http://userpages.umbc.edu/~jianwu/BPOD/
One day in December 10-13, 2020 (Virtual Workshop)
at
the IEEE Big Data 2020 Conference (IEEE BigData 2020)
Users of big data are often not computer scientists. On the other hand, it is nontrivial for even experts to optimize performance of big data applications because there are so many decisions to make. For example, users have to first choose from many different big data systems and optimization algorithms to deal with complex structured data, graph data, and streaming data. In particular, there are numerous parameters to tune to optimize performance of a specific system and it is often possible to further optimize the algorithms previously written for “small” data in order to effectively adapt them in a big data environment. To make things more complex, users may worry about not only computational running time, storage cost and response time or throughput, but also quality of results, monetary cost, security and privacy, and energy efficiency. In more traditional algorithms and relational databases, these complexities are handled by query optimizer and other automatic tuning tools (e.g., index selection tools) and there are benchmarks to compare performance of different products and optimization algorithms. Such tools are not available for big data environment and the problem is more complicated than the problem for traditional relational databases.
The aim of this workshop is to bring researchers and practitioners together to better understand the problems of optimization and performance tuning in a big data environment, to propose new approaches to address such problems, and to develop related benchmarks, tools and best practices.
This workshop is built on top of the successful organization of previous two workshops at the same conference. In both years, our workshop was one of the largest workshop at the conference.
Please note this year’s workshop will be held virtually because the collocated main conference is moving to virtual conference. Proceedings of the workshop will be published as planned. We will provide details on how to attend this workshop virtually when it is approaching.
Authors are invited to submit full papers (maximal 10 pages) or short papers (maximal 6 pages) as per IEEE 8.5 x 11 manuscript guidelines (templates for LaTex, Word and PDF can be found at IEEE Templates for Conference Proceedings). All papers must be submitted via the conference submission system for the workshop.
At least one author of each accepted paper is required to attend the workshop and present the paper. All the accepted papers by the workshops will be included in the Proceedings of the IEEE Big Data 2020 Conference (IEEE BigData 2020) which will be published by IEEE Computer Society.
Back to Jianwu Wang's homepage.
Back to IEEE BigData 2020.