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Abstract 

In this dissertation, we construct a general method of multiscale approximations in chem

ical reaction networks. We apply a continuous time Markov jump process to describe 

the state of the chemical reactions. 

In general chemical reactions, the chemical species numbers and the chemical re

action rate constants will have various orders of magnitude. Therefore, we introduce 

two different scaling exponents to normalize the numbers of molecules of the chemical 

species and to scale the chemical reaction rate constants. Applying a time change, we 

have different time scales for the limiting processes in the reduced subsystems. 

A systematic way to select the scaling exponents is suggested to make the normalized 

system have a nonzero finite limit. This method involves balance equations with the 

scaling exponents, which we call species and subnetwork balance conditions. 

We investigate asymptotic methods used in multiscale approximations. The law 

of large numbers for Poisson processes is applied to approximate non-integer-valued 

processes. In each time scale, the slow processes act as constants and the fast processes 

are averaged out. Then the limit of the intermediate processes is obtained in terms of 

the averaged fast processes and the initial values of the slow processes. 

We introduce a model of the heat shock response and apply the general method 

of multiscale approximations to this model. We analyze the system and obtain limit

ing processes in each simplified subsystem which approximate the normalized processes 

in the system with different time scales. We obtain error estimates of the difference 

between the normalized processes and the limiting processes. Simulation results are 

given to compare the evolution of the processes in the system and the evolution of the 
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approximated processes using the limiting processes in each simplified subsystem. 

Applying the martingale central limit theorem and using averaging, we obtain a cen

tral limit theorem for deviation of the normalized processes from their limiting processes 

in the three species model and in the heat shock response model. 
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Chapter 1 

Stochastic models for chemical 

reaction networks 

1.1 Historical background 

In this chapter, the historical background of the stochastic approaches to chemical re

action kinetics will be introduced. Chemical reactions are naturally stochastic. There 

have been various stochastic processes by which chemical reactions are approximately 

modeled since the 1960's [12]. 

In 1958, Bartholomay started to apply Markov process theory to chemical 

reactions [3]. He constructed stochastic Markov models for the linear birth and death 

population processes [3]. He used Q-matrix methods to relate the stochastic model and 

the classical deterministic model [3]. 

Then McQuarrie investigated chemical reaction kinetics in small systems such 

as several simple first order reactions [12]. He studied the effect of initial conditions on 

the expectation and the variance [12]. He extended his work to two binary reactions 

of 2A —> B and A + B —> C and got the exact solutions to forward equations (master 

equation in the chemical literature) for these two separate reactions using generating 

functions [12]. 
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Several approximate methods have also been developed since 1960. Bartholo-

may suggested a stochastic model for the Michaelis-Menten reaction in enzyme kinetics 

in 1962 [5]. He compared the system of ordinary differential equations of the classical 

mathematical model and the stochastic Markovian equations giving the rate of change 

in terms of the probability of the concentration [5]. Following [5], the deterministic dif

ferential equations may be obtained from the stochastic model by taking an expectation. 

In 1972, Kurtz compared stochastic and deterministic models for chemical re

actions. He suggested a format for stochastic rates in general chemical reaction networks 

and scaling in terms of the volume of the reaction system, and obtained the law of mass 

action as the limit of the stochastic models [9]. 

In 2003, Rao and Arkin suggested the quasi-steady-state assumption to reduce 

the complexity in stochastic simulation [13]. The quasi-steady-state assumption says 

that a subset of species is asymptotically at steady state in the specific time scale of 

interest in [13]. Later, in Section 5.2, we prove a rigorous limit theorem in the heat 

shock response model, and we prove that the quasi-steady-state assumption is justified. 

Shortly after in 2006, Ball, Kurtz, Popovic and Rempala suggested multiscale 

approximations to chemical reaction networks using a continuous time Markov jump 

process [2]. In Section 5.1, we prove a central limit theorem for the three species model 

considered in [2]. Asymptotic methods of modeling chemical reaction networks used in 

[2] are based on [10] and [11] by Kurtz. In [10], he introduced strong approximation 

using the law of large numbers, diffusion approximation, and the central limit theorem 

of continuous time Markov chains. In [11], he gives stochastic averaging when there are 

two different time scales in a sequence of stochastic process; one is much faster than 

the other. The averaged generator is obtained in terms of the occupation measure of a 

sequence of components with much faster time scale. 



1.2 Model description 

We are interested in general chemical reaction networks involving n chemical reactions 

and m chemical species, {Ai, • • • , Am}. 

m m 

Y^vikAi - • ^ T V ^ A , fc = l,---,ra. (1.1) 

Here, vk is the vector indicating the number of molecules of each chemical species 

which are consumed in the fcth reaction, and v\ is the vector indicating the num

ber of molecules of each chemical species which are produced in the fcth reaction. vik 

and v'ik are the ith elements of ^ and u'k, respectively. 

Using a stochastic model, we would like to describe the evolution of the state 

of the chemical reaction network. Assuming the state of the chemical reaction network 

in the future only depends on the current state, we use a continuous-time Markov jump 

process to describe the chemical reaction network. Let X(t) represent the state of the 

system at time t, where its ith component, Xj(t), is the number of molecules of the zth 

chemical species at time t. Then v'^ — v^. gives the jump size of the Markov process 

when the fcth reaction occurs. If the fcth reaction occurs at time t, the state satisfies 

X(t) = X(t-) + (u'k-uk). 

Let Rk be the counting process giving the number of times that the Hh reaction 

occurs up to time t. The Rk will satisfy 

Mt) = Yk(f Xk(X(s))ds), fc = l,. 
./o ,n 



where the Yk are independent Poisson processes. Xk(X(t)) is an intensity also called 

the propensity in the chemical literature. Xk(X(t)) is the kth. chemical reaction rate 

depending on the state of the system X at time t. Then the state of the chemical 

reaction system satisfies 

m 

X(t) = x(0) + ^2Rk(t)(u'ik-uik) 

= X(0) + TYk( \k(X(s))ds)(v'ik-vik). 

Let Xi be a variable for Xi, the number of molecules of ith species, and x 

is a vector with xt as its ith component. Let K!
k be the fcth reaction rate constant. 

Treating different chemical molecules as balls with different colors and viewing a chemical 

reaction as selecting balls to be consumed in the system, the chance of the A;th reaction's 

occurrence during the interval [t, t + At] is approximately proportional to 

/ _ \ 
Xi n 

i=1 \ vik J 

At (1.2) 

following Kurtz [9]. 

1.3 Classical scaling 

In the chemical reaction setting, the amount of each chemical species is generally mea

sured by a concentration in moles per liter [18]. In the deterministic approaches for 

chemical reaction kinetics, the instantaneous rate of the chemical reaction is generally 

considered as some product of powers of the concentrations of the chemical species to 

be consumed [18]. Theses powers are determined by uk, the numbers of molecules of 
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chemical species consumed in the A;th reaction. This law is the mass-action kinetics 

[18]. Following the mass-action kinetics, the chemical reaction system is described by a 

system of ordinary differential equations [18]. 

Now, we will derive mass-action kinetics for chemical reaction networks using 

stochastic modeling. Let NQ be the volume of the system multiplied by Avogadro's num

ber, so the number of molecules of chemical species normalized by NQ would represent a 

concentration. For a binary reaction, the chance of a pair of molecules reacting during 

[t,t + A] is proportional to ^- [9]. Similarly, for a reaction involving I molecules, the 

chance of I molecules reacting during [t, t + /\] is proportional to —rrr [9]. Therefore, we 

express the rate in terms of the volume of the system. 

re' 

Consider a general reaction YlT=i vikAi -%• ]C™i v'ikM, for fc = 1, • • • , n. Using 

(1.2) and considering only the maximal order term in x, we approximate the fcth reaction 

rate by 

m / \ m 

h(x)««4n<!*=^lEr=i"ifc~lj^n<ife- (L3) 
t = l i = l 

Assuming that the number of molecules of each chemical species is large and has the 

same order of magnitude, we normalize the numbers of molecules of chemical species by 

No. The normalized number of molecules of the ith species is 

and it represents the concentration of the ith species in the system. Plugging (1.4) in 



(1.3), the approximate kth. reaction rate parameterized by 7V0 is written as 

m 

Xk(x) « NoKuH^ 
i = l 

= N0~\k{z). 

Setting ZNo (t) — N^>, a time change equation and its approximation is 
m „ t 

m »t 

where the initial value is defined as 

zNo(o) = -^\x{oj-
1\Q L J 

By the law of large numbers for the Poisson process, NQ1Y(NOU) « u, we have an 

approximation for the normalized system. 

m »t 

ZN0 ( t ) « ZN°(0) + T \k{ZN°{s))(v'k-vk)ds 
k=iJo 

m ~i m 

= ZN°(0) + J2 KkXlZ^{sr»{v'k-vk)ds. 
* = 1 - 7 0 t = l 

Since iV0 is large, we replace iV0 by iV and define 2^(0) = £ [ ^ § ^ • As N -> oo, the 

limit of the system parameterized by N gives the deterministic law of mass action 

m m z{t) - j^n^w^'fc-^) 
= F(Z(t)) 
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where Z(t) represents a limit of ZN(t) as TV —* oo [9]. Then the numbers of molecules 

of the chemical species are approximated as 

X(t) « N0Z{t). 

1.4 Multiple scaling 

In the classical scaling, we assume that the orders of magnitude of all chemical species 

are the same. However, many chemical reaction networks have various ranges of orders of 

magnitude of chemical reaction rate constants and different ranges of orders of magnitude 

of the numbers of molecules of chemical species. Then the classical scaling does not 

capture the characteristics of the system well. Therefore, we need to consider different 

scaling exponents a* for each chemical species and fa for each chemical reaction rate 

constant. For each i and for each k, we will choose appropriate values for cti and fa so 

that the normalized values become 0(1) . 

In multiple scaling, TV0 is a fixed number used for scaling the number of 

molecules of chemical species and for scaling the chemical reaction rate constants in 

the system. Define Z as a vector for the normalized numbers of molecules of chemical 

species and «'s as the normalized chemical reaction rate constants. 

Zi(t) = ^ = 0(1) , (1.5) 
Jvo 

c*i are always nonnegative and fa can be any number. 

Consider a relationship between the chemical reaction rate constant n'k and 
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the scaled reaction rate constant Kk- AS mentioned in (1.2), the fcth reaction rate is 

proportional to 

n 
1=1 y uik 1 

Asymptotic behavior of the scaled reaction rate depends on x with the largest order. 

Considering only the maximal order term in x and substituting n'k and Xi by their scaled 

values, the approximated kth reaction rate is given by 

Xk(x) « K'kf[x?k = K'*¥flk"kl[z?h 

1=1 j = l 

where Zi = -rS-. Assuming N0 is large and replacing N0by N, we obtain a parametric 
N, 

family of models. 

Z f ( t ) = Z^(0) + N-a^M Na,/k+ISkXk(ZN(s))ds)(u'ik-uik) (1.7) 
fc=i 7 o 

Now, we need to see how to set initial values for the parameterized family, 

ZN(0), using X(0). Since X is an integer-valued Markov process, ZN is also a Markov 

process with different jump size in each component. Considering Zf = ^ r , the jump 

size of the ith component is j^r. Therefore, set the normalized initial values as 

Z?(0) = 
Nai 

Xi(0)Nai 

K< 
« = ! ,••• , n (1.8) 

where [•] is a floor function which gives the greatest integer less or equal to the value 

inside [•]. Then we have 

lim Zf (0) = Zi(0) = ^0-. (1.9) 
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Moreover, an error is uniformly bounded. 

|Zf (0) -Z, (0) | < ^ - . (1.10) 

Let Zi = limjv->oo Zf. Then X is approximated as 

Xi(t) « JV^Zi(t). 

The classical scaling is one of the possible scalings setting a, =' 1 and /3k = —(Y^Li uik ~ 

1.5 Example 

Consider again an example of two binary reactions 2AX -* Ax+A2 and Ax+A2 -$• A1+A3. 

The state of the system is represented as 

Xx{t) = X1(0)-Y1([K'1X1(s)(X1(s)-l)ds) 
Jo 

X2{t) = X2(0)+Y1{ I K,
1Xl(s)(X1(s)-l)ds)-Y2{ f «4Xi(5)X2(5)d5) 

JO JO 

X3(t) = X3(0)+Y2(f K,
2X1(s)X2(s)ds). 

Jo 

Reaction rates are written in two forms, the one before the scaling and the other after 

the scaling. 

« i x i ( z i - l ) = N^^KMZI-J^) 

4 ^ X 2 = Nai+a2+^K2ZlZ2. 
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After scaling, the normalized system state of the two binary reactions is 

-N-a2Y2( [ Nai+a2+f)2K2Z?(s)Z?(s)ds) 
Jo 

Z?(t) = Z?(0) + N-a*Y2( [ Nai+a^K2Z?(s)Z?{S)ds). (1.11) 
Jo 

For the classical scaling, set ai = a2 — 0:3 = 1 and pi = (32 — — 1- Then the normalized 

system becomes 

Z?(t) = Zf,(0)-N-1Y1(^NKl^(s)(Zlf(8)-jf)ds) 

Z»(t) = Z^ + N'^iJ^NmZ^iZ^-^ds) 

-N~lY2( / NK2Z^(s)Z^s)ds) 
Jo 

Zztt) = ^ ( 0 ) + iV-1r2( f NK2Z?{s)Z${s)ds). 
Jo 

As TV —» 00, we get the limit of the normalized system which is a stochastic version of 

the mass-action kinetics. 

Zx(t) = Z i ( 0 ) - / «iZi(s)2ds 

£2(*) = Z2(0) + / (KXZX(S¥ - K2Z1(S)Z2(S)) ds 
Jo 

Zz{t) = Z3(0)+ f K2Z1(s)Z2{s)ds. 
Jo 

Next, consider (1.11) with a different set of scaling exponents. Suppose that 
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the numbers of molecules of A\ and A3 are much larger than that of A2. Suppose than 

Reaction 2 is much faster than Reaction 1, Then we set 0:1 = 0:3 = 1, 02 = 0, (5\ = —2, 

and j32 — —1. Then (1.11) becomes 

Z?{t) = Z^(0) + Yl(j\1Z^s)(Z^(s)-~)ds) 

-Y2(f\2Z»{s)Z${s)ds) 
Jo 

Z?® = Z»{U) + N-lY2{f K2Z?(s)Z%{s)ds). (1.12) 
Jo 

In (1.12) have two time scales: the time scale for Zf and Z% is slower than that for 

Z£. First, as N —> 00, we obtain 

Zx(t) = Zx(0) 

Z2(t) = Z2{Q) + Y1( f KlZ1(0)2ds)-Y2( f K2Z1(0)Z2(s)da) 
Jo Jo 

Zz{t) = Z3(0). 

Now, to consider the behavior of the evolution of the processes in the later 

time scale, replace t by Nt. Let Z[N (t) — Z^(Nt). Then using the change of variables, 

(1.12) becomes 

Z[N(t) = Z'fW-N-^i^K.NZ'fisXZifW-^ds) (1.13) 

Z2»{t) = Z'2
N(0) + Y1(j\1NZ[N(s)(Z'l

N(s)-^)ds) 

-Y2( [ K2NZ[N{s)Z'2
N{s)ds) (1.14) 

Jo 
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Z'3
N(t) = Zf(0) + iV-1r2( f\2NZ[N(S)Z'2

N{s)ds). (1.15) 
Jo 

Dividing (1.14) by N and applying the law of large numbers for the Poisson process, we 

obtain 

ftK2Z[N(s)(^Z'1
N(s)-Z'2

N(s))ds —• 0. (1.16) 
JO K 2 

From (1.16), we have 

f (Z'2
N(t) - ^Z[N(t)) ds —> 0. (1.17) 

JO K2 

Using (1.17), as JV —» oo, we obtain 

Z((t) = Z j (0 ) - / KX^(s)2rfs 
Jo 

Z'3(t) = Z'3(0) + f KiZ[(s)2ds 
Jo 

1.6 The problem to be addressed 

In Chapter 2, we construct a general method of multiscale approximations, which is 

an extension of the method developed by Ball, Kurtz, Popovic and Rempala [2]. We 

introduce a scaling exponent parameter 7 for time change. A systematic way to select 

a's and /3's is suggested to make the normalized system have the order of 1. This method 

involves balance equations with «j and j3k, which we call species and subnetwork balance 

conditions. 
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In Chapter 3, we investigate asymptotic methods used in multiscale approx

imations. The law of large numbers for Poisson processes is applied to approximate 

non-integer-valued processes. The limit of the intermediate processes are obtained in 

terms of the averaged fast processes and the initial values of the slow processes. 

In Chapter 4, we introduce a model of the heat shock response developed 

by Srivastava, Peterson, and Bentley [14]. We apply the general method of multiscale 

approximations to the heat shock response model. We analyze the system and obtain 

limiting processes in each simplified subsystem which approximate the normalized pro

cesses in the system with different time scales. We obtain error estimates of the difference 

between the normalized processes and the limiting processes. 

In Chapter 5, applying the martingale central limit theorem and using aver

aging, we obtain a central limit theorem for deviation of the normalized processes from 

their limiting processes in the three species model introduced in [8] and in the heat shock 

response model. 
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Chapter 2 

General scaling problem 

2.1 Behavior of the system in different t ime 

Since we treat the chemical reaction system as a network, we first define some termi

nologies borrowed from graph theory. A graph G = (V(G), E{G)) consists of two finite 

sets: V(G) the node set, often denoted by just V, which is a nonempty set of elements 

called the nodes, and E(G), the edge set, often denoted by just E, which is a possibly 

empty set of elements called edges, such that each edge e in E is an unordered pair of 

nodes (u,v) [6]. A directed edge a is an ordered pair of nodes (u',v') in which u' is the 

initial node and v' is the terminal node [6]. Then a directed graph is a graph consisting 

of a directed edge set and a node set. Let H be a graph with the node set V(H) and 

the edge set E(H). Then H is a subgraph of G, if V(H) C V(G) and E(H) C E(G) 

[6]. Then a chemical reaction network gives a directed graph where the chemical species 

are the nodes and the chemical reactions are the directed edges. Each subnetwork is a 

subgraph of a directed graph. We will use these definitions in this chapter. 

Consider again the general chemical reaction networks from (1.1) 

m m 
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Then a parametric family of the normalized system is given from (1.7) in Sectionl.2. 

Z»(t) = Z»(0) + N-a>J2M N^+^Xk(Z
N(s))ds)(u'ik-uik) (2.1) 

it=i Jo 

Let 7 be a time change parameter. To apply the time change, replace t by 

iV7t and apply change of variables using s — N^u. Defining a new variable V/^^u) = 

Z^(N^u) and substituting Zf by Vt
N in (2.1), we obtain 

ViN{t) = Vi
N(Q) + N-t»Y,Yk( W+a^»\k{VN(u))du){viik-vik). (2.2) 

Taking 7 = 0, there is no change on time. Choosing a positive value for 7, time is 

accelerated, while selecting a negative value for 7, time is decelerated. 

We would like to understand the asymptotic behavior of the fcth reaction term 

by comparing scaling exponents of N inside and outside of a counting process. There 

are three possible cases depending on values of 7. 

7 + a • vk + (3k < oti (2.3) 

1 + a-Vk + pk = oti (2.4) 

7 + a • vk + (3k > at (2.5) 

When (2.3) is satisfied, the jfcth reaction term N-aiYk (/„' N^+a^+^Xk(V
N(s)) ds) {v'ik-

uik) is asymptotically zero. That is, the scaled number of A;th reactions is asymptotically 

zero at the initial stage. When (2.4) is satisfied and c^ ^ 0, applying the law of large 

numbers for the Poisson process, the kih reaction term satisfies 

N-a*Yk( f N^^\k{VN(s))ds)(y'ik-vik) « f \k{VN{s))ds(y'ik - vik) 
Jo Jo 
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When (2.4) is satisfied and CKJ = 0, as N —* oo, we anticipate that the kth reaction term 

converges to 

Yk{[ \k(V(s))ds)(v'ik-vik) 
Jo 

if certain conditions are satisfied. In both cases, when (2.4) is satisfied, nonzero finite 

limits of the scaled numbers of kth reactions are anticipated. When (2.5) is satisfied, the 

scaled numbers of kth reactions blow up as N —> oo. Therefore, a necessary condition 

to prevent the kth. reaction term blowing up is 

7 + a • vk 4- (3k < an. 

Now, we need to consider which conditions are necessary to prevent V/* blow

ing up. The natural time scale for V/* is determined by 

7 = min (o< -(a-vk+ fa)) 
k 

= oti- max(a • uk + (3k) (2.6) 
k 

where the minimum in the first inequality is taken over reactions involved in the ith 

species. Then (2.6) is a necessary condition to prevent any term in the equation for V^ 

blowing up. 

However, in some cases convergence may occur even though 7 is larger than the value 

given m (2.6). For example, V2
N'2 and Vf'2 converge when 7 = 2 in the heat shock 

response model in Section 4.1.2, even though mim; (0:2 — («• vk + fa)) — min*; (03 — (a • 

vk+fa))=0. 
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2.2 Balance conditions 

2.2.1 Species balance conditions 

Define r+ to be the collection of reactions that produce the ith chemical species and 17 

to be the collection of reactions that consume the ith chemical species. Then define the 

species balance equation as 

max(7 + a • vk + /3k) = max(7 + a-i/k+/3k). (2.7) 
kerf fceiy 

Consider how (2.7) affects a limit of the normalized number of molecules of the ith 

species in different time scales. When 

7 < oti- max {a-vk + (3k), (2.8) 
*er+urr 

V^ should be asymptotically equal to 1^(0) and have a nonzero finite limit, Vi(0). 

(unless 1^(0) = 0) When 

7 = on - max (a-uk + /3k), (2.9) 
fcer+ur-

V/1 is asymptotically the same as the normalized number of species with reactions of 

both production and consumption of the same maximal orders of magnitude for the 

reaction rates. In this case, as N —> oo, a nonzero finite limit should exist. If 

7 > a{ - max (a • vk + /3fc), (2-10) 
*er+ur*r 
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both the maximal reaction rate of production and the maximal rate of consumption blow 

up to infinity as N —> oo. However, in this chemical reaction networks, the consumption 

rates in the equation for the *th chemical species are proportional to the number of 

molecules of the ith chemical species, and the number of reactions of production and 

consumption occur at the asymptotically same rate. Therefore, the numbers of reaction 

of production and consumption are cancelled out, and as N —* oo, a nonzero finite limit 

should exist. 

Now, consider the case that (2.7) is not satisfied. Then the reaction terms 

of production and consumption do not cancel as N —> oo. We would like to prevent 

the possibility that one of the production or consumption rates has greater order of 

magnitude so that the limit, Vi, either blows up to infinity or converges to zero as iV —> 

oo. In other words, we do not want a case that one of the production or consumption 

reactions dominates. Then on is required to big enough to prevent the reaction term 

blowing up. That is, 

max (-J + a-uk + fa) < a*. (2.11) 
feer+ur-

Solving (2.11) for 7, the time change exponent must satisfy 

7 < oti - max (a-uk + fa). (2-12) 
fcer+ur-

Combining (2.7) and (2.12), we define the species balance conditions as 

C l . ( i ) max(7 + a • uk + (3k) = max(7 + a • v^ + fa) (2-13) 
kerf fcery 

or 
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(ii) max(7 + a • vk + 0k) ^ max(7 + a • uk + 0k) 
fcer+ fcerr 

and 

7 < ctj — max (a • Vk + 0k) for i = 1, • • • , m (2-14) 
fcer+ur-

Now, apply the species balance conditions to simple reactions 

«i 
Ax ^± A2. 

K2 

Then the normalized time change equations for Ax and A2 after time change are 

Vt
N{t) = Vx

N(0) + N-aiY2( [ Nn/+a2+^K2V2
N(s)ds) 

Jo 

-N~aiYi( f N'1+ai+^K1V1
N{s)ds) (2.15) 

Jo 

V2
N(t) = V2

N(0) + N-a'Y1( I N^+ai+(}lK1V1
N(s)ds) 

Jo 

-N~a2Y2{ f N^+a2+/32K2V2
N(s)ds). (2.16) 

Jo 

The species balance equation for both A\ and A2 is 

7 + a2 + /?2 = 7 + ai+/3i . (2.17) 

If (2.17) is not satisfied, then a scaling exponent of the species should be large enough to 

prevent the numbers of reaction of production and consumption of the species blowing 

up to infinity as N —» oo. After rearrangement, it gives us a restriction on a time change 

scaling exponent. Applying (2.14), we have 

7 + a2 + 02 7̂  7 + cxi + 0i (2.18) 
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max(7 + ai2 + /?2,7 + «i + A) < "l (2.19) 

max{7 + a2 + /32,7 + a i + A ) < <*2- (2.20) 

Solving for 7, (2.19) and (2.20) require the time change scaling exponent to satisfy 

7 < mw.(ai,a2) - max(a2 + (32,ai +/?i)- (2.21) 

(2.21) means that the choice of a's and (3's are valid for time scales up to 

Q /jymin(ai,a2)-max(a2+/32,ai+/3i)\ 

For simplicity, assuming a\ = a2 and consider the limit in each case. First, 

assuming the species balance condition (2.17) is satisfied. Then using (2.17), we have 

/?! = &. When 7 < - A , 

Vx{t) = lim V2
N(t) = V2(0) 

N—>oo.. 

V2(t) EE lim V2
N(t) = V2(Q) 

N—>oo 

where Vi(0) EE lim^oo 1^(0) and ^(0) = l i m ^ ^ V^(0). 

When 7 = — fa and ai = a2 7̂  0, using the law of large numbers for the 

Poisson process, we have 

Vl(t) = Vi(0)+ f (K2V2(S)-KiVi(s))dS 
Jo 

V2(t) = V2(0) + f (KIVI(S) - K2V2(S)) ds. 
Jo 
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When 7 = —/3i and a.\ — a2 = 0, we have 

Vtit) = V1{0)+Y2( [ K2V2{s)ds)-Y1( f KMtfds) 
Jo Jo 

V2(t) = V2(0) + Yx( [ KlV1(s)ds)-Y2( [ K2V2(s)ds). 
Jo Jo 

When 7 > —/?i, the numbers of reaction of production and consumption blow 

up as N —-> oo. However, the consumption rate in the equation for V^ is proportional 

to V(* and the consumption rate in the equation for V2
N is proportional to V2

N. Since 

both reaction rates have the same order of magnitude, the numbers of molecules of the 

chemical species are stabilized and as N —> oo, a nonzero finite limit exist. Dividing 

(2.23) and (2.24) by JV74"̂ 1 and applying the law of large numbers for the Poisson process, 

we obtain 

/ (KMS) - K2V2(S)) ds = 0 
Jo 

when «i = a2 ^ 0. In case ax = a2 = 0, both species are averaged out, and the averaged 

processes denoted V\ and V2 satisfy 

/ (KMS) - K2V2(S)) ds = 0. 
Jo 

Next, suppose that the species balance condition is not satisfied and we have 

(2.18) and (2.21). Without loss of generality, set (5\> fh- The the time change exponent 

should satisfy 7 < —/3\. When 7 < —f3\, we have 

Vx(t) = Vx(0) 

V2(t) = =V2(0) 
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Then when 7 = —/̂  and ax — a2 ^ 0, the limits satisfy 

V^t) = Fi(O)- / KiVl(s)ds 
Jo 

V2(t) = K2(0) + / «i7i(a)ds 
Jo 

In case 7 = —/3i and CKI = 02 = 0, we have 

Jo 

V2(t) = V2(0)+Y1( f Kl14(s)rfs). 
Jo 

2.2.2 Subnetwork balance conditions 

Even though all species balance conditions are satisfied, additional conditions may be re

quired to ensure the normalized system has nonzero finite limits. Consider the following 

example. 

0 4. Ax A A2 ^ 0. (2.22) 

Then the normalized time change equations for A\ and A2 after the time change are 

Vx
N(t) = V?(Q) + N-^Y^ f N'*+f)lK1ds)+N-aiY3( f N^+a2+^ K3V2

N{s) ds) 

Jo Jo 
-N~aiY2( [ N1+ai+^K2V1

N{s)ds) (2.23) 
Jo 

V2
N(t) = V2

N(0) + N-a2Y2( [ N'r+ai+f32K2V1
N(s)ds) (2.24) 

Jo 

-N-a2Y3( f N^+a2+/33K3V2
N(s)ds) -N~a2Y4( [ N">+a2+l34K4V2

N(s) ds). 
Jo Jo 
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We would like to investigate when Vf* and V^1 have nonzero finite limits as 

N —> oo. Suppose that ft = ft and they are larger than ft and ft. We assume that 

each species satisfies the species balance conditions, (2.13) or (2.14). The species balance 

equations (2.13) are 

max(p1,a2 + /33) = «i + ft (2.25) 

c n + f t = max(a24-ft,a2 + ft). (2.26) 

Using ft = ft, a\ > 0, and ft > ft, (2.25) is equivalent to a\ = a2- Using ft = ft > ft, 

(2.26) is also equivalent to cti = a2. Therefore, either both (2.25) and (2.26) are satisfied 

or both are not satisfied. 

Now, assume that each species satisfies the species balance equations. Then 

using aii = a2, consider the equation for VJ* + V2
V'. 

VtN(t) + V2
N(t) = 1^(0) 4-1^(0) 4- N-^YX ( / AP'+'V ds) 

Jo 

-N-aiYt( f W+a^f}iKAV2
N{s)ds). (2.27) 

Jo 

To make Vf + V2
N have a non-zero finite limit, it is required that 

ft - a2 + ft- (2.28) 

Assume that both species do not satisfy the species balance equations (2.14). 

Then we have a\ ^ a2 and the time change exponent 7 must satisfy 

7 < min (ai - max (max(ft,a2 + ft),ai 4-ft), 
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a2 -max (o ! i 4- /32,m.SLX.(a2 + /3 3 , a 2 + /?4)))- (2.29) 

Therefore as we see from (2.28) and (2.29), the maximal order of magnitude 

of collective reaction rates for inflow should be the same as the maximal order of mag

nitude of collective reaction rates of outflow in any subnetwork to make any collection 

of chemical species have a nonzero finite limit. In case the maximal order of magnitude 

of collective reaction rates for inflow and the maximal order of magnitude of collective 

reaction rates of outflow are different, the maximal exponent for the chemical species 

should be large enough to prevent the numbers of reactions with the maximal order 

blowing up. 

Based on (2.28), we would like to generalize the conditions for collective rates 

involving a subset of chemical species. Consider chemical species and chemical reactions 

as nodes and directed graphs, respectively. Let G be the chemical species in the chemical 

reaction networks and let G0 be any subset of G. Let TQ be the collection of reactions 

that consume no chemical species in G0 and produce at least one of chemical species 

in G0- Similarly, r ^ is the set of reactions that produce no chemical species in Go 

and consume at least one of the chemical species in Go- For each Go C G, define the 

subnetwork balance conditions as 

G2. (i) max (7 + a • vk + (3k) = max (7 + a • vk + (3k), (2.30) 

or 

(ii) max (7 + a • vk 4- (3k) ^ max (7 + a • uk + f3k), 
fcer+ • — 

and 

fcer+ fcery. 

max (7 4-a • vk + 0k) < maxaj . (2.31) 
fcer+our5o JeG0 
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Solving (2.31) for 7, the balance equations require the time change exponent to satisfy 

7 < min maxaj - max {a • v%-\~ f3k) \. (2.32) 
GQCG,G0 unbalanced \ ieGo fceri LT^ / 

In the subnetwork balance conditions, Go can consist of a single node. Therefore, the 

subnetwork balance condition contain the species balance conditions. 

Assume that species and subnetwork balance conditions are all satisfied. Then, 

in general, we expect that any collection of the normalized numbers of chemical species 

in the system of chemical reaction networks has a nonzero finite limit as N —* 00. 

However, a nonzero finite limit exceptionally may not exist for some cases. 

For example, consider the following reaction networks. 

stuff + A2 ^ 2A2 (2.33) 

i 2 1 0 (2.34) 

In (2.33), stuff represents a chemical species which we are not interested in and which 

exists in great amount in the system. In (2.34), 0 represents a chemical species which 

we are not interested in. The normalized time change equation for the system after the 

time change is 

V2
N(t) = V^^ + N-^Yti f Nrf+aa+PiK1V2

N(s)ds) 
Jo 

-N'a2Y2( I N^+a2+^K2V2
N(s)ds). (2.35) 

Jo 

If we have 

a2 + f3i = a2+f32, (2.36) 
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both the species balance conditions and the subnetwork balance conditions are satisfied. 

Still, Vj^ does not have a non-zero finite limit, in case we have n\ ^ «2 and 7 > — (3\. 

Now, we would like to obtain simpler conditions equivalent to the species 

balance conditions and the subnetwork balance conditions. First, define an irreducible 

subnetwork as a set of directed graphs in which any node can be reached from any 

other node. A trivial irreducible subnetwork means a subnetwork consisting of a single 

chemical species. Therefore, species balance conditions for each chemical species are 

equalto subnetwork balance conditions for trivial irreducible subnetworks. 

Lemma 2.1 ensures that species and subnetwork balance equations are satis

fied, if subnetwork balance conditions are satisfied for all irreducible subnetworks. For 

simplicity, we set 

pk = a-Vk + Pk, 

and use this notation in Lemma 2.1. 

Lemma 2.1. Subnetwork balance equations are satisfied for each subnetwork in the 

system if and only if subnetwork balance equations are satisfied for each irreducible sub

network. In other words, 

max pk — max pk, for all Go C G 
fcer+ fcen; 

if and only if 

max pk — max pk, for all irreducible G\ C G. (2.38) 
fcer+i k€V~x 

Proof of Lemma 2.1. If (2.37) holds, (2.38) is satisfied since the nodes involved in 

(2.37) 
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any irreducible subnetwork are in G. We need to prove that (2.38) implies (2.37). 

Suppose that (2.38) holds. Since a subnetwork with a single node is a trivial irreducible 

subnetwork, species balance conditions are satisfied. 

Let G-2 be a subset of G in which the maximal irreducible subsets of the 

subnetwork are single nodes. Let ^ G T j 2 satisfy 

ph - max pk, (2.39) 

and let ix be any chemical species in G2 produced by the Zxth chemical reaction. Then 

î G T^ and using (2.39) we have 

max/)/; = ph<max.pk- (2.40) 
*er+2 *er+ 

If max f cg r- pk = max f e€ r- pk, then using the species balance condition for the i i th 

chemical species and (2.40), we obtain 

max pk = Ph < max pk 
fcer+2 fcer+ 

— max pk = max pk (2-41) 
*er- ker-G2 

and (2.41) gives 

max pk < max pk. (2.42) 
fcer+2 k&-2 

If not, we recursively select lj for j — 2, • • • , g in r^_ with # . = max f ce r- pk 
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and set ij for j = 2, • • • , q — 1 satisfying î  G G 2 and lj € T^. T h e n we have 

max pk = p/, < maxpfc- (2.43) 

We repeat selecting (,- and ij until we find lq € Tj _a satisfying 

max pk = /% = max pk. (2.44) 

Since G2 has a finite number of nodes for chemical species and since maximal irreducible 

subsets of a subnetwork involved in G2 are single nodes, there is no possibility that the 

same node is selected repeatedly as ij and thus, q is finite. Then {lj} is a sequence of 

reactions with monotone increasing rates satisfying 

max pk = pix < max pk — max pk 

= Ph < 

*er+ ker+ k&r: 
Cr2 *1 l l 

pi = max pk. (2.45) 
kerz 

Using (2.45), we get 

max pk < max pk- (2.46) 
fcer+2 fcer^ 

Using similar procedure, we also get 

max pk < max pk- (2.47) 
fcer^ fcer+2 
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By (2.46) and (2.47), we prove 

max pk = max pk 

where maximal irreducible subsets of a subnetwork involved in G^ are single nodes. 

Now, suppose that there exists a maximal irreducible subset of a subnetwork 

involved in G2 which is not a single node. In this case, a subnetwork involving nodes in 

Gi can be written as the unions of its maximal irreducible subspaces. We can treat each 

maximal irreducible subnetwork as a single nodes and (2.38) gives maximal irreducible 

subnetwork balance equations. Then we can apply the previous procedure given in 

the proof of subnetwork balance equations for any subnetwork containing no nontrivial 

irreducible subnetwork. • 

2.2.3 a 's depending of 7 

Scaling exponents for the ith chemical species, c^, may depend on the time change 

scaling exponent 7, since the numbers of molecules of each species evolve as time passes 

and thus a; could be different for different time scales. In each time scale, we can 

define a different scaling exponent satisfying species balance conditions and subnetwork 

balance conditions. Actually, the restriction on the time change scaling exponent due to 

some of the unbalanced species and subnetwork balance equations indicates that we need 

to select a different set of scaling exponents satisfying species and subnetwork balance 

conditions. We will see a* depending of 7 in a heat shock response model in Section 

4.1.1. Unlike a^ we assume that /3k are independent of 7. 
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Chapter 3 

Asymptotic methods in multiscale 

approximations 

3.1 Law of large numbers 

Applying the time change by replacing t with Nyt, the normalized system becomes 

Vf(t) = V / » + X X a % ( f N^^\k{VN{s))ds){v>ik-vik) 

where V/^(t) — N~aiXi(Nyt). The law of large numbers for Poisson processes says, for 

each M0 > 0, 

lim sup 
N-*oo U<UQ 

If at y£ 0 and the time change exponent, 7, satisfies 

a; = max (j + a-vk+(3k), (3.1) 
feer+urr 

we can apply the law of large numbers for Poisson processes to get the limiting process for 

the normalized number of molecules of the ith. species provided that fQ \k(V
N(s)) ds — 

0(1). Each counting process describing the number of times each chemical reaction 

Yk(Nu) 
N u — 0 a.s. 
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occurs satisfying (3.1) is approximated by its intensity function. If we prove the intensity 

function of the counting process is 0(1), a non-zero limit for the counting process would 

be obtained when two scaling exponents inside and outside of the counting process have 

the same value. A natural time scale for Vf is a minimum of 7 which would prevent all 

reactopm terms blowing up. Then each V/* satisfies 

7 = min (a{ -a- vk - (3k) = a* - max (a • vk + 0k). 
*er+ur- fcer+urr 

Then the number of natural time scales of the processes in the system can be determined 

by 

M = \{ min (ai-a-Vk-(3k),i = 1,2,-•• ,n}\ (3.2) 
*er+urr 

where n represents the number of chemical species in the system and where | • | is the 

number of elements in a set. However, the normalized numbers of molecules of some 

chemical species possibly do not satisfy the natural time scale. For example, we will see 

V2 '2 and V^'2 have the time scale of 0(iV2), even though ctj—maxfe6r+i,r-(Q;-^fe+/5fe) = 0 

for i =• 2,3 in the heat shock response model in Section 4.1.2. 

Define a set of reactions having the maximal order of magnitude of reaction 

rates of production for each species 

r+0 = {k' : max(« -vk + (3k) = a- vk, + ft,, k' € T+} (3.3) 
kerf 

and define a set of reactions having the maximal order of magnitude of reaction rates of 
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r r 0 = {k' : max(a -uk + pk) = a- vk, + ft,, k' € Tr}. (3.4) 
feer-

Fix 7. Then 7 would be one of the values in M defined in (3.2), since we are mostly 

interested in the evolution of the processes in different natural time scales. 

In the subsystem for times of order iV7, define index sets regarding processes with slow, 

intermediate, and fast time scales. 

S = {i:ai> max (7 + a • vk + Pk)} (3.5) 
feer+urr 

I = {i:ai= max (7 + a • vk + (3k)} (3.6) 

F = {i: ai < max (7 + a • vk + f3k)}. (3.7) 
*er+ur4-

S gives indices for chemical species with time scale slower than 0(iV7), / represents 

indices for chemical species with time scale equal to 0(A^7), and F gives indices for 

chemical species with time scale faster than O (iV7). We split VN and define collections 

of processes depending on time scales. Let 

{Vfhes (3-8) 

{ V f W (3-9) 

Of}«€F (3-10) 

To obtain a limit of the system, we first need the stochastic boundedness of the intensity 

functions of the counting processes. The limiting behavior of the evolution of processes 

VN\ 

V"\! 

vN 
F — 
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with time scale slower than O (N1) acts as constant and satisfy 

lim s u p i ^ l s ^ - V l ^ O ) ! - 0, ieS. (3.11) 
iV->oo t<T 

For i G F, the behavior of the evolution of processes with time scale faster than O (iV7) 

is averaged out and expressed in terms of the evolution of intermediate processes and 

slow processes. Let . 

rvff|'(Cx[o,t))) = ficiVywds 
Jo 

and assume that (VN\i,VN\s,T
vNlF) => (V\i,V\s,r

v^). Then the fast processes give 

the limiting equations 

5 " / Xk(z,V\I(s),V\s(s))(u'ik-uik)iis(dz)ds = 0. ieF 
^t0Ur~0

JEV^ 

where jis satisfies 

Tv^(Cx[0,t))) = ( lc(V\F(s))fis(dz)ds 
JEv^Fx[0,t] 

Then applying the law of large numbers for Poisson processes, the system of intermediate 

processes have a limit satisfying 

lim sup VH/(t) - V|7(t) = 0 
AT-KJO t < T 
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where 

Vi(t) = Vi(0)+ T I \k{z,V\I{slV\s{s)){u'ik-vik)N{dz)ds 

i € I, a,i=£ 0 

In case a.i — 0, we cannot apply the law of large numbers for Poisson processes and the 

limit is 

Vi(t) = VJ(0)+ T Yk([ Xk(z,V\I(s),V\s(s))f,s(dz)ds)(u'ik-uik) 

i e /, on — o 

3.2 Averaging 

In [16], quasi-steady-state approximation is used in deterministic modeling of chemical 

reaction networks by assuming that the fast processes have their equilibrium values in

stantaneously and the slow variables perform the slow dynamics in the slow subsystem 

[16]. Then the stationary points form an exponentially attracting manifold with condi

tions that all eigenvalues of the system of ODEs have all negative real parts [16]. On the 

stationary manifold of the system, slow limiting processes are obtained, and using quasi-

steady-state approximation, fast processes approaching the continuum of the stationary 

points are approximated by projecting their trajectory vector on the invariant manifold 

[16]. Therefore, dynamics of the slow processes on the invariant surface dominate the 

slow subsystem with approximated fast dynamics onto the invariant surface [16]. 

Consider the normalized system V ^ parameterized by N, Following (3.2), 

suppose that the system has M natural time scales. Arrange the natural time scale 
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exponents in monotone decreasing orders 

71 > 72 > • • • > 7M- (3.12) 

Then we partition VN into (VN™, VN™, • • • ,VN™) where each VN™ represents a 

collection of components of VN in time scale 0(Ny') and VNni consists of at least 

one normalized number of molecules of chemical species. We also define exponents 

Pi, • • • , VM in monotone decreasing orders satisfying 

pi>P2> •••>PM (3.13) 

and 

p, = max ( max (a • uk + (3k) — aA. (3-14) 

VievN^ fcer+0urr0 

Actually, for any V{ E VN'yj, pj — maxfcer+ y r - (a • Vk + 0k) — oti, since VN'^ have the 

same natural time scale O(N^). 

The generator of the system can be approximated by partial pieces of the 

generator depending on the order of magnitude of the scaling exponents in the reaction 

rates. Let vl be a variable for VN''li, which is a collection of the components of VN in 

time scale O(N^). Define C]'N is generator having all reactions of the largest order of 

magnitude in the reaction rate. Then 

N-rn{B?g(v\t?,~. ,vM) ~ C^g(v\v2,. • • ,vM)) - 0. (3.15) 
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Using B^, a martingale is denned as 

M?(t) = g{VN^(t),••• ,VN>^(t)) -g(VN^(0),• • • ,VN™(0)) 

- I M?g(VN^(s),--- ,VN™(s))ds 
Jo 

= g(vN^(t), •••, vN™(t)) - g(vN^(o), •••, vN™(o)) 

- f ( i f g(VN™(s), ••• , VN™(s)) - C^giV^is), • • • , VN™(s))) ds 
Jo 

- f C - y v ^ C s ) , • • • , VN™(s)) ds (3.16) 
Jo 

Define an occupation measure of a set of the fastest species VNni as 

r^(cx[o,i]) = fic{vN^{s))ds 
Jo 

Replace the integrals involving VN''tl by the integrals against Fv '7l. Then the martin

gale is written as 

Mj?(t) = g(VN^ (*),•••, VN<™ (t))-g{V*™ (0), • • • , VN"M (0)) 

- / (B^g(v\VN^(s),.-.,VN^(S)) 
JV"1 x[0,t] V 

-C^xg(v\ VN™(s), ••-, VN™(s))) TvNni (dv1 x ds) 

- f C^g(v\ VN™(s), •••, VN™(s)) rvN'yi (dv1 x ds) (3.17) 
JEVNnix[0,t] 

We assume that (VN™, ••• , VN^M ,YvN'11) =*• (V^2, • • • , V™, TV11) as N -> oo. Di

viding (3.17) by jV7+Pl and using (3.15), we obtain 

/ CTyl2... v,M)g(v\ V»{s), • • • , V™(s)) TyT1 (dt,1 x ds) (3.18) 
JEv^lx{0,t] ' ' 
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/ C p 4 ... vyM)g(v\V^(s),•••,V™(s)) ^(dv^ds 
lEV^x[0,t] 

= 0 

where C ^ ...tV-rM)(-) is a limit of N^-piCl'N'(•) as N -+ oo satisfying 

^(N-rnC^g^y,- ,vM) -C$r.ylt)g(vWr •-,*")) = 0(3.19) 

Suppose that for each (v2
} • • • ,v

M), the solution /J,(v2... >VM^ G V(EVJ1) of 

f viiC^)2t...y,M)g{v1^\s)r--,V^{s))r]
1
s{dvi)dS = 0 (3.20) 

is unique where g € V. Then 

vlidv1) = y\vi2{s),-y-iM(s))(dvl) (3.21) 

(3.21) can be interpreted as the averaged behavior of processes in the fastest time scale 

0(iV71) can be expressed by behavior of processes in time scales slower than 0(Nyi). 

Similarly, we can get averaged behavior of processes in the time scale 0(A/"w), 

j = 2, • • • , M, using the appropriate generator. Define C ^ to be the generator having 

all reactions of the largest order of magnitude involved in VN>1:>. Then 

A r ^ B f ^ V - - / J - C ^ , - . ,vM)) -> 0. (3.22) 

Using B^, a martingale is defined as 

M»(t) = g{VN^(t),--- ,VN^(t))-g{VN^(0),-.. ,VN^(0)) 
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- / M?g{VN™(s),--- ,VN™(s))ds 
Jo 

= g(vN'lj{t),• • •,vN™(t)) -g(vN>*(o),•••,vN™(0)) 

- [ (B»g(VN^(s), ••-, VN^(s)) - C^g(VN^(s), • • • , VN™(s))) ds 
Jo 

- I C^2g(VN^(s), • • • , VN™(s)) ds (3.23) 
Jo 

Define an occupation measure of a set of the fastest species VN>7j as 

r ^ ' ( C x [ 0 , t l ) = flc{VN^{s))ds (3.24) 
Jo 

Replace the integrals involving VN,1i by the integrals against Tv '3. Then the martin

gale is written as 

Mg
N(t) = g(VN*(t), •••, VN™(t)) - g(VN^(0), • • • , VN™(0)) 

- f (M?g(vJ,VN>^(s),... ,VN™(S)) 
JEV 3x[o,t] \ 

-Cf'jg(vj, VN'^(s), ••• , VN™(s))\ Tv^j (dvj x ds) 

- / C?Jg{v>, VN'^(s), • • • , VN™(a)) r^ '7 j ' (dvj x ds) (3.25) 
JEV •7x[o,t] 

We assume that ( V ^ * 1 , • • • , y*'™, rvJV,7i) =*• (VT*+V • , 7 ™ , ^ ' ) as N -* oo. 

Dividing (3.25) by iV?+w and using (3.22), we obtain 

/ 7. C i ... ^ M ) 9 (y j , V^+1(s), • • • , V™(s)) Tyl3 (dv> x ds) (3.26) 
JEVJx[0,t] V ' ' y 

= / c ^ . . . V 7 M ^ ( ^ , y ^ ( s ) , - - - , ^ 7 M ( 5 ) ) % ( d ^ ) d 5 

= 0 
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where C~'4+i,... ,vw)(0 i s a l i m i t o f A^"7"^Ci'iV(-) as N -> 00 satisfying 

^ ( A ^ ^ ^ = 0 (3.27) 

Note that Cf'jg(vj, ••• ,vM) possibly includes VN™, • • • , V*^- 1 terms. Then terms 

related to VN™} • • • , V**™-*- are averaged out by terms related to (VN>^, • • • , VN"U) 

using the generator Cf'\ • • • , C ^ _ 1 . Therefore, as N -> oo, C^+1)...yM)g{v j, • • • , vM) 

only depends on C(VJ+I,... yM). 

Suppose that for each (wJ+1, • • • ,vM), the solution /i(vj+it... >VMJ 

j Cp^^.y^g^, \r*+i(s), • • • ,V™(s)) rfs(dvi)ds = 0 (3.28) 

is unique where g € V. Then 

rjttdvi) = ^ + 1 ( s ) , . . y ,M ( s ) ) (^ i ) (3-29) 

(3.29) can be interpreted as that averaged behavior of processes in the time scale 0{N1:>') 

can be expressed by behavior of processes in time scales slower than 0(N1:>). 
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Chapter 4 

Heat shock response model 

4.1 Analysis 

4.1.1 Introduction of a heat shock response model 

Borrowing a model of the heat shock response in Escherichia coli developed by Srivas-

tava, Peterson, and Bentley [14], we apply multiple scaling methods as described in 

Chapter 2 and 3. Following [14], cr32 is a regulator against heat shock in Escherichia 

coli, and E is an holoenzyme stimulating synthesis of stress proteins FtsH, J, and GroEL 

[14]. 

There are three forms of a32: a32 protein, Ecr32 (a complex of a32 with holoen

zyme), and J-cr32 (a complex of a32 with the heat shock proteins). Holoenzyme E binds 

to cr32 and produces heat shock proteins which in turn reduce post heat shock stress 

rapidly [14]. Under normal condition, most cr32's are in a form of J-cr32 which acts as a 

reservoir of a32 [14]. Then Ecr32 increases in a very small amount under heat shock, and 

only a very small amount of Ecr32 gives a huge effect to reduce post stress of heat shock 

[14]. All deterministic rate constants are given in [14]. 

Moreover, initial values for simulation (except for initial values of recombinant 

protein and for J-recombinant protein) in Table 9 are given by Srivastava, which are the 

same used in [14]. Nine species are involved in the heat shock response model and we 

will use the following notation of chemical species in the stochastic model. 
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Table 1: Species in a heat shock response model 

ith Chemical species 

Ax 

A2 

^ 3 

A4 

A5 

A6 

A7 

A8 

A9 

a32 mRNA 

cr32 protein 

Ea32 

FtsH 

GroEL 

J (DnaJ+DnaK+GrpE) 

J-a32 

Recombinant protein 

J-Recombinant protein 

As mentioned in the previous paragraph, a32 are in three forms: A2, A3, and At in Table 

1. 

Chemical reaction networks in the heat shock response model are made up 

of eighteen reactions. As seen in Section 1.3, binary reaction rate constants can be 

redefined, which vary inversely to the volume. By dividing the binary reaction rate 

constants given in [14] by the cell volume x Avogadro's number (= 9.033 x 108), we 

get newly defined binary reaction rate constants for the stochastic model. Arranging 

reactions in decreasing order of reaction rate constants, we express reactions in terms of 

the notation defined in Table 1. 
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Table 2: Reactions in a heat shock response model 

Reaction Transition Stoch constant 

Ri gene — • A8 Recombinant protein synthesis 4.00 x 10° 

R>2 A 2 — > A s Holoenzyme association 7.00 x 1 0 _ 1 

-R3 A3 —* A2 Holoenzyme disassociation 1.30 x 1 0 - 1 

RA 0 - ^* A2 a32 t rans la t ion 7.00 x 10~3 

'-Kg1 gene + A3 —> A2 + A5 GroEL synthesis 6.30 x 10~"3 

R*6 g e n e + A z — • A 2 + A 4 F t sH synthesis 4.88 x 1 0 - 3 

R7 gene + A3 —> A2 + Ae J-production 4.88 x 10"3 

R8 A7 —> A2 4- A6 <7 3 2 -J -disassocia t ion 4 .40 x 1 0 ~ 4 

R*9 A 2 + A 6 —• A 7 (732-J-association 3.62 x 10" 4 

Rio Ae 4- As —> AQ Recombinant protein-J association 3.62 x 1 0 - 4 

jRn A8 — • 0 Recombinant protein degradat ion 9.99 x 10~5 

R12 A9 — • A6 4- ̂ 8 Recombinant protein-J disassociation 4.40 x 1 0 - 5 

R13 gene —> A\ a32 transcription 1.40 x 10 - 5 

Ru Ax — • 0 a32 m R N A decay 1.40 x 10" 6 

R*15 A 7 - ^ A 6 a32 degradation 1.42 x 10~6 

Rw A5 — • 0 GroEL degradation 1.80 x 10~8 

Rn A6 —> 0 J-disassociation 6.40 x 10~10 

R18 A4 —> 0 FtsH degradation 7.40 x 10~ u 

Reactions R5, Re, R7, Rg Rw, and R15 are binary reactions, which are either 

1 Binary reactions are marked by *. Otherwise, reactions are unary. 



43 

A + B—*C or A + B —>C + D. All others are unary reaction such as A —> B or 

A —• 5 + C. In unary reactions, JB could be 0. In Table 2, 0 represents chemical species 

which is out of our interest and which exists in great amount in the system. 

Using the continuous time Markov jump process, we construct a stochastic 

model. After scaling the species numbers by Nai, scaling the reaction rate constants 

by N^k, and applying a time change by N1, we have the normalized system of chemical 

reaction in the heat shock response model. 

Vff(t) = V^(0) + N~a^Y13( [ K13A^7+ft3 ds) - iV~ai Y14( f KuN^^+^Vf {s) da) 
Jo Jo 

V2
N(t) = V2

N(0) + N-a*Y3([ K3N~f+a3+!33Vz
N(s)ds) + N-a2YA([ ^N^^Vf (s) ds) 

Jo Jo 

+N~a2Y5{ [ K5N^+a3+l3!iV3
N(s) ds) + N~a2Y&( f K6Ni+a3+f3eV3

N(s) ds) 
Jo Jo 

+N-a2Y7( I K7N
1+<X3+I3WZ

N{S) ds) + N~a2Y8( I K8N^a7^8V7
N\s) ds) 

Jo Jo 

-N~aW2{ I K2N"'+a2+l3W2
N(s) ds) -N~aW9{ f K9N^+^+a6+^V2

N{s)Ve
N(s)ds) 

Jo Jo 

V3
N(t) = V3

N(0) + N~a3Y2{ f K2N^a^^V2
N{s) ds) - N~a3Y3( f «3i\n ,+a8+^V/'(s) ds) 

Jo Jo 

-N~a3Y5( [ K5N^+a3+^V3
N(s) ds) - N-a3Y6( f K6N^+a3+^V3

N (s) ds) 
Jo Jo 

-N-a3Y7(f K7N^+a3+^V3
N{s)ds) 

Jo 

Vf(t) = V4
N(0) + N-a*YQ{ [ K6N^+a3+^V3

N(s) ds) - N~a*Y18( [ K18N^+a*+^Vf (s) ds) 
Jo Jo 

V5
N(t) = V5

N(0) + N-a*Y5( f K5N^+a3+^V3
N(s) ds) - N~asY1Q( f mN^a5+^V5

N(s) ds) 
Jo Jo 

V6
N(t) = Ve

N(0) + N-aeY7([ K7N^+a3+f3W3
N(s) ds) + N~aeY8( f K8N"f+ar+^V7

N{s)ds) 
Jo Jo 

+N-a°Yn( I K12Ni+a°+hW9
N(s)ds) + N~aeY15( f K16lP'+a*+a7+faVJi(s)V7

N(s) ds) 
Jo Jo 

. -N-a6Y9([ K9N^+a*+a^V2
N(s)V6

N(s)ds) 
Jo 

-N~aeY10( [ K10N^+ae+a»+h°V6
N(s)V8

N(s) ds) - N~a«Y17( t Kl7W
+a°+^VG

N(s) ds) 
Jo Jo 
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V7
N(t) = V7

N(0) + N-a?Y9( K9N'7+a2+a6+^V2
N{s)V6

N{s)ds) 
Jo 

- iV-Q 7r 8( f KgN'r+a7+l38V7
N(s)ds) - N-^Y^i [ Ki5N1+ai+av+l3l5Vif(s)V7

N(s)ds) 
Jo Jo 

V8
N(t) = VfM + N-otYiif KiN^ ds) + N-a»Y12( [ K12Ni+a°+^V9

N(s)ds) 
Jo Jo 

-N~a*Yw( f KloN
y+a6+as+01oV6

N(s)V8
N(s)ds)-N-asYn( f KUN^+as+^Vs

N (s) ds) 
Jo Jo 

V9
N(t) = V9

N(0) + N-a°Yw([ «10iV7+a6+a8+ /3 loVf {s)V8
N(s)ds) 

Jo 

-N-a9Y12{[ K12N^a9+^V9
N(s)ds) 

Jo 

In the heat shock response model, using Lemma 2.1, we need to consider 

balance conditions for each irreducible subnetwork. Since each trivial irreducible sub

network represents a subnetwork involving a single chemical species, we additionally 

investigate the unnormalized equations for chemical species involved in each nontrivial 

irreducible subnetwork. 

Na2V2
N(t) + Na3Vf(t) + Na7V7

N(t) = N<*2V2
N(0) + Na3V3

N(0) + Na7V7
N(Q) 

+Yi(f K4Ni+ai+l3*V1
N(s)ds)-Yi5(f Ki5N^+a4+a7+^V4

N(s)V7
N(s)ds) 

Jo Jo 

NaW2
N(t) + Na3V3

N(t) = Na2V2
N(0) + NaW3

N(0) + Y4( f K^+^+^V^ (s) ds) 
Jo 

+Y8( / KaNTKn+kVf1(s) ds) - Y9( f K9N^+a2+ae+^V2
N(s)V6

N(s) ds) 
Jo Jo 

NaW2
N(t) + NaW7

N{t) = NaW2
N(0) + JVa7V^(0) + Y3( f K3N

7+a3+^3Vf (s) ds) 
Jo 

+y4( / «4iV7+0'1+'V1
JV(s) ds) + Y5( f K5N"<+a3+l35V3

N(s) ds) 
Jo Jo 

+Y6( f K6N^+a3+l36V3
N(s) ds) + Y7{ f K7N^+a3+^V3

N\s) ds) 
Jo Jo 

- y 2 ( / K2Nf+a^2v2
N(s) ds) - y15( / K15iVT+Q4+Q7+/3i5Fiv(s)v7

N(s) ds) 
Jo Jo 

NaeV6
N(t) + Na7V7

N{t) + Na9V9
N(t) = Na6V6

N(0) + NarV7
N(0) + Na9V9

N(0) 
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+Y7(f K7N~<+a3+frvif(s)ds)-Yi7([ K17N't+a6+^7V6
N(s)ds) 

Jo Jo 

Na*V6
N(t) + Na°V9

N(t) = Na6Ve
N(0) + Na°V9

N(0) + Y7( f K7N^+a3+l37V3
N(s) ds) 

Jo 

+Y8{[ K8N"t+a^'3*V7
N(s)ds) + Y15([ K15JVT+a4+Q7+'3l5F4

iV(s)V7
N(s) ds) 

Jo Jo 

- y 9 ( / «9iVP'+aa+ai8+*y2
JV(a)^JV(a) ds) - Y17( f K17N^ae+l3l7V6

N (s) ds) 
Jo Jo 

Na6V6
N(t) + Na7V7

N{t) = NaeV6
N(Q) + Na7V7

N(Q) + Y7( f K7N^+a3+07V3
N(s) ds) 

Jo 

+Yl2{ f K12N^a°+hW9
N(s)ds)-Y10( f K1 0JV7 + a 6 + a 8 + f t oVf (s)V8

N(s)ds) 
Jo Jo 

-Yu(f K17N^+ae+^7V6
N(s)ds) 

Jo 

NasV8
N(t) + Na°V9

N(t) = Na8Vs
N(0) + Na*V9

N(0) + Yt( f K^^1 ds) 
Jo 

-Yu([ KnN-<+a8+^Vs
N(s)ds). 

Jo 

Following the species balance arguments in Section 2.2.1, to make the normal

ized number of molecules of chemical species converge to nonnegative limits as iV —> oo, 

the maximal order of magnitude of reaction rates of production of each species should 

be the same as the maximal order of magnitude of reaction rates of consumption of each 

species. 

max(7 + a • vk + /3k) = max(7 + a • vk + /3k) 
kerf kevr 

Otherwise, the scaling exponent of the number of molecules of the chemical species must 

be big enough to prevent the normalized species number from blowing up, that is 

max (7 + a • vk + f3k) < a,, 
fcer+ur-
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The species balance equations are given in Table 3. 

Table 3: Species balance equations 

Species Species balance equations 

{^i} /?i3 = ai+/?i4 

{A2} max(a3 + p3, ax 4 p4, «3 4 A>, a3 +Ps,a3 +p7,a7 + p8) 

= max(a2 + /32, «2 + «6 + PQ) 

{As} a2 4- P2 = max(a3 4 p3, a3 4 /35, a3 4 /36, a3 4 A) 

{AJ a3 4 /56 = a4 + /?i8 

{A5} a 3 4- (35 = «5 4 ^16 

{As} max(a3 + j97, a7 4 /?8, «9 4 /?i2, aA + a7 + As) 

= max(a2 4 a6 4 /?9, «6 4 as 4 /?io, «6 + Pn) 

{A7} a2 + a6 + p9 = max(c>!7 + p8,a4 + a7 4 Pm) 

{A8} max(/3i, a9 4 Pn) = max(a6 4 cts 4 /?io, «8 + Ai) 

{Ac,} a6 4 Qf8 4- pio = ad + p12 

Similarly, following the subnetwork balance conditions in Section 2.2.2 and 

following Lemma 2.1, the maximal order of magnitude of the collective reaction rates of 

production for each nontrivial irreducible subnetwork involving G 0 c G should be the 

same as the maximal order of magnitude of the collective reaction rates of consumption 

for each nontrivial irreducible subnetwork involving Go C G. 

max (j + a-Uk + Pk) = max (7 4 a • uk 4 Pk) 
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Otherwise, the maximal scaling exponent of the numbers of molecules of chemical species 

involved in each nontrivial irreducible subnetwork G0 C G must be large enough to 

prevent the normalized species numbers in the subnetwork from blowing up, that is 

max (7 + d • Vk + ft) < maxccj. 
fceri ur^ ^Go 

The equations for chemical species involved in each nontrivial irreducible subnetwork 

will give balance equations in Table 4. 

Table 4: Subnetwork balance equations for each nontriv

ial irreducible subnetwork 

Nodes in Subnetwork balance equations 

each subnetwork 

{A2,A3,A7} ax + ft = ocA + a7 + (315 

{A2, A3} max(o;1 + ft, a7 + ft) = a2 + a6 + ft 

{A2,A7} max(a3 + ft, a^ + ft, a3 + ft, a3 + ft, a3 + f37) 

= max(a2 + ft, «4 + oc7 + ft5) 

{Ae,A7,A9} a3 + (37 = a6 + /317 

{A6,A9} max(a3 + ft,a7-|-ft,a!4 + a:7 + ft5) 

= max(a2 + ae + ft, «6 + ^17) 

{A6,A7} max(a3 + ft, a9 + ft2) = max(a6 + a8 + fto, a6 + Pn) 

{AS,A9} ft = a8 + fti 

Next, we want to scale the numbers of chemical species and the reaction rate 
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constants using a common scaling parameter No with different exponents en's and fas. 

Considering the magnitude of the initial values in Table 9, let iV0 = 100. As defined in 

the general case in Chapter 2, we investigate a parametric family of models. Among the 

parametric family, we are interested in the specific system when N — No. Even though 

N0 is not so large due to small initial values, the general case can be applied in this 

example. 

We would like to get a, and fa satisfying as many balance equations as possible 

in Table 3 and Table 4 and to make aj and fa satisfying all balance conditions (conditions 

including inequalities). Since balance conditions in Table 3 and Table 4 include max 

functions, which make equations not so simple, we first reduce choices for cq and fa by 

solving balance equations in Table 3 and Table 4 by Maple. Maple gives us a general 

set of solutions which are not unique. After getting a general sense of the relationship 

among the CKJ and fa, we select a* and fa satisfying the balance conditions. In case 

we cannot get a; and fa satisfying all the equations, we will have restrictions on 7 

concerning unbalanced equations. We select scaling exponents fa for the reaction rate 

constants K'H to make the normalized reaction rate constants K have the order of 1. 

K< = ^ = 0 ( 1 ) 

Moreover, since reaction numbers are provided by arranging reactions based 

on the magnitude of n'k in decreasing order, the assumption that the fa are monotone 

decreasing is plausible. We differentiate reaction rates of chemical reactions that con

sume one species in the system (unary reactions) and chemical reactions that consume 

two species in the system (binary reactions). In other words, fa for the binary reactions 
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are monotone decreasing and Pk for the unary reactions are monotone decreasing; how

ever, monotonicity conditions are not required between unary reaction rates and binary 

reaction rates. 

Table 5 gives the stochastic reaction rate constants and the normalized stochas

tic reaction rate constants with scaling exponents. 

Table 5: Scaling exponents of the reaction rates and nor

malized reaction rates 

Pk Scaling exponent Stoch rate2(«4) Scaled rate(ftfc) 

Pi 

P2 

Ps 

Pi 

{3f 

Pt 

ft 

Ps 

PI 

fto 

Pll 

Pu 

PlZ 

Pu 

0 

0 

0 

- 1 

- 1 

- 1 

- 1 

- 2 

- 2 

- 2 

- 2 

- 2 

- 2 

- 2 

4.00 x 

7.00 x 

1.30 x 

7.00 x 

6.30 x 

4.88 x 

4.88 x 

4.40 x 

3.62 x 

3.62 x 

9.99 x 

4.40 x 

1.40 x 

1.40 x 

10° 

IO-1 

IO-1 

io-3 

10~3 

IO"3 

io-3 

10"4 

io-4 

io-4 

10~5 

10"5 

io-5 

io-6 

4 

0.7 

0.13 

0.7 

0.63 

0.488 

0.488 

4.4 

3.62 

3.62 

0.999 

0.44 

0.14 

0.014 

2It means Stochastic reaction rates. 
3* are binary reaction rate constants. 
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Pts - 3 1.42 x 10"6 1.42 

/?i6 - 2 1.80 x 10~8 0.00018 

Pn - 2 6.40 x 10-10 0.0000064 

(318 - 2 7.40 x 10- 1 1 0.00000074 

Prom Table 5, normalized reaction rates K^, «i6, «rr, and «ig are quite small compared 

to other Kfc's. However, we do not worry about those four cases, since they are involved 

in protein degradat ion which does not have a significant effect on the system. 

We select a* satisfying 

y^it) = ^ ^ = 0(1). 

In case the balance equations are not satisfied, we get restrictions on 7 as noted in Table 

7 and Table 8. Table 6 gives our specific choice of the scaling exponents for the numbers 

of chemical species in this example. 

The orders of magnitude of the number of species may have different values in 

different time scales, since the numbers of species evolve as time passes. In other words, 

the a's depend on the values of the time scale exponent 7. This dependence reflects the 

large growth in numbers of certain species. Prom now on, we set Vi '7 as the normalized 

number of molecules of the ith species for times of O (iV7). 

In the heat shock response model, a1; a2, and ct3 depend on 7. As seen in 

Table 7 and Table 8, «i = 1, a2 — 0:3 = 0 are valid up to times of O (1). Then, we 

change exponents to cti = 0, a2 = a.3 = 0, which are valid up to times of O (N). After 

that, we select OL\ = 0, 0*2 = a3 = 1 which are valid up to O (N2). 
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Table 6: Scaling exponents of the number of species 

Scaling exponent 7 = 0 7 = 1 7 = 2 

1 0 0 

0 0 1 

0 0 1 

2 2 2 

2 2 2 

0 0 0 

0 0 0 

2 2 2 

2 2 2 

The balance equations in Table 3 should be either satisfied or each unbalanced 

one will give us a restriction on the time scale exponent 7. 

7 < ai - max (a • vk + Pk) 
fcer+ur-

Table 7 shows whether the species balance equations are satisfied in each time scale. In 

case the equation is not balanced, the restriction on 7 is given. 

Table 7: Species balance conditions 

Species ax = 1 a,\ = 0 OL\ = 0 

« 9 

4a's depending on 7 are marked by f. 
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a2 = <̂ 3 = 0 a 2 = CK3 = 0 «2 = Q3 = 1 

w 
W 
W 
{^4} 

{M 

{Ae} 

{M 

{As} 

{M 

7 < 2 

balanced 

balanced 

7 < 2 

7 < 2 

balanced 

7 < 1 

balanced 

balanced 

balanced 

balanced 

balanced 

7 < 2 

7 < 2 

balanced 

7 < 1 

balanced 

balanced 

balanced 

balanced 

balanced 

balanced 

balanced 

balanced 

balanced 

balanced 

balanced 

Similar to species balance equations, each nontrivial irreducible subnetwork gives a bal

ance equation. Table 8 indicates whether the subnetwork balance equations are satisfied. 

In case the equation is unbalanced, the restriction on 7 is given. 

Table 8: Subnetworks balance conditions 

Species in each nontrivial a^ = \ 

irreducible subnetwork a^ — a3 — 0 a.2 '• 

a.\ = 0 ax — 0 

= CK3 = 0 « 2 = Oio, = 1 

{A2,A3,A7} 

{A2,A3} 

{Ai,A7} 

{Ae,A7,A9} 

{AQ,AQ} 

{A,,A7} 

7 < 0 

7 < 0 

balanced 

7 < 3 

7 < 3 

balanced 

balanced 

7 < 1 

balanced 

7 < 3 

7 < 3 

balanced 

balanced 

balanced 

balanced 

7 < 2 

7 < 2 

balanced 
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{AgjAg} balanced balanced balanced 

Prom Table 7 and Table 8, the importance of balance equations are found. A 

set of exponents in the second column is valid up to 7 = 0. After the time scale with 

7 = 0, we need to use a different set of exponents. In conclusion, unbalanced equations 

give a restriction on 7, and validity of the set of exponents indicates when we need to 

use a different set of exponents. 

4.1.2 Reduced systems in each t ime scale 

In the heat shock response model with selected at and (3k satisfying the balance con

ditions, as N —> 00, the system of chemical reactions can be' approximated by three 

limiting subsystems with different time scales. Recall from (3.5) — (3.7) that in each 

time scale, the normalized numbers of species with time scale faster than the current 

time scale are fast processes. The normalized numbers of species with the current time 

scale are intermediate processes, and the normalized numbers of species with time scale 

slower than the current time scale are slow processes. 

Behavior of the slow processes is approximately constant, since the slow pro

cesses have not started significantly moving in the current time scale yet [16]. Behavior 

of the intermediate processes is well captured by solving the reduced system with slow 

processes acting as parameters [16] and with fast processes averaged out and approxi

mately expressed in terms of the intermediate and the slow processes. 

Recall that the normalized system depends on 7, and that the normalized ith 

species in times of O (iV7) is represented by V^'7. 
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Times of order 1 (When 7 = 0) 

In the times of O (1), V2
N'°, V3

N'°, and Vf,0 are intermediate processes 

V2
N'°(t) = V2

Nfi(Q)+Y3([
tK3V3

Nfi(s)ds) + Y4(f
tK4V1

Nfi(s)ds) (4.1) 
Jo Jo 

+y5( f^N-'V^is) ds) + F6( f K,N-1V3
Nfi(s)ds) 

Jo Jo 

+Y7( f K,7N-1V3
N'°(S) ds) + y8( / K8N-2V7

N'\S) ds) 
Jo Jo 

-Y2( f K2V2
N'°(S) ds) - y9( f K9N-*V2

N'0(s)V6
N'°(s) ds) 

Jo Jo 

V3
N>°(t) = V3

Nfi(0)+Y2(f
tK2V2

N'0(s)ds)-Y3(f
tK3V3

N'°(s)ds) (4.2) 
Jo Jo 

-y5( f K6N-%Nfl(s) ds) - y6( f^6N-%Nfi(s) ds) 
Jo Jo 

-Y7([
tK7N-1V3

Nfi(s)ds) 
Jo 

V6
Nfi(t) = Vf'°(0) + y 7 ( r K7N-lV3

Nfi(s)ds) + Y8(f
t K8N-2V7

N'°(s)ds) (4.3) 
Jo ./o 

+yi2( r K12v9
Nfl(S) dS)+y15( r K^N-^^V^S) dS) 

Jo Jo 

-y 9 ( /* K9N-2V2
N'°(s)V6

Nfi(s) ds) - y10( f KioV^'°(s)Vf'°(s) ds) 
Jo Jo 

-Yuif^N-'V^^ds) 
Jo 

where 

V2
N>°(0) = X2(0) (4.4) 

V^°(0) = X3(0) (4.5) 

V f » = X6(0). (4.6) 



55 

As N —• oo, terms for Reaction 5, 6, 7, 8, 9, 15, and 17 converge to zero. The reduced 

system for times of 0(1) and the order of magnitude of an approximation error are 

obtained in Theorem 4.1. 

Theorem 4.1. In the times of 0(1), {V2
N'°, V3

N'°, V6
N'0} converge to {V°, V3°, V6

0} as 

N —> oo, which is a solution of 

V2°(t) = V2°(0) + Y3{ f K3V3°(S) ds) + Y4( f K4^°(0) ds) (4.7) 
Jo Jo 

-Y2{f K2V2\s)ds) 
Jo 

V3°(t) = V3
0(0) + Y2(f

tK2V2
0(s)ds)-Y3(f

tK3V3
Q(s)ds) (4.8) 

Jo Jo 

V*(t) = V6°(0) + r12( / KI2V?(0) ds) - Yio( / K10V6°(S)V8
0(0) ds) (4.9) 

Jo Jo 

where 

V°(0) = X2(0), V3\0)=X3(0), V»(0) = X„(0), 

Vf(0) = ^ , Vf(0) = ^ , V{>«» = ^ = 0 . 

4̂n error between the normalized processes in the system and the limiting processes in 

the reduced system is O (N~x). 

sup (E[\V2
N>°(t) - V2°(t)\] + E[\V»>\t) - V?(*)|] + E[\V»>°(t) - V?(*)|]) < O (iV"1) -

t<T 

Proof of Theorem 4.1. The reduced system consists of three stochastic equations. 

{V2°,V3
0} are independent of V6°. First, define errors regarding V*'0, V2

N'°, V3
N'°, Ve

N'°, 
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Vg ' , and Vg ' . 

ru nv 

eNtl(t) := s u p / iV^W-Vf^ + N-'Yni K13N~2 ds) (4.10) 
u<t JO JO 

- iV- 1 y 1 4 ( f KuN^V^is) ds)\ dv, 
Jo 

ru pu 
eN,2(t) := sup\Y5( K5N-1V3

N'°(s)ds)+ Y,( K6N-1V3
Nfi(s)dS) (4.11) 

u<t Jo Jo 
ru ru 

+Y7( / K7N-%N'°{S) ds) + y8( / K8N-2V7
Nfi(s) ds) 

Jo Jo 

~Yg(rKgN-2V2
N%)Ve

Nfl(s)ds)l 
Jo 

ru ru 

eN,3(t) := s u p | y 5 ( / K5N-1V3
N'°(s)ds) + Y6( K6N-1V3

N'°(s)ds) (4.12) 
u<t Jo Jo 

+Y7([\7N-1V3
Nfi(s)ds)\ 

Jo 

eN,6(t) := sup|y7( I K7N-%N'°(S) ds)+ Y8( T K8N-2V7
N'°(s)ds) (4.13) 

u<t Jo Jo 

+Y15( f K15N-%N>Q(S)V7
N'°(S) ds) - y9( f K9N-2V2

N>°(s)V6
Nfl(s) ds) 

Jo Jo 

-Y17(f
UKl7N-2V6

Nfi(s)ds)\, 
Jo 

eNtS(t) := sup|]/8
iV '0(0)-y8

0(0) + i V - 2 y 1 ( r K 1 ( i S ) (4.14) 
u<t Jo 

+N~2Y12( fU n12V9
Nfi(s) ds) - N'2YW( fU KWV6

Nfi(s)Vs
N'°(s) ds) 

Jo Jo 

-N-2Yn([
UKnV8

Nfi(s)ds)\2 

Jo 

eN,9(t) := sup f |Vf'°(0) - Vg°(0) + N~2YW( f « i 0 Vf ^ ^ ( s ) ds) (4.15) 
u<t Jo Jo 

-N~2Y12( f K12V9
N'°{S) ds)\ dv. 

Jo 

Using the fact that V2 '°(0) = V2°(0) and using (4.10) and (4.11), we have an upper 

bound for E[\V2
N'°(t) - V2°(t)\] by subtracting (4.7) from (4.1) and by taking an absolute 
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value and an expectation. 

E[\V2
Nfi(t) - V2°(t)\] < E[eNa(t)} + E[\Y3( f K3V3

N'°(S) ds) - Y3( f K3V3°(S) da)\] 
Jo Jo 

+E[\Yt( f «4V1
JV,0(a) ds) - F4( / «4V?(0) ds)\] 

Jo Jo 

+E[\Y2( f K2V2
N'°(S) ds) - Y2{ f K2V2°(S) ds)\] 

Jo Jo 

= E[eN,2(t)] + j f (K3E[\V3
N>°(S) - V°(s)\] + KtEUVrts) - 1?(0)|] 

+n2E[\V2
Nfi(s)-V2°(s)\])ds 

< KAE[eNil(t)] + E[eNi2(t)] 

+ f (^E[\V3
Nfi(S) ~ V°(s)\] + K2E[\V2

N<°(s) - V?(s)|]) ds 

The equality came by applying the optional sampling theorem. 

Using the fact that VZ
N'°(0) = V3°(0) and using (4.12), we have an upper bound 

for E[\V3
N'°(t) - V3(t)\] by subtracting (4.8) from (4.2) and by taking an absolute value 

and an expectation. 

E[\V3
N'°(t) - V3\t)\) < E[eNj(t)) + E[\Y2( f K2V2

N'\S) ds) - Y2( f K2V2°(S) ds)\] 
Jo Jo 

+E[\Y3( f K3V^°(S) ds) - y3( f K3V3°(S) ds)\] 
Jo Jo 

= E[e„fl{t)] + f (K2E[\V2
N'°(S) - V2°(s)\) + K3E[\V3

N'° (s) ~ V3°(s)\}) ds 

The last equality came by applying the optional sampling theorem. By adding the 

inequalities for E[\V2
N'°{t) - V2°(t)\] and E[\V3

N'°(t) - V3°(t)\], we have 

E[\V2
N'°(t) - V2°(t)\] + E[\V»fi(t) - V$(t)\] 

< KAE[eNil(t)] + E[eN,2(t)} + E[eN,3{t)} 
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+ J\K* + K3)(E[\V2
N'°(S) - V°(s)\] + K3E[\V3

N'°(S) - V°(s)\}) ds. 

Then we get 

E[\V2
N'°(t) - V2°(t)\] + E[\V^(t) - V°(t)\] 

.< (^E[eNA(t)} + E[eN<2(t)} +£^ 3 ( i ) ] )e ( K 2 + ' t 3 ) i . 

Using Lemma 4.1, we have 

sap(K4E[eN>1(t) + E[€N^(t)] + E[eNi3{t)]]) < O (AT1) . 

Therefore, for each T > 0 

sup (E[\V2
N>°(t) - V?(t)|] + E[\V»>°(t) - V?(t)|]) < 0 (AT1) . 

Using the fact that V ^ O ) = VJp(O) and using (4.13), (4.14), and (4.15), we 

have an upper bound for E[\V6
N'°(t) - V°(t)\] by subtracting (4.9) from (4.3) and by 

taking an absolute value and an expectation. 

E{\V6
N>0(t)-V°(t)\} < E[eNt6(t)] 

+E[\Y10( f KWV6
Nfi(s)Vs

N>°(s) ds) - y10( f K10V°(S)V8°(0) ds)\] 
Jo Jo 

+E[\Y12([ K12V9
N>°(s)ds)-Y12([ K12VQ°(0)ds)\] 

Jo Jo 

= E[eN,6(t)] + j T (K10E[\V6
N'\S)V8

N>°(S) ~ Ve°(s)V°(0)\] 

+K12E[\V9
N'°(s)-V9°(0)\})ds 

< E[eNfi(t)] + K12E[eNfi(t)] 
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+ jf {K1QE\yt
Nfi(s)\VB

Nfi{8) - V°(0)\] + K10E[V°(Q)\V6
N'°(S) ~ V°(s)\}) ds 

< E[eNfi(t)} + K12E[eNt9(t)] + f ^[V^)2))1'^^)])1'2 ds 
Jo 

+ f KWV8
0(Q)E[\V6

Nfi(S)-V6
0(s)\}dS 

The first equality came by the optional sampling theorem. In the third inequality, 

Holder's inequality is used. V^O) is deterministic, so we take it outside the expectation 

in the third inequality. Using Lemma 4.1, we have 

sup (E[eNfi(t)} + f (K12E[eN,,(t)} + ^EiV^isfj^Eie^s)}^2) ds) 

< O (N-1) . 

Therefore, for each T > 0 

snVE[\Vr(t)-V6°(t)\] < 0(N~i). 
t<T 

o 

In Theorem 4.1, the approximation error of V^'0, V^'0, and V^'0 has the order 

of magnitude of O {N"1). In Lemma 4.1, we show the boundedness of the approximation 

error used in the proof of Theorem 4.1. 

Lemma 4.1. The error term used has an upper bound 

sup UAE[eNtl{t)) + E[eN>2(t)} + E[eN)3(t)] + E[eNfi(t)] 
t<T v 

+K12E[eN^t)) + y ' K 1 0 ^ [ ^ 0 ( S ) 2 ] 1 / 2 ^ [ ^ , 8 ( 5 ) ] 1 / 2 ds) < O (iV-1). 
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Proof of Lemma 4.1. Borrowing Theorem 7 in [1], we get an upper bound for the nth 

moment of the counting processes. Let r be a stopping time for the process {X(i); t > 0}. 

X(-) is a process with stationary independent increments with zero mean. For n > 2 

there exist constant C (finite and positive) depending on n and 0 such that if E{T) < oo 

and / \y\n~2Q(dy) < oo then 

E\X(r)\n < Cmzx{E{T),E{Tn'2)}. (4.16) 

We have E[f0 Xk(VN(s)) ds] < oo since we will apply Theorem 7 in [1] to unary reaction 

rates and since we show that sup t<T E[V/^(t)] < oo in the proof of Lemma 4.1. Therefore 

using (4.16), we get upper bounds for the second and the forth moments of the counting 

processes. 

E (Yk{j\k{VN{s))ds)f] = E[(Yk(J
t\k(V

N(S))ds) + Jt\k(V
N(s))ds) 

2 i 

<2E 

<2dE 

'(Yk{j\k{VN{s))ds)f]+2E[(j\k{VN{s))ds) 

J * Xk(V
N(s)) ds] + IE [( J* Xk(V

N(s)) ds) 

< 2CX I E[Xk(V
N(s))] ds + 2t f E[Xk(V

N(s))2] ds, (4.17) 
Jo Jo 

and 

£ [ (n ( / *A f c (V" ( 5 ) )d a ) ) 4 ] = E[(Yk{JtXk(V
N(s))ds)+JtXk(V

N(s))dsy 

<SE (Yk( J \k(V
N(s))ds)Y] +8Z[([ Xk(V

N(s))dsy] 

< 8 C 2 m a x ( E [ I Xk(V
N(s))ds],E[( f Xk(V

N(s)) ds)2]) 

"(^AfcC^Cs))^)' +8E 
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<8C2E 

+8E 

J Xk(V
N(s))ds] + 8C2E[U Xk(V

N(s))dsy 

\k(V»(s))ds 

< 8C2 / E[Xk{VN{s))] ds + 8C2t I E[Xk(V
N{s))2} ds. 

Jo Jo 

+8t3 / ' ^ ( V ^ ) ) 4 ] ^ 
Jo 

(4.18) 

A difference between initial values of the normalized process and the limiting process is 

bounded 

^v , u(0) - V?(0) < N~a\ 

Using (4.10) — (4.15), Holder's inequality, and (4.17), we obtain upper bounds 

(4.19) 

E[eN>1(t)] < s u p / (N-1 + K13N-3V+ [ KUN-2E[V1
N'\s)]ds)dv, 

u<t Jo ^ Jo ' 

E[eN,2(t)\ < sup f ((«* + «e + / ^ A T 1 J5[^°(s)] + K8N-2E[V7
N<°(S)} 

u<t Jo ^ 

+K9N'2E[V2
N'°(s)2}1/2E[V6

Nfi(s)2}1/2)ds, 

E[eN>3(t)] < sup [\K5 + K6 + K^N-'EiV^is)} ds, 
u<t Jo 

E[eNfi{t)] < sup f UN-^V^s)] + K8N-2E[V7
N>°(S)} 

u<t Jo v 

+K15N-1E[V4
N'\S)

2]1^E[V7
Nfi{s)2}^2 + K9N-2E[V2

N'0(s)2)^2E[Ve
N'\s)2}^2 

+Kl7N-2E[Ve
N'°(s))) ds, 

E[eN,s(t)] < sup 5(N~4 + N'4(KIU + K\U2) + N~4( f K12E[V9
N'\S)] ds 

u<t ^ Jo 
+u [UK2

2E[V9
N>0(s)2}ds)+N-*( I" KWE[V»\s)2YI2E[V8

N'\syf2ds 
Jo Jo 

+u £ K2
0E[vr(s)r/2E[vr(s)4]i/2 ^)), 
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E[tNfi(t)] < suP[U(N-2+ f\10N-2E[V6
Nfi(s)2f2E[V8

Nfi(s)2f2ds 
u<t Jo ^ JO 

K12N-2E[V9
N'°(S)} ds) dv. 

We will show that for fixed T > 0, 

sup sup E\yF'°(t)] < oo, sup sup E[V2
N'°(t)2] < oo, sup sup E ^ ' 0 ^ ) ] < oo, 

N t<T N t<T N t<T 

sup sup E[V^\t)2} < oo, sup sup E[V6
N'°(t)} < oo, sup sup E[VQ

N'°(t)2} < oo, 
N t<T N t<T N t<T 

sup sup E[Ve
N'°(t)4} < oo, sup sup E[V7

N'°(t)] < oo, sup sup E[V7
N'°(t)2} < oo, 

N t<T N t<T N t<T 

sup sup E[V^'u(t)2} < oo, sup sup E[V^\tf] < oo, sup sup £[V^ ,u(i)] < oo, 
N t<T N t<T N t<T 

sup sup E[V9
N'°{t)2} <oo. 

N t<T 

The equation for V1 ' is 

Vf'°(t) = V^ty + N^YuifKuN-tds) 
Jo 

-N-lYu([ KuN-tyf^ds). 
Jo 

(4.20) 

Solving (4.20) for E[V™'u(t)), we have 

E[Vf'°(t)} = (ElV^m-^N-^e 
K™ AT-1\0~KI4N-H + ^ 1 3 j y - 1 

Avi4 «14 

Using (4.20) and (4.17), we have 

E[V^\tf] < 2E[V1
N'°(0)2] + 2E[(N-1Yu(f

t
 K13N~2 ds))' 

< 2E[V1
Nfi(0)2} + 4dK13N-H + AK2

3N-H2. 



Using (4.20) and (4.18), we have 

£[Vf'°(£)4] < 8JB[I/1
JV'°(0)4] + 8£;[(iV-1r13(/' K13iV-2ds))4" 

WV,0/ns.4 2 Ar-8+2 , aA,A Ar-12^4 < 8E[V" '"(Op] + 64C2KnN-bt + 64C2Kf3ArV + UK\3N~1H 

N,0 , T/iV,0 , T/iV,0 • The equation for V2
,u + V^'" + 1/7

;v'u is 

rNfi(A _ irNfi, rNfif rNfl, 
vf'W + vf-W + vf^t) = v^u(o) + v^(o) + v7'^(o) (4. 

+y4( f /c^vf'0(5) ds) - y15( T «15^- V / ^ ) ^ * ) d5). 
Jo Jo 

Eliminating the negative term and taking an expectation, we have an upper bound 

rNfil NJOi rNfil rNfi/ E[V2
Nfl(t)} + E[V3

N'\t)] + E[V7
N'\t)} < £ [ K f ' » ] + E[V3">"(0)] + E[V7

1S'U(0) 

+ f\4E[Vr(s)} 
Jo 

ds. 

Using (4.21) and (4.17), we also have 

E (V2
N'°(t) + V3

N>°(t) + V7
Nfi(t))2\ < 2E[(V2

N>°(0) + V3
Nfi(0) + V7

Nfi(0))2 

+2E[{YA{f KAVl
N'\s)ds))2' 

< 2E[(V2
N'°(0) + V3

N'°(0) + V7
N'°(0)f 

+4Ci f /c4£[Vf *°(s)] ds + 4t / K ^ I ^ ' V ) 2 ] ^ 
Jo Jo 

Using (4.21) and (4.18), we also have 

E (vra)+vr®+v7
N>\t)) < 8E (V2

N'°(0) + V3
N'°(0) + V7

Nfi(0)) 
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+8E 

<8E 

(Y4(/ K4^V'°(s)d5))' 

(vf > ) + vf ^o) + vf'0(o))4' 

+64C2 / K4-B[V^'°(S)] ds + MC2t f K\E[V^fi{sf] ds. 
Jo Jo 

f K\E[V?%)A]d8 
Jo 

+QAt 

The equation for Ve
N'° + V7

N'° + N2V9
N'° is 

V6
N'°(t) + V7

N'0(t) + N2V9
N'°(t) = V6

N'°(0) + V7
N'\0) (4.22) 

+Y7( f K7N-%N'°(S) ds) - y17( T «17AT V ° ( « ) ds). 
Jo Jo 

Eliminating the negative term and taking an expectation, we have an upper bound 

E[Va
N>\t)] + E[V7

N'°(t)] + N2E[V9
Nfi(t)] < E{V6

N'°(0)} + E[V7
N'°{0)} 

+ / K-rN-'ElV^is)} ds. 
Jo 

Using (4.22) and (4.17), we also have 

E {V,N'°(t) + V7
Nfi(t) + N2V9

N>°{t))2 

+2E 

<2E 

< IE {Vffi(0) + V7
N>°(0)) WVrVrt2' 

(Y7(j nrN-^Wdaj)' 

(^°(0) + Vf'°(0))2l +4Cx f KiN-'E^^ds 
J Jo 

+4t f K2N'2E[V3
N'°(s)2}ds. 

Jo 



Using (4.22) and (4.18), we also have 

E < 8E 
riV,0/nN\4 (vno)+vrm 

4n 

{Vs
Nfi(t) + V7

N'0(t) + N2V9
Nfi(t)Y 

+8E[(Y7( I K7N-1V^\S) ds)) 

\v6
Nfi(0) + V7

N>°(0)f 

+64C2 / KrN-'ElV^is^ds + G^t f K2N~2E[V3
Nfi{s)2]ds 

Jo Jo 

+64t3 / 4N~AE[V?'°(S)4] ds. 
Jo 

<SE 

Nfi . T7-JV.0 
The equation for V^>" + K/V'u is 

Vs
N'°(t) + V9

N'°(t) = V^m+N-^ifK.ds) 
Jo 

-N-2Yn(f
tKnV8

Nfi(s)ds). 
Jo 

(4. 

Eliminating the negative term and taking an expectation, we have an upper bound 

E[V8
N'°(t)] + E[V9

N'°(t)} < E[Vs
N'°{0)) + KlN-H. 

Using (4.23) and (4.17), we also have 

E {Vs
N'0(t) + V9

N>\t))2} < 2E[VS
N>0(0)2} + 2E[(N-2Y1( f* mds))' 

< 2E[VS
N'°{0)2] + AClKlN-H 4- AK\N~H2. 

Using (4.23) and (4.18), we also have 

E {V^\t) + V,N\t))4] < 8JS[V^«0(0)4] + 8E[(N-2y1(yK.ds)) 
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< 8E[V8
N'°(0)A] + UG2nxN-h + 64C2«iW-8<2 + 64«fiV"8*4. 

D 

Times of order AT (When 7 = 1 ) 

In the times of 0 (N), Vf'1 is the only intermediate process 

V?'\t) = V7
N'\0) +Y9( f KQN'1V2

N'1(s)V6
N'1(s)ds) (4.24) 

Jo 

-F 8( f K%N-%N'\S) ds) - Y15( f KXiV^\s)V?\s) da) 
Jo Jo 

where 

Vf'^O) = X7(0). (4.25) 

Terms for Reaction 8 and 9 converge to zero as N —> oo in (4.24). The reduced system 

in the time of O(N) and the order of magnitude of an approximation error are obtained 

in Theorem 4.2. 

Theorem 4.2. In the times of 0(N), V7 '* converges to V7 as N —> oo, which is a 

solution of 

V7\t) = V 7
1 (0 ) -y 1 5 ( / Klr>Vl{Q)V7\s)ds) (4.26) 

Jo 

where 

V7\0) = X7(0). (4.27) 
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An error between the normalized process in the system and the limiting process in the 

reduced system is O (N"1). 

supEO^)-^)!] < 0{N~l) 

Proof of Theorem 4.2. The reduced system consists of a stochastic equation for V7, 

which is a death process. First, define errors regarding V^'1 and Vf*'1. 

tNA{t) := sup 1^(0) -Vl^ + N-^r^V^^ds) (4.28) 
u<t J0 

-N-2Y18(rK18NV4
N>\S)ds)\2 

Jo 

eNJ(t) := Sxxp\V7
N'\0)~V7

1(0) + Y9(f\N-1V2
N'1(s)V6

N'1(s)ds) (4.29) 
u<t Jo 

-Ys([\8N-'1V7
N'\s)ds)\. 

Jo 

Using (4.28) and (4.29), we have an upper bound for E[\V7
N'\t) - V^t^] by subtracting 

(4.26) from (4.24) and by taking an absolute value and an expectation: 

E[\V7
N'\t)-V7Ht)\] < E[eN,7(t)} 

+E[\Y15( f KisV^\s)V7
N>l{S) ds) - F15( f Ky*y}(<S)V7\s) ds)\] 

Jo Jo 

= E[eN,7(t)} + f KlhE[\V?'\s)V7
N'l{s) - V^O)^*)!]) ds 

Jo 

< E[eN,7(t)\ + f K15E[V7
N'1(S)\V4

N>1(S) - V4
l(0)\] ds 

Jo 

+ / K15E[V4\0)W7
N'1(s)-V7

1(s)\}ds 
Jo 

< E[eNt7(t)] + f K1,(E[V7
N\sf])ll\E[eNA{s)})ll'z ds (4.30) 

Jo 

+ f KlbVl{0)E[\V7
N'\s)-V7\s)\]ds 

Jo 
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The first equality comes by the optional sampling theorem. In the third inequality, 

Holder's inequality is used. Vj{Q) is deterministic, so we take it outside the expectation 

in the third inequality. Then, using (4.30), we get 

E[\V7
N'\t) - V7\t)\] < (E[eN,(t)\ + j f n15(E[V7

N'\sn^(E[eN4(s)})^ ds) 

xe/tlsv4
1(o))t 

By Lemma 4.2, we have 

sup (E[eNJ(t)} + f ^ElV^isfYl'E^^s)]^ ds) < O (AT"1) . 
t<T ^ Jo ' 

Therefore, for each T > 0 

E[\V7
N>\t)-V7\t)\] < O(N-i). 

D 

In Theorem 4.2, the moment of the approximation error of V7 ' has the order 

of magnitude of O (N"1). In Lemma 4.2, we show the boundedness of the approximation 

error used in the proof of Theorem 4.2. 

L e m m a 4.2. The error term used has an upper bound 

sup (E[eNt7(t)] + f KKE[V7
N>\s)2]ll2E[eNA{s)}x/2 ds) < O (AT 1 ) . 

t<T V Jo ' 

P r o o f of L e m m a 4.2. Using (4.28), (4.29), Holder's inequality, and (4.17), we obtain 
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upper bounds 

E[eNA(t)} < sup3(Ar4 + iV-4( f KsElV^is^ds 
u<t \ Jo 

+u 4E[V3
N>1(s)2]ds)+N-*( KWNE[V4

N'\s)]ds 
Jo Jo 

+uj\l8N"E{V4
N'l(S?}ds)), 

E[eN>7(t)} < sup( f K,N^E[V2
N\sf]^E[V,N'\sf)ll2ds 

We will show that for fixed T > 0, 

sup sup E{V^l{tf] < oo, sup sup E[V^l{t)) < oo, sup sup EfVf'1®2] < oo, 
N t<T N t<T N t<T 

sup sup E[V4
N'1 (<)] < oo, sup sup E[V4

NA {t)2} < oo, sup sup E[V6
N'X (t)2} < oo, 

N t<T N t<T N t<T 

sup sup E[V7
NA(t)] < oo, sup sup E[V7

N'\t)2} < oo. 
N t<T N t<T 

The equation for V^'1 is 

V^\t) = V^\0) + Y13{ ftK13N-1ds)-Y14( ftKliN-1Vl
N^(s)ds). (AM) 

Jo Jo 

Solving (4.31) for E[V"'\t)], we have 

E[V»>\t)] = (E[Vr(0)}~^)e Wfnv _ KI3\--KI*N-H + ^13 

KU 

Using (4.31) and (4.17), we have 

E[Vx
N\tf] < 2E[V1

N'1(0)2] + 2E[(Y13(J
tKUN-'ds)) 
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1+ l A ,.2 A J — 2 + 2 < 2E[Vr1(0)2] + 4CiKi3N-H + 4Ki3N-2i 

rN,l , ,rN,l _, rrN.l 
Vf" + Vf>x + V7'

L satisfies 

V^W + V^M + V?'1® = V2
N'\0) + V3

NA(0) + V7
N'\0) (4.32) 

+YA{ f\4V1
N'1(s)ds)~Y15( ft

Kl5Vf'1(s)V7
N'1(s)ds). 

Jo Jo 

Eliminating the negative term and taking expectation, we have 

rN,l, rN,l E[V^(t)] + E\V3
N'L(t)] + E[V7"'l(t)} < E\V2">1(0)] + E[V3^(0)] + E\V?'L(0)] N,l, rN,l, rNA, 

+ / KAE[V^\s)}ds. 
Jo 

Using (4.32) and (4.17), we have 

E (V?>\t) + V™(t) + V?>\t)Y\ < 2E[(V2
N'\0) + VZ

N'\0) + V7
N>\0))2 

+2E\[(Y4( I KAV1
N'1(s)ds)y 

< 2E[(V2
N'1(0) + V3

N'\0) + Vf''(O))2" 

+4Ci / K^EiV^is^ds + At f KlE[V^\sf)ds 
Jo Jo 

Nt \c The equation for V4 ' is 

VA
N\t) = V4

N>\0) + N-2Y6( f KtV^&ds) 
Jo 

-N-2Y18([
tK18NVA

NA(s)ds). 
Jo 

(4.33) 



Eliminating the negative term and taking expectations, we have 

E[V4
N'\t)} < E[V4

N'\0)} + / K6N~2E[V3
N'\s)}ds 

Using (4.33) and (4.17), we have 

E[V4
N'\t)2] < 2E[V4

N'\0)2) + 2E[[N-2YG(J K6V3
N'\s)ds) 

<2E[y4
JV'1(0)2]+4C1 / K6N-2E[V3

NA(s)]ds + 4t f ^ A T 4 ^ ^ ' 1 ^ ) 2 ] ds. 
Jo Jo 

The equation for V^'1 4- V^'1 + N2V9
N>1 is 

V^M + V^M + NX"'1® = v^w + vf^o) (4 

+Y7{ f K7V3
N>1(s)ds)-Y17{ fnuN-iV^Wds). 

Jo Jo 

Eliminating the negative term and taking expectations, we have 

E[V,N'\t)} + E[V7
N'\t)} + E[N%N'\t)} < E[VsN'l{Q)] + E[V7

N'\0)] 

+ f KfElV^is^ds. 
Jo 

Using (4.34) and (4.17), we have 

E rJ,'1{t) + V^\t) + N2V9
rr'\t))2\ < 2E[(V6

N>1(0) + V7
N'1(0)f 

+2E[(Y7(J K7V3
N>\s)ds)y' 

<2E[{V6
N'1(0) + V7

N>1(0)f 

+4Ci / K7E[V3
N'\s)}ds + 4t j K2

7E[V3
N'l(s)2]ds. 

Jo Jo 
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• 

In Lemma 4.3, for each t > 0, the quasi-stationary distribution of the fast 

processes V^it), V^(t), and V§{t) are obtained. 

Lemma 4.3. In times ofO(N), for each t > 0, (V"'1^)^"'1^)^'1^)) converges 

in distribution to (V^(i), Vi{t), Vg-(i)) satisfying (V^it), V^(t)) conditioned on V£(t) + 

V^(t) has a binomial distribution with parameter 

K3 K2 

K2 + «3 K2 + «3 

respectively, that is, 

*{<?« = *fc'W + i?(0 = »} = C ( n , * ) ( ^ ) ' ( ^ ) - t (4.35) 

P{<?(«)-*|^W+ «(*)-»} = C ( " . * ) ( ^ ) ' ( ^ ) ^ <««) 

V^(£) has a Poisson distribution with parameter 

Proof of Lemma 4.3. Define 

. A"vr<\s)yf'\s)y»-\s)ya
N'\s)y9^(s))9(x>y>z") = ^x(g{x - l,y+ l,z) - g(x,y,z)) 

+K3y(g(x + l,y-l,z)- g(x, y, z)) + KWZV8
N'\S) (g(x, y,z-l)- g(x, y, z)) 

+K12V9
N'1 (s) (g(x, y,z + l)-g(x,y,z))+0{N-1). 
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< W = 9(V2
N'\t), V3

N'\t), V»'\t)) - g(V2
N'\0), V»'\0),V6

N'\0)) (4.37) 

•J U 

is a martingale. Define am occupation measure for (V^'1, V^'1 , !^ '1) by 

rN(CxDxEx[0,t}) = r i a ^ 1 ^ ) ) ^ ^ 1 ^ ) ) ^ ^ 1 ^ ) ) ^ . (4.38) 
Jo 

Using (4.38), we rewrite (4.37) 

<(*) = ^^'HO,^'1^,^1^)-^^1^),^1^^^1^)) (4.39) 

We can show relatively compactness of FN using the boundedness of sup t<T E[V^v,1(t)], 

swpt<TE[V3
N'\t)}, and s u p ^ E ^ ' 1 ^ ) ] . Let TN =*• T. Dividing (4.39) by N and letting 

N —> co, we have 

/ A(yi{Q)iYi{0))g(x,y,z)r{dxxdyxdzxds) = 0. (4.40) 
Jo 

where 

A(Viaa),v^(o))9(x,y,z) = K2x(g(x-l,y + l,z)-g(x,y,z)) (4.41) 

+«sy(p(a; + l,y - 1,2) - 9{x,y,z)) + K i o z ^ l O ) ^ ! , ^ ^ - 1) - 0(^,1/, 2)) 

+^12^(0) (^(x, j / , 2 + 1) - g(x, y, z)). 
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Differentiating (4.40) with respect to t, for almost every t, (v^,1(t),V^,1{t),V^,1(t)\ =» 

[vi(t),Vi(t),Vi(t)) satisfying 

/ K2x(g(x-l,y + l,z)-g(x,y,z))+Kzy(g{x + l,y-l,z)-g(x,y,z)) (4.42) 

+Kio^V8
1(0) (^(x, y,z-l)- g{x, y, z)) 

+K12V9
1 (0)(g(x,y,z + l)-g(x,y,z)) H236(dx,dy,dz) = 0. 

Using (4.42), (V^COJ ^ W ) conditioned on ^ ( i ) + V^(t) has a binomial distribution 

with parameter "3 and ";2 , respectively, that is, 
* K2+K3 «2+«3 ' ^ J ' ' 

P{ft<t) = k\VZ(t) + VJ{t)=n} = C(n,ifc)(-5-)V-5-)n"fc 

p{v31(t) = *ivr
3
1(*) + v3

1(t) = 4 = c (» .* ) ( rx r ) f c (7T7- ) B " f c 

>- J V ^ 2 + ^ 3 ' v K2 + K3 ' 

V^t) is independent of (V^(t), V^i)) and it has a Poisson distribution with parameter 

KioVg^O)-

We see more details about the existence of the averaged generator and quasi-stationary 

distribution in [11]. • 

Remark 4.4. Since Vg(0) = 0 in this example, there is no meaning in the quasi-

stationary distribution for V6
 ,x in Lemma 4-3- However, when V^(0) ^ 07 it will give 

us a quasi-stationary distribution for V^'1. 
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Times of order iV2 (When 7 = 2) 

In times of 0(N2), V^2, V2
N>2 + V3

N^2,V^2, V5
N>2, V8

N>2, and Vf'2 are intermediate 

processes. 

(4.43) 

(4.44) 

(4.45) 

Vx
N>2{t) = Vf-2(0)+y13(/ K13ds)-Y14(f KlAV^2{s)ds) 

Jo Jo 

V2
N'2(t) + Vz

N'\t) = V2
Nfi(Q) + Vi,fi(0)+N-1YA([tKANV1

N^s)ds) 
Jo 

+N~lY8( f K8V7
N'2(S) ds) - N-%( f KSNV2

N'2(S)V»'2(S) ds) 
Jo Jo 

V?>2(t) = V4
N'2{0) + N-2Y6(f

tK6N%N'2(s)ds) 
Jo 

-N-2Yw(ftKUNiVlr;i(a)da) 
Jo 

V5
N'2(t) = V5

N'2(0) + N-2Y5(f
tK5N

2V3
N'2(s)ds) 

Jo 

-N-2Yie(f\16N
2V5

N'2(s)ds) 
Jo 

V8
N'2(t) = V8

N>2(0) + N-2Y1([
tK1N

2ds) + N-2Y12([
tK12N

2V9
N'2(s)ds) 

Jo Jo 

-N-2YW( f K10N
2V6

N'2{S)VS
N>2(S) ds) - N-2YU( f KnN

2V&
N'2(s) ds) 

Jo Jo 

V»*{t) = V9
N>2(0) + N-2YW( f KWN2V6

N>2(S)V8
N>2(S) ds) (4.48) 

Jo 

~N-2Y12{f KX2N
2V^2{s)ds). 

Jo 

(4.46) 

(4.47) 

where 

V1
N'\0) = X1(0), 

X2(0) 
V2

N'2(0) = 
N 

V^(0) = *M (4.49) 

vr«»=~ X4(0)iV2 

N2 
rN,2ffi\ _ 
vno) = ~ 

i 
N2 

X5(0)N2 
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riV,2 V^(0) = JV2 
Xs(0)N2 

vr » (°) = ]V5 
* 9 ( 0 ) i V 2 

iV0
2 

= 0. 

Here, we define V^O) and V^O) differently from others to prevent the boundary layer 

problem. Using the equation for V^, 

' Vf2(i) = V3
N'2(0) + N-lY2(f

tK2N
3V2

N'2(s)dS)-N'1Y3(f\3N%N'2(s)ds) 
Jo Jo 

-JV"1y6( f K5N
2V3

N'2{S) ds) - iV-1F6( f K6N
2V3

N'2(S) ds) (4.50) 
Jo Jo 

-N-'YrifK7N
2V3

N'2(S)ds), 
Jo 

and dividing (4.50) by JV2, we have 

Jo 
(4.51) 

After passing short amount of time from t = 0, Vf and V^ satisfy (4.51). Therefore, 

we set up initial values as ones in (4.49) 

Letting N —+ oo, the term for Reaction 8 converges to zero. Applying the law 

of large numbers for Poisson processes, for each w0 > 0, 

lim sup 
N-HX> „ < u o 

Yk(Nu) 

N u = 0 a.s. 

Fast processes V2 ' , V3 ' , and V6 ' are involved in the terms for Reaction 5, 6, 9, and 

10. Behavior of the fast processes is either projected or averaged by the processes in the 

current time scale. The reduced system in the time of t ~ 0(N2) and an error between 

the normalized processes in the system and the limiting processes in the reduced system 

are summarized in Theorem 4.3. 
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Theorem 4.3. In times ofO{N2), {V±
N'2 ,V2

N'2, V3
N'2, V4

N'2,V5
N'2,V8

N'2,VQ
N'2} converges 

to {Vx
2, V2

2, V£, Vf, V§, V%, VQ} as N —> 00, which is a solution of 

V2(t) = V2(0)+Y13(f K13ds)-Yu([ KuV?(s)ds) (4.52) 
Jo Jo 

V2
2(t) = K?(0) (4.53) 

J 0 «2 + ^3 ^2 + ^3 «10 ^8 VSJ 

V2(t) = 73
2(0) (4.54) 

JO «2 + «3 V «2 + «3 V ^ «10V?(s) 7 

Vi(t) = V?(0)+ [ (K6Vi(s)-K18Vi(s))ds (4.55) 

V2(t) = V2(0) + T {K5V3
2(S) - nieVi(s)) ds (4.56) 

Jo 

V£(t) = Vi(0)+ ft(Kl-^rVi{8)-K11Vi{3))da (4.57) 
Jo 

V2{t) = V9
2(0)+ f K7Vi(s)ds (4.58) 

Jo 

where 

V?(0) = Xi(0), V2
2(0) = 0, V?(0) = 0, 

.An error between the normalized processes in the system and the limiting processes in 

the reduced system is O (iV-1/2). 

sup (\V2
N'2(t) - V2{t)\ + \V3

N'2(t) - V2(t)\ + \V4
N'2(t) - V2(t)\ (4-59) 
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+\V5
N'\t) - V*(t)\ + \V8

N*(t) - V£(t)\ + \V9
Nfi(t) - V*(t)\) 

< 0{N'1'2). 

Proof of Theorem 4.3. We prove a central limit theorem in Theorem 5.3 in Section 

5.2. The proof of Theorem 5.3 and V?*(t) = V?(t) give (4.59). • 

In Lemma 4.5, we obtain the right form of the limit of J0 V^'2(s)V^'2(s) ds as 

N -* oo. 

Lemma 4.5. 

/ /T7iV,2/ \T/N,2/ \ K3 (\/N,2/\ , T / J V . 2 / „ \ \ 

/ ( ̂ 2 ' (S)V6 ' («) - „ , K {Yz • (s) + V3 ' (S)) N2 1 ds 
JO V K2 + «3 K-wV8 ' ( s ) ' 

- O (N-1) (4.60) 

Proof of Lemma 4.5. Split J0 F2 ' (sWe ' (s)ds into two terms. 

fv2
N>\s)V»\s)ds = - ^ f (V?%) + V3

N>\s)W'2(s)ds (4.61) 
Jo M + «3 Jo 

+ K3 Jo 
+ 

K2 + • 

Since the two split terms in (4.61) contain V6 ' , which is a fast process in times of 

O (N2), we need to get averaged processes as limits. 

First, calculate VfVi* and V3
NV^ using Ito's formula. 

V2
N'2(s)V6

N'2(s) = V^a(0)V^a(0) + f V»*(a-)dV»*{a) (4.62) 
Jo 

+ fvr{s-)dV^{s) + [V^\V&
N\ 

Jo 

+N2 f V2
N'2(s) («rVf-2(S) + K u V ^ a ) - K10V6

N'2(S)V8
N>2(S)) ds 

Jo 
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+N2 f Ve
N'2(s)(K3V3

N'2(s) - K2vf,2(s)) ds + f 0(N) ds 
Jo Jo 

and 

V3
N'\s)V6

N'\s) = V3
N>2(0)V6

N'2(0) + f V3
N'2(s-)dV6

N>\s) (4.63) 
Jo 

. f T / W , 2 / \,r~rN,2/ \ . !r/N,2 T/iV,2i 
+ / V6 (s-)dVs (s) + [V3 • , y6 • jt 

Jo 

+iV2 r ^ ( ^ ( ^ ' ( s ) + K 1 2 ^ ' 2 ( S ) - Ki0Ve
N'2(s)V8

N>2(s)) ds 
Jo 

+N2 f V^2{S)(K2V2
N'2{S) - K3V3

N'\S)) ds+ [ O (N) ds. 
Jo Jo 

We also have 

[V2
N'2,V6

N% = N-iY7([
tK7N

2V3
N'2(S)ds)+N-iY8(f

tK8V7
N'2(S)ds) (4.64) 

Jo Jo 

+N-lY9( [tK9NV2
N'2(s)V6

N'2(s)ds) 
Jo 

(K7NV3
N'2(S) + ACgiV-V/'2(s) + K9V2

N-2(S)V6
N'2(S)) ds 

and 

[V3
N'2,V6

N'2]t - -N-lY7(f K7N
2V^2{s)ds)- f\7NV^2{s)ds. (4.65) 

Jo Jo 

Comparing the exponents inside and outside the centered counting processes, we have 

N-2 fv2
N<2{s)d%N<2{S)-YN-2 fv&

N'2{s)dV2
N<2{S). = OiN-1) 

Jo Jo 

N~2 [tV3
N'2(s)d%N'2(s) + N-2 ftVe

N'2{s)dV3
N'2(s) = 0(N-1). 

Jo Jo 
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We know that N~2(V2
N'2(t) + V3

N'2(t))V6
N'2(t) -> O ( ^ ) and N-2(V2

N>2{0) + 

^ ( O ) ) ^ ' 2 ^ ) -» O (^j). Then, adding (4.62) and (4.63), dividing by N2, and con

sidering (4.64) and (4.65), we have 

' (V2
N'2(s) + V f » ) (K7V^2(S) + KuV9

N>2(s) - KioVsN'2(s)V»>2(s)) ds, 

= 0 (N-1). (4.66) 

V8"'\0) ^ 0 and we can take the finite time interval in which V^'2^ is strictly positive. 

Since V8 ' is an intermediate process in times of O (N2), using Lemma 4.6, (4.66) implies 

f Wis) + V«*(s)) (vr(s) - ^ M + ^ f f ' W ) ds = 0 ( ^ 4 . 6 7 ) 
JO V KWV8 ' (s) / 

Now, multiplying (4.62) by K2 and multiplying (4.63) by K3, we subtract one 

from the other. Dividing by N2 and using the similar way in (4.66), we have 

f(K2V2
N\S)-K,V^{s)) 

Jo 

X (« 7Vf ,2(S) + Kl2V9
N'2(s) - (K2 + K3 + KWVS

N'2(S))V6
N'2(S)) ds 

= O (AT1). (4.68) 

Since Vg ' is an intermediate process in times of O (N2), using Lemma 4.6, (4.68) implies 

/' („V4«(.) - K3v3«W) (vrv - ^y^X??) * 
Jo V K2 + K3 + KWVS ' (s) / 
= O (N'1) . (4.69) 

In (4.69), since V2
N'2, V3

N'2, V8
N'2, and V*'2 are intermediate processes in times of O (N2), 
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using Lemma 4.6 and (4.51), we have 

/ (K2V2
N'2(S)-K3V3

N'2(S))-
Jo 

N,2, 
2r^K7V»'\s) + KUV9"'\S) 

N,2/ K2 + K3 + K10VS ' (s) 
ds 

O (TV-1) (4.70) 

Then using (4.69) and (4.70), we obtain 

f {^V2
N'2{s) - n,Vz

N'\s))V^{s) ds = 0 (iV-1). (4.71) 
Jo 

Using (4.61), (4.67), and (4.71), we prove (4.60). 

Lemma 4.6. If for any t > 0, 

mp / \un{ 
n Jo 

sup / |M„(S)| ds < 00, 

un(s)ds —>• / u(s) ds, 

swp\vn(s) -v(s)\ -+ 0TO£>R[0,OO), 
s<t 

then 

/ un(s)vn(s) ds —)• / u(s)v(s)ds. 
Jo Jo 

n 

(4.72) 

(4.73) 

(4.74) 

(4.75) 

Proof of Lemma 4.6. The absolute difference between the terms in (4.75) is given as 

follows. 

/ (un(s)vn(s) - u(s)v(s)) ds 
Jo 

/ {(un(s) - u(s))v(s) + un(s)(vn(s) - v(s))) ds (4.76) 
Jo 
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< 

< 

/ (un(s) - u(s)) v(s) ds + un(s) \vn(s) - v(s)\ ds 
Jo Jo 

/ (un(s) — u(s)) v(s) ds + sup \vn(s) — v(s)\ / un(s)ds 
Jo 0<s<t Jo 

In (4.76), un > 0 is used. Since sups<t \vn(s) — v(s)\ •—> 0, using J0 un(s) ds < oo, 

sup|w„(s) - v(s)\ J un(s)ds —• 0. 
s<t 

Since v e PR[0, OO), there exists a step function 

M m 

£ a"*lri-l _*_•. • W 
1 [ 2m > 2 m ' 

as m —> oo. Then 

/ K ( s ) - n ( s ) ) ^ a r i [ i s i ! _ ^ ) ( 5 ) ^ < £ K " | / 1 Ms) - u{s)) ds (4.77) 

Using (4.73) and letting n —> oo, 

/"2» 

/ t - 1 
^ 2m 

rAt 

(w„(s) - u(s)) ds 
At 

0. (4.78) 

In (4.77), we have 

ft Mm ft 

/ (un{s)-u(s))Y,<\i^,4.)ds —> / K ( S ) - « ( 5 ) ) u ( S ) d 5 (4.79) 
Jo i = 1 Jo 

as m —• oo. Therefore, using (4.77), (4.78), and (4.79) and letting n —• oo, we have 

/ (un(s) -u(s))v(s)ds 
Jo 
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in (4.76). Therefore, 

/ un(s)vn(s)ds —> / u(s)v(s)ds. 
Jo Jo 

D 

4.1.3 Calculation of quasi-steady-state distributions using av

eraged generator in the times of 0 (iV-2) 

AT 0 TV 0 

In Lemma 4.7, the quasi-stationary distributions of the fast processes, V& ' and V7 ' , 

are obtains in terms of the intermediate processes. 

Lemma 4.7. In times of 0(N2), for almost every t, [V^,2(t),V7
N,2(t)) converges in 

distribution to (V£(t), V7{t)) where V£(t) has a Poisson distribution with parameter 

K7Vj(t) + Kl2v£(t) 

«ioV?(«) 

and where V7{t) has a Poisson distribution with parameter 

K9V2
2(t)(K7Vi(t) + K12V£(t)) 

KlOKl5VA
2(t)V£(t) 

Proof of Lemma 4.7. Full generator of the heat shock response model in the times of 

O (iV2) is 

&Nf(vi,v2,v3,V4,v5,V6,v7,vs,v9) (4.80) 

KlN2(f(v1,V2, t>3, V4, V5, V6,V7, V8 + N~2, VQ) - f(vi,V2,V3, V4,V5, VQ, V7,V8, Vg)) 

+K2N
3v2(f{vi,v2- N~1,V3 + N^jV^v^jV^vr^SjVa) - f{vi,v2,V3,v4,v5,VQ,v7,v8,v9)) 

+K3N
3vz(f(y1,v2 + N~l,v3 - N'1,v4,v5,v6,v7,V8,VQ) - f(vi,v2,v3,v4,v5,v6,v7,v8,vg)) 
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+K4NV1 (f{Vl,V2 + •/V~"1, ^3 , V4, V5, V6, V7,V8, Vg) - f{v1,V2,V3, V4, V5, V6, V7, V8,V9)) 

+K5N2Vs(f(vi,V2 + iV - 1 , t ; 3 - N~1,Vi,Vs + N~2,V6,V7,V8,VQ) - f(Vl,V2,V3,V4,V5,V6,V7,V8,V9)) 

+KsN2V3(f(vi,V2 + N~1,V3- A^_1,U4 + A' '_ 2 , f5, l '6 ,V7,V8,f9) - !{V\, V2, V3, V4, V5, Ve, V7, V8,Vg)) 

+K7N
2V3(f(vi,v2 + N'1, v3 - N~l,v4, v5,v6 + l, v7, v&, vg) - f(vi, v2, v3, V4, v5, v6,v7, v8, vg)) 

+ K8V7(f(Vl,V2 + N~1,V3,V4,V5,V6 + 1,V7 - 1,V$,V9) - f(v1,V2,V3,V4,V5,VG,V7,V8,V9)) 

+KgNv2V6(f(vi,V2 - N'1, V3, V4, V5, V6 - I , V7 + 1, V8, Vg) - f(vi,V2,V3, V4, V5,VQ, V7, V8, Vg)) 

+KiQN2vav8(f{v1,v2, v3, v4, v5, VQ - 1, v7, v8 - N~2, vg + N~2) - f(vi,v2, v3, v4, v5,ve, v7, v8, vg)) 

+ KnN
2V8 (f(vi,V2,V3, V4, V5, V6, V7, V8 - N~2,Vg) - f(vi,V2, V3,V4, V5, VQ, V7, V8, Vg)) 

+Kl2N
2Vg (f(V!,V2, V3, V4, V5, V6 + 1, V7, V8 + N~2,V9 - N~2) - f{vi, V2, V3, V4, V5, VQ, V7, V8, Vg)) 

+ Kl3(f(vi + l,V2,V3,V4,V5,Ve,V7,Vs,Vg) - f(vi,V2,V3,V4,V5,V6,V7,V8,Vg)) 

+KUVi (f(vi - 1, V2, V3, V4, V5, t>6, v7, VS,Vg) - f(vi,V2, V3, V4, V5, V6, V7, V8, Vg)) 

+ K15NV4V7(f(vl,V2, V3, V4, V5,VQ + 1, V7 - 1, V8, Vg) - f(v1,V2, V3, V4, V5, VQ, V7, V8,Vg)) 

+Ki6N
2v5(f(vi,v2,v3,V4,v5 - N'2,v6,v7, v8,v9) - f(vi,v2,v3,v4, v5,v6,v7,v8,v9)) 

+Kl7Vfi(f(vi,V2,V3,V4,V5,V6 - l,V7,V8,Vg) - f{v\, V2, V3, V4, V5, Ve, V7, V8, Vg)) 

+Ki8N
2V4(f(v1,V2,V3,V4-N~2,V5,V6,V7,V8,Vg)-f(vi,V2,V3,V4,V5,V6,V7,Vs,Vg)). 

TV 9 wo 

Let us define generator with respect to the fast processes, V6 ' and V7 ' in terms of 

V2
N'2, V3

N'2, V4
N'2, V8

N'2, and V9
N'2 in the times of 0(N2). x and y are the variables 

regarding V6 ' and V7 ' , respectively. The generator is 

K7N
2V3

N'2(s)(g(x + l,y)-g(x,y)) 

+K8y(g(x + l,y-l)- g(x, y)) 

+K9NV2
N'2(s)x(g(x - l,y + 1) - g(x,y)) 

+(KWN2V8
N'2(S)X + K17x)(g{x -l,y)- g(x, y)) 

K9(*,y) 
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+Kl2N
2V9

N'2(s) (g(x + 1, y) - g{x, y)) 

+K15NV4
N'2(s)y(g(x + l,y - 1) - g(x,y)). 

Then 

<(t) s 5 ( C l i ) ^ ; i t ) ) - 5 ( ^ ( 0 ) , ^ ' 1 0 ) ) 

-/Vs(Vf'2(s),Vf'2(s))dS (4.81) 
./o 

is a martingale. Let us define the occupation measure TN for V̂  '2 and V7 '2 by 

rN(CxDx{0,t}) = flciV^is^lDiVr^is^ds (4.82) 

Using (4.82), we rewrite (4.81) as 

< ( t ) = p(^2W,^2(t))-5(y6^(o),^2(o)) 

/ Mfg(x,y)TN{dxxdyxds). 
J(Z+)2x[0,t] '•x[0,t] 

Splitting M^(x,y) into three parts based on the scaling exponent in each term, we have 

C^'1 and Cf'2 with each term of 0(1) and Cf,3 with each terms of 0(1) or of smaller 

order. 

g(x, y) = N"C^g(x, y) + NC^g(x, y) + C^g(x, y) 

where 

C^g(x,y) = K7V3
N'2(s){g(x + l,y) - g{x,y)) 



+KWV8 '2(s)x(g(x - l,y) - g(x,y)) 

+Ki2Vf'2(s)(g(x + l,y) - g(x,y)), 

Cf'2g(x,y) = K9V2
N>2(s)x(g(x-l,y+l)-g(x,y)) 

+K15V^2{s)y(g{x + l,y- l)-g(x,y)), 

and 

C?'3g{x,y) = KSy(g{x + l,y-l)-g(x,y)) 

+K17x(g(x - l,y) - g(x,y)). 

In Lemma 4.8, we show that TN is relatively compact. We use Theorem 2.1. 

Let T^ =*• T as N -* oo. Then we will get 

where 

C(v?(«),v8
2W,v9

2(-))5l(a;) = «7^ 3
2 ( s ) (^ + l ) - 5 ^ ) ) 

+«ioV8
2(s)a:(0i(a; - 1) - g^x)) 

+K12V£{s)(gi(x + l)-gi(x)). 

Then 

< ( * ) = 9i(Ve
N'2(t))-9l(V6

N'\0))-N2 I C^9l(x)TN(dxxdy 
J(Z+)2x[0,t] 
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N I <Cs'29i{x) FN{dx xdyx ds) 
J(Z+)2x[0,t] 

- I Cf >3^i (x) TN (dx xdyx ds) 
i(Z+)2x[0,t] 

is a martingale. By dividing by iV2 and letting N —> oo, we get 

/ CTvk)yi(s),vi(s))9^) v(dx xdyx ds) = 0. 
J(Z+)2x[0,t] K 3 ' 8 V ' 9 V " 

Using (4.83), for each t > 0, Ve
N'2(t) converges in distribution to V^(t) where V§{t) has 

a Poisson distribution with parameter 

K7V£{t) + K12Vf(t) 
KWV8

2(t) 

Let's apply generator to the function of w. Then, 

fto^^N-^w^w^w^w^w^H) = ° 

where 

* « W ( . ) ^ = *̂«> ̂ (^y(a) (*(y +1) - M) 
+KisVi(s)y(g2{y - 1) - g2{y)). (4.84) 

Then 

< ( * ) = 9*(V7
N>2(t))-g2(V7

N'2(0)) 

-N I C?>2g2(y)TN(dxxdyxds) 
J(Z+)2x\0.i\ 



88 

C^3g2(y)TN(dxxdyxds) 
-)2x[o,t] 

is a martingale. By dividing by TV and let TV —> oo, we get 

/z+)ax [0> t ]
 C(^(-).v?(-),v?W,v?w,v?W)*(v) F(dx xdyxds) = 0 

Using (4.84), for almost every t, V7 ' (t) converges in distribution to V7{t) where V7{t) 

has a Poisson distribution with parameter 

Kc,V2
2(t)(K7Vi(t) + Kl2V9

2(t)) 

Kl0Kl5\?(t)V£(t) 

D 

In Lemma 4.8, we prove the relative compactness of V6 ' and V7 ' . 

Lemma 4.8. In the times ofO(N2), TN is relatively compact. 

Proof of Lemma 4.8. TN is defined 

r N ( C x D x [0,t]) 

= flcWWloWWds. (4.85) 
Jo 

To show relatively compactness of TN, we only need to show that V6 ' and V7 ' are 

AT r\ AT O 

relatively compact. The equation for V6 ' 4- V7 ' is 

V6
N'\t)+V7

N*(t) = Ve
N'\0) + V7

N>\0)+Y7( f K7N%N'2(s)ds) (4.86) 
Jo 

+Y12{ [tK12N
2V9

N'2(s)ds)-Y10( ftKWN2V6
N'2(s)Vs

N'2(s)ds) 
Jo Jo 

-Y17( [ K17V6
N'2(s)ds). 

Jo 
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Dividing (4.86) by N2 and taking the expectation, we have 

f K10E[V6
N'2(s)V8

N'2(s)}ds < N-2E[V^2(0)] + N-2E[V7
N'2(0)} (4.87) 

Jo 

+ f K7E[V3
N>2(s)]ds. 

Jo 

We will show that V^'2 is uniformly bounded. The equation for V*'2 + V^'2 + N-%N'2 

is 

V2
N'2(t) + V3

N'2(t) + N-%N'2(t) = Vf'2(0) + y3
JV'2(0) + AT1vf'2(0) (4.88) 

+iV-1F4( ft
K4NVl

N'2(s)ds)-N-1Y15{ f\l5NV4
N'2(s)V7

N'2(s)dS). 
Jo Jo 

Eliminating the negative term and taking the expectation, we have 

E[V2
N'2(t)} + E[V,N'2(t)} + N-XE[V7

N>2{t)} < E[V2
N'2(0)} + E[V3

N'2{0)} (4.89) 

+N-1E[V7
N>2(0)} + f K±E\V?>2{s)}ds. 

o 

The equation for Vl ' is 

V?*(t) = Vl
N'2(0)+Y1,(f

tK13ds)-Yu{ftKUV1
N'2(s)ds). (4.90) 

JO Jo 

Solving (4.90) for E[V*'\t)], we have 

E[V^2{t)\ = (E[V1
N^(0)]-'^-)e-^t + ^ . 
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Therefore, Vi ' and V^ ' are uniformly bounded and using (4.87), we have 

supE 
N f 

JO 

rNflfs.rNfi Vr(s)V^(s)ds < oo. (4.91) 

We have 

Afcoojo^oo)*. < / 
Jo Jo 

t T/iV,2 

vr(s) ds (4.92) 

and taking the probability in both sides of (4.92), for fixed 8 > 0, we get 

sapPlf'YQi>ds>s} 
N «• Jo k 

(4.93) 

< 

< 

sup P J inf VS
N-2(s) < e l + s u p P J / V6

N'2(s)Vs
N'2(s) ds > Ske] 

N I s<t i ]¥ W o J 

sup P { inf V^ '^s ) < € f + sup — L -
Ske 

Since V^'^O) 7̂  0 and (4.92), we can take e > 0 small enough and k large enough to 

make both terms in the right side of (4.93). Therefore, V™'2 is relatively compact. 

rN,2 • 
Now, consider relatively compactness of V7 ' . The equation for V7 ' is 

V7
N'\t) = V^'a(0) + y 9 ( [tK9NV2

N>2(s)V6
N>2(s)ds)-Y8( f K,V7

N^a)V^{a)dB) 
Jo Jo 

-Ya( ftK15NV4
N'2(s)V7

N'2(s)ds). (4.94) 
Jo 

Using (4.94), we have 

y « ( f KisNV4
N'2(s)V7

N'\s)ds) < V7
N'\0) + F9( [\9NV2

N>2(s)V6
N'2(s)ds). (4.95) 

Jo Jo 
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Dividing (4.96) by N and using Yk(Nu)~Nu ~ -i-W(u), for large N, we have 

j f «i8Vf «2(a)Vf-2(a) d« < ^ ^ + Y9(f K,V2
N>\s)Vr{s) da) (4.96) 

+o (iv-1/2). 

Taking the probability in both sides and the limsup, we have 

lim sup P { / K15Vi
N'2(s)V7

N'2{s)ds>k'} 
N-+oo W o J 

<l imsupP{ f Kc,V2
N'2(s)V6

N'2{s)ds > k'\ 
N-^oo W o J 

< limsup p{ f K9V6
N'2(S)V8

N'2(S) ds > — ) + limsup P { sup V\}S) ds > m\ 
iV^oo W o m ) W-^oo *- s<t V„ ' (fit) > 

(4.97) 

T / JV,2/„ \ 

mE1 

< limsup 
N—too 

mi sup F<̂  sup — " 

Using (4.91) and taking k' large enough, we can make the first term on the right side 

of (4.97) small. Since V^'2 and V^'2 converge to their limits as iV —* oo and since 

V$ ' (0) 7̂  0, we can take m large to make the second term small. 

Next, similar to (4.93), we show the relatively compactness of V7
N'2 using 

(4.97). 

jf l^vT'Wds < l—J^ds (4.98) 

Taking the probability and sup^, we have 

T'U'^-'} (4.99) 

< sup P{ inf V?'2{s) < A + sup Pi I V4
N'2(s)V7

N'2(s) ds > S'k"e'\ 
N <• « < * J TV Wo J 
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Since V4 ' (0) / 0 and (4.98), we can take c' > 0 small enough to make the first term in 

the right side of (4.99). Using (4.97), V7
N'2 is relatively compact. • 

4.2 Simulations 

For stochastic simulation, we use Exact SSA (Gillespie's Stochastic Simulation Algo

rithm). To get behavior of the whole system, we used SSA with nine species and 18 

reactions. Resulst are located in the figure with black graphs. Next, to get approxi

mated behavior of the processes, we use systems of limiting processes in three diffeent 

time scales. We compare the behavior of processes in the whole system and the behavior 

of approximated processes in the reduced system. 

Table 9: Initial values used in simulation 

ith 

A, 

A2 

A3 

AA 

A, 

A, 

A7 

As 

A, 

Initial value 

10 

1 

1 

93 

172 

54 

7 

50*5 

0* 

5Initial values with $ are assumed based on the heat shock response model in [14]. Others are given 
in [14]. 



First, we obtain behavior of V2
 ,0, V3 '°, and VG '° in the times of O (1) when 7 = 0. 

The Whole System The Whole System The Whole System 

Next, we obtain behavior of V7 ' in the times of 0 (N1) when 7 = 1 . 

The Whole System 
The Reduced Subsystem when y=l 
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Last, we obtain behavior of V^'2, V2
Nfl + V3

N'2, V4
N'2, V5

N'2, V8
N>2 and V9

N'2 in the times 

of 0 {N2) when 7 = 2. 

The Whole System 
The Whole System The Whole System 

The Reduced Subsystem when y=2 

-Xlsfl" mRMA 

The Reduced Subsystem when y=2 The Reduced Subsystem when y=2 

7000 mo 9000 10000 

The Whole System The Whole System The Whole System 

7000 8000 9000 10000 7000 BO00 9000 10000 1000 2000 3000 4000 

The Reduced Subsystem when y=2 

14000 

12000 

10000 

6000 

6000 

4000 

aooo 

|--*— XSiGroElJ / 

The Reduced Subsystem when y=2 

Time 

The Reduced Subsystem when f< 

7000 8000 9000 10000 
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Chapter 5 

Central limit theorem 

5.1 Three species model 

We consider a model of an intracellular viral infection which is given in [15] and studied 

further by [8] and [2]. There are three species: the viral template, the viral genome, 

and the structural protein denoted species 1, 2, and 3. We would like to investigate the 

normalized asymptotic behavior of the evolution of the number of molecules of species 

with slower time scales centered by its limit. In Theorem 5.1, we will show that the 

normalized asymptotic behavior of the process converges to a solution of stochastic 

integral equation with a time changed Brownian motion. Both limits of the centered 

counting processes and their intensities approximated by some martingale contribute to 

the time changed Brownian motion. 

Xi(t) represents the number of the i th species at time t and a time change 

equation is 

Xy(t) = X!(0) + n ( / n'2X2(s)ds)-Yd{ f < X i ( 3 ) d s ) (5.1) 
JO JO 

X2(t) = X2{0) + Ya( f Kf
1X1{s)ds)-Yb( [ K'2X2{s)ds) 

Jo Jo 

-Ys{ [ K'6X2(s)X3(s)ds) (5.2) 
Jo 

X3(t) = X3(0) + Yc( f 4 X i ( s ) da) - n ( T ^X3(s) ds) 
Jo Jo 
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-Yf( f 4X2(s)X3(s)ds). (5.3) 
Jo 

Let iV0 be equal to 1000. Table 13 indicates scaling exponents for each number 

of molecules of the chemical species, and Table 14 indicates both stochastic rate constants 

as given in [15] and normalized stochastic rate constants. 

Table 13: Scaling exponents for the numbers of molecules 

in the three species model 

Oii 

« 1 

a2 

Q 3 

Scaling exponent 

0 

2/3 

1 

Table 14: Stochastic rates and their scaling exponents in 

the three species model 

0k 

01 

02 

0z 

04 

A> 

06 

Scaling exponent 

0 

- 2 / 3 

1 

0 

0 

- 5 / 3 

Stoch rate («4) 

1 

0.025 

1000 

0.25 

2 

7.5 x HT6 

Scaled rate («;*) 

1 

2.5 

1 

0.25 

2 

0.75 
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Applying the multiscale methods to (5.1) — (5.3) and letting 

Vf(t) = N-^XiiN^H), 

the normalized system in the times of O (iV2/3) is 

V»{t) = ^ ( 0 ) + Yb(f K2N
2^V2

N(S) ds) - Yd{ f KiN^Vfis) ds) (5.4) 
Jo Jo 

V2
N(t) = V2

N(0) + N~2^Ya( ftK1N
2^V1

N(s)ds)-N-^3Yb( f K2N
2'3V2

N{s) ds) 
Jo Jo 

-N~2/3Yf( f K6N
2'3V2

N(s)V3
N(s) ds) (5.5) 

Jo 

V3
N(t) = Vr

3
Ar(0)+JV-1yc( f K3N

5/3Vl
N{s)ds)-N-1Ye( f KSN

5/3V3
N(s) ds) 

Jo Jo 

-N-'Yfi f K,N2'3V2
N (s)V3

N {s) ds). (5.6) 
Jo 

The time scale for V2
N is much slower than that for Vf* and V^. In the times of O (iV2/3), 

the fast processes {V^jV^} are averaged out and they contribute to the evolution of 

the intermediate process V2
N. 

Consider a limiting process of V2
N as N —* oo. In (5.5), centering counting 

processed by their intensities, the equation for V2
N becomes 

V2
N(t) = V2

N(0) + N-2'3Ya( f KiNWvfis) ds) - N^zYb( f K2N
2'3V2

N{S) ds) 
Jo Jo 

-N~2I%( f K6N
2/3V2

N(s)V3
N(s) ds) (5.7) 

Jo 

• f (*iVf (s) - K2V2
N(S) - KeV2

N(s)V3
N(s)) ds. 

Jo 
+ ft 

10 

The centered counting processes in (5.7) converge to zero as N —> oo. Following [2], 
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dividing (5.4) and (5.6) by -K4N2/3 and -K5N2''3, respectively, as N —> 00, gives 

f(V?{8)-^V»{a))ds - 0 (5.8) 

f(V3
N(s)-yi

N(s))ds - 0. (5.9) 
JO K5 

Using (5.8) and (5.9), fast processes {V^, V^} are averaged by V^. 

f\vi
N(s)-^V2

N(s))ds -> 0 (5.10) 

fWU-^Vfis))*, -> 0. (5.11) 
JO /V4K5 

Therefore, following [2], V£ converges to V2 which is a solution of 

V2(t) = V2(0) + f ( ( ^ - K2)V2(S) - ^^V2{sf) ds. (5.12) 
JO ^ « 4 «4«5 J 

Using (5.7) and (5.12), we will get the asymptotic behavior of Nllz(y^ — V2) in the 

following theorem. 

Theorem 5.1. DN(t) = N^3(V2
N{t) - V2(t)) converges to D(t) where D is a Gaussian 

Ornstein Uhlenbeck process which is a solution of a stochastic integral equation 

D(t) = D(0) + Wb( f ((aiV2(sf + a2V2{s)2 + a3V2(s)) ds) 
Jo 

+ fD(s)^-K2-
2-^^-V2{S))ds (5.13) 

JO ^ 4 K4K5 

where 

ax = 2 /c 2 ( ' ^*Y (5.14) 
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% K 6 / « i 
a2 = K2 3 - 4 -

K4K5 \ Kij 

a3 = 2 K 2 ( — ) - K2(— ) + K2 

and where Wb is a standard Brownian motion. 

Proof of Theorem 5.1. Subtracting (5.12) from (5.7) and multiplying both sides by 

iV1/3, we have 

N^{V2
N(t)-V2(t)) 

ATl/3 

(5.15) 

V2
N(0) + N-2/3Ya( [ K1N

2^Vl
N(s)ds)-N-2/sYb( f K2N

2'3V2
N{s) ds) 

Jo Jo 

-N-2^Yf( f K6N
2^V2

N(s)V3
N(S)ds) 

Jo 

+ f (KtVfis) - K2V2
N(S) - K6V2

N(S)V3
N(S)) ds 

Jo 

.JVV3 v2(0) + 
/ ' « 0 V K4 

K l « 2 w , , s K2K3K6 / , 2 \ 

—— - K2)v2(s) — r r : ~ v 2 { s ) J ds K4K5 

Using DN, (5.15) becomes 

DN(t) = DN(0) + N-l'*Ya{ f KiN^Vfis)ds (5.16) 
Jo 

-N-V3Yb( f K2N
2lzV2

N{s)ds) -N-l'%( ftK,N2/3V2
N(S)V3

N(s)ds) . 
Jo Jo 

+ f N"3{KXVX
N{S) - ^V?(s) + *^lv2

N(s)2 - K6V2
N(S)V3

N(S)) ds 
J O K 4 "•"-AC4K5 

+ f D»(s)(^ - «2 - ^(V?(s) + V2(s))) ds. 
JO K 4 A-4K5 

In (5.16), 

N-l'3Ya( f KlN
2/3V1

N{s)ds)-N-ll3Yb{ !\2N
2l3V2

N{s)ds) 
Jo Jo 
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-N~1/3Yf{ f K6N
2/3V2

N(S)V3
N(S) ds) 

Jo 

is a martingale. We will show that 

/ V / S f a V f (*) - ^ V ( s ) + ^^V2
N{sf - K6V2

N(S)V3
N(S)) ds (5.17) 

JO ^ 4 K4K5 

in (5.16) can be approximated by a martingale. Let f[x,y,z) be 

/(x, y, z) = —x yz xy (5.18) 
AC4 K5 K4K5 

Using the generator defined in (5.32), we have 

ANf(x, y, *) = — L2N
2'3y{{x + 1) - x) + K4N

2'3X((X - 1) - x)) 
K4 \ / 

_^£ (KlNWx((y + iV-2/3)^ - yz) + «2iV
2/3y((y - iV-2/3)* - yz) 

+«3iV5/3x(y^ + iV-1) - yz) + KBNs/3z(y(z - N'1) - yz) 

+KsN2'zyz{{y - N~2/3)(z - N~l) - yz)) 

_ ^ £ (KlN
2'3x{x(y + JV~2/3) - xy) + «2iV

2/3y((x + l)(y - 7V"2/3) - xy) 

K4K5 V 

+KAN2'3X((X - l)y - xy) + K(iN
2^yz(x(y - iV~2/3) - xy)) 

= _j^/3(« i a : - ™ly + ^ * £ t y - K,yz) + O (1) (5.19) 

and hence 

M w (0 = f(VN(t))-f(VN(0))- ftANf(VN(s))ds (5.20) 
JO 

is a martingale. Then using (5.19) and (5.20), (5.17) is expressed in terms of MN and 
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some errors 

NW(KlV»{8) - ^Vf(s) + ^ V f ( s Y - K6Vf(s)V»(s)) ds 

= N~1/3MN(t) + f 0 (AT1/3) ds 
Jo 

.N-w(!HVN(t) _ *v2
N(t)v3

N(t) - ^ v f (t)vf (*)) 
/C4 K5 /C4/C5 

+ i V -V3(^yN ( 0 ) _ ^v^(0)Vf (0) - ^ V f (0)^(0)). (5.21) 
K4 /C5 K4K5 

Substituting (5.21) in (5.16), we have 

DN(t) = £>"(()) + Ar1/3fa( / /diV^Vf (s) ds (5.22) 
Jo 

-N-V*Yb( f K2N
2l*V2

N{s)ds) -N-l'3Yf( f K6N
2^V2

N(S)V3
N(S) ds) 

Jo Jo 

+N-l/3MN(t) + f O (N-1/3) ds 
Jo 

-N-W^Vf® - -V2
N(t)V3

N(t) - ^Vl
N(t)V2

N(t)) 
K4 K§ K4/C5 

+tf - i /3(^vf (0) - ^V2
N(0)V3

N(0) - M « v f (0)V^(0)) 
K4 K5 /^4^5 

+ r^(a)^-/c2-^^(^(a)+va( f l)))da . 
J o K 4 K4K5 

Now, we will show that N~l^3MN is approximated by centered counting pro

cesses in the equation for /(Vj*, V^.V^). Applying Ito's formula to f(Vf, V2
N,V3

N), 

we have 

mVl
N(t) - -v2

N(t)v3
N(t) - ^tvfwvftt) 

AC 4 AC5 K4^5 

^1^(0) - ^.Vf(0)V^(0) - ^ 1 / ^ ( 0 ) 1 ^ ( 0 ) 
AC4 K5 K4K5 

+ î / '<<(* ) - - / V ( * - W " 0 0 - - fv?{s-)dv2
N{s) 

«4 Jo K5 Jo K5 Jo 
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K3K6
 r t - " />* / Vf (s - )dVf ( s ) - ^ l / Vf (3-)dVf(3) 

JO K4K5 J0 K4K5 

- ^ [ V f , ^ ] t - ^ [ V f , ^ ] t (5.23) 
K,5 K4K5 

Covariations in (5.23) are 

- - [ V f , V f ] t = -!2N-WYf((
t
KtiN*>*V2

N(s)Vi'(a)d8) (5.24) 
^5 ^5 Jo 

. ^ [ y ^ y t f L . = 1^±N-mYb( f K2N
2^V2

N{s)ds). (5.25) 
AC4K5 K4AC5 J Q 

Replacing d l ^ , dV^, and dV3
N by terms in (5.4) - (5.6) and using (5.24), and (5.25), 

we rewrite (5.23) after rearrangement. 

nvfit) - fvf(t)v»{t) - ^vf(t)vf(t) 

= £*i"«» - f V2
N(0)V3

N(0) - a«V^(0)V^(0) 

+ /o ( - ^iv-2/3v^(5-) - ^ iv _ 2 / 3 n ; v (5- ) ) ^ya( J0
SKiiv2/3^^) dw) 

4. f4 C«i + ns.N-2/3VoN(s-) 4- e ^ / V ^ K ^ C s - O - 22J$&VnN(s-) 4- «2MJV - 2 /3) 
JO \K4 K5 3 V J < KiK5 I V / K 4 K 5 I V / ' K , 4 K 5 / 

xdn(/o«2iV2/3F2
JV(«)du) 

+ /o ( - f^Vfis-)) dYc{$; K3N^Vf(u) du) 

+ /o ( " £ + E ^ M ) d ^ ( /oS M ^ V f ^ ) du) 

+ H f^Vfis-) dYe{$; n5N^Vf(u) du) 

+ Io (f^Vfis-) + ^N-^Vf(s-) + ^N-^Vfis-) - %N~^) 

x dYf (J0
S K6Ny3V2

N(u)V3
N(u) du) 

Since f0 Af(VN(s)) ds in (5.20) is equal to the intensities in (**), the jumps in N~XIZMN 

are asymptotically the same as those in (**) divided by iV1/3. 

We will calculate quadratic variation of the martingale in (5.22) and will ap

ply the martingale central limit theorem to obtain limiting behavior. Since quadratic 

> (**) 
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variation of centered counting processes are counting processes themselves, using (**), 

quadratic variation of the martingale in (5.22) is 

N~1/3Ya - N-V3Yb - N-^3Yf + N'^M1 

Jo v «5 «4«5 * y 

xdYa( f KXNWV?(u) du) 
Jo 

+ f N-2'z(^ + ^N-V3V3
N(s-) + ^N-WVfis-) - ^V2

N(s-) 
J0 \ « 4 «5 K4«5 «4^5 

lN-W _ i ) 2
 x dy6( [S

 K2N^zV2
N(u)du) 

5 ' JO 

«3«6 

K4K5 

['N-wf-^N^Vfis-jfdY^ fS K3N
5/%N(u)du) 

Jo ^ K5 J Jo 

f N-W ( 1 l + ! ^ v f ( a - ) ) 3 <%( f / s ^ H f (u) rf«) 
Jo V K4 K4K5 / Jo 

+ C N-2lz(^N-lV2
N{s-)f dYe( I' KX>N^Vz

N{u)du) 

_ ^ i V - 5 / 3 - l ) 2 x dF/( f KeJV^y^Cw)^^) du)' (5.26) 
«5 ' JO 

Eliminate low order terms converging to zero. Then using (5.10) and (5.11) and using 

V2
N is regular, a limit of quadratic variation is addition of the following limits. 

Jo JO K4 

AT-2/3 f ( ^ 1 _ ^ £ v f ( s _ ) _ x ) 2
d y 6 ( f K2N^V2

N {u) du) 

Jo Ki K4K5 Jo 

(5.27) 

/ 
Jo 

KiV2(s)(^-^V2(s)-l)\ (5.28) 

iV-2/3 / * ( - - + ^ « Vf ( a - ) ) 3 d ^ ( f / ^ ' H f (u) du) 
J0 K4 ^4^5 Jo 

[ K2V2(s)(^-^V2(s)fds. 
JO ^4 K4K5 

(5.29) 
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N~2'%( f K6N
2/3V2

N(s)V3
N(s)ds) ^ f ^^lv2{sf ds (5.30) 

JO JO K4K5 

Adding (5.27) — (5.30), quadratic variation of the martingale in (5.22) converges to 

aiV2{sf + a2V2{s)2 + a3V2(s) (5.31) 

where ai, a2, and 03 are defined in (5.14). Then applying the martingale central limit 

theorem given in Theorem 5.2, (5.22) converges to (5.13) as N —> 00. • 

Remark 5.1. The generator for VN is 

ANf(x,y,z) = KlN
2'ix{f{x,y + N-2/\z)-f{x,y,z)) (5.32) 

+K2N
2'zy(f{x + 1, y - N~^3, z) - f(x, y, z)) 

+K3N^3x{f(x, y, z + N-1) - fix, y,z)) 

+K4N
2^x(f(x - l,y,z) - f(x,y,z)) 

+K5N
5'3z(f(X: y, z - N-1) - f(x, y, z)) 

+n,N2'3yz(f(Xi y - N~2^, z - N~l) - fix, y, z)) 

where x, y, and z are the variables for Vf, V2 , and V3
N, respectively. 

The martingale central limit theorem is used to prove Theorem 5.1 is borrow 

from [7]. 

Theorem 5.2 (Vector-valued version). Let Mn be a Rd-valued martingale such that 

for each 1 < % < d 

lim£[sup|M;(s)-M^-)|] = 0 
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and for each 1 < i,j < d and for all t>0, 

[K,Ml]t - h^it) 

in probability where h is continuous. Then Mn => W o h, where W is d-dimensional 

standard Brownian motion satisfying E[W o h(i) W o h(t)T] = h(t) = ({hij(t))). 

Proof. See Ethier and Kurtz [7]. • 

5.2 Heat shock response model 

We will see asymptotic behavior of the intermediate processes in the times of O (N2) 

centered by their limiting processes and multiplied by Nll2. Define 

Fz
N(t) = NV'WW-V?®). (5.33) 

Recall that {V2, V2,V^, V2, V%, Vg} is a solution of the reduced system in times of 

0(N2) in (4.52) — (4.58). Then FN converges to a solution of a stochastic integral 

equation with a time-changed Brownian motion. Unlike the three species model in 

Section 5.1, the intensities of counting processes do not contribute to the time-changed 

Brownian motion, since the intensities of the counting processes are approximated by a 

martingale with quadratic variation converging to zero. 

Theorem 5.3. FN(t) converges to F(t) where F is a solution of 

+ , 1 \ 2 / 2V \/2,\
y J (*7Fz(s) + K12F9(S)) ds 

{K2 + nzf J0 KWV8
2(S) v " 



«M = *<°> + ( ^ / < * M + «M): 
KloV? 

ds 

«2«3«9 f ' ^ ) + ^ ( ^ J?f\, JPfWj 

^2 ^(/'(^)+^M.^^;f-')ds) 
F4(t) = F4(0) + / («6F3(s) - Ki8F4(s)) ds, 

Jo 

F5{t) = F5(0) + f (K5F3(S) - KUF5{S)) ds, 
Jo 

F8(t) = F8(0)+ / ( -«7F 3 (s)- /c i iF 8 (s))ds , 
Jo 

F9(t) = F9(0)+ /" K7F3(s)ds 

where 

F2(0) = F3(0) = F4(0) = F5(0) = F8(0) = F9(0) = 0 (5 

and tu/iere Wy is a standard Brownian motion. 

Proof of Theorem 5.3. The equation for V2 ' + Vz ' is 

V2
N,2(t) + V3

N'\t) = ^ ' 2 ( 0 ) + ^ ( O ) + iV- 1 y 4 ( / K4NV1
N'2(s)ds) (5 

Jo 

+N-1Y8( f K*V?*{8) ds) - N~lY9{ f K9NV2
N'2(S)V6

N'\S) ds), 
Jo Jo 
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Vnt) + Vi(t) = Vi(0) + V3
2(0) (5.37) 

+f K w - ̂ ^ + ^ ) ) ^ ! : ) y ( j ) ) *• 
Jo A K2 + «3 «ioVg \s) * 

Subtract (5.37) from (5.36) and multiply by iV1/2. Center the terms regarding Reaction 

4, 7, and 9 by their intensity and remove Jj K^XI2\V^2{S) - V?(s)| ds since V"'2(t) = 

V?(t). Then, we have the equation for F2 4- i ^ . 

F 2 " ( f )+ i f ( t ) = F 2 » + F 3 » 

Jo V «2 + «3 l̂oVgV-SJ / 

+iV-1/2 f «8Vf ,2(s) ds 4- TV"1/2^' T K 4 J V < - 2 ( S ) ds) 
Jo Jo 

+N~1/2Y8( f K8V7
N'2(S) ds) ~ N~l/2Y9( f KgNV2

N'2(s)Ve
N'2(s) ds). (5.38) 

Jo Jo 

Then we have 

\*2F?{t)-K3FJ'{t)\<o(JJ). (5.39) 

Then, if a limit of F2
N 4- F^ exists (= F2 4- F3), we have 

F2(t) = _ ^ _ ( F 2 ( t ) + j p 3 ( i ) ) (5.40) 
^2 "T ^3 

W ) = -^-(F2(t) + F3(t)). (5.41) 



108 

Now, we split 

N^ f (v2
N>\S)vr(s) - - T - ( ^ ) + v i ( S ) ) ^ M + ^ i m ds 

JO \ ft2 + ^3 1^10^8 \s) J 

into three terms and express using FN. Adding and subtracting terms, we have 

NW f (V»*(s)vr(s) ^-(Vl(s) + Vi(S)f7V*{s)+^f{s)) ds (5.42) 
Jo v K2 + K3 «ioK8 (s) / 

= n* /" fa"W(.) - -^-(vf 2M + V4^W)",^(')
1^yfw) ds 

+^rioVJ^ff(K^Z{s) - ̂ w)+""«"«- v̂ w)) <** 

Using FN, (5.42) is rewritten as 

K3 ,T / 2 / ,A , T /2 / v k ^ V M + K u ^ s ) 

2(g) + /V12K 

K 1 0 ^ 2 ( 5 ) 
AT ' / ( l / 2 ( s ) ^ (5) - (F2 (5) + V3 (5)) „ 2 ) ds 

Jo v K2 + K3 K 1 0 V ; ' (5) / 

K2 + K3 Jo ^10 ̂ 8 

+ «3 Jo KloVg (s) 

* +* / ' ^ + ^ 0 0 ) ( ^ 2 ( * ) + *i2^2(*)) i £ ( ' t 2 , , ^ . (5.43) 
«2 + «3 Jo KloVs ( s) ^8 0s) 

«2 

«3 

The first term on the right side of (5.42) is expressed as 

ivi/2 i: {vrwrw - ^r3(v?'\S)+^a(a))^3p(f'
w) dS 
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^ i v i / 2 si ( v f 2(S)+v?>\s)) (V6
N%) - «v> :;;ffi;^ ,2(s)) * 

+—i— " ' -- ""' . . — 
K2+K.3 

(») 

K2+K3 JO \ * J V ) J A \ I) K2+K3+K10Vgt'i(s) 

We have 

1 AT\n 11„ T/JV,2/0X ^ T^V.2,..^ ^ ^ ( s ) + /CUVJT' 2 ^) ^ 

In Lemma 5.2, we show that (*) is approximated by the martingale with quadratic 

variation converging to zero. Therefore,the first term on the right side of (5.42) does not 

contribute to a time-changed Brownian motion in the limit of F2
N 4- F£*. 

Rewriting (5.38) and using (5.43), (5.44), and Lemma 5.2, we obtain 

F?(t) + F3
N(t) = F2

N(0) + F3
N(0) 

. ^ , 2 ^ , ... T,iv,2 

«2 + K3 

Kg 

NW f (V^is) 4- V»*(s)) (vr(s) - ^ W + Kff'M) ds 
JO V KWVS (s) J 

N* f («,<*<.) - K.VW.)) ( C ( . ) - "7l/f(S' + l " ^ ( f ) * • 
«2 + K3 Jo V K2 + K3 + KloVg (S) 

+ ^ T ^ X „ 1 0 ^ 2
( 5 ) (K7^3 (S) + Kl2F9 (s)) ds 

-7T7- f ^2(s) + ^ ( 5 ) ) ̂ ( s ) + "^W) J^lv ^ ds 

+ f O (-j=) ds + N~1/2Y4( r « 4 W f ' 2 ( s ) d s ) 

+N-1'2YS( f nsV7
N'2(s) ds) - N-ll2%{ f K9NV2

N'2(S)VQ
N'2(S) ds). (5.45) 

Jo Jo 
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Using Lemma 5.2, calculate quadratic variation of the martingale terms in 

(5.45). 

«3«9 

K2 + K3 

Kg 

Jo \ KWVS ' (s) 1 

-iv / / (K2V2 (S) - K3y3 (5)) (v6 (3) • — • — N2 

3 Jo V K2 + K3 + «10Va (S) 

+ iV- 1 / 2 y 4 ( / K4NV1
Na(s)ds) + N-1/'2Y8(f K8V7

N'2(s)ds) 
Jo Jo 

+iV-1/2y9( f ^ W ^ V ^ s ) <fc)" 

«2 + «3 ) 
ds 

iNT1*^ t K4NV1
N'2(s)ds)+N-1Yg( t KgNV2

N'2(s)Ve
N'2(s)ds) 

> T (*V?(,) + .9V2
2(S) • ^

2 ( ^ 2 f ^ ) ds (5.46) 

The equation for VA '2 is 

y f 2 ( i ) = V4
N'2(0) + N-2Y6(f

tK,N2V3
N'2(s)ds) 

Jo 

-N-2Yl8(f
tK18N

2V4
N'2(s)ds) 

Jo 

(5.47) 

and the equation for V2 is 

V2(t) = V2(0) + f {K%Vl{s)-Kl8V
2(s))ds. 

Jo 

Subtracting (5.48) from (5.47) and multiplying by iV1/2, we have 

(5.48) 

N^(V4
N'2(t)-V2(t)) (5.49) 

NW \v^(0) + N-2Ye( f K6N
2V3

N'2(S) ds) - N-2YU( f K1SN
2V,N'2(S) ds) 

Jo Jo ' . 
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_JVV2 VA
2(0)+ f (K(iV

2(s)-K18V
2(s))ds 

Jo 

We center the terms regarding Reaction 6 and 18 by their intensity in (5.49). Then 

using FN, (5.49) is rewritten as 

F4
N(t) = F4

N(0) + f (KQF3
N(S) - K18F»(S)) ds (5.50) 

Jo 

+N-V2%( f K6N
2V3

N'2(S) ds) - N~V2Y18( f K18N
2V^2{S) ds). ^ 

Jo Jo 

JV,2 
Similar to how we get F4 , using y5

JV '* and Vi, we get F[ ?N 

Fb
N(t) = F5

N(Q)+ f(K5P3
N(S)-KwF5

N(s))dS (5.51) 
Jo 

+N-^Y5(f
t
 K5N

2V3
N>2(S) ds) - N~^Y16( f KWN2V5

N'2(S) ds) 
Jo Jo 

The equation for V8
 ,2 is 

V8
N>\t) = V8"'2(0) + iV-2yx( / ^iiV2ds) + iV-2F12( / «i2JV2V^)2(5) ds) (5.52) 

Jo Jo 

-iV-2F10( f K10NXN>2(S)VS
N'2(S) ds) - iV-2Yn( f KUN2V8

N'2(S) ds) 
Jo Jo 

and the equation for V̂ 2 is 

V2(t) = V2(0) + f («! - K7V3
2(S) - KUV2(S)) ds. (5.53) 

Jo 

First, we will get an approximate term for 

N~2Y12(f K12N
2V9

N'2(s)ds)-N-2Yw(f KWNXN>2(s)V8
N'2(s)ds). (5.54) 

Jo Jo 
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JV,2 , TriV,2 From the equation for V6 ' + V7 ' dividing by N2, we get 

(5.55) N-*Yu( f K12N
2V^\S) ds) - N'2Y1Q( f K10NXN*(S)V8

N'2(S) ds) 
Jo Jo 

f ( - *tV»*{8) + K17N-2V6
N>2(S)) ds 

+N-2(Ve
N'2(t) + V7

N>2(t)) - N~2(V6
N'2(0) + V7

N>2(0)) 

-N~2Y7{ f K7N
2V3

N'2(S) ds) + N~2Y17( f K17V^2(S) ds). 
Jo Jo 

Subtract (5.53) from (5.52) and substitute (5.54) in (5.52). Then multiply the equation 

by N1/2, we have 

NW(vr(t)-v*(t)) (5.56) 

= N1'2 Vf'2(0) + f ( - «*Vf •*(*) + K17N-2V6
N>2(S)) ds 

L JO 

+N~2{Ve
N'2(t) + V7

N'2(t)) - N-2(V6
N'2(0) + V7

N>2(0)) 

-N~2Y7( f K7N
2V3

N>2(S) ds) + N-2Y17( f n17V6
N'2(s) ds) 

Jo Jo 

+N-2YX(I KXN2 ds) - N-2Yn( f KUN2V8
N>2{s)ds) 

Jo Jo 
r «+ -i 

-N1'2 V?(0) + / {Kl-K7V
2{s)-KllV

2{S))ds 
Jo 

We center the terms regarding Reaction 1 and 11 by their intensity in (5.56). Then 

using FN, (5.54) is rewritten as 

mt) = KW + f ( - "7*f(s) - * n * T O + KX7N-V2V^2{S)) ds (5.57) 
Jo 

+N-V2(Ve
N'2(t) + V7

N'2(t)) - N~3/2(V6
N'2(0) + V7

N'2(0)) 

-N^2Y7( f K7N
2VZ

N'2{S) ds) + N~*l2Yl7{ f K17V6
N'2(S) ds) 

Jo Jo 
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+N^2Yl( f KlN
2 ds) - N-3'2YU( f KnN2Vs

N'2(s) ds). 
Jo Jo 

Similar to how we get F^, using V^'2, V2, and (5.55), we get F<f. 

F9
N(t) = F»{0)+ [t(*TFjr(8)-Kl7N-Wv£V(8))ds (5.58) 

Jo 
-N-3'2(VW{t) + V7

N'2(t)) + iV-3/2(y6iV,2(0) + v f .2(0)) 

+N-V%( f n7N%N'2(s) ds) - N-W?l7( f KX7V?*{a) ds) 
Jo Jo 

Following from (5.45), (5.40), (5.41) (5.50), (5.51), (5.57), and (5.58), applying the 

martingale central limit theorem given in Theorem 5.2, and using (5.46), as iV —> oo, 

FN converges to F satisfying (5.34). • 

In Lemma5.2, we show that (*) is approximated by a martingale with quadratic 

variation converging to zero. 

L e m m a 5.2. 

- £ - * " ' f (vr{S)+vFw (vrw - K7V"(3),tyr,2M) ds (5.59) 
«2 + «3 Jo V KlOV8 ' (s) ' 

&2 + «3 JO ^ K2 + K3 + KWV8 (s) ' 

is approximated by a martingale with quadratic variation converging to zero. 

Proof. As we see in (2.2), VN is a continuous time Markov process written as 

ViN{t) = I f (0) + AT* £ > ( / N^a^\k(V
N(s)) ds){v'ik - uik). (5.60) 

fc=i -7 0 
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Then the generator of VN is defined as 

m 

±N9(v) = T,N'1+a"/k+^X^vK9^ + ^)-9(v)) (5.61) 
fc=i 

where v is a variable for VN and the ith component of 1%, Ifj., represents a jump size of 

the ith component of V^ when the fcth reaction occurs. lfk is written as 

Set 

Rk(t) = Yk{ f N^+a^+(3kXk(V
N(s))dS). (5.62) 

Jo 

Then we can interpret the equation for VN in terms of a martingale and its generator 

or in terms of a jump process with counting processes. 

g(vN(t)) = g(vN(0)) + J2 {g(vN(s-) + iZ)-g(vN(s-)))dRk(s) 

= 9(VNm + f &N9{VN{s)) ds + Mf («). (5.63) 
Jo 

We find a function g satisfying 

f ANg(VN(s)) ds 
Jo 

-iV2 f (V»'\s) + V^(s)) (vr(s) - «V*N*(*\+JtoVr(s)\ ds 

t JO V KioV^s ' (S ) «2 + K-3 
^ . N . __ T / JV ,2 

•+• K 3 7o V AC2 + K3 + KWVS ' (S) > 

f O (N) 
Jo 

K2 + 

+ / O(N) ds 
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where g is 

9(V2
N'\t), V3

N>2(t),VG
N'2(t)} V^2(t)) (5.64) 

«3 (V2N'2(t) + V3
N'2(t))Vr(t) | 1 (^^(Q-Ka^W)^2^)^ . 

«2 + « 3 K i o ^ ' ^ ) K2 + K3 K2 + K3 + KWV8
N'2(t) 

Dividing (5.63) by iV3/2, we have 

N-3/2g{VN{t)) - 0, N~^2g{VN{0)) - 0. 

Consider the exponents inside and outside the martingale N~3/2 YlT=i Jo (9(VN(S~) + 

^ ) - ^ ( y J V ( 5 - ) ) ) d-R*(s) using the generator AN in (4.80) in Section 4.1.3. Then without 

calculation, we get 

m ,,4 
N~V2 E / W ^ M + if!) - g(vN(s-))) dRk(s) 

Since the jumps of JV"3/2M* is the same as those in iV"3/2 ]T™=1 JjJ (g(V
N(s-) + Z*) -

sO^^s—))) dRk(s), (5.59) is approximated by the martingale N~3^2M^ with quadratic 

variation converging to zero. • 
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