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Abstract

In this dissertation, we constrsst a general method of multiscale approximations in chem-
ical reaction networks. We apply a continuous time Markov jump process to describe
the state of the chemical reactions.

In general chemical reactions, the chemical species numbers and the chemical re-
action rate constants will have various orders of magnitude. Therefore, we introduce
two different scaling exponents to normalize the numbers of molecules of the chemical
species and to scale the chemical reaction rate constants. Applying a time change, we
have different time scales for the limiting processes in the reduced subsystems.

A systematic way to select the scaling exponents is suggested to make the normalized
system have a nonzero finite limit. This method involves balance equations with the
scaling exponents, which we call species and subnetwork balance conditions.

We investigate asymptotic methods used in multiscale approximations. The law
of large numbers for Poisson processes is applied to approximate non-integer-valued
processes. In each time scale, the slow processes act as constants and the fast processes
are averaged out. Then the limit of the intermediate processes is obtained in terms of
the averaged fast processes and the initial values of the slow processes.

We introduce a model of the heat shock response and apply the general method
of multiscale approximations to this model. We analyze the system and obtain limit-
ing processes in each simplified subsystem which approximate the normalized processes
in the system with different time scales. We obtain error estimates of the difference
between the normalized processes and the limiting processes. Simulation results are

given to compare the evolution of the processes in the system and the evolution of the



ii
approximated processes using the limiting processes in each simplified subsystem.
Applying the martingale central limit theorem and using averaging, we obtain a cen-

tral limit theorem for deviation of the normalized processes from their limiting processes

in the three species model and in the heat shock response model.
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Chapter 1

Stochastic models for chemical

reaction networks

1.1 Historical background

In this chapter, the historical background of the stochastic approaches to chemical re-
action kinetics will be introduced. Chemical reactions are naturally stochastic. There
have been various stochastic processes by which chemical reactions are approximately
modeled since the 1960s [12]. |

In 1958, Bartholomay started to apply Markov process theory to chemical
reactions [3]. He constructed stochastic Markov models for the linear birth and death
population processes [3]. He used Q-matrix methods to relate the stochastic model and
the classical deterministic model [3].

Then McQuarrie investigated chemical reaction kinetics in small systems such
as several simple first order reactions [12]. He studied the effect of initial conditions on
the expectation and the variance [12]. He extended his work to two binary reactions
of 24 — B and A+ B — C and got the exact solutions to forward equations (master
equation in the chemical literature) for these two separate reactions using generating

functions [12].



Several approximate methods have also been developed since 1960. Bartholo-
may suggested a stochastic model for the Michaelis-Menten reaction in enzyme kinetics
in 1962 [5]. He compared the system of ordinary differential equations of the classical
mathematical model and the stochastic Markovian equations giving the rate of change
iﬁ terms of the probability of the concentration [5]. Following [5], the deterministic dif-
ferential equations may be obtained from the stochastic model by taking an expectation.

In 1972, Kurtz compared stochastic and deterministic models for chemical re-
actions. He suggested a format for stochastic rates in general chemical reaction networks
and scaling in terms of the volume of the reaction system, and obtained the law of mass
action as the limit of the stochastic models [9].

In 2003, Rao and Arkin suggested the quasi-steady-state assumption to reduce
the complexity in stochastic simulation [13]. The quasi-steady-state assumption says
that a subset of species is asymptotically at steady state in the specific time scale of
interest in [13]. Later, in Section 5.2, we prove a rigorous limit theorem in the heat
shock response model, and we prove that the quasi-steady-state assumption is justified.

Shortly after in 2006, Ball, Kurtz, Popovic and Rempala suggested multiscale
approximations to chemical reaction networks using a continuous time Markov jump
process [2]. In Section 5.1, we prove a central limit theorem for the three species model
considered in [2]. Asymptotic methods of modeling chemical reaction networks used in
[2] are based on [10] and [11] by Kurtz. In [10], he introduced strong approximation
using the law of large numbers, diffusion approximation, and the central limit theorem
of continuous time Markov éhains. In [11], he gives stochastic averaging when there are
two different time scales in a sequence of stochastic process; one is much faster than
the other. The averaged generator is obtained in terms of the occupation measure of a

sequence of components with much faster time scale.



1.2 Model description

We are interested in general chemical reaction networks involving n chemical reactions

and m chemical species, {4;, -, An}.
m m
ZVikAi — ZV’ikAi; k=1 ,n. (L.1)
i=1 i=1 :

Here, 1 is the vector indicating the number of molecules of each chemical species
which are consumed in the kth reaction, and v’; is the vector indicating the num-
ber of molecules of each chemical species which are produced in the kth reaction. vy

and v';; are the ith elements of v and vy, respectively.

Using a stochastic model, we would like to describe the evolution of the state
of the chemical reaction network. Assuming the state of the chemical reaction network
in the future only depends on the current state, we use a continuous-time Markov jump
process to describe the chemical reaction network. Let X (¢) represent the state of thé
system at time ¢, where its ith component, X;(t), is the number of molecules of the ith
chemical species at time ¢t. Then v'; — vy gives the jump size of the Markov process

when the kth reaction occurs. If the kth reaction occurs at time ¢, the state satisfies

Let Ry be the counting process giving the number of times that the kth reaction

occurs up to time ¢{. The Ry, will satisfy

Relt) = Wil /OtAk<X(s>>ds), E=1,-
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where the Yj are independent Poisson processes. A¢(X(¢)) is an intensity also called
the propensity in the chemical literature. Ar(X(t)) is the kth chemical reaction rate
depending on the state of the system X at time ¢t. Then the state of the chemical

reaction system satisfies

X(t) = X(O) + Z Rk(t) (I/ ,ik — Vik)
k=1

= X(0)+ Y ¥ / M) d8) (0 o — ).
k=1 0

Let z; be a variable for X;, the number of molecules of ith species, and z
is a vector with z; as its sth component. Let j be the kth reaction rate constant.
Treating different chemical molecules as balls with different colors and viewing a chemical
reaction as selecting balls to be consumed in the system, the chance of the kth reaction’s

occurrence during the interval [t,¢ 4+ At] is approximately proportional to

11 At (1.2)

i=1 Vik

following Kurtz [9].

1.3 Classical scaling

In the chemical reaction setting, the amount of each chemical species is generally mea-
sured by a concentration in moles per liter [18]. In the deterministic approaches for
chemical reaction kinetics, the instantaneous rate of the chemical reaction is generally
considered as some product of powers of the concentrations of the chemical species to

be consumed [18]. Theses powers are determined by v, the numbers of molecules of



chemical species consumed in the kth reaction. This law is the mass-action kinetics
[18]. Following the mass-action kinetics, the chemical reaction system is described by a
system of ordinary differential equations [18].

Now, we will derive mass-action kinetics for chemical reaction networks using
stochastic modeling. Let Ny be the volume of the system multiplied by Avogadro’s num-
ber, so the number of molecules of chemical species normalized by Ny would represent a
concentration. For a binary reaction, the chance of a pair of molecules reacting during
[t,t + A] is proportional to Tv% [9]. Similarly, for a reaction involving ! molecules, thé
chance of [ molecules reacting during [t, ¢+ A] is proportional to 7@01:? [9]. Therefore, we
express the rate in terms of the volume of the system.

Consider a general reaction > .-, v, A; N—% Yo v'aAg, fork=1,--- ,n. Using
(1.2) and considering only the maximal order term in z, we approximate the kth reaction

rate by

e . - nl v; -1 m R
Ak(z) =~ "C;cHCC;-/’k =N, (St )fsknx;"k. (1.3)
i=1 . i=1
Assuming that the number of molecules of each chemical species is large and has thé

same order of magnitude, we normalize the numbers of molecules of chemical species by

Ng. The normalized number of molecules of the ith species is

T;

and it represents the concentration of the ith species in the system. Plugging (1.4) in



(1.3), the approximate kth reaction rate parameterized by Ny is written as

m
)\k(x) ~ NoleHZ:ik
i=1

= Nol(2).
Setting ZMo(t) = %,N—(SQ, a time change equation and its approximation is

2% = 2%0) + 3Nl [ M) d) )
k=1 0 '

= 2%0)+ 3NV Nodu(Z%6) )~ )
k=1 0

where the initial value is defined as
ZM(0) = = [X(o)].

By the law of large numbers for the Poisson process, Ny 'Y (Nou) = u, we have an

approximation for the normalized system.

ZNO(t) =~ ZNO(O) -+ Z/t S\k(ZNO(S))(I/Ik - I/k) ds
k=10

m t m
= ZNO(O) + Z/ Kk H Zz.]vo(s)"ik(y'k — Vk) ds.
k=170 i=1

~— N

Since Ny is large, we replace Ny by N and define ZV(0) = & {ﬁ}\%ﬂ!] As N — oo, the

limit of the system parameterized by N gives the deterministic law of mass action

WE

Z(t) = K
1 i=1

T2 ' - )
()

If
=T



where Z(t) represents a limit of Z¥(t) as N — oo [9]. Then the numbers of molecules

of the chemical species are approximated as

X(t) ~ NoZ(t).

1.4 Multiple scaling

In the classical scaling, we assume that the orders of magnitude of all chemical species
are the same. However, many chemical reaction networks have various ranges of orders of
magnitude of chemical reaction rate constants and different ranges of orders of magnitude
of the numbers of molecules of chemical species. Then the classical scaling does not
capture the characteristics of the system well. Therefore, we need to consider different
scaling exponents o, for each chemical species and Gy for each chemical reaction rate
constant. For each z and for each k, we will choose appropriate values for «a; and G sb
that the normalized values become O(1).

In multiple scaling, No is a fixed number used for scaling the number of
molecules of chemical species and for scaling the chemical reaction rate constants in
the system. Define Z as a vector for the normalized numbers of molecules of chemical

species and x’s as the normalized chemical reaction rate constants.

2() = 2 =ow), (19
K = ;(;';k:oa) (1.6)

o; are always nonnegative and §; can be any number.

Consider a relationship between the chemical reaction rate constant ), and



the scaled reaction rate constant k. As mentioned in (1.2), the kth reaction rate is

proportional to

1|
i=1 Vi
Asymptotic behavior of the scaled reaction rate depends on z with the largest order.

Considering only the maximal order term in x and substituting x}, and z; by their scaled

values, the approximated kth reaction rate is given by

m m
' P Vike - ve+Br Vik
Ae(z) = Ky, H Tk = Nj Kk H 2;
=1 i=1

where z; = N””&— Assuming N, is large and replacing Ny by N, we obtain a parametric
0

family of models.

ZNw)y = zZV (0)+N‘°“ZY,€( / t NewtBe )N (ZN () ds) (v — vie)  (L.7)
k=1 0

Now, we need to see how to set initial values for the parameterized family,
Z™(0), using X (0). Since X is an integer-valued Markov process, ZV is also a Markov
process with different jump size in each component. Considering Z/¥ = N)%?’ the jump

size of the ith component is TV%T Therefore, set the normalized initial values as

1 [ X;(0)N% i
ZiN(O) = Nai[ (JS()‘))“ ], i=1---,n (1.8)

where [-] is a floor function which gives the greatest integer less or equal to the value

inside [-]. Then we have

(1.9)



Moreover, an error is uniformly bounded.

ZYO) - ZO) € = (1.10)

Let Z; = limy_ Z¥. Then X is approximated as
Xz(t) ~ Nngz(t)

The classical scaling is one of the possible scalings setting o; = 1 and By = —(3_ i, vik —

1).

1.5 Example

Consider again an example of two binary reactions 24, i Ai+Ay and A+ A, e Aj+A;.

The state of the system is represented as

X)) = X.(0) - i /O KX (5) (31 (s) — 1) ds)
Xo(t) = X2(0) + Yl(/ot k1 X1(8)(Xa(s) — 1) ds) — Yg(/ot rh X1(8) X2(s) ds)

X3(t) = X3(0)+Y2(./0 K9 X1(8)X2(s) ds).

Reaction rates are written in two forms, the one before the scaling and the other after

the scaling.

1

Kiz(zy —1) = N2V Pig (2 — o

)

KhTizg = Noteatbag o 0.
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After scaling, the normalized system state of the two binary reactions is

1

t
ZY() = 200~ NK( [ Nzl )2 ) - ) ds)
0
t
QX {03 1
() = ZV(0)+ N-vi( /0 N2, 20 (5) (20 (5) ~ o) )
t
—N_,azifg(‘/o Na1+a2+ﬂ2li2Z{v(8)Zév(8) dS)
t
2V = ZN(0)+ N-svy( / Nt g 7N (5) 78 (5) ds). (1.11)
0
For the classical scaling, set a3 = a9 = a3 = 1 and (§; = (§, = —1. Then the normalized

system becomes

Zy' (t)

Z; (1)

25

= 2O - V([ MA@ ) - 5
1

= ZJ(0)+ N7Y( /0 tleZ{V(s)(Z{V(s) N)ds)
_N"lYg(/O Nka2Zy (8) 25 (s) ds)

= Z3(0) + N7'Yo( /O t NryZN (s) 23 (s) ds).

As N — oo, we get the limit of the normalized system which is a stochastic version of

the mass-action kinetics.

2t = 7:(0) - /0 k1 Z1()? ds

Zo(t) = Z(0)+ /Ot (ﬁlel(s)2 - fngl(s)Zg(s)) ds

Zg(t) == Z3(O) -+ At KzZl(S)Zz(S) ds.

Next, consider (1.11) with a different set of scaling exponents. Suppose that
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the numbers of molecules of A; and Az are much larger than that of A;. Suppose than
Reaction 2 is much faster than Reaction 1. Then we set a; = a3 =1, a3 =0, /) = -2,

and B2 = —1. Then (1.11) becomes

20 = 20 - N[ B O - 5) )

70 = 2O +%( [ 6@ - )
{
—Yz(/o k22 ()25 () ds)

Zy(t) = Z3(0)+ N~'Yo( /0 tnzZ{V(s)ZéV(s)ds). (1.12)

In (1.12) have two time scales: the time scale for Z)¥ and Z% is slower than that for

Z¥. First, as N — oo, we obtain

Zi(t) = Z1(0)
Z(t) = Zy(0)+Yi( /0 k1 2,(0)% ds) — Yy /0 #22,(0)Zo(s) ds)

Z3(t) = Z3(0).

Now, to consider the behavior of the evolution of the processes in the later
time scale, replace t by Nt. Let Z/N(t) = ZN(Nt). Then using the change of variables,

(1.12) becomes

240 = 2O -NN( [ mVZOEN G- D) (119

20 = 2O +%( [ mNEN @) - ) ds)

—Yz(/o ko N ZN () Z3N (s) ds) (1.14)
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ZN@E) = ZN0)+ N7'Ya( / t@Nng(s)ZgN(s)ds). (1.15)

Dividing (1.14) by N and applying the law of large numbers for the Poisson process, we

obtain
14
/0 nzng(s)(’—;-:-Z;N ()~ Z{¥(s))ds — 0. (1.16)
From (1.16), we have

t
/ (Z3V (@) - ’fiz;N(t)) ds — 0. (1.17)
0 K2
Using (1.17), as N — oo, we obtain

Z) = Z(0) - /0 k1 ZL(s)? ds

40) = 20+ [ mzsras

1.6 The problem to be addressed

In Chapter 2, we construct a general method of multiscale approximations, which is
an extension of the method developed by Ball, Kurtz, Popovic and Rempala [2]. We
introduce a scaling exponent parameter 7 for time change. A systematic way to select
o’s and (s is suggested to make the normalized system have the order of 1. This method
involves balance equations with a; and Fx, which we call species and subnetwork balance

conditions.
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In Chapter 3, we investigate asymptotic methods used in multiscale approx-
imations. The law of large numbers for Poisson processes is applied to approximate
non-integer-valued processes. The limit of the intermediate processes are obtained in
terms of the averaged fast processes and the initial values of the slow processes.

In Chapter 4, we introduce a model of the heat shock response developed
by Srivastava, Peterson, and Bentley [14]. We apply the general method of multiscale
approximations to the heat shock response model. We analyze the system and obtain
limiting processes in each simplified subsystem which approximate the normalized pro-
cesses in the system with different time scales. We obtain error estimates of the difference
between the normalized processes and the limiting processes.

In Chapter 5, applying the martingale central limit theorem and using aver-
aging, we obtain a central limit theorem for deviation of the normalized processes from
their limiting processes in the three species model introduced in [8] and in the heat shoék

response model.
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Chapter 2

General scaling problem

2.1 Behavior of the system in different time

Since we treat the chefnical reaction system as a network, we first define some termi-
nologies borrowed from graph theory. A graph G = (V(G), E(G)) consists of two finite
sets: V(QG) the node set, often denoted by just V', which is a nonempty set of elements
called the nodes, and E(G), the edge set, often denoted by just E, which is a possibly
empty set of elements called edges, such that each edge e in F is an unordered pair of
nodes (u,v) [6]. A directed edge a is an ordered pair of nodes (v',v) in which v’ is the
initial node and ¢’ is the terminal node [6]. Then a directed graph is a graph consisting
of a directed edge set and a node set. Let H be a graph with thebnode set V(H) and
the edge set E(H). Then H is a subgraph of G, if V(H) c V(G) and E(H) C E(G)
[6]. Then a chemical reaction network gives a directed graph where the chemical species
are the nodes and the chemical reactions are the directed edges. Each subnetwork is a
sﬁbgraph of a directed graph. We will use these definitions in this chapter.

Consider again the general chemical reaction networks from (1.1)

m m

7 .
d viAi — > v'nA, i=1,n
i1 i=1
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Then a parametric family of the normalized system is given from (1.7) in Sectionl.2.

ZN(E) = ZM(0)+ N> Y fo tNO"”’“Lﬁ’“)\k(ZN(s))ds)(u’ik~uik) (2.1)

k=1

Let v be a time change parameter. To apply the time change, replace t by
N7t and apply change of variables using s = N7u. Defining a new variable VN (u) =

ZN(N7u) and substituting Z¥ by V;* in (2.1), we obtain

VO = V0N SN[ N ) do) 0 ). (22

k=1

Taking v = 0, there is no change on time. Choosing a positive value for <, time is
accelerated, while selecting a negative value for v, time is decelerated.

We would like to understand the asymptotic behavior of the kth reaction term
by comparing scaling exponents of N inside and outside of a counting process. There

are three possible cases depending on values of 7.

Tra- v+ < o (2.3)
Tta-ve+Br = o (2.4)
YHa v+ B > o (2-5>

When (2.3) is satisfied, the kth reaction term N=%Yj( fy N7+evs+l )\ (VN (s)) ds) (v —
vir) is asymptotically zero. That is, the scaled number of kth reactions is asymptotically
zero at the initial stage. When (2.4) is satisfied and a; # 0, applying the law of large

numbers for the Poisson process, the kth reaction term satisfies

t t
NV [ NI ) )0 =) & [ V() d e = )
0 0
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When (2.4) is satisfied and «; = 0, as N — 0o, we anticipate that the kth reaction term

converges to

Bl [ lV9) o)~ v

if certain conditions are satisfied. In both cases, when (2.4) is satisfied, nonzero finite
limits of the scaled numbers of kth reactions are anticipated. When (2.5) is satisfied, the
scaled numbers of kth reactions blow up as N — o0o. Therefore, a necessary condition

to prevent the kth reaction term blowing up is
YyH+o v+ 6 < a

Now, we need to consider which conditions are necessary to prevent V¥ blow-

ing up. The natural time scale for VN is determined by

LY = min (o — (- v+ Br))

= o~ max(e v + ) (2.6)

where the minimum in the first inequality is taken over reactions involved in the ith
species. Then (2.6) is a necessary condition to prevent any term in the equation for V¥
blowing up.

However, in some cases convergence may occur even though v is larger than the value
given in (2.6). For example, VN2 and V3N 2 converge when v = 2 in the heat shock
response model in Section 4.1.2, even though miny (az — (o v+ Bk)) = ming (a3 —(a-

Vg + ,Bk)) = .
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2.2 Balance conditions

2.2.1 Species balance conditions

Define I to be the collection of reactions that produce the ith chemical species and I';
to be the collection of reactions that consume the ith chemical species. Then define the

species balance equation as

max(y+ o-vg+ By) = max(y+ oy + By). (2.7)
kery ker;

Consider how (2.7) affects a limit of the normalized number of molecules of the ith

species in different time scales. When

v < a;— max (a-vg+ Gk, (2.8)
kerfyury

V.Y should be asymptotically equal to V.Y (0) and have a nonzero finite limit, V;(0).
(unless VN (0) = 0) When

v = oa— max (a-v+B), (2.9)
kerF yry

VN is asymptotically the same as the normalized number of species with reactions of

both production and consumption of the same maximal orders of magnitude for the
reaction rates. In this case, as N — 00, a nonzero finite limit should exist. If

v > a;— max (a-vy+ B, (2.10)
ker; Ury
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both the maximal reaction rate of production and the maximal rate of consumption blow
up to infinity as N — oo. However, in this chemical reaction networks, the consumption
rates in the equation for the s¢th chemical species are proportional to the number of
molecules of the ith chemical species, and the number of reactions of production and
consumption occur at the asymptotically same rate. Therefore, the numbers of reaction
of production and consumption are cancelled out, and as N — 00, a nonzero finite limit
should exist.

| Now, consider the case that (2.7) is not satisfied. Then the reaction terms
of production and consumption do not cancel as N — oo. We would like to prevent
the possibility that one of the production or consumption rates has greater order of
magnitude so that the limit, V;, either blows up to infinity or converges to zero as N —
co. In other words, we do not want a case that one of the production or consumption
reactions dominates. Then «; is required to big enough to prevent the reaction term

blowing up. That is,

max (Yy+oa-v+6) < o (2.11)
kerfury

Solving (2.11) for vy, the time change exponent must satisfy

v < a;— max (a-vg+ Bk). (2.12)
kertury

Combining (2.7) and (2.12), we define the species balance conditions as

Cl.(3) max{y+a-vg+ Bk) = max(y+ o vy + Bk) (2.13)
kerF kel;

or
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kert

k2

(#9)  max(y+o-ve+ 0Ok) # ig%{i(7+a Vg + i)

and

y<oi— max (a-v+p0) fori=1,--+,m (2.14)
kerfur;

Now, apply the species balance conditions to simple reactions
A1 = AQ.
Then the normalized time change equations for A; and A, after time change are

. t
VNt = VlN(O)—i—N_a‘YQ(/ NYrerth e, VN (s) ds)
0
{ .
—N7Yy ( / N1Heatbig, ViN(s) ds) (2.15)
0
t
V() = V3V (0) + N7V ( / Nrreatbug, VN (5) ds)
; _

t
Ny / Nt e VN (5) ds). (2.16)
0
The species balance equation for both A; and A, is
Y+az+B = y+a+ b (2.17)

If (2.17) is not satisfied, then a scaling exponent of the species should be large enough to
prevent the numbers of reaction of production and consumption of the species blowing

up to infinity as N — oo. After rearrangement, it gives us a restriction on a time change

scaling exponent. Applying (2.14), we have

Ytas+P # vH+a+b (2.18)



20

max(’y + a9 + ,82,’)’ + ap + ,@1) < o (2.19)

max(y +az + o,y +ou +41) < o (2.20)

Solving for 7, (2.19) and (2.20) require the time change scaling exponent to satisfy

v < min(ag,az) — max(ay + B2, 1 + B1)- (2.21)
(2.21) means that the choice of o’s and 3’s are valid for time scales up to

0 (Nmin(a1 L) —max(ag+ 02,01 +51)) )

For simplicity, assuming o; = a» and consider the limit in each case. First,

assuming the species balance condition (2.17) is satisfied. Then using (2.17), we have

ﬁl. = ﬁg. When ¥ < "‘,81,

Vi) = Jim V¥(t) = %4(0)
V() = lim V() = V5(0)

N—oo

where V;(0) = limp_o V4V (0) and V2(0) = limy_, V3" (0).
When v = —f; and oy = a3 # 0, using the law of large numbers for the

Poisson process, we have

i) = Vi(0) + /Ot (/{21/2(3) - /ilVl(s)) ds

Vo(t) = Vo(0) + /t (k1Vi(s) — kaVa(s)) ds.
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When v = —(; and a; = ag = 0, we have

Vi(t) = Vl(o)‘*‘YZ(v/o 1‘82‘/2(8)0{8)—1/1(/0 k1Vi(s) ds)

Va(t) = V5(0) +Y1(/0t r1Vi(s) ds) —Yz(/ot raVa(s) ds).

When v > —f;, the numbers of reaction of production and consumption blow
up as N — oo. However, the consumption rate in the equation for V{" is proportional
to V{¥ and the consumption rate in the equation for V3 is proportional to Vj¥. Since
both reaction rates have the same order of magnitude, the numbers of molecules of the
chemical species are stabilized and as N — o0, a nonzero finite limit exist. Dividing
(2.23) and (2.24) by N"*#1 and applying the law of large numbers for the Poisson process,

we obtain

/t (k1VA(s) — KaVa(s)) ds = 0

when a3 = as # 0. In case a; = ay = 0, both species are averaged out, and the averaged

processes denoted V; and V; satisfy

/Ot (k1Vi(8) — kaVa(s))ds = 0.

Next, suppose that the species balance condition is not satisfied and we have
(2.18) and (2.21). Without loss of generality, set 31 > (2. The the time change exponent

should satisfy v < —@3;. When v < —0;, we have

Vi(t) = Vi(0)

Vat) = =12(0)
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Then when v = —p; and a; = ay # 0, the limits satisfy

W) = Vl(O)—/Othl(s)ds

V() = V(0)+ / eVi(s) ds.

In case v = —f; and oy = a3 = 0, we have

o = wo-v( [ " eiVa(s) d)

0

Va(t) = 1/2(0)4-1@(/O k1Vi(s) ds).

2.2.2 Subnetwork balance conditions

Even though all species balance conditions are satisfied, additional conditions may be re-
quired to ensure the normalized system has nonzero finite limits. Consider the following

example.
05 A 24,50, (2.22)
w3
Then the normalized time change equations for A; and A, after the time change are

¢ t
VN(#) = VYM(0)+ Ny, (/ NP, ds) + N""“YE;(/ Nvrertls o VN (s) ds)

0 0
1
—N"1Yy( / NYtoutPr, VN (s) ds) (2.23)
0
t
V@) = V(0)+ N /O NIt g U (5) dis) (2.24)

¢ t
_.N—azyé(/ N7+“2+ﬂ3/{3V2N(3) ds) - N—azn(/ N7+°‘2+ﬁ4/€4V2N(3)‘ds).
0 0
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We would like to investigate when V;¥ and V;¥ have nonzero finite limits as
N — oo. Suppose that 3 = f3 and they are larger than 0; and (5. We assume that
each species satisfies the species balance conditions, (2.13) or (2.14). The species balance

equations (2.13) are

max(By, 2 +Bs) = o+ B, (2.25)

i

"o+ B max(az + B3, ap + ,34) (226)

Using B2 = (3, a1 > 0, and By > B1, (2.25) is equivalent to a1 = ag. Using B2 = (3 > G4,
(2.26) is also equivalent to a; = ap. Therefore, either both (2.25) and (2.26) are satisfied
or both are not satisfied.

Now, assume that each species satisfies the species balance equations. Then

using oy = oy, consider the equation for ViV + ViV,

t
VROV @) = VOV + N [ N ds)
0

t
—N~Y,( / Nrtreatbag, YN (5) ds). (2.27)
0

To make V¥ + V¥ have a non-zero finite limit, it is required that

b = oa+ Py (2.28)

Assume that both species do not satisfy the species balance equations (2.14).

Then we have oy # ap and the time change exponent v must satisfy

v < min(al—max(max(ﬂ1,a2+ﬁ3),041+ﬂ2)7
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ag — max (ay + B, max(an + f3, a0 + ,34)))~ (2.29)

Therefore as we see from (2.28) and (2.29), the maximal order of magnitude
of collective reaction rates for inflow should be the same as the maximal order of mag-
nitude of collective reaction rates of outflow in any subnetwork to make any collection
of chemical species have a nonzero finite limit. In case the maximal order of magnitude
of collective reaction rates for inflow and the maximal order of magnitude of collective
reaction rates of outflow are different, the maximal exponent for the chemical species
should be large enough to prevent the numbers of reactions with the maximal order
blowing up.

Based on (2.28), we would like to generalize the conditions for collective rates
involving a subset of chemical species. Consider chemical species and chemical reactions
as nodes and directed graphs, respectively. Let G be the chemical species in the chemical
reaction networks and let G be any subset of G. Let I'f be the collection of reactions
that consume no chemical species in Gy and produce at least one of chemical species
in Go. Similarly, ' is the set of reactions that produce no chemical species in Go
and consume at least one of the chemical species in Go. For each Go C G, define the

subnetwork balance conditions as

C2.(7) ;21%3( (VH+a- v+ Gr) = max (v + - vk + Br), (2.30)

Gy € Go
or
(1) max(y+a-vg+ F)# max(y+ o v+ Gi),
keTE, kerg,
and

max (v+a-vg+ G) < maxo;. (2.31)
kerg urg, i€Go
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Solving (2.31) for +, the balance equations require the time change exponent to satisfy

v < min (max a;— max (o-yp+ ﬁk)> (2.32)

= GoCcG,Go unbalanced \ i€Go kEFE urg
0 o

In the subnetwork balance conditions, Gy can consist of a single node. Therefore, the
subnetwork balance condition contain the species balance conditions.

Assume that species and subnetwork balance conditions are all satisfied. Then.,
in general, we expect that any collection of the normalized numbers of chemical species
in the system of chemical reaction networks has a nonzero finite limit as N — oo.
However, a nonzero finite limit exceptionally may not exist for some cases.

For example, consider the following reaction networks.

[
~1

stuff + 4, —= 24, (2.33)
4 B (2.34)

In (2.33), stuff represents a chemical species which we are not interested in and which
exists in great amount in the system. In (2.34), 0 represents a chemical species which
we are not interested in. The normalized time change equation for the system after the

time change is

t
V() = V¥(0)+ N ( / NT+eatBic VN (5) ds)

t
Ny / N8, VN () ds). (2.35)
0

If we have

o+ P = ap+ P, (2.36)



26

both the species balance conditions and the subnetwork balance conditions are satisfied.
Still, ViV does not have a non-zero finite limit, in case we have &, # sy and v > — 0.
| Now, we would like to obtain simpler conditions equivalent to the species
balance conditions and the subnetwork balance conditions. First, define an irreducible
subnetwork as a set of directed graphs in which any node can be reached from any
other node. A trivial irreducible subnetwork means a subnetwork consisting of a single
chemical species. Therefore, species balance conditions for each chemical species are
equal to subnetwork balance conditions for trivial irreducible subnetworks.

Lemma 2.1 ensures that species and subnetwork balance equations are satis-
fied, if subnetwork balance conditions are satisfied for all irreducible subnetworks. For

simplicity, we set
pr = - v+ B,

and use this notation in Lemma 2.1.

Lemma 2.1. Subnetwork balance equations are satisfied for each subnetwork in the
system if and only if subnetwork balance equations are satisfied for each irreducible sub-

network. In other words,

max pr = max pg, for all Gy C G (2.37)
keTg, kelg,
if and only if
max py = max pg, for all irreducible G; C G. (2.38)
kel kelg,

Proof of Lemma 2.1. If (2.37) holds, (2.38) is satisfied since the nodes involved in
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any irreducible subnetwork are in G. We need to prove that (2.38) implies (2.37).
Suppose that (2.38) holds. Since a subnetwork with a single node is a trivial irreducible
subnetwork, species balance conditions are satisfied. |

Let G2 be a subset of G in which the maximal irreducible subsets of the

subnetwork are single nodes. Let [; € T'§, satisfy

py, = mMmax p, - (2.39)

+
Icel"G2

and let 4; be any chemical species in G; produced by the [;th chemical reaction. Then

l; € T} and using (2.39) we have

max pp = p, < Max py. (2.40)

-+
keTE, :

If MaXyer: Pk = MaXpery Pk, then using the species balance condition for the i;th

chemical species and (2.40), we obtain

max pp = p, < Max
kel's, )
= Imax px = max pg (2.41)
kel kel'g,
and (2.41) gives
max pr < max pg. (2.42)
kerg, kel'g,

If not, we recursively select [; for j =2,--- ,¢in Iy, with p; = maxgcp-  pg
ij1



and set iy for j =2,-.. g — 1 satisfying i; € Gz and [; € P,Z Then we have

=)
&
=

I

< .
oy = iﬂaiipk

-1 Y

We repeat selecting /; and i; until we find [, € I'; _| satisfying

max pp = pi, = MaX pg.
kel‘in_1 keI‘G2
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(2.43)

(2.44)

Since G has a finite number of nodes for chemical species and since maximal irreducible

subsets of a subnetwork involved in G, are single nodes, there is no possibility that the

same node is selected repeatedly as i; and thus, ¢ is finite. Then {l;} is a sequence of

reactions with monotone increasing rates satisfying

max pp = p S IaX pp = Max py
keTE, kerf ery,
= Py S .
= p(q = mMaX Pgk.
kelg,
Using (2.45), we get
max py < max pg.
kery, keTg,
Using similar procedure, we also get
max pry < max pg.

kelg, kerg,

(2.45)

(2.46)

(2.47)
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By (2.46) and (2.47), we prove

max pp = max pg
kerE, &

where maximal irreducible subsets of a subnetwork involved in G, are single nodes.
Now, suppose that there exists a maximal irreducible subset of a subnetwork
involved in G2 which is not a single node. In this case, a subnetwork involving nodes in
(9 can be written as the unions of its maximal irreducible subspaces. We can treat each
maximal irreducible subnetwork as a single nodes and (2.38) gives maximal irreducible
subnetwork balance equations. Then we can apply the previous procedure given in
the proof of subnetwork balance equations for any subnetwork containing no nontrivial

irreducible subnetwork. O

2.2.3 a’s depending of v

Scaling exponents for the ith chemical species, a;, may depend on the time changé
scaling exponent -y, since the numbers of molecules of each species evolve as time passes
and thus «; could be different for different time scales. In'each time scale, we can
define a different scaling exponent satisfying species balance conditions and subnetwork
balance conditions. Actually, the restriction on the time change scaling exponent due to
some of the unbalanced species and subnetwork balance equations indicates that we need
to select a different set of scaling exponents satisfying species and subnetwork balance
conditions. We will see a; depending of « in a heat shock response model in Section

4.1.1. Unlike o, we assume that §; are independent of ~.
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Chapter 3

Asymptotic methods in multiscale

approximations

3.1 Law of large numbers

Applying the time change by replacing ¢ with N7¢, the normalized system becomes
t
VN = VN0)+ Z N“”'Y}c(/ NYrevetOe )\, (VN () ds) (v — vir)
k 0

where VNV (t) = N~%X;(N"t). The law of large numbers for Poisson processes says, for

each uy > 0,

| Yi(Nw |
I}gnmsgg -———N———ul = 0 a.s.

If a; # 0 and the time change exponent, «, satisfies

o; = max (y+a-v+ G, (3.1)
kerfyry

we can apply the law of large numbers for Poisson processes to get the limiting process for
the normalized number of molecules of the ith species provided that fot M(VV(s))ds =

O(1). Each counting process describing the number of times each chemical reaction
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occurs satisfying (3.1) is approximated by its intensity function. If we prove the intensity
function of the counting process is O(1), a non-zero limit for the counting process would
be obtained when two scaling exponents inside and outside of the counting process havé
the same value. A natural time scale for V;" is a minimum of « which would prevent all

reactopm terms blowing up. Then each VN satisfies

= min (o —a-vy—Br) =a; — max (a-uvg+ Be).
kerdyry kerf ur;

Then the number of natural time scales of the processes in the system can be determined

by
M = |{ mn (—oa v—pB)i=12-,n} (3.2)
kerfyry
where n represents the number of chemical species in the system and where | - | is the

number of elements in a set. However, the normalized numbers of molecules of some
chemical species possibly do not satisfy the natural time scale. For example, we will see
VY and V" have the time scale of O(N2), even though i —maXyer+ - (@ ve+B;) =0
for ¢ = 2,3 in the heat shock response model in Section 4.1.2.

Define a set of reactions having the maximal order of magnitude of reaction

rates of production for each species

i ={: ﬁ?fv{(a g+ B) = vy + By, K €T} (33)

1

and define a set of reactions having the maximal order of magnitude of reaction rates of
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consumption for each species

Fi_,() = {kl : max(a s v+ /Bk) = - Yy -+ ﬁy, k/ & F;—} (34)

kery

Fix 7. Then 7 would be one of the values in M defined in (3.2), since we are mostly
interested in the evolution of the processes in different natural time scales.
In the subsystem for times of order N7, define index sets regarding processes with slow,

intermediate, and fast time scales.

S = {i:os> max (y+a -vy+06k)} (3.5)
kerryry

I = {i:ay= max (y+oa-v+0)} (3.6)
keriyry

F = {i:a4< max (y+a -vu+056)} (3.7)
kerf yry

S gives indices for chemical species with time scale slower than O (N7), I represents
indices for chemical species with time scale equal to O (N7), and F gives indices for
chemical species with time scale faster than O (N7). We split V¥ and define collections

of processes depending on time scales. Let

Vs = {V}ies (3.8)
V¥ = {(V}ia (3.9)
V¥r = {Vi"}ier (3.10)

To obtain a limit of the system, we first need the stochastic boundedness of the intensity

functions of the counting processes. The limiting behavior of the evolution of processes
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with time scale slower than O (N7) acts as constant and satisfy

lim sup |[VV|s(t) = V|s(0)] = 0, ied. | (3.11)

N—oo 4<T

For i € F, the behavior of the evolution of processes with time scale faster than O (N7)
is averaged out and expressed in terms of the evolution of intermediate processes and

-slow processes. Let

e x 0,0) = [ 100s(s)ds

and assume that (V| Vg, FVN|F) = (V|;,V|s,TVIF). Then the fast processes give

the limiting equations

S o NV VISE) 0 - ) ) ds = 0. i€ F

vi
kerf,Ury, W 7 F <l

where p, satisfies

eExne) = [, eVl d

Then applying the law of large numbers for Poisson processes, the system of intermediate

processes have a limit satisfying

dim supIVNII(t -Vii®)| = 0

——)oot



34

where

VO = O+ Y [ (Vi) VIs(o) ke — ) ) ds

Vi
kel UTT, Fx[o

i€l a0 #0

In case a; = 0, we cannot apply the law of large numbers for Poisson processes and the

limit is

Vi) = Vi(0)+ Z Yk(/ (2, V11(8), Vs(s)) ps(d2) ds) (v, — vik)
kel UTT, Brlrx(od ’
1€ I, a; =0

3.2 Averaging

In [16], quasi-steady-state approximation is used in deterministic modeling of chemical
reaction networks by assuming that the fast processes have their equilibrium values in-
stantaneously and the slow variables perform the slow dynamics in the slow subsystem
[16]. Then the stationary points form an exponentially attracting manifold with condi-
tions that all eigenvalues of the system of ODEs have all negative real parts [16]. On the
stationary manifold of the system, slow limiting processes are obtained, and using quasi-
steady—étate approximation, fast processes approaching the continuum of the stationary
points are approximated by projecting their trajectory vector on the invariant manifold

[16]. Therefore, dynamics of the slow processes on the invariant surface dominate the

slow subsystem with approximated fast dynamics onto the invariant surface [16).
Consider the normalized system V¥ parameterized by N. Following (3.2),

suppose that the system has M natural time scales. Arrange the natural time scale
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exponents in monotone decreasing orders

M>Y> > YM. (3.12)

Then we partition V¥ into (VN VNm ... YVN2) where each VN represents a
collection of components of V¥ in time scale O(NY%) and V% consists of at least

one normalized number of molecules of chemical species. We also define exponents

p1,**+ ,Pum in monotone decreasing orders satisfying
PL>p2 > > pu (3.13)
and
p; = max ( max (o v+ G) — ). (3.14)

VeV Ckerd Ury,

Actually, for any V; € VNV p; = maxkepzou%(a - v + Br) — ay, since VN have the
same natural time scale O(N).

The generator of the system can be approximated by partial pieces of the .
generator depending on the order of magnitude of the scaling exponents in the reaction
rates. Let v* be a variable for V¥ which is a collect&on’ of the components of V¥ in
time scale O(N7). Define CL-V is generator having all reactions of the largest order of

magnitude in the reaction rate. Then

NP (BT g(vh oo oM) = Cg (0! 0% o)) — 0. (3.15)
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Using BY, a martingale is defined as

MY(t) = g(Vin(e), - VM) — (VI (0),- -, VM (0))

—/tBévg(VNm(s)7--. ’VNy’YM(S>> ds
= g(VNm (t),--- ,VN,’YM (t)) _ g(VN‘"“ (0),--- ,VN”M (0))

= [ B (s) o V() (V) V() s

1
~ /O Cllg(VNM(s), - , V™ (s)) ds (3.16)
Define an occupation measure of a set of the fastest species V¥V as
N t
FV fied! (C X [0, t]) — / ]_C(VNm (5)) ds
0

Replace the integrals involving VN by the integrals against V"™ Then the martin-

gale is written as

MY(@E) = g(V¥™(@E),---, V™M) — g(VIN(0),-- -, VI7(0))
- / (Bivg(vl’ VN”YZ (3)7 T 7VN”YM (3))
EVN T (04
_Ci\J’lg(vl, VN1’72 (3)7 cee VNv'YM (3))) FVN“H (d’U1 X dS)

_/ CMig (!, VIm(s), ..., VNm (g)) V™ (dv* x ds) (3.17)
EVN k(04

We assume that (VN2 ... VN VMY o (2 o Y TV™) s N — oo, Di-

viding (3.17) by N7*P1 and using (3.15), we obtain

| / C?{’,ﬁ}z),_,,wmg(vl,VW(S),--. VM) TV (dvt x ds)  (3.18)
EV™ x[0,4]
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- _/V’Yl [ ] C?‘O;'}zv 7V’YM)g((U1’ V’Yz (5)? Tty V‘YM (S)) ns(d’Ul)ds
B x[0,¢

= 0

where C(()%z,... () is & limit of N=7"P1CHMN(-) as N — oo satisfying

lim (N—W—Plcg\”lg(vl,u%---,UM)—C‘g&%,__.,VM)g(v'l,vg,»---,vM)) = 0(3.19)

N—oo

Suppose that for each (v, --- ,vM), the solution pa... ey € P(EV™) of

(C?\o/’iz,... ’V’YM)g('Ula |48 (S)> T ymM (8)) T’; (dvl)ds =0 (320)

Ev"ll

is unique where g € D. Then

m(dv') = py(e),. vom ey (duh) (3.21)

(3.21) can be interpreted as the averaged behavior of processes in the fastest time scale
O(N™) can Be expressed by behavior of processes in time scales slower than O(N™). -

Similarly, we can get averaged behavior of processes in the time scale O(N"),
j=2,---, M, using the appropriate generator. Define C}V to be the generator having

all reactions of the largest order of magnitude involved in V¥, Then
NP (B g (v, joM) = CNig(v?, - M) — 0. (3.22)
Using BY, a martingale is defined as

MJ() = g(V¥u(),. - VI (t)) — g (VI (0),- -, V¥™M(0))
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- [ B, V() ds
= g(VM(t),-.. , VEM(H)) — g(VN(0),- -, VI (0))

- A (Bivg(VNﬂj (S), T VN”YM (S)) - (CéV,jg(VN,’Yj (8)7 Ty VN”YM (5))) ds

t
_ / CN2g(VN(s), - VN (s)) ds (3.23)
0

Define an occupation measure of a set of the fastest species V% as

N t
(e xod) = / 1o(VV(s)) ds (3.24)
0
Replace the integrals involving VP15 by the integrals against V™™ Then the martin-
gale is written as
MN( (VN,’YJ( ) e VN,”(M (t)) _ g(VN,’Yj (0)7 e VN’7M (0))

/ < (Uj,VNa7j+1(S)’... ,VN”YM(S))
v 0,
—Clg(v?, VN (s), ..., VM (s)) ) IV (do x ds)

/ vy CNIg(7, VI (s), o VN () TV (dof x ds) (3.25)
v % 0,1]

We assume that (VN”J‘“,--- ,VN’WM,I’VN'A'j) = (V”’f“,--- ,V”’M,FVV") as N — oo.

Dividing (3.25) by N7*Pi and using (3.22), we obtain

vaj 04 C(V’YJ V'YM)Q('UJ'; |t (3), v ,V’YM (S)) Fij (d’l)J X dS) (326)

— 00,j 7. . J
o o S s V0 V() i

= 0
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where C?f,’%H . yoany () I8 & limit of N 1 PiCIN(.) as N — oo satisfying

lim (N_'Y“p"((jiv’jg(vj,--- M) — C‘("o,’f;rl,m’vM)g(vj,;-- ,vM)) = 0 (3.27)

N—oo

Note that CMg(v?, .- ,vM) possibly includes VN, ... VN1 terms. Then terms
related to VIV ... VN%i-1 gre averaged out by terms related to (VN’”“, v Y NM )
using the generator CM?, ... CNd=1 Therefore, as N — oo, C‘(’f,’fﬂf__’VM)g(vj, e, oM)

only depends on Cys+1 .. ymy.

Suppose that for each (v/*!,-.. ™), the solution fiys+1,... yary € P(EVY) of
C?‘O,’%H,... :V’YM)g(v]’) s (3)7 e ,'V’YM (8)) Ug(dvj)ds = 0 (328)

EVY

is unique where g € D. Then

ng(dvj) = M{V7j+1(s)7... VM (s))(dvj) (3'29)

(3.29) can be interpreted as that averaged behavior of processes in the time scale O(N)

can be expressed by behavior of processes in time scales slower than O(N7%).
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Chapter 4
Heat shock response model

4.1 Analysis

4.1.1 Introduction of a heat shock response model

Borrowing a model of the heat shock response in Escherichia coli developed by Srivas-
tava, Peterson, and Bentley [14], we apply multiple scaling methods as described in
Chapter 2 and 3. Following [14], 0% is a regulator against heat shock in Escherichia
coli, and E is an holoenzyme stimulating synthesis of stress proteins FtsH, J, and GroEL
[14].

There are three forms of o32: ¢32 protein, Eo®2 (a complex of 02 with holoen-
zymé), and J-0% (a complex of 032 with the heat shock proteins). Holoenzyme E binds

32 and produces heat shock proteins which in turn reduce post heat shock stress

too
rapidly [14]. Under normal condition, most 03*’s are in a form of J-032 which acts as a
reservoir of g2 [14]. Then >E032 increases in a very small amount under heat shock, and
only a very small amount of Eo3? gives a huge effect to reduce post stress of heat shock
(14]. All deterministic rate constants are given in [14].

Moreover, initial values for simulation (except for initial values of recombinant
protein and for J-recombinant protein) in Table 9 are given by Srivastava, which are the

same used in [14]. Nine species are involved in the heat shock response model and we

will use the following notation of chemical species in the stochastic model.
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Table 1: Species in a heat shock response model

ith Chemical species

Ay 032 mRNA

Ay 02 protein

A3 EO’BZ
A4 FtsH
As GroEL

Ag J (DnaJ+DnaK+GrpE)
A7 J-o 32
Ag  Recombinant protein

Ag J-Recombinant protein

As mentioned in the previous paragraph, o3 are in three forms: Ay, A3, and A7 in Tablé
1.

Chemical reaction networks in the heat shock response model are made up
of eighteen reactions. As seen in Section 1.3, binary reaction rate constants can be
redefined, which vary inversely to the volume. By dividing the binary reaction rate
constants given in [14] by the cell volume x Avogadro’s number (= 9.033 x 108), we
get newly defined binary reaction rate constants for the stochastic model. Arranging

reactions in decreasing order of reaction rate constants, we express reactions in terms of

the notation defined in Table 1.
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Reaction

Transition

Stoch constant

gene — Ag
Ay — Aj

As — Ay

05 Ay

gene + As ——>;42+A5
gene + Aj ——>A2+A4
gene + A; — As + Ag
Ay — Ay + Ag
Az + As — A7

Ag + Ag — Ay
Ag — 0

Ag — Ag + Ag
gene — A

A —0

Ay 245 Aq

As — 0

Ag — 0

Ay —10

Recombinant protein synthesis
Holoenzyme association
Holoenzyme disassociation

0% translation

GroEL synthesis

FtsH synthesis

J-production

032-J-disassociation
o32-J-association

Recombinant protein-J association
Recombinant protein degradation
Recombinant protein-J disassociation
o2 transcription

032 mRNA decay

032 degradation

GroEL degradation
J-disassociation

FtsH degradation

4.00 x 10°
7.00 x 107!
1.30 x 107!
7.00 x 1073
6.30 x 1073
4.88 x 1073
4.88 x 1073
4.40 x 1074
3.62 x 10~
3.62 x 10~*
9.99 x 1078
4.40 x 107°
1.40 x 1078
1.40 x 108
1.42 % 1070
1.80 x 1078
6.40 x 10710

7.40 x 1071

Reactions Rs, Rg, R7, Ry Ri0, and Ris are binary reactions, which are either

!Binary reactions are marked by *. Otherwise, reactions are unary.
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A+B — Cor A+ B — C + D. All others are unary reaction such as A — B or
A — B+C. In unary reactions, B could be {). In Table 2, () represents chemical species

which is out of our interest and which exists in great amount in the system.

Using the continuous time Markov jump process, we construct a stochastic
model. After scaling the species numbers by N, scaling the reaction rate constants
by NP+, and applying a time change by N7, we have the normalized system of chemical

reaction in the heat shock response model.

2

V()

t 1
‘GN(O) + .I\]_O‘1 Ylg(/ K,13N7+ﬁ13 ds) - N-Oél Y14(/ I€14N7+a1+'614‘/1N(3) ds)
0 0

14 t
V() = V3'(0) + N2y /O raNTHs VN (5) ds) + N=2Yy( /0 raN Yy (s) ds)

t t
+N—012Y5(/ K5N’Y+¢13+ﬁ5 VgN(S) dS) + N—O@YG(/ N6N7+a3+’86‘/;3N(8) dS)
0 0
t i
+NTO2Yy( / Ky NYHos BTN (6) dg) + N™o2Yq( / kg NTTertBs N () ds)
0 0

i i
—N*azxfz(/o kg NTHrtR YN (5) ds) — N Yy /0 roNTHaztasthoyN () Vi (s) ds)

T 1
VNG = VI (0)+ N-oovy( /O ka NYHtByN () de) — N0y /O kg NTHs BN () do)

t t
_N—a3Y5(/ Ii5N7+a3+B5V3N(S) ds) — N—a:’Ye(/ H5N7+a3+ﬁ6VgN(5) ds)
0 0
4
~N“°‘3Y7(/ Ky N1 Tost67 V3N(s) ds)
0
t t
V() = Vi 0)+ N / kg NTFes OOV (5) ds) — N=4Y3e( / k1gN T8V (5) ds)
0

0
V2 (¢)

1t 4
VEY0) 4 N 0Ya( [ maN TV o) ds) - N0 [ a0V () )

t t
V() = V(0) + N oYy /O RENYHS YN (5) ds) + N0 Yy / KgN TtV (5) ds).
t t
+N—aayl2(/0 K12N7+°‘9+ﬁ12VQN(s) ds) + N—asyls(/o ;{15N7+°‘4+°‘7+ﬁ15V;N(S)WN(S) ds)

¢
. —N'%Yg(/o kg NI Fortast BN () Ve (s) ds)
¢ ¢
——N”‘“Ym(/ H10N7+°‘6+°‘8+ﬂ1°V6N(s)VgN(s) ds) — N_%YN(/ n17N7+°‘6+ﬁ17%N(s) ds)
0 0
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V7N (&) = V&(0)+ N"*TYo( /0 t ko1 erteetBoyN (VN (5) ds)

_N—myg(/ot ke NTHTHBS YN () ds) — N“""’Ym(/ot k15 N VT BN (VN () do)
VNG = VN(0)+ N /0 t kI NTHPL ds) 4 N=osyo( /0 t K1 NYFaotBiayN (6} ds)
—N7%Y19( /0 t rigNTrestesthoy N (6yyN (s) ds) — N=o0Yyy( /O t k1 NTTes Py N (g) ds)

i
V'(t) = %N(O)'*'N_%Ym(/o k1o N 1o testhoy N (6N (5) ds)

i
~N"Yq, (/0 512N7+a9'+ﬂ121/91\7(3) ds)

In the heat shock response model, using Lemma 2.1, we need to consider
bﬁlance conditions for each irreducible subnetwork. Since each trivial irreducible sub-
network represents a subnetwork involving a single chemical species, we additionally
investigate the unnormalized equations for chemical species involved in each nontrivial

irreducible subnetwork.

N2V (t) + NV (t) + NV (£) = N2V, (0) + N33V (0) + N7V (0)
+¥4( /O e NTFIB YN (5) ds) — Yis( /0 s NYHasr BN (VN (5) ds)
NV (6) + N9V (8) = N2V (0) + NV (0) + Vi /0 t kg NTHOHPYN (5) ds)
Sl [ RaNTHTUN(s)ds) — Yo maN TR Y )Y () o)
NV (1) + NOTVN () = N2V (0) + N7V (0) + Y3</0t ry N1V (5) ds)
H [ RO () o)+ Yol [ N ) )
+Ye( /0 t ke NYTastBe N (5) ds) + Yi( /0 t wy NTH+BTYyN (6 ds)
([ maNTEBY(5) d) ~ Vi [ maN T I (o) (5)d)

NV (@) + NV () + NV () = NV (0) + NV (0) + NV (0)
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+Y4( /0 t K NYFes BTN (5) ds) — Yiq( /0 t K17 N1 tBiryN (5) ds)

NV (t) + NV (t) = N9VY(0) + NV (0) + Yo ( /0 t K NTHHTYN () d)
+y8(/-0t nsN7+°‘7+ﬂ8V7N(s) ds) + Yls(/ot /~c15N7+°‘4+°‘7+ﬁ15XQN(s)I/}N(s) ds)
_Yg(/ot ﬂ9N7+ag+a6+Bg %N(S)‘/%N(S) ds) _ Y17(/0t N17N'Y+a6+ﬁl7VéN(s) ds)

NV () + NV (8) = NV (0) + N7V (0) + Ya( /0 NS (5) d)
+Y1a( /0 t k1 NTHeo B2 N (6) ds) — Yig( /0 t ko NTTestastboy N ()N (5) ds)
—Y17(/0t K1 NTHstRTYN (5) ds)

NSV (8) + N VgV (8) = NV (0) + N V¥ (0) + Yl(/ﬂt KNP ds)

i
—Yn(‘/o l€11N7+°‘8+ﬁ”VSN(5) ds).

Following the species balance arguments in Section 2.2.1, to make the normal-
ized number of molecules of chemical species converge to nonnegative limits as N — oo,
the maximal order of magnitude of reaction rates of production of each species should
be the same as the maximal order of magnitude of reaction rates of consumption of each

species.

max(y+a- v + Br) = max(y+ a- v+ G)
kerf kel'y

Otherwise, the scaling exponent of the number of molecules of the chemical species must

be big enough to prevent the normalized species number from blowing up, that is

max (ytoa-v+6) < o
kerfury
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The species balance equations are given in Table 3.

Table 3. Species balance equations

Species  Species balance equations
{A1} - Pz=on+fu

{42} max(as+ B, 04 + By, a3+ f5, a5 + B, a3 + Br, a7 + fs)

= max(ag + 2, a2 + g + fo)
{As}  ax+ B2 =max(as + B3, a3 + B5, a3 + P6, a3 + fBr)
{A as+ =+ fus
{4s} ozt fs=oa5+ P
{As}  max(as + Br, a7 + Bs, a9 + Pi2, 0 + a7 + Pis)
= max(ay + ag + fy, a6 + s + Pro, ¥ + Pir)
{As} oy + ag + B = max(ay + Ps, a4 + a7 + Pis)
{As}  max(fr,ag + fi2) = max(ag + as + B0, s + Ou1)

{Aq} ag + ag + Bro = ag + P2

Similarly, following the subnetwork balance conditions in Section 2.2.2 and
following Lemma. 2.1, the maximal order of magnitude of the collective reaction rates of
production for each nontrivial irreducible subnetwork involving G, C G should be the
same as the maximal order of magnitude of the collective reaction rates of consumption

for each nontrivial irreducible subnetwork involving G, C G.

max (y+a-vp+0r) = max(y+a-vg+B)
keTg, kelg,
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Otherwise, the maximal scaling exponent of the numbers of molecules of chemical species
involved in each nontrivial irreducible subnetwork G¢ C G must be large enough to

prevent the normalized species numbers in the subnetwork from blowing up, that is

max (y+a-v+G) < maxo.
kerg Ulg, i€Gy

The equations for chemical species involved in each nontrivial irreducible subnetwork

will give balance equations in Table 4.

Table 4: Subnetwork balance equations for each nontriv-

ial irreducible subnetwork

Nodes in Subnetwork balance equations

each subnetwork

{Aqg, A3, A7} o+ By = oy + ar + Pis
{Az, A3} max(a1 + ﬁ4, (674 + ﬂg) = Qg —+ (673 -+ ﬂg
{A2, A7} max(as + B3, a1 + Ba, a3 + Ps, a3 + Bs, a3 + B7)

= max (o + B2, 04 + a7 + PBis)

{As, A7, A9} o3 + Br = ag + Pir

{As, Ao} max(az + 7, a7 + B, @4 + a7 + f15)

= max(az + a6 + Py, & + Bur)
{As, A7} max(ag + F7, ag + Br12) = max(ag + ag + B0, a6 + L17)
{As, Ao} Bi = as + Bu |

Next, we want to scale the numbers of chemical species and the reaction rate
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constants using a commoh scaling parameter Ny With different exponents a’s and §’s.
Considering the magnitude of the initial values in Table 9, let Ny = 100. As defined in
the general case in Chapter 2, we investigate a parametric family of models. Among the
parametric family, we are interested in the specific system when N = Ny. Even though
No is not so large due to small initial values, the general case can be applied in this
example.

We would like to get o, and [y satisfying as many balance equations as possible
in Table 3 and Table 4 and to make ; and fj satisfying all balance conditions (conditions
including inequalities). Since balance conditions in Table 3 and Table 4 include max
functions, which make equations not so simple, we first reduce choices for a; and S by
solving balance equations in Table 3 and Table 4 by Maple. Maple gives us a general
set of solutions which are not unique. After getting a general sense of the relationship
among the a; and f, we select o; and [ satisfying the balance conditions. In case
we cannot get «; and f3; satisfying all the equations, we will have restrictions on v
concerning unbalanced equations. We select scaling exponents §x for the reaction rate

constants kj, to make the normalized reaction rate constants « have the order of 1.

K

NG

0(1)

Ry =

Moreover, since reaction numbers are provided by arranging reactions based
on the magnitude of «j, in decreasing order, the assumption that the 8y are monotone
decreasing is plausible. We differentiate reactiorf rates of chemical reactions that con-
sume one species in the system (unary reactions) and chemical reactions that consume

two species in the system (binary reactions). In other words, g for the binary reactions
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are monotone decreasing and §x for the unary reactions are monotone decreasing; how-
ever, monotonicity conditions are not required between unary reaction rates and binary

reaction rates.
Table 5 gives the stochastic reaction rate constants and the normalized stochas-

tic reaction rate constants with scaling exponents.

Table 5: Scaling exponents of the reaction rates and nor-

malized reaction rates

Br  Scaling exponent Stoch rate?(x}) Scaled rate(xy)

B 0 4.00 x 10° 4
B O 7.00 x 1071 0.7
Bs O 1.30 x 1071 0.13
Bs -1 7.00 x 1073 0.7
=3 1 6.30 x 1073 0.63
gy -1 4.88 x 10~3 0.488
g -1 4.88 x 103 0.488
Bs =2 4.40 x 10~ 4.4
B =2 3.62 x 1074 3.62
=2 3.62 x 104 3.62
B —2 0.99 x 10° 0.999
B2 -2 4.40 x 1075 0.44
Bz —2 1.40 x 1075 0.14
P —2 1.40 x 10~¢ 0.014

21t means Stochastic reaction rates.
3% are binary reaction rate constants.
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Brs =3 1.42 x 1076 1.42

Bie —2 1.80 x 1078 0.00018
iz =2 . 6.40 x 10710 0.0000064
Bis  —2 740 x 10-11  0.00000074

From Table 5, normalized reaction rates k14, K16, #17, and s15 are quite small compared
to other k;’s. However, we do not worry about those four cases, since they are involved
in protein degradation which does not have a significant effect on the system.
We select a; satisfying

v = S o),
In case the balance equations are not satisfied, we get restrictions on -y as noted in Table
7 and Table 8. Table 6 gives our specific choice of the scaling exponents for the numbers
of chemical species in this example.

The orders of magnitude of the number of species may have different values in
different time scales, since the numbers of species evolve as time passes. In other words,
the a’s depend on the values of the time scale exponent . This dependence reflects the
Ldrge growth in numbers of certain species. From now on, we set ViN’"’ as the normalized
number of molecules of the ith species for times of O (N7).

In the heat shock response model, a1, oy, and a3 depend on 7. As seen in
Table 7 and Table 8, a; = 1, ag = a3 = 0 are valid up to times of O (1). Then, we
change exponents to a; = 0, az = a3 = 0, which are valid up to times of O (N). After

that, we select o1 = 0, ay = a3 = 1 which are valid up to O (N?).
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Table 6: Scaling exponents of the number of species

Scaling exponent y=0 v=1 v - 2

a{‘l 1 0 0
ol 0 0 1
ol 0 0 1
Oy 2 2 2
fo %3 2 2 2
Qg ' 0 0 0
Qi 0 0 0
ag 2 2 2
Oy 2 2 2

The balance equations in Table 3 should be either satisfied or each unbalanced

one will give us a restriction on the time scale exponent 4.

7 < o;— max (a- v+ k)
kerfury

Table 7 shows whether the species balance equations are satisfied in each time scale. In

case the equation is not balanced, the restriction on <y is given.

Table 7: Species balance conditions

Species a; =1 a1 =0 a; =0

“a’s depending on +y are marked by f.



052‘—‘683:0 a2:a3=0 Oézzag:l

{A1}
{Az}
{As}
{Ad}
{As}
{Ae}
{Ar}
{As}
{4}

y<2
‘balanced
balanced
7<2
y<2
balanced
y<1
balanced

balanced

balanced
balanced
balanced
Y<2
y<2
balanced
y<1
balanced

balanced

balanced
balanced
balanced
balanced
balanced
balanced
balanced
balanced

balanced

92

Similar to species balance equations, each nontrivial irreducible subnetwork gives a bal-

ance equation. Table 8 indicates whether the subnetwork balance equations are satisfied.

In case the equation is unbalanced, the restriction on + is given.

Table 8: Subnetworks balance conditions

Species in each nontrivial

irreducible subnetwork

062=Oé3=O

011:1

042-_-'-&3:0

al.——-O

011:‘—0

012=O!3=1

{A27 A37 A7}

{AQ’ A3}
{A2, A7}

{A67 A77 AQ}

{A6: AQ}
{A6’ A7}

7<0
v<0
balanced
v<3
¥<3

balanced

balanced
<1
balanced
v<3
y<3

balanced

balanced
balanced
balanced
v¥<2
Y<2

balanced
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{Ag, Ao} balanced balanced balanced

From Table 7 and Table 8, the importance of balance equations are found. A
set of exponents in the second column is valid up to v = 0. After the time scale with
~v = 0, we need to use a different set of exponents. In conclusion, unbalanced equations
give a restriction on «, and validity of the set of exponents indicates when we need to

use a different set of exponents.

4.1.2 Reduced systems in each time scale

In the heat shock response model with selected ¢; and [ satisfying the balance con-
ditions, as N — oo, the system of chemical reactions can be approximated by three
limiting subsystems with different time scales. Recall from (3.5) — (3.7) that in each
time scale,’ the normalized numbers of species with time scale faster than the current
time scale are fast processes. The normalized numbers of species with the current time
scale are intermediate processes, and the normalized numbers of species with time scale
slower than the current time scale are slow processes.

Behavior of the slow processes is approximately constant, since the slow pro-
cesses have not started significantly moving in the current time scale yet [16]. Behavior
of the intermediate processes is well captured by solving the reduced system with slow
processes acting as parameters [16] and with fast processes averaged out and approxi-
mately expressed in terms of the intermediate and the slow processes.

Recall that the normalized system depends on 7, and that the normalized ith

species in times of O (N7) is represented by V7.



Times of order 1 (When v = 0)

In the times of O (1), V;"°, V{*°, and V;""° are intermediate processes

V0 = 0+l [ ) ds) + Vi [ wavi )

0

t i
+Ys( / ks N-LV(s) ds) + Yi( / N1V ) ds)
0 0

t i
+Y7(/ ke NV 0(s) ds) + Yg(/ ks N"2VN0(s) ds)
0 0

([ V() ds) ~ V[ meN ) do)

0

1 i
VIO = V0) 4 Y / k2V"0(s) ds) — Ya / kaV"(s) ds)
0 0
t t
~Ys( f ks N V0 (s) ds) — Ye( / o6 N V() ds)
0 0

t
V([ 1 s) d)
0

04

(4.1)

(4.2)

Varoe) = VE"0(0) + Yo / tmN'IV;,N’“(s)ds)m( / tnsN"Qw”"’(s)ds) (4.3)

0

+le(/ 2 (s )ds) +Y15(/ k5N~ 1V4N0(s) No(s)ds)

ol [ hoN T V5) ) = Vil | sl () () )
0 0

¢
—3’17(/ k1N 72V0(s) ds)
0
where

Va7%0) = X5(0)
Vi7°0) = Xs5(0)

Vs °(0) = Xe(0).

(4.4)
(4.5)

(4:6)
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As N — oo, terms for Reaction 5, 6, 7, 8, 9, 15, and 17 converge to zero. The reduced
system for times of O(1) and the order of magnitude of an approximation error are

obtained in Theorem 4.1.

Theorem 4.1. In the times of O(1), {V5"°, V&%, V'Y converge to {V2, V2, VQ} as

N — o0, which is a solution of

VO = v+ " kaV2(s) ds) + Yal / " eaV9(0) ds) (47
[ Vi (5) )
V) = VR(0)+ Vi / k2V2(s) ds) — Yl / k3V2(s) ds) (48)

VW) = VO(0) + Yaal /tmzvg"(ows)—m( /tnm%"(s)vs%o>ds) (4.9)
1] 0
where

V7 (0) = X2(0),  V5(0) = X3(0), V§(0) = Xe(0),

v =2 0 = 2, o = 2 <o

An error between the normalized processes in the system and the limiting processes in

the reduced system is O (N71).

sup (E[[V;"(5) — VRO + EVa*() — V@) + BIVY°() - V2®)ll) < O (N7,

t<T

Proof of Theorem 4.1. The reduced system consists of three stochastic equations.

{V2,V2} are independent of V. First, define errors regarding V;"°, V0, v{° yNO,
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NO N0
Vi 7, and Vg .

ena(t)

en2(t)

€EN3 (t)

EN6 (t)

| ENg (t)

- eng(t)

sup / Vi¥9(0) - V(0) + N-"Yiof / ks N ds) (4.10)
0

u<t Jo

~N71Y4( / k14N V0 (s) ds)| do,
0

(1 u
sup |Ys( / ks N~V (s) ds) + Y( / reNVE(s) ds) (4.11)
0

u<lt 0

+Y4( / ke NV (s) ds) + Ya( / kg N72V(s) ds)
0

g
~Yo( | woN72V s\ V() ds),
0

sup |Ya( / ks N-1VN9(s) ds) + Yi( / ks N1V (s) ds) (4.12)
0 0

u<t

U
Yy / kI N-LV0(5) ds)|
0

sup |Y7(/ ke NIV (s) ds) + Yg(/ ke N"2VV0(s) ds) (4.13)
0 0

u<t

U U
+isl [ msN VIV ds) = Vol [ oV V()" do
0 0

Y / ks N2V N(s) ds)],

0
sup [V(0) — V2(0) + N2V, ( / k1 ds) (4.14)
u<t 0

N aa( [ mals ) ds) = N 2Vao( [ oV (Vi (s)ds)

0 0

—N_ZYM(/ k1 Vg (s) ds)|?
0

u v
sup / [Va"2(0) — V2(0) + N™2Yi0( / r10Ve 0 (s)VE 0 (s) ds) (4.15)
us 0 0

—N‘ZYIZ(/ Kk12Vy °(s) ds)| dv.
0

Using the fact that V3 °(0) = V2(0) and using (4.10) and (4.11), we have an upper

bound for E[|V; °(t) — V2(t)|] by subtracting (4.7) from (4.1) and by taking an absolute
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value and an expectation.

B0 - O < Blewal@) + B [ wai™(s)ds) ([ sV (s) o)l
+B [ mav(6) ds) = Vil [ mavP(0)as)
+BIYa( [ a9 v [ () as)
= Bloxal0] + [ (sBIV(5) = VO + maBIKY0) ~ 12O
+r BV (s) = V(5)]]) ds
< kaBle(8) + Blewa(0)]

+ [ (BN = Ve + m BV (s) = VY(a)])

The equality came by applying the optional sampling theorem.
Using the fact that V3'"%(0) = Vi2(0) and using (4.12), we have an upper bound

for E[|V{V°(t) — V2(t)|] by subtracting (4.8) from (4.2) and by taking an absolute value

and an expectation.

EVi0t) = VRl < Elens(®)] + E[|Ya( f kaVy (s) ds) — Ya( / kaVy (s) ds)]]
TE[Ys( / kaV0(s) ds) — Yl / ksV2(s) ds)]
= Blexa 0]+ | (=BIV"(0) = VO + B (0) = V() ds

The last equality came by applying the optional sampling theorem. By adding the

inequalities for E[|V;V°(t) — VL(t)|] and E[[V{V°(t) — V2(#)|], we have

BI"°) = V2 @)l + Bl () - v o))

S H4E[€N,1 (t)] + E[GN’Z(t)} + E[GN,g(t)]
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t
= / (k2 + 5) ( B[V (s) = VE(s)]] + o BIVIY°(5) = V(5)]]) ds.
Then we get

E[|V5"°(8) = VP (0)] + BIVS (1) — V(o)

< (/‘64E[€N,1(t)] + E[ENyz(t)] + E[£N}3(t)])6(ﬂz+”3)t.
Using Lemma 4.1, we have

sup (kaBlew, () + Elewa(t)] + Elews(®)]]) < O(N7Y).

t<T

Therefore, for each T > 0
sup (B[ (1) - V(o) + BIV;™() - ()] < O (V7).

Using the fact that V{V°(0) = V2(0) and using (4.13), (4.14), and (4.15), we
have an upper bound for E[|V;"%(t) — V2(t)|] by subtracting (4.9) from (4.3) and by

taking an absolute value and an expectation.

E[[Vs °(t) ~ Vel < Elewe(t)]

BV | oV (6) ) = Vi [ raE0) )]
+BIYa( | Vi (6)d5) = Yol [ maV0)ao)l

= Blewo(®] + [ (moBl (V" (5) - VU O))

+eaz BIVYO(s) - VEO)[]) ds

_<_ E[GN’G(t)] -+ Kle[éN,g(t)]
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+/ (MOEMN’O(S)MN’O(S) — V()] + m10 B[V (0)|V5"(s) — VGO(S)ID ds .
0 t
< Elens(t)] + k12Eleno(t)] + /0 k1o( B[V (8)")V*(Elens(s)])/? ds

N / RroV O BV (5) = V2(s)l) ds

The first equality came by the optional sampling theorem. In the third inequality,
Hélder’s inequality is used. Vi(0) is deterministic, so we take it outside the expectation

in the third inequality. Using Lemma 4.1, we have

sup (E[EN’s(t)] + /0 (k12Eleno(t)] + mOE[VGN’O(3)2]1/2E[6N,8(5)]1/2) ds)

t<T

<O(NTY).
Therefore, for each T > 0

sup E[[V;"°(t) - Vg ()] < O(N7Y).

t<T
O

| In Theorem 4.1, the approximation error of VQN’O, VgN’O, and V6N ¥ has the order
of magnitude of O (N~1). In Lemma 4.1, we show the boundedness of the approximation

error used in the proof of Theorem 4.1.

Lemma 4.1. The error term used has an upper bound

sup (4 Blew (0)] + Blena(t)] + Elena(t)] + Elewo(0)]

+I€12E[€N,9(t)] + /t KloE[VﬁN’O(8)2]1/2E[€N,8(S)]1/2 ds) < (0] (N—l) .

0
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Proof of Lemma 4.1. Borrowing‘Theorem 7 in [1], we get an upper bound for the nth
moment of the counting processes. Let 7 be a stopping time for the process {X(t);t > 0}.
X() is a process with stationary independent increments with zero mean. For n > 2
there exist constant C (finite and positive) depending on n and 2 such that if E(r) < oo

and [ |y|"?Q(dy) < oo then
E|X(1)|" < Cmax {E(r), E(T"*)}. (4.16)

We have E| f(f M(VN(s)) ds] < oo since we will apply Theorem 7 in [1] to unary reaction
rates and since we show that sup,.,- E[V" ()] < oo in the proof of Lemma 4.1. Therefore
using (4.16), we get upper bounds for the second and the forth moments of the counting

processes.

B[ [ ona)] = B[R [ 20 ora) + [ i)
<2 [(%( V() ds))] + 28] / V() ds)’]
< QClE[/Ot N(V(5)) ds| +2E[(/Ot /\k(V"’(s))ds)Z]

<20, /0 CE(VY(s))] ds + 2t /0 "BV ()] ds, (4.17)

and

(v /()t)\k(VN(s))ds)>4] - B[(%( [ V() ds) + / () s) ]
SgE[(?k(/ot)\k(VN(s))ds))‘l] +8E[(/Ot/\k(VN(s))ds)4]
< 8C; max (E[/Ot Ak(VN(s>)ds]>E[(/0t MIY(s))ds)’])

+8E[( /O V() ds)4]
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< SCQE[/Ot )\k(VN(s))ds] +8C’2E[(/Ot Ak(VN(s))ds)z]
vom[( [ o as) |
< 8C, / tE[/\k(VN(s))] ds + 8Cyt / tE[)\k(VN(s))z] ds.

+8t* / t E[M(VV(s))*] ds (4.18)
0 .

A difference between initial values of the normalized process and the limiting process is

bounded
VY0(0) - V2(0)] € N7 (.19)
Using (4.10) — (4.15), Holder’s inequality, and (4.17), we obtain upper bounds

Elena(t)] < sup/ <N_1 + k13N v + / k1aN2E[V](s)] ds) dv,
0

u<t 0

Elena(t)] < sup /Ou ((Hs + Kg + ﬂ7)N—1E[Vv3N,0(3)] + kg NT2E[VO(s)]

u<t
+ﬂgN‘2E[V2N’O(3)2]1/2E[V6N’0(s)2]1/2) ds,

Elena(t)] < sup /0 u(ﬁs + kg + k)N B[V 0(s)] ds,

u<t

Eleng(t)] < sup /Ou (/4;7N—1E[V3N,0(s)] n /ng_zE[%N’O(s)]

u<t

+H15N—1E[V4N,0(S)zll/ZE{V?N,O(S)Z]l/Z + hjgN_ZE[VZN’O(S)z]UzE[%N’O(S)Z]l/Z
+m17N'2E[V6N’O(s)]) ds,

Elens(t)] < sup S(N“4 + N4 (kiu + K2u?) + N“4(/ k12 B[V (s)] ds
u<t

0

+u / k5LE[Vs ()% ds) + N~4( / k1o E[VE ()2 E Vs ()22 ds
0 0 :

+u [RGBV () BV () ds)),
0



Eleny(t)]

+ / k12N 2E[VY(s)) ds) dv.
4]
We will show that for fixed T' > 0,

sup sup E[V"(t)] < oo, supsup E[V(4)?] < oo,

N t<T t<T

sup sup B[Vt )] < oo, supsupE Ve (£)] < oo,
N T N t<T

supsup E[V{(£)1] < o0, supsup E[Vi(t)] < oo,
N t<T N T

supsup & [VSN’O(t)Z] < 00, supsup & {VSN’O ()] < oo,
N i<T N t<T

sup sup E[Vy" (t) ] <
N <T

The equation for V;""° is

t
V@) = VNO(0) + N-'Yia( / k13N 2 ds)

0
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u v
< sup / (N—Q + / l‘f:loN—QE[‘/ﬁN’O(S>2]1/2EU/8N’0(3)2] 1/2 ds
0 0

sup sup E[V;"°
N <T

supsup E[V"(t)?] < oo,
N ¢<T

(#)] < oo,

supsup E[V;"°(£)?] < oo
N t<T

sup sup E[V;Y0(#)] < oo,

t<T

(4.20)

t
Ny / k1aN-VNO(5) ds).
0

Solving (4.20) for E[V;V°(t)], we have

BV = (BW0] -

Using (4.20) and (4.17), we have

EBV@? <

< 2BV

R13 a1\~ -2 K13 -
N 1)6 k14N t+ N 1-

K14

2E[VNO(0)?] + 2E [(N‘lYm( / fgsN-? ds)>2]

0(0)?] + 4C k13N~ + 4k, N~8¢2,
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Using (4.20) and (4.18), we have

IA

B < 8EVY(0)")+ 88| (N1 / kN 2ds)) |

< BE[VN(0)4] + 64Cak13N 75 + 64Cok2, N 7812 + 64k, N 12t
The equation for V;V° + V¥ 4 V,V0 is

Vi) + Vi) + V08 = v 0(0) + Va0 (0) + V5V0(0) (4.21)

t t
+Ya( / raVi"0(s) ds) — Vs / risN IV ()0 (s) ds).
0 0
Eliminating the negative term and taking an expectation, we have an upper bound

BV, )] + BIV; (0] + BV ()] < E[V3"°(0)] + E[V3"°(0)) + E[V;"°(0)]

t
+/ ke E[VV0(s)] ds.
0
Using (4.21) and (4.17), we also have

B0 + "0 + @) < 2B[(047°0) + Y(0