs [39]

FIGURE 3. BPNN training in MapReduce driven by evolution

another node transparently. So, the process is very highly
fault-tolerant.

Stage 2: Global Evolution Stage. In this stage, a Re-
duce task pulls all local BPNNs produced by Merge tasks,
{< K

i

, LM
i

> |1  i  n}, from the DFS as the
initial population of an Evolver. Each LM

i

is called an
individual of the population. The Evolver then uses its oper-
ator Selection, Mutation and Crossover to produce new
individuals whose fitness satisfying the threshold will be put
into the population of the next generation. An individual is
considered to have higher fitness if its error computed by
testBPNN function based on a validation dataset is smaller.

Because the objective in this stage is to generate a global
BPNN convergent on the whole training dataset, the valida-
tion dataset that is also the input of testBPNN is from all
splits of the training dataset. However, if the whole training
dataset is taken, the computing efficiency will be affected.
Therefore, we introduce Random Project (see in section

IV-B) to sample the training dataset beforehand for the fitness
computing in this stage. The big dataset with high dimension
is projected to a new one with much lower dimension that
still remain the relations among the samples based on the
approach. Then, referring to the lower dimension space, a
validation dataset will be extracted from the whole training
dataset based on the probability distribution of the samples.
The validation dataset is then used for the selection of the
global BPNN candidates based on the fitness computing of
individuals. Because the sampling needs to be done only once
beforehand, its cost can be ignored. The fitness computing
approach is also acceptable because the validation samples
can reflect the features of the original dataset.

When the new generation of individuals are generated, a
set of pairs, {< K

i

, < GM
i

, f
i

>> |1  i  k}, will be
put into a file in the DFS, where K

i

is a key, GM
i

is a global
convergent BPNN candidate whose fitness is f

i

, and k is the
size of the population.

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2951189, IEEE
Access

Wanghu Chen et al.: Training Back Propagation Neural Networks in MapReduce on high-dimensional Big Datasets with Global Evolution

Stage 3: Test Stage. In this sage, all test samples will be
loaded from DFS, and the error e

i

between the supposed out-
put and the actual output of testBPNN according to each
sample is computed. The GM 2 {< K

i

, < GM
i

, f
i

>>
|1  i  k} that has the smallest e

i

and e
i

 � will be
selected as the eventual global BPNN, where � is a threshold.
Specially, if no element in {< K

i

, < GM
i

, f
i

>> |1  i 
k} satisfies the condition e

i

 �, the one with the smallest
fitness f

i

will be selected. Then, the one selected is saved as
the global BPNN candidate into the file in the DFS to replace
the old one, and the MapReduce training job is re-invoked.
Thus, all Map tasks will get a better initial BPNN in the new
turn of training.

After some turns of such distributed data-parallel training,
the final BPNN will become globally convergent on the
whole training dataset and satisfied the expected accuracy.
Compared with our former work [39], the mechanism pro-
posed finishes the local training and the global evolution in
one MapReduce job, and can reduce the cost for MapReduce
job configuration, initialisation, I/O operations and so on.

B. DATASET SAMPLING FOR FITNESS EVALUATION
Just as shown in Fig. 3, the fitness of each new individual
needs to be computed to support the evolution of local
BPNNs. To do so, the test dataset should be the whole
training data. When the training dataset is very large, the
fitness computing really can be evaluated with data-parallel
computing to maintain an acceptable efficiency. However, if
a smaller test dataset that can reflect the features of the whole
training data well can be found, it can highly improve the
training efficiency of BPNNs. The similar concept is used
in some sampled-data neural-network-based systems [40].
Therefore, sampling the splits of the training dataset for all
Map tasks in the local training stage to provide validation
dataset for the global evolution stage is meaningful. The
challenge is how to guarantee the quality of the sampled
dataset.

According to the Random Projection theory [41], given a
dataset S = {x

i

}, where each x
i

2 S is an n � dimension
sample, if S 2 Rn⇥k(k < n) is a random matrix, for each x

i

and x
j

(i 6= j), let x̄
i

= STx
i

and x̄
j

= STx
j

, x̄
i

, x̄
j

2 S̄,
the distance between x

i

and x
j

in a high dimension can be
simulated by that between x̄

i

and x̄
j

in a low dimension. So,
the lower dimension dataset can reflect the relations among
data in the original high dimension to some extent.

Therefore, we can sampling the training data taking the
advantages of this theory. (1) Get a lower dimension dataset
S̄ = S ⇥ Rn⇥k(k < n) from the primary n � dimension
dataset S. (2) Then, Centralisation L2 Discrepancy [42] is
used to mark uniform samples from S̄. (3)The corresponding
samples in S according to the marked ones in S̄ will be
selected into the eventual test dataset.

C. THE EVOLUTION OF LOCAL BPNNS
As the discussion above, it is an effective solution to generate
the global convergent BPNN based on the evolution of local

convergent BPNNs using EAs. The fitness (or error) function
does not have to be differentiable or even continuous since
EAs do not depend on gradient information [14].

Given an individual X , which is a BPNN, its fitness
is defined as f(X) = 1/E(X), in which E(X) =q

1
n

P
n

i=1

P
m

j=1 (oij � ō
ij

)2, where n is the number of test
samples, m is the number of neurons in the output layer, o

ij

is the output of the jth output neuron with the ith test sample,
and ō

ij

is the expected output value corresponding to o
ij

.
During the evolution, an individual X is considered to be

composed of a series of chromosomes, each of which is either
a connection weight or a threshold. So, each individual X is
encoded into a series of real numbers. For example, given
a three-layer BPNN, supposing its input layer, hidden layer
and output layer has n0, n1 and n2 neurons respectively, each
connection weight w

(i)
jk

will be treated as a chromosome,
where i = [1, 2], 1  j  n

i

and 1  k  n
i�1. As shown in

Fig. 1, w(1)
jk

is the connection weight of the jth neuron in the
hidden layer to the kth neuron in the input layer. Similarly,
w

(2)
jk

is the element of the weight matrix W (2) between the
hidden layer and output layer. Importantly, a threshold ✓

(i)
j

(i = [1, 2], 1  j  n
i

) is also be treated as a chromosome,
where ✓

(1)
j

is the threshold for the jth neuron in the hidden
layer, and ✓

(2)
j

is that in the output layer.
Then, an individual will be encoded into a con-

catenation of all connection weights and threshold like
(W (1),W (2),⇥(1),⇥(2)), where ⇥(1) and ⇥(2) are a vector
of threshold values for the hidden layer and the output layer
respectively. We note that each connection weights will be
flattened. Because hidden nodes in BPNN are in essence
feature extractors and detectors, separating inputs to the same
hidden node far apart during the encoding would increase
the difficulty of constructing useful feature detectors because
they might be destroyed by crossover operators [14]. There-
fore, connection weights to the same hidden/output node are
put together. That is to say, for each i = [1, 2], W (i) will
be flattened as W (i) = (w1, w2, w3, ..., wt

, ...), 1  t 
n
i�1⇥n

i

, and the element w(i)
jk

in the original weight matrix
W (i) refers to the element w

t

in the flattened vector, of which
t = (j � 1)⇥ n

i�1 + k, where 1  j  n
i

, 1  k  n
i�1.

The selection operator can be defined simply by the fitness
of an individual. Given an individual X , if f(X) > �, it may
be selected, where � is a threshold. To control the number of
the individuals entering the next generation, we define p

s

as a
selection rate. The individual satisfyingf(X) > � is selected
by a probability p

s

.
Let p

c

is a crossover rate, two individuals will enter the
next generation after crossover as a probability p

c

. Given
two individuals X

(t)
i

and X
(t)
j

in current generation t, sup-
posing f(X(t)

i

) > f(X(t)
j

), if their chromosomes at the
corresponding location are denoted as x(t)

i

and x
(t)
j

, the new
chromosome x(t+1)

i

and x
(t+1)
j

after the crossover of x(t)
i

and
x
(t)
j

to enter the next generation t + 1 can be generated as

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2951189, IEEE
Access

Wanghu Chen et al.: Training Back Propagation Neural Networks in MapReduce on high-dimensional Big Datasets with Global Evolution

following (Eq. (1), (2)), where ↵ is a value in [0, 1].

x
(t+1)
i

= x
(t)
i

+ ↵(x(t)
i

� x
(t)
j

) (1)

y
(t+1)
i

= x
(t)
i

� ↵(x(t)
i

� x
(t)
j

) (2)

Let p
m

is a mutation rate, then an individual will mu-
tated with a probability p

m

. Given an individual X , its new
chromosome x

(t+1)
i

of x
(t)
i

after mutation is determined
according to Eq.(3), in which r = (x(t)

i

� xl)/(xu � xl),
xu and xl are the upper and lower bounds of the real coded
value of the chromosome, r0 is a uniform random number
between 0 and 1, s is a number created randomly following
the power distribution [43].

x(t+1) =

(
x
(t)
i

� s(x(t)
i

� xl) r < r0

x
(t)
i

+ s(xu � x
(t)
i

) r � r0
(3)

Usually, p
m

and p
c

are set as static values according to
experiences in applications. Some approaches to generate p

m

and p
c

self-adaptively are also proposed. However, consider-
ing its weight adjustment ability of a BPNN, in this paper,
p
m

and p
c

are set according to the experiences.

D. THE LEARNING ALGORITHMS
Based on the discussion above, the algorithms for distributed
data-parallel training of a BPNN with the evolution of local
BPNNs can be described as follows.

In algorithm 1, MAP() and MERGE() refer to the two
stages in the execution process of a MapReduce job. The
key

i

in MAP(key
i

, S
i

) is the offset of the first character in
the split S

i

of the source data. It also can be the fingerprint
of the data split, i.e., key

i

= fingerprint(S
i

). Differently,
key

i

in MERGE(key
i

, {< LM
j

, e
j

>}) is the host ID of the
current machine node.

Algorithm 2 generates the candidate global convergent
BPNN based on the evolution of local BPNNs. The input
parameter of REDUCE() pulls from the output of MERGE().
Because the evolution tends to generate the global BPNN
candidates convergent on the whole training dataset, S in the
algorithm 2 is the whole training dataset.

Algorithm 3 reads the test dataset to verify whether the
BPNN has satisfied the accuracy. If it has not yet, the whole
training process will be re-invoked. In the next turn of
training, all Map tasks will load the global BPNN candidate
generated by the Reduce task in the last turn as its initial
BPNN.

The whole training process of the proposed approach
in this paper, MREvolution, will be a loop of Local-
Training(Alg. 1), Global-Evolution(Alg. 2) and Test(Alg. 3).

V. EXPERIMENTS AND EVALUATION
To evaluate the approach proposed, three BPNN training
tools, MREvolution, MRAverage and StandAlone are im-
plemented. MREvolution uses our BPNN training approach
proposed in this paper, and MRAverage is based on the
BPNN training approach in MapReduce with local weight

Algorithm 1 Local-Training
function MAP(key

i

, S
i

)

//S
i

is a split of the training dataset identified by key
i

LM
i

= loadLocalBPNNFromDFS(bpF ile)

//LM
i

is a local weight matrix for the current Map task
initializeBPNN (BPNN

i

, LM
i

)
samples = S

i

.format ()

for each s 2 samples do

e
i

= gradientDescentLearning(BPNN
i

, s)
//e

i

is training error //see in section III-A
end for

key
i

=getHostID()
output(key

i

, < LM
i

, e
i

>)
end function

function MERGE(key
i

, {< LM
j

, e
j

>})
//Elements in {< LM

j

, e
j

>} have the same key, key
i

n=0;
LM=O; //zero matrix
e=0;
for each < LM

j

, e
j

>2 {< LM
j

, e
j

>} do

LM = LM + LM
j

e = e+ e
j

n=n+1
end for

LM = LM/n
e = e/n
output(key

i

, < LM, e >)
end function

matrices average. StandAlone does BPNN training with the
traditional non-parallel algorithm.

The training datasets in experiments come from the sce-
nario mentioned in section I. Both MREvolution and MRAv-
erage do their BPNN training on the same Hadoop cluster
with 1 master node and 9 data nodes. We note that only the
data nodes of the cluster undertake training tasks. To make it
fair, one of the cluster nodes is selected for StandAlone. Each
cluster node has 32GB RAM, 2T disk storage and two 8-core
CPUs of 2.4GHz.

A. EFFICIENCY AND ACCURACY ANALYSES
Firstly, a 3-level BPNN model is designed, which has 53
input neurons, 20 hidden neurons and 1 output neurons. To
compare the training efficiency and accuracy of these three
approaches, 3 different datasets are used. The first training
dataset contains 0.95 million samples, and the other two have
1.9 million and 3.8 million samples respectively.

Fig. 4 shows the training time of each tool on the specific
training dataset. In the training process, we set the error

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2951189, IEEE
Access

Wanghu Chen et al.: Training Back Propagation Neural Networks in MapReduce on high-dimensional Big Datasets with Global Evolution

Algorithm 2 Global-Evolution
function REDUCE({key

i

, < LM
i

, e
i

>})
//{key

i

, < LM
i

, e
i

>} is produced by MERGE() and
is pulled here by Reduce task of the MapReduce job

P0={LM
i

} //initialize the population

P1=select(P0,�, ps)
//copy individuals whose fitness no smaller than � with

a probability p
s

into the next generation (section IV-C)

P1 = P1 [ crossover(P0, pc) //Eq.1 and 2
//generate new individuals by crossover, p

c

is the
crossover rate

P1 = P1 [ mutate(P0, pm) //Eq.3
//generate new individuals by mutation, p

m

is the mu-
tation rate

validationSamples = sampling (S)
//see in section IV-B, S is the whole training dataset

f = 0
for each LM

i

2 P1 do

BPNN
i

=InitializeBPNN (LM
i

)
f
i

=testBPNN(BPNN
i

, validationSamples)
//see in section III-A
if f < f

i

then

LM = LM
i

end if

end for

output(LM )
//output the BPNN with the highest fitness

end function

FIGURE 4. Training time taken by the three approaches to finish the training

threshold as 0.02. We find that the tool StandAlone has not
finished the BPNN model training yet after about 7 hours
when we stopped the training process manually. Even so, the
training time of MREvolution is only 7% to 10% of that of

Algorithm 3 Test
function TEST(LM)

testSamples = loadTestSamples()

n=0
m=length(testSamples)
for each s 2 testSamples do

BPNN=InitialBPNN (LM )
e
i

= testBPNN(BPNN, testSamples)
if e

i

 � then

n = n+ 1
end if

end for

if n/m > r then

GM=LM
//GM is the final global convergent BPNN
output(GM )
return //The whole training process finished!

else

saveIntoDFS(LM, bpF ile)
//LM will be read by Map tasks in next turn of

training
invoke (Local-Training)
//begin the new turn of training

end if

end function

FIGURE 5. Iteration times needed by the three approaches to finish the
training

StandAlone. That is to say the data-parallel approaches make
it feasible for BPNN to work on a big and high-dimensional
training dataset for its high training efficiency.

It also shows that MREvolution can reduce the training
time by 66.8%, 82.5% and 85.9% compared to MRAverage
on the three datasets respectively (Fig. 4). Fig. 5 interprets
why MREvolution can improve the training efficiency so
largely. It shows that MREvolution only needs to iterate 10
to 32 times to make the BPNN convergent, but MRAverage
and StandAlone need to iterate hundreds or thousands of such

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2951189, IEEE
Access

Wanghu Chen et al.: Training Back Propagation Neural Networks in MapReduce on high-dimensional Big Datasets with Global Evolution

FIGURE 6. Accuracy of the BPNN when finished its training using the three
approaches

FIGURE 7. Average error when using the three approaches to make the
BPNN convergent

turns. The reason is that MREvolution introduces the evolu-
tion into the generation of the global convergent BPNN. So,
the approach proposed in this paper provides a feasible and
effective measure for the global BPNN candidate generation
in MapReduce training of BPNNs.

Fig. 6 shows the comparison of the accuracy of the BPNN
when finished its training based on three different approaches
respectively. It shows that on the smallest dataset, the accu-
racy of MREvolution is slightly lower than that of MRAver-
age, but MREvolution has much higher efficiency according
to the discussion above. Moreover, as the dataset become
lager, MREvolution approximately improves the accuracy by
2% to 3% on the other two datasets compared to MRAverage.
It means that as the training data become bigger, the model
can learn some potential rules in the data that cannot be found
with smaller sample sets. The reason is that MREvolution
introduces the average of local BPNNs on the same node
in the local training stage before leveraging the evolution of
local BPNNs. This makes MREvolution has a high ability to
avoid the training to get trapped into a local optimum.

Fig. 7 shows the error comparison when the BPNN fin-
ished training by the three tools. Apparently, the tool MREv-
olution has the smallest training error and StandAlone even

FIGURE 8. The error variation during the training process of MREvolution

does not reach the error threshold 0.02 after a 7-hour training.
In the experiment, the tool StandAlone just gets a conver-
gence error of 0.0213 when we stop the training process
manually.

In Fig. 8, the convergence process of the MREvolution
training is given. It shows that the error of the BPNN training
has a descending trend and lower the threshold 0.02 eventu-
ally.

At the same time, to further verify the effectivity of the ap-
proach proposed in the paper, up to 23 popular approaches for
classification are chosen for accuracy evaluation. These ap-
proaches include those based on SVM, Decision Trees(DT),
Ensemble Learning(EL), KNN, Logistic Regression(LR) and
Random Forests(RF). Our approach, MREvolution, is as-
signed a category label called MRE (Fig. 9). All these
approaches use the same dataset from the application men-
tioned in the introduction. Because the objective of these ex-
periments is to verify that MREvolution is effective on such
high-dimensional big datasets, we let SVM-Fine Gaussian
act as the base approach, and the accuracy improving rate
of each of the other approaches is evaluated. The accuracy
improving rate is calculated by a formula (a� b)/b, where a
is the accuracy of a specific approach and b is the accuracy
of the base approach. Fig. 9 shows the accuracy improving
rate of each approach relative to the base approach, SVM-
Fine Gaussian. So, the ordinate of Fig. 9 means the accuracy
improving rate of each approach that falls into one of the
given categories. The trend line in Fig. 9 is only used to
highlight the performance of each approach in accuracy
improving.

As shown in Fig. 9, MREvolution has the best performance
in accuracy improving compared with others. It improves the
accuracy about 27.1% relative to that of the base approach.
Though Random Forests also shows big advantages to most
of the other approaches, MREvolution still gets an accuracy
improving rate about 0.7% higher than Random Forests does.
At the same time, it shows that traditional BPNN also has
a better performance compared with all KNN and SVM
based approaches, and has an accuracy improving rate no

10 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2951189, IEEE
Access

Wanghu Chen et al.: Training Back Propagation Neural Networks in MapReduce on high-dimensional Big Datasets with Global Evolution

FIGURE 9. Accuracy Improving Evaluation with SVM-Fine Gaussian as the Base Approach

smaller than those of most approaches based on DT and EL.
Nevertheless, the accuracy improving rate of MREvolution
is about 6% higher than that of the traditional BPNN. That is
to say MREvolution is feasible and effective to be applied in
such applications.

B. THE PERFORMANCE OF MREVOLUTION ON
2-HIDDEN-LAYER BPNNS
To analyses the feasibility of MREvolution on BPNNs with
multiple hidden-layers, a 4-layer BPNN is designed. Then,
MREvolution is used to train it on the same Hadoop cluster
and datasets mentioned above.

Fig. 10 shows that its training time does not increase
largely compared with that of the 3-layer BPNN. Instead, it
has a decline of 41% and 64% respectively on the first and
second datasets. On the third dataset, though the training time
of the 4-layer BPNN increases, the ratio is only about 5%.
The iteration times for convergency shown in Fig. 11 can
interpret the variations of the training time. In reality, as the
structure of a BPNN becomes more complex, its precision
usually may increase. So, it is possible to become convergent
with less iterations.

According to Fig. 12, the accuracy of the 4-layer BPNN
declines by about 0.8% to 1.3% compared with that of the
3-layer one on the three datasets. This is really a backward
of BPNN, because it may lead a BPNN into overfitting as its
structure become more complex and if the dataset has noise
[44]. This will be taken into consideration in our future work.
Nevertheless, the proposed approach has a good trade-off in

FIGURE 10. Training time taken by MREvolution

efficiency and accuracy.

C. SPEED-UP ANALYSES OF MREVOLUTION
To evaluate the speed-up of our proposed approach MREv-
olution, the 3-level BPNN mentioned above is trained on
different size of clusters with the biggest dataset. Supposing
the training time of the BPNN on a cluster with n computing
nodes is t and that on a cluster with one computing node is t0,
the speed-up ratio on this size of cluster will be t/t0, where
n means the size of the cluster.

Fig. 13 shows the variation of the speed-up ratio of
MREvolution. It shows that the speed-up ratio on a 9-node
cluster is over 6 and the approach proposed will have a high
performance. This may provide a guidance to determine the

VOLUME 4, 2016 11



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2951189, IEEE
Access

Wanghu Chen et al.: Training Back Propagation Neural Networks in MapReduce on high-dimensional Big Datasets with Global Evolution

FIGURE 11. Training iteration times needed by MREvolution

FIGURE 12. Accuracy comparison of the 1- and 2-hidden-layer BPNNs
finished training by MREvolution

FIGURE 13. The speed-up ratio of MREvolution on the biggest dataset

size of the cluster.

D. EVALUATION SUMMARY
According to the experiment results, our proposed approach,
MREvolution, shows great advantages in both efficiency and
accuracy to current approaches because it introduces the
evolution of local BPNNs into the global convergent BPNN
generation.

VI. CONCLUSION AND FUTURE WORK
The evolution of the local BPNNs generated by Map tasks
is an ideal way to enhance the MapReduce training of a
BPNN. It can improve either the training efficiency or the
model accuracy on high-dimensional big datasets. At the
same time, it verified by the real-world scenario that the
approach proposed can work well on big data applications.

In future, the approach proposed will be enhanced in
following aspects. (1) Supporting either the structure evo-
lution or weight matrix evolution of local models. Thus, it
will be applied to the distributed data-parallel learning of
other NNs. (2) Applying the approach into deep NNs and
improving its abilities further to avoid model overfitting.
(3) Leveraging other distributed data-parallel programming
platforms, especially Spark, and analysing their impacts on
learning efficiency.

REFERENCES
[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Parallel Distributed

Processing: Explorations in the Microstructure of Cognition, Vol. 1. Cam-
bridge, MA, USA: MIT Press, 1986, ch. Learning Internal Representations
by Error Propagation, pp. 318–362.

[2] R. P. Lippmann, “An introduction to computing with neural nets,” IEEE
Acoust. Speech Signal Process, vol. 4, no. 2, pp. 4–22, 1987.

[3] K. Hornik, “Approximation capabilities of multilayer feedforward net-
works,” Neural Networks, vol. 4, no. 2, pp. 251 – 257, 1991.

[4] H. Wang, P. X. Liu, J. Bao, X. Xie, and S. Li, “Adaptive neural output-
feedback decentralized control for large-scale nonlinear systems with
stochastic disturbances,” IEEE Transactions on Neural Networks and
Learning Systems, pp. 1–12, 2019.

[5] H. Wang, P. X. Liu, S. Li, and D. Wang, “Adaptive neural output-
feedback control for a class of nonlower triangular nonlinear systems
with unmodeled dynamics,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 29, no. 8, pp. 3658–3668, Aug 2018.

[6] A. Goh, “Back-propagation neural networks for modeling complex sys-
tems,” Artificial Intelligence in Engineering, vol. 9, no. 3, pp. 143 – 151,
1995.

[7] K. Ganeshamoorthy and D. N. Ranasinghe, “On the performance of paral-
lel neural network implementations on distributed memory architectures,”
in Proceedings of IEEE International Symposium on Cluster Computing
and the Grid (CCGRID), May 2008, pp. 90–97.

[8] A. Brandstetter and A. Artusi, “Radial basis function networks gpu-based
implementation,” IEEE Transactions on Neural Networks, vol. 19, no. 12,
pp. 2150–2154, Dec 2008.

[9] Y. Jia and Q. Zhu, “A method for text categorization using bp network
based on hadoop,” in Proceedings of International Conference on Compu-
tational and Information Sciences, June 2013, pp. 818–821.

[10] B. Zhou, W. Wang, and X. Zhang, “Training backpropagation neural
network in mapreduce,” in Proceedings of International Conference on
Computer, Communications and Information Technology (CCIT). At-
lantis Press, 2014.

[11] Z. Liu, H. Li, and G. Miao, “Mapreduce-based backpropagation neural
network over large scale mobile data,” in Proceedings of International
Conference on Natural Computation, vol. 4, Aug 2010, pp. 1726–1730.

[12] Y. Liu, L. Xu, and M. Li, “The parallelization of back propagation
neural network in mapreduce and spark,” International Journal of Parallel
Programming, vol. 45, no. 4, pp. 760–779, Aug 2017.

[13] C. Zhu and R. Rao, “The improved bp algorithm based on mapreduce
and genetic algorithm,” in Proceedings of International Conference on
Computer Science and Service System, Aug 2012, pp. 1567–1570.

[14] X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE,
vol. 87, no. 9, pp. 1423–1447, Sep 1999.

[15] V. Turchenko, G. Bosilca, A. Bouteiller, and J. Dongarra, “Efficient par-
allelization of batch pattern training algorithm on many-core and cluster
architectures,” in Proceedings of IEEE International Conference on In-
telligent Data Acquisition and Advanced Computing Systems (IDAACS),
vol. 02, Sept 2013, pp. 692–698.

12 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2951189, IEEE
Access

Wanghu Chen et al.: Training Back Propagation Neural Networks in MapReduce on high-dimensional Big Datasets with Global Evolution

[16] A. Gutierrez, F. Cavero, R. M. de Llano, and J. A. Gregorio, “Paralleliza-
tion of a neural net training program in a grid environment,” in Proceedings
of Euromicro Conference on Parallel, Distributed and Network-Based
Processing, 2004. Proceedings., Feb 2004, pp. 258–265.

[17] B. Han and T. M. Taha, “Neuromorphic models on a gpgpu cluster,”
in Proceedings of International Joint Conference on Neural Networks
(IJCNN), July 2010, pp. 1–8.

[18] B. P. Gonzalez, G. G. Sánchez, J. P. Donate, P. Cortez, and A. S. de Miguel,
“Parallelization of an evolving artificial neural networks system to forecast
time series using openmp and mpi,” in Proceedings of IEEE Conference
on Evolving and Adaptive Intelligent Systems, May 2012, pp. 186–191.

[19] W. Kwedlo and K. Bandurski, “A parallel differential evolution algorithm
for neural network training,” in Proceedings of International Symposium
on Parallel Computing in Electrical Engineering (PARELEC’06), Sept
2006, pp. 319–324.

[20] J. Zhang, K. Ma, F. Feng, Z. Zhao, W. Zhang, and Q. Zhang, “Distributed
parallel computing technique for em modeling,” in Proceedings of In-
ternational Conference on Numerical Electromagnetic and Multiphysics
Modeling and Optimization (NEMO), Aug 2015, pp. 1–3.

[21] L. Singh, A. Narayan, and S. Kumar, “Dynamic fuzzy load balancing on
lam/mpi clusters with applications in parallel master-slave implementa-
tions of an evolutionary neuro-fuzzy learning system,” in Proceedings of
IEEE International Conference on Fuzzy Systems, June 2008, pp. 1782–
1788.

[22] C. Hacker, I. Aizenberg, and J. Wilson, “Gpu simulator of multilayer
neural network based on multi-valued neurons,” in Proceedings of Inter-
national Joint Conference on Neural Networks (IJCNN), July 2016, pp.
4125–4132.

[23] T. Gong, T. Fan, J. Guo, and Z. Cai, “Gpu-based parallel optimization and
embedded system application of immune convolutional neural network,”
in Proceedings of International Workshop on Artificial Immune Systems
(AIS), July 2015, pp. 1–8.

[24] H. Park, D. Kim, J. Ahn, and S. Yoo, “Zero and data reuse-aware fast
convolution for deep neural networks on gpu,” in Proceedings of Interna-
tional Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), Oct 2016, pp. 1–10.

[25] S. Mei, M. He, and Z. Shen, “Optimizing hopfield neural network for spec-
tral mixture unmixing on gpu platform,” IEEE Geoscience and Remote
Sensing Letters, vol. 11, no. 4, pp. 818–822, April 2014.

[26] B. Li, E. Zhou, B. Huang, J. Duan, Y. Wang, N. Xu, J. Zhang, and
H. Yang, “Large scale recurrent neural network on gpu,” in Proceedings of
International Joint Conference on Neural Networks (IJCNN), July 2014,
pp. 4062–4069.

[27] P. K. Tsung, S. F. Tsai, A. Pai, S. J. Lai, and C. Lu, “High performance
deep neural network on low cost mobile gpu,” in Proceedings of IEEE
International Conference on Consumer Electronics (ICCE), Jan 2016, pp.
69–70.

[28] D. Li, C. Yuan, Y. Li, C. Li, J. Peng, G. Chen, and L. Zhang, “Research on
the precise fertilization based on mapreduce model for bp neural network
field,” in Proceedings of IEEE International Conference on Computer
Communication and the Internet (ICCCI), Oct 2016, pp. 173–176.

[29] G. Xu, M. Liu, F. Li, F. Zhang, and W. Shen, “User behavior prediction
model for smart home using parallelized neural network algorithm,” in
Proceedings of International Conference on Computer Supported Cooper-
ative Work in Design (CSCWD), May 2016, pp. 221–226.

[30] R. Zhang and C. Jiang, “The bank risk forewarning model of bp neural
network based on the cloud computing,” in Proceedings of International
Conference on Computing and Networking Technology, Aug 2012, pp.
91–94.

[31] S. Richly, G. Pueschel, D. Habich, and S. Goetz, “Mapreduce for scalable
neural nets training,” in Proceedings of World Congress on Services, July
2010, pp. 99–106.

[32] S. Venkatraman and S. Kulkarni, “Mapreduce neural network framework
for efficient content based image retrieval from large datasets in the cloud,”
in Proceedings of International Conference on Hybrid Intelligent Systems
(HIS), Dec 2012, pp. 63–68.

[33] H. Li, P. Su, Z. Chi, and J. Wang, “Image retrieval and classification on
deep convolutional sparknet,” in Proceedings of IEEE International Con-
ference on Signal Processing, Communications and Computing (ICSPCC),
Aug 2016, pp. 1–6.

[34] J. Zheng, Q. Ma, and W. Zhou, “Performance comparison of full-batch
bp and mini-batch bp algorithm on spark framework,” in International
Conference on International Conference on Wireless Communications
Signal Processing (WCSP), Oct 2016, pp. 1–5.

[35] K. Grolinger, M. A. M. Capretz, and L. Seewald, “Energy consumption
prediction with big data: Balancing prediction accuracy and computational
resources,” in Proceedings of IEEE International Congress on Big Data
(BigData Congress), June 2016, pp. 157–164.

[36] L. Ma, X. Huo, X. Zhao, B. Niu, and G. Zong, “Adaptive neural control
for switched nonlinear systems with unknown backlash-like hysteresis and
output dead-zone,” Neurocomputing, vol. 357, pp. 203 – 214, 2019.

[37] X. Zhao, X. Wang, S. Zhang, and G. Zong, “Adaptive neural backstepping
control design for a class of nonsmooth nonlinear systems,” IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 9, pp.
1820–1831, Sep. 2019.

[38] X. Chang, R. Huang, and J. H. Park, “Robust guaranteed cost control
under digital communication channels,” IEEE Transactions on Industrial
Informatics, pp. 1–1, 2019.

[39] W. Chen, X. Li, J. Li, and J. Wang, “Enhancing the mapreduce training of
bp neural networks based on local weight matrix evolution,” in Proceed-
ings of IEEE International Conference on Big Data (Big Data), Dec 2017,
pp. 2829–2835.

[40] Y. Wang, H. Shen, and D. Duan, “On stabilization of quantized sampled-
data neural-network-based control systems,” IEEE Transactions on Cyber-
netics, vol. 47, no. 10, pp. 3124–3135, Oct 2017.

[41] D. Fradkin and D. Madigan, “Experiments with random projections for
machine learning,” in Proceedings of International Conference on Knowl-
edge Discovery and Data Mining (SIGKDD). New York, USA: ACM,
2003, pp. 517–522.

[42] K. T. Fang, P. Winker, and Y. Zhang, “Uniform design: Theory and
application,” Technometrics, vol. 42, no. 3, pp. 237–248, 2000.

[43] K. Deep and M. Thakur, “A new mutation operator for real coded genetic
algorithms,” Applied Mathematics and Computation, vol. 193, no. 1, pp.
211 – 230, 2007.

[44] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: A simple way to prevent neural networks from overfitting,”
Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, Jan.
2014.

VOLUME 4, 2016 13


