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Abstract

Lung cancer is the leading cause of cancer-related deaths worldwide. Lack of early detection and limited options for
targeted therapies are both contributing factors to the dismal statistics observed in lung cancer. Thus, advances in both of
these areas are likely to lead to improved outcomes. MicroRNAs (miRs or miRNAs) represent a class of non-coding RNAs that
have the capacity for gene regulation and may serve as both diagnostic and prognostic biomarkers in lung cancer.
Abnormal expression patterns for several miRNAs have been identified in lung cancers. Specifically, let-7 and miR-9 are
deregulated in both lung cancers and other solid malignancies. In this paper, we construct a mathematical model that
integrates let-7 and miR-9 expression into a signaling pathway to generate an in silico model for the process of epithelial
mesenchymal transition (EMT). Simulations of the model demonstrate that EGFR and Ras mutations in non-small cell lung
cancers (NSCLC), which lead to the process of EMT, result in miR-9 upregulation and let-7 suppression, and this process is
somewhat robust against random input into miR-9 and more strongly robust against random input into let-7. We elected to
validate our model in vitro by testing the effects of EGFR inhibition on downstream MYC, miR-9 and let-7a expression.
Interestingly, in an EGFR mutated lung cancer cell line, treatment with an EGFR inhibitor (Gefitinib) resulted in a
concentration specific reduction in c-MYC and miR-9 expression while not changing let-7a expression. Our mathematical
model explains the signaling link among EGFR, MYC, and miR-9, but not let-7. However, very little is presently known about
factors that regulate let-7. It is quite possible that when such regulating factors become known and integrated into our
model, they will further support our mathematical model.
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Introduction

Lung cancer is the leading cause of cancer-related deaths

worldwide. In the U.S. the number of new occurrences is

approximately 230,000 annually, and the number of deaths is

160,000, representing 25% of all cancer related deaths [1]. Lack of

early detection and limited options for target therapies are both

contributing factors to the dismal statistics observed in lung cancer.

Thus, advances in both of these areas are likely to lead to

improved outcomes.

microRNAs (miRs or miRNAs) represent a class of non-coding

RNAs that have the capacity for gene regulation and may serve as

diagnostic and prognostic biomarkers in lung cancer. Abnormal

expression patterns for miRNAs have been identified in lung

cancers. Specifically, let-7 and miR-9 are deregulated in both lung

cancers and other solid malignancies. Takamizawa et al. (2004)

and Nicoloso et al. (2009) demonstrated that let-7 is downregu-

lated in non-small cell lung cancers (NSCLC) [2,3]. Several

investigators have shown that let-7 harbors tumor suppressive

properties both in vitro and in vivo [4,5]. Using microarray data,

Yanaihara et al. (2006) reported that miR-9 was decreased in

NSCLC [6], whereas Volinia et al. (2006) reported an increase in

miR-9 expression [7]. More recently Crawford et al. (2009)

reported increased expression of miR-9 in NSCLC [8], and Võsa

et al. (2011) drew the same conclusion from their microarray data

[9]. Recently, we have also independently analyzed 140 cases of

NSCLC and compared miR-9 expression between tumors and

adjacent uninvolved lung tissue. We found that in approximately

130 cases miR-9 was overexpressed in lung tumors; see

Supplementary Material S1. A recent investigation showed that

miR-9 contributes to metastatic potential in breast cancer in part

by targeting components of epithelial mesenchymal transition

(EMT) [10]. However, the role for miR-9 in the pathogenesis of

lung cancer is less well understood. Mascaux et al. (2009)

demonstrated an induction in miR-9 expression during bronchial

squamous carcinogenesis [11].

Given the fact that a single miRNA may regulate tens to

hundreds of genes, understanding the importance of an individual

miRNA in cancer biology can be challenging. This is further

complicated by observations that the dysregulation of several

miRNAs is often required to cause a given phenotype. To date,

few models exist to elucidate the mechanisms by which multiple

miRNAs contribute both individually and in tandem to promote
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tumor initiation and progression. Applying mathematical model-

ing to miRNA biology provides an opportunity to understand

these complex relationships. In the current study, we have

developed for the first time a mathematical model focusing on

miRNAs (miR-9 and let-7) in the context of lung cancer as a

model system; however, our model system could be applicable to

miRNA biology in both malignant and benign diseases. For

simplicity, we have integrated these miRNAs into a signaling

pathway to generate an in silico model for the process of EMT.

Herein, we include the EGF-EGFR complex and associated

downstream signaling culminating in matrix metalloproteinase

(MMP) expression. Other components of our pathway include

SOS, Ras, ERK, MYC,E-Cadherin, miR-9, and let-7.

We have simulated the model under several scenarios of gene

mutations that may lead to lung cancer and determined, in each

scenario, that miR-9 was upregulated and let-7 downregulated.

We have also shown that the process leading to EMT is somewhat

robust against random input into miR-9 and more strongly robust

against random input into let-7.

Results

Biological Background
Figure 1 A shows a signaling pathway involving miR-9, let-7,

MYC, and EMT, while Figure 1 B is a simplified version that will

be used in the mathematical model. miR-9 is upregulated in

NSCLC. Although Yanaihara et al. (2006) reported a decrease of

miR-9 using microarray data [6], several other papers, some more

recent, reported an increase of miR-9 in NSCLC: Volinia et al.

(2006) and Võsa et al. (2011) used microarray [7,9], and Crawford

et al. (2009) used PCR [8]. We have analyzed 140 cases of NSCLC

with PCR and demonstrate miR-9 overexpression in lung tumors

compared to adjacent uninvolved lung and present a representa-

tion of 30 such cases; see Supplementary Material S1.

MYC controls many fundamental cellular processes, and

aberrant MYC expression is known to be associated with cancer.

For example, Frenzel et al. (2010) observed that MYC is usually

activated in many cancers [12], and Aguda et al. (2008) showed

how MYC can act as either an oncogene or tumor suppressor [13].

In lung cancer, MYC family oncogenes are amplified in both

small-cell lung cancers (SCLC) and NSCLC [14,15]. Moreover, c-

MYC can induce metastasis in c-Raf mutant NSCLC [16].

Investigators have also identified a link between MYC and

miRNAs that also play a significant role in cancer. Rinaldi et al.

(2007) showed that both MYC and the miRNA cluster miR-17-92

are amplified in human mantle cell lymphoma [17]; Frenzel et al.

(2010) described miR-9 as an oncogenic miRNA and let-7 as a

tumor suppressor miRNA both of which are regulated by MYC

[12]: MYC induces miR-9, which blocks tumor suppressor

pathways, while MYC inhibits let-7, which blocks oncogenic

pathways. Ma et al. (2010) found that miR-9 is driven by MYC,

downregulates E-Cadherin, and induces metastasis in breast

cancer [10]. Wolfer and Ramaswamy (2011) investigated the role

of MYC in breast cancer metastasis using a signaling pathway that

includes let-7, miR-9, E-Cadherin, and EMT [18].

Our proposed pathway is based on several lines of investigation.

Similar to breast cancer, let-7 is downregulated in NSCLC [2,3].

Takamizawa et al. (2004) demonstrated that reductions of let-7 as

high as 80% occurred in tumors compared to uninvolved adjacent

lung tissue [2]. In this same study, only 7=16 cases had such

reductions (N~16). However, more recent investigation by

Inamura et al. (2007) demonstrated that among well-differentiated

adenocarcinomas (N~26), the reductions in let-7 family members

were more modest (approximately 35{40%) [19]. Wang et al.

(2011) asserted that c-MYC represses transcription of let-7 [20].

Johnson et al. (2005) and others showed that Ras is suppressed by

let-7 [21]. Lee and Dutta (2007) suggested that let-7 represses

HMGA-2 in a lung cancer cell [22], and Thuault et al. (2008)

asserted that HMGA-2 causes EMT by activating Snail1 which in

turn represses E-Cadherin [23]. E-Cadherin downregulates MMP

in bronchial tumor cells [24]. Both E-Cadherin and MMP have

been implicated as biomarkers in several solid malignancies

including lung cancer. A recent investigation showed that elevated

levels of MMP-9 in cases of NSCLC correlated with advanced

stages and the presence of metastases [25]. In addition Rao et al.

(2005) demonstrated in vitro and in vivo that adenoviral mediated

gene transfer of MMP-9 could reduce lung cancer invasive

capacity and formation of metastases [26]. Decreased E-Cadherin

expression also appears to correlate with clinically more aggressive

disease [27–29].

Roberts and Der (2007) used an EGFR-Ras-Raf-MEK-ERK

pathway to explain that 10% of NSCLC arise from EGFR

mutations and that 30% of NSCLC arise from mutations in Ras

[30]. SOS is an intermediate between the EGF-EGFR complex

and Ras [31], and is repressed through negative feedback by ERK

[32,33]. Huang et al. (2011) showed that ERK/MAPK in lung

cancer activates c-MYC [34]. Figure 1 A provides a summary of

the above lines of investigation. For the purposes of simplicity, we

propose a simpler version in Figure 1 B which nevertheless

encompasses the main features of Figure 1 A. We recognize that

other signaling pathways are driven by the EGF-EGFR complex

including PI3K/Akt which regulates cell survival. However, given

our interest in miR-9 and let-7 as potential biomarkers, we have

not included this pathway in our model.

Figure 1. A signaling pathway for lung cancer. A pathway from
EGF-EGFR complex to MMP, which includes miR-9 and let-7, is given in
(A) and a simplified pathway is shown in (B).
doi:10.1371/journal.pone.0053663.g001

Mathematical Model for Lung Cancer
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Model Equations
We introduce a system of ordinary differential equations that

describe a signaling pathway of EMT (represented by the level of

MMP mRNA) induced by MYC through miR-9 and let-7 as

shown in Figure 1 B. The differential equations (1){(8) are based

on Figure 1 B, and detailed explanations are given in Methods.

Notation for species concentrations is given in Table 1.
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Simulations
A large number of NSCLC cases arise from EGFR mutations

[35,36] or Ras mutations [37]. We assume that negative feedback

of ERK to SOS may be disrupted in NSCLC. We describe these

aberrations by increasing E, increasing mR, or decreasing dS , so

that concentration level of EGF-EGFR complex increases, Ras is

over-activated by SOS, or negative feedback of ERK to SOS is

weakened. The following simulations demonstrate the effect of

increase in E and in mR and decrease in dS on the increase in miR-

9, let-7 and MMP.

Simulations of the model equations were performed using

Matlab. We used an ode solver, ode15 s, to solve a system of

ordinary differential equations numerically. To solve a system of

stochastic differential equations with random inputs in miR-9 or

let-7 numerically, we developed a code using an Euler scheme. All

initial values are taken to be those of healthy normal cells, namely,

S(0)~S0, R(0)~R0, Ek(0)~Ek0, C(0)~C0, M(0)~M0,

L(0)~L0, H(0)~H0, and P(0)~P0.

If E increases as a result of mutations in EGFR, we expect an

increase in miR-9 and a decrease in let-7 as indeed are observed in

lung cancer. There will also be an increase in MMP mRNA

signifying EMT and cell migration, which contributes to

metastasis. Figure 2 shows the level of miR-9, let-7, and MMP

at t~105 min as a function of E=E0: as E=E0 increases, miR-9

and MMP mRNA concentrations increase and let-7 concentration

decreases. For example, for E=E0~5, the level of miR-9 increases

by 11-fold from 1:7987|10{5mM to 2:0362|10{4mM and that

of MMP mRNA concentration increases by 5-fold from

1:1569|10{13mM to 5:6252|10{13mM compared to the level

in healthy normal cells. On the other hand, the level of let-7

concentration decreases by 1:4-fold from 0:0023mM to

0:0016mM.

Figure 3 shows the effect of Ras mutations on the levels of miR-

9, let-7, and MMP mRNA after 105 min. Ras mutations are

represented by an increase in mR=mR0. We see that as mR=mR0

increases, so do the concentrations of miR-9 and MMP mRNA

while let-7 concentration decreases. For example, for mR=mR0~5,

the level of miR-9 concentration increases by 17-fold from

1:7987|10{5mM to 3:0210|10{4mM and that of MMP

mRNA concentration increases by 7-fold from

1:1569|10{13mM to 8:3569|10{13mM compared to the level

in healthy normal cells. On the other hand, the level of let-7

concentration decreases by 1:5-fold from 0:0023mM to

0:0015mM.

When the negative feedback of ERK to SOS is weakened as a

result of possible mutations in ERK, the parameter dS in Eq. (1) is

decreased. Figure 4 shows the effect of these mutations: as dS=dS0

decreases, the concentrations of miR-9 and MMP increase and

that of let-7 decreases. For example, for dS=dS0~1=2, the level of

miR-9 concentration increases by 3-fold from 1:7987|10{5mM

to 5:6205|10{5mM and that of MMP mRNA concentration

increases by 2-fold from 1:1569|10{13mM to

1:9674|10{13mM compared to the level in healthy normal cells.

On the other hand, the level of let-7 concentration decreases by

1:2-fold from 0:0023mM to 0:0020mM.

In Figure 5, we simulate the time evolution of SOS, Ras, ERK,

MYC, miR-9, let-7, E-Cadherin, and MMP mRNA over a period

of t~1 min with E~10E0; in Figure 6 the simulations are carried

out for the longer period of 105 min. A comparison between the

panels of the two figures shows that the dynamics of SOS, Ras,

and ERK are very fast; MYC, miR-9, and let-7 change relatively

slower, and MMP mRNA takes even longer to reach equilibrium.

After 105 minutes, SOS and Ras increased by 3-fold from

Table 1. Notation for species concentrations.

Notation Description

E EGF-EGFR complex
(constant)

S active SOS concentration

R active Ras concentration

Ek active ERK concentration

C MYC protein concentration

M miR-9 concentration

L let-7 concentration

H E-Cadherin concentration

P MMP mRNA concentration

The table gives notation for species concentrations that are used in the
mathematical model.
doi:10.1371/journal.pone.0053663.t001

Mathematical Model for Lung Cancer
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0:0298mM to 0:0924mM and from 0:0053mM to 0:0169mM,

respectively; ERK and MYC increased by 2-fold from 0:2746mM

to 0:6076mM and from 0:2189mM to 0:4840mM, respectively;

miR-9 increased by 24-fold from 1:8|10{5mM to

4:3035|10{4mM; MMP increased by 10-fold from

1:1574|10{13mM to 1:2144|10{12mM compared to their

values in normal cells; let-7 decreased by 1:6-fold from 0:0023mM

to 0:0014mM, and E-Cadherin decreased by 20-fold from 0:1mM

to 0:005mM.

Figures 7 and 8 show similar simulations when mR is increased

to 10mR0 and Figures 9 and 10 show similar simulations when dS is

decreased to (1=10)dS0. In Figure 8, Ras increased by 4-fold from

0:0053mM to 0:0231mM; ERK and MYC increased by 3-fold

from 0:2746mM to 0:6998mM and from 0:2189mM to

0:5574mM, respectively; miR-9 increased by 42-fold from

1:8|10{5mM to 7:5611|10{4mM; MMP increased by 19-fold

from 1:1574|10{13mM to 2:2358|10{12mM compared to

their values in normal cells; SOS decreased by 2:3-fold from

0:0298mM to 0:0127mM; let-7 decreased by 1:8-fold from

0:0023mM to 0:0013mM, and E-Cadherin decreased by 38-fold

from 0:1mM to 0:0026mM. In Figure 10, concentration changes

essentially in the same amount as in Figure 6.

It would be interesting to study the effect of a ‘background’ on

miR-9 and let-7, namely, the genes with whom these miRNAs

interact. Such interactions however, are not reported in the

literature. We therefore model such interactions by a random

input. Figure 11 shows how random perturbations of miR-9 affect

MMP (EMT). Setting E=E0~10 and E=E0~20 as given in

Figure 2, miR-9 perturbed by random Gaussian input and MMP

are shown in Figure 11 A–D and E–H, respectively (we added

sdB(t) on the right-hand side of (5) where B(t) is a standard

Brownian motion). Panels A/B and E/F in Figure 11 correspond

to the case when miR-9 is perturbed by Gaussian input with

s~10{5 and Panels C/D and G/H in Figure 11 correspond to

the case when we increase s to 1:2|10{5. In Panels B/D/F/H in

Figure 11, we compare MMP concentration with random

perturbations (red line) and without perturbations (green dotted

line). Figure 12 shows similar results in the case of let-7 with

s~5|10{5 and s~10{4. Panels A/B and E/F in Figure 12

correspond to the case when let-7 is perturbed by Gaussian input

with s~5|10{5 and Panels C/D and G/H in Figure 12

correspond to the case when we increase s to 10{4. Figures 13

and 14 show means (blue or red line) and standard deviations

(black dotted line) from the means of miR-9, let-7, and MMP

concentrations obtained from 1,000 realizations of simulation with

the same parameters in Figures 11 and 12. Simulation results in

Figures 11-14 are obtained with fixed time step, Dt~0:005min.

We conclude that mean MMP concentrations and standard

deviations from the means are stable (robust) to small perturba-

tions in miR-9, i.e. when s~10{5. However, when we increase s

already to 1:2|10{5 stability of standard deviations from the

mean MMP concentration tends to break down as we see from

Panels D/H in Figure 13; Panels D/H in Figure 11 show one

sample path of unstable MMP concentration against miR-9

Figure 2. Concentration changes of miR-9, let-7, and MMP mRNA with different values for E. The units on the vertical axes are in mM and
the time is at t~105 min.
doi:10.1371/journal.pone.0053663.g002

Figure 3. Concentration changes of miR-9, let-7, and MMP mRNA with different values for mR. The units on the vertical axes are in mM

and the time is at t~105 min.
doi:10.1371/journal.pone.0053663.g003

Mathematical Model for Lung Cancer

PLOS ONE | www.plosone.org 4 January 2013 | Volume 8 | Issue 1 | e53663



perturbation. On the other hand, mean MMP concentrations and

standard deviations from the means are much more stable for let-7

perturbations with large s, and trajectories of means closely follow

the trajectory of MMP without random input as shown in

Figure 14; Figure 12 shows one sample path of MMP concentra-

tion against let-7 perturbation. Notice that we have taken

s~5|10{5 in Panels A/B/E/F and s~10{4 in Panels C/D/

G/H. For let-7, if we take s as small as 1:2|10{5 as we did in

Panels C/D/G/H in Figure 11, standard deviations are very small

and negligible (not shown here). The reason why MMP is more

stable against random perturbations of let-7 than against miR-9

perturbations is that let-7 perturbations undergo damping by the

negative feedbacks from let-7 to Ras and from ERK to SOS, as

shown in Figure 1. Similar results (not shown here) hold when we

vary m=m0 or dS=dS0, instead of E=E0.

Sensitivity Analysis
Since we are focusing on miR-9 upregulation and let-7

downregulation as potential biomarkers for lung cancer, we

wanted to determine how the quotient M=L of miR-9 divided by

let-7 depends on the parameters of the model equations. We

focused on the 14 parameters in Table 2 which are only

Figure 4. Concentration changes of miR-9, let-7, and MMP mRNA with different values for ds. The units on the vertical axes are in mM and
the time is at t~105 min.
doi:10.1371/journal.pone.0053663.g004

Figure 5. Simulation results for a cancer cell with EGFR mutations, E~10E0. Time is from t~0 min to t~1 min; initial values are those of a
normal healthy cell; the units on the vertical axes are in mM and the units on the horizontal axes are in minutes.
doi:10.1371/journal.pone.0053663.g005

Mathematical Model for Lung Cancer
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estimations. We performed sensitivity analysis, employing the

method of partial rank correlation coefficient (PRCC), using

previously described program [38]. We let each of the 14
parameters vary in the interval between 1=2 of the estimated

value and twice its estimated value. Using Latin Hypercube

sampling method as in [38], we sampled each parameter from

uniformly distributed intervals and ran 2,000 realizations of

simulation. Then, we transformed the sampled parameter values

and the ratio M=L between miR-9 and let-7 as computed in the

simulation to rank values, and computed partial rank correlation

coefficients. PRCC values of the estimated parameters and their

ranges are presented in Table 3, and scatter plots of statistically

significant parameters are shown in Figure 15.

Among the 14 parameters, KR2, KM , KL, mC , mM , and mL were

statistically significant. The parameters mC and mM were strongly

positively correlated with M=L. This is natural; indeed mC and mM

are production rates of MYC and miR-9. As we increase

production rate of MYC, miR-9 concentration increases and let-

7 concentration decreases. On the other hand, mL, KM , and KL

were strongly negatively correlated to M=L. This is also to be

expected. Indeed, mL is the production rate of let-7, KM is the

saturation constant of MYC as source for miR-9, and KL is the

control constant of MYC in the let-7 equation. Therefore, it is

natural that M=L would decrease as the parameters mL, KM , and

KL increase. When we ran 10,000 realizations of simulation, we

obtained similar results.

EGFR inhibition reduces both c-MYC and miR-9 in a
concentration dependent manner

In an initial attempt to validate our mathematical model, we

treated an EGFR mutant lung cancer cell line with several

concentration of the clinically used EGFR inhibitor Gefitinib. We

then assessed treated cells for miR-9, let-7a and c-MYC expression

by QRT-PCR. As shown in Figure 16, we determined that while

lower concentrations (1mM ) of Gefitinib caused a statistically

significant reduction in both miR-9 and c-MYC, similar effects

were not evident at higher concentrations of Gefitinib or in let-7a.

These findings while they would need to be validated in other cell

lines suggest the additional complexity of the effects EGFR

inhibition on miRNA expression and that our mathematical model

only partially predicts the biological links between EGFR, c-MYC

and miRNA in lung cancer.

Discussion

Lung cancer is the leading cause of cancer-related deaths

worldwide. The majority of cases are diagnosed at later stages thus

limiting therapeutic options and contributing to poor outcome. As

a result, investigators have sought to identify lung cancer specific

biomarkers that may be utilized for early detection and to better

understand the metastatic process. Such biomarkers may signif-

icantly improve prognosis and reduce mortality. In this paper, we

have proposed a mathematical model that integrates the miRNAs

let-7 and miR-9 into the process of EMT. miR-9 has been shown

Figure 6. Simulation results for a cancer cell with EGFR mutations, E~10E0. Time is from t~0 min to t~105 min; initial values are those of a
normal healthy cell; the units on the vertical axes are in mM and the units on the horizontal axes are scaled in 104 minutes.
doi:10.1371/journal.pone.0053663.g006

Mathematical Model for Lung Cancer
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to be significantly upregulated and let-7 downregulated in

NSCLC.

Based on the experimental literature, we introduced a signaling

pathway from the EGF-EGFR complex to MMP expression which

involves SOS, Ras, ERK, MYC, the miRNAs miR-9 and let-7, E-

Cadherin, and MMP. Recent studies have demonstrated elevated

MMP-9 in NSCLC [25], but for modeling purposes we have

referred to MMP in a generic manner. Using an EGFR mutant

lung cancer cell line, we showed that inhibition of EGFR leads to a

reduction in miR-9 as well as c-MYC expression. However, the

relationships between miR-9 and c-MYC were not consistent at

higher concentrations of drug treatment. These findings support

the complexity of the kinetics of miRNA and target gene

relationships and highlight the inherent difficulties with modeling

miRNA biology. Our findings suggest that higher concentrations

of EGFR are likely to engage other regulators of miR-9 and/or c-

MYC and that miR-9 may be under the regulatory control of

additional genes beyond c-MYC.

We correspondingly developed a mathematical model including

a system of differential equations and used the model to compute

the level of miR-9 overexpression and let-7 downexpression in the

setting of EGFR mutations and Ras mutations. We showed that

such mutations upregulate the level of miR-9 and downregulate

the level of let-7. The 25-fold increase in miR-9 levels obtained in

the simulations was consistent quantitatively with clinical data

reported in human lung tumors (Supplementary Material S1). Our

experiments with EGFR mutant lung cancer cells did not show

any significant changes in let-7 suggesting that let-7 may also be

regulated by other signaling networks. We investigated how

random perturbations of let-7 and miR-9 affect MMP and

concluded that MMP is more robust against let-7 perturbations

than against miR-9 perturbations; this can be explained by the fact

that let-7 perturbations undergo damping by the negative

feedbacks from let-7 to Ras and from ERK to SOS.

To the best of our knowledge, the present paper is the first one

that develops a model for lung cancer and miRNA in terms of

differential equations. The model is based on a signaling pathway

that includes miR-9 and let-7. Simulations of the model

demonstrate how mutations that are detected in NSCLC include

upregulation of miR-9 and downregulation of let-7. The

mathematical model could be further extended by including

additional signaling pathways, specifically involving let-7, that are

associated with lung cancer. However, an important next step in

this line of investigation is to determine how deregulation of miR-9

and let-7 may jointly contribute to lung cancer progression and

may be used as reliable biomarkers. In order to address this

challenge mathematically, additional clinical investigation will be

required.

Methods

In this model, we assume that the EGF-EGFR complex is at

steady state and set it as a constant. Brown et al. (2004) modeled

EGFR signaling with negative feedback of ERK to SOS [32]. We

simplified some parts of their model to obtain the equations for SOS,

Ras, and ERK. We denote by S, Si, and Stot the concentrations of

active SOS, inactive SOS, and total SOS, respectively. Assuming

that the total number of SOS is conserved, we have

Figure 7. Simulation results for a cancer cell with Ras mutations, mR~10mR0. Time is from t~0 min to t~1 min; initial values are those of a
normal healthy cell; the units on the vertical axes are in mM and the units on the horizontal axes are in minutes.
doi:10.1371/journal.pone.0053663.g007
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SzSi~Stot: ð9Þ

We denote by ms the activation rate of the inactive SOS and by

ds as the deactivation rate of the active SOS. Describing these

conversions by the Michaelis-Menten kinetics, the governing

equation for the concentration of the active SOS is given by

dS

dt
~ms

: Si

SizKS1
{ds

: S

SzKS2
:

Using the fact that the EGF-EGFR complex activates SOS and

that ERK represses active SOS, we replace ms by mSE and ds by

dSEk, and we get Eq. (1). Similarly, we describe conversions

between active and inactive Ras and between active and inactive

ERK using Michaelis-Menten kinetics, and derive Eqs. (2) and (3).

Here, catalytic activation rates of Ras and ERK are proportional

to active SOS and active Ras concentrations, respectively. In Eq.

(2), repression by let-7 of the activation of Ras is described by an

inhibition factor, KR2=(LzKR2). In Eq. (4), production of MYC is

proportional to active ERK concentration. In Eq. (5), activation of

miR-9 by MYC is described by the fourth-order Hill function,

since MYC is a transcription factor and miR-9 activation may

involve several enzymatic steps. In Eq. (6), let-7 production is

inhibited by MYC. In Eq. (7), E-Cadherin production is

proportional to let-7 concentration and is inhibited by miR-9.

Throughout Eqs. (4)–(7), degradation of species is described by

linear mass action kinetics. Finally, in Eq. (8) MMP is produced at

constant rate and is degraded by E-Cadherin.

The parameters of Eqs. (1)–(8) are derived in the following

subsections. Most of the parameters are taken from Brown et al.

(2004) [32]. In their model, they have taken the initial

concentrations of all active signaling species to be zero, and the

initial concentrations of all inactive signaling species to be 1mM

except for MEK and ERK, whose concentrations were taken to be

5mM. As for the EGF-EGFR complex concentration, Brown et al

(2004) [32] assume it to be a variable but in our model, it is

constant. This constant is chosen as the steady state concentration

of the EGF-EGFR complex computed using their parameters.

Computation of E
We denote by Xe, Xr, and Xer the numbers of molecules of

EGF, free EGFR, and EGF-EGFR complex, and by kb and ku the

binding and unbinding rates for the EGF-EGFR complex. If X0 is

the total number of the EGFR molecules, then XrzXer~X0.

Assuming that binding and unbinding of EGF and EGFR are

balanced at steady state, we have

kbXe(X0{Xer){kuXer~0,

which gives

Xer~
kbXeX0

kbXezku

: ð10Þ

Figure 8. Simulation results for a cancer cell with Ras mutations, mR~10mR0. Time is from t~0 min to t~105 min; initial values are those of a
normal healthy cell; the units on the vertical axes are in mM and the units on the horizontal axes are scaled in 104 minutes.
doi:10.1371/journal.pone.0053663.g008
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According to Brown et al. (2004) [32],

kb~2:18503|10{5 =min

ku~0:0121008=min

Xe~1:0002|107

X0~80000:0,

and hence Xer~79996:0. We shall determine E by converting Xer

into a unit of concentration. Lung cells size, however, vary up to 6-

fold differences [39]. We therefore use an ‘‘average’’ cell size by

taking it to be the HeLa cell.

Since EGF and EGFR are located on the cell surface, we need

to compute the cell surface area; we assume that the cells have

spherical shape with radius R. For HeLa cell, the total volume is

940mm3 (volume of the cytoplasm)z

220mm3 (volume of the nucleus)

~1160mm3~
4pR3

3
,

according to Fujioka et al. (2006) [40]. Hence R~6:52mm and its

surface area is

S~4pR2~533:89mm2:

Converting the number of molecules of Xer into concentration

on the cell surface, we compute steady-state concentration of EGF-

EGFR complex as

E~
Xer

NAS
~

79996:0

6:022|1023 mol{1|533:89mm2

~0:2488mM:mm

where NA is the Avogadro’s number, 6:022|1023 mol{1; 1mol is

the amount of a substance that contains as many entities as there

are atoms in 12g of 12C, and 1M is 1 molar concentration (per

liter),

1M~1mol=L~1mol=dm3:

Other parameters in the SOS equation
Let XSa and XSi denote the numbers of active and inactive SOS

molecules. According to Brown et al. (2004),

Figure 9. Simulation results for a cancer cell with disruption in the negative feedback from ERK to SOS, dS~dS0=10. Time is from
t~0 min to t~1 min; initial values are those of a normal healthy cell; the units on the vertical axes are in mM and the units on the horizontal axes are
in minutes.
doi:10.1371/journal.pone.0053663.g009
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dXSa

dt
~ksXer

: XSi

XSizKs1
{dsXP90Rska

: XSa

XSazKs2
ð11Þ

where P90Rsk is a p90 ribosomal s6 kinase that inactivates SOS,

and XP90Rska is the number of active P90Rsk molecules [32]. In

that paper, parameters are given as ks~694:731=min,

Ks1~6086070:0, ds~1611:97=min, and Ks2~896896:0. Using

these numbers, we determine our parameters by

KS1~
Ks1

NAVc

~10:7515mM

KS2~
Ks2

NAVc

~1:5844mM

mS~ks|
NAS

NAVc

~394:5868=(mm:min),

where Vc~940mm3 is the volume of the cytoplasm in a HeLa cell.

The total number of molecules of active P90Rsk was taken to be

120,000:0 [32]. Since the initial concentration of ERK, 5mM,

corresponds to 600,000:0 molecules, we get

dS~ds|
120,000:0

600,000:0
~322:3940=min:

The initial concentration of SOS (all inactive) was 1mM, which

corresponds to 120,000:0 molecules. We convert this number to

concentration using the volume of the cytoplasm in a HeLa cell,

Stot~
120,000:0

NAVc

~0:2120mM:

Parameters in the Ras equation
Let XRa and XRi denote the numbers of molecules of active and

inactive Ras. From Brown et al. (2004),

dXRa

dt
~krXSa

: XRi

XRizKr1
{drXRGa

: XRa

XRazKr2
ð12Þ

where XSa and XRGa denote the numbers of molecules of active

SOS and active Ras-Gap [32]. In [32], parameters are given as

kr~32:344=min, Kr1~35954:3, dr~1509:36=min, and

Kr2~1432410:0. Also, the number of molecules of active Ras-

Gap is treated as a constant equal to 120,000:0. Accordingly, we

determine our parameters by

Figure 10. Simulation results for a cancer cell with disruption in the negative feedback from ERK to SOS, dS~dS0=10. Time is from
t~0 min to t~105 min; initial values are those of a normal healthy cell; the units on the vertical axes are in mM and the units on the horizontal axes
are scaled in 104 minutes.
doi:10.1371/journal.pone.0053663.g010
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KR1~
Kr1

NAVc

~0:0635mM

KR3~
Kr2

NAVc

~2:5305mM

mR~kr~32:344=min

dR~dr|
XRGa

NAVc

~319:9672mM=min:

For total Ras concentration, we convert the total number of Ras

molecules in a cell obtained from [32] to concentration using the

volume of the cytoplasm in a HeLa cell,

Rtot~
120,000:0

NAVc

~0:2120mM:

Figure 11. One sample path of miR-9 and MMP concentrations in time with random input in miR-9. For (A–D) E~10E0 and for (E–H)
E~20E0 . For (A, B, E, F) s~10{5 and for (C, D, G, H) s~1:2|10{5 . The units on the horizontal axes are scaled in 104 minutes.
doi:10.1371/journal.pone.0053663.g011
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Parameters in the ERK equation
Let XEka and XEki denote the numbers of molecules of active

and inactive ERK. Following Brown et al. (2004),

dXEka

dt
~kekXMa

: XEki

XEkizKek1
{dekXPa

: XEka

XEkazKek2
ð13Þ

where XMa and XPa denote the numbers of molecules of active

MEK and active PP2A [32]. PP2A is protein phosphatase 2 which

is an enzyme targeting proteins in oncogenic signaling pathways.

In that paper, parameters are given as kek~9:85367=min,

Kek1~1007340:0, dek~8:8912=min, and Kek2~3496490:0; the

initial total numbers of molecules of MEK and Ras are given as

600,000:0 and 120,000:0, and the number of molecules of active

PP2A is treated as a constant equal to 120,000:0. Therefore, we

determine our parameters by

KEk1~
Kek1

NAVc

~1:7795mM

KEk2~
Kek2

NAVc

~6:1768mM

Figure 12. One sample path of let-7 and MMP concentrations in time with random input in let-7. For (A–D) E~10E0 and for (E–H)
E~20E0 . For (A, B, E, F) s~5|10{5 and for (C, D, G, H) s~10{4 . The units on the horizontal axes are scaled in 104 minutes.
doi:10.1371/journal.pone.0053663.g012
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mEk~kek|
600,000:0

120,000:0
~49:2683=min

dEk~dek|
XPa

NAVc

~1:8848mM=min:

We convert the total number of ERK molecules, consisting of

active and inactive ERK in a cell to concentration, using the

volume of the cytoplasm in a HeLa cell, and set

Ektot~
600,000:0

NAVc

~1:0599mM:

Parameters in the MYC equation
Following Rudolph et al. (1999), there are 29,000 c-MYC

proteins in the nucleus [41]. We convert this to concentration

using the volume of the nucleus in a HeLa cell, Vn~220mm3.

Treating this concentration as the steady-state concentration of

MYC, we get

Figure 13. Mean concentrations of miR-9 and MMP and standard deviations from the means in time with random input in miR-9. For
(A–D) E~10E0 and for (E–H) E~20E0 . For (A, B, E, F) s~10{5 and for (C, D, G, H) s~1:2|10{5 . The units on the horizontal axes are scaled in
104 minutes. The result is taken from 1,000 realizations of simulation.
doi:10.1371/journal.pone.0053663.g013
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C0~
29,000

NAVn

~0:2189mM:

Half-life of c-MYC protein is 15{50min [42]. We take the half-

life of c-MYC as 30=min, and compute a degradation rate as

dC~
ln 2

30 min
~0:0231=min:

In steady state in Eq. (4),

0~mCEk0{dCC0 ð14Þ

where Ek0 is the steady-state concentration of ERK. To determine

Ek0, we first compute steady-state concentration of let-7.

Following Lim et al. (2003), there are 1300 let-7 molecules in a

human HeLa cell [43], and we assume that this number is at

steady state. We convert it to concentration by

Figure 14. Mean concentrations of let-7 and MMP and standard deviations from the means in time with random input in let-7. For
(A–D) E~10E0 and for (E–H) E~20E0 . For (A, B, E, F) s~5|10{5 and for (C, D, G, H) s~10{4 . The units on the horizontal axes are scaled in
104 minutes. The result is taken from 1,000 realizations of simulation.
doi:10.1371/journal.pone.0053663.g014
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L0~
1300

NAVc

~0:0023mM:

We compute a solution of Eq. (1)–(3) for S, R, and Ek with L

replaced by L0 using Matlab, and obtain the steady-state

concentration of ERK as Ek0~0:2746mM. From Eq. (14), we

then get

mC~
dCC0

Ek0
~0:0184=min:

Parameters in the miR-9 equation
Since the miR-9 copy number in the normal lung cell is very

small [44], we take the steady-state concentration of miR-9 to be

M0~1:8|10{5mM. Half-life of miR-9 in human brain tissue is

0:8hour [45], which gives the degradation rate dM~0:0144=min.

In steady state in Eq. (5),

0~mM

C4
0

C4
0zKM

{dM M0:

Based on the fact that miR-9 expression in the NSCLC tissues is

about 20{30 times that of normal tissues (see Supplementary

Material S1), we take KM to be very large, namely,

KM~10,000C4
0 . Then

mM~
dMM0

1=10001
~0:0026mM=min:

Figure 15. Scatter plots of rank transformed M=L with several rank transformed parameters. Scatter plots are drawn for statistically
significant parameters (p-valuev0:01); the units on the horizontal and vertical axes are scaled in 1,000; time is at 105 minutes and the result is taken
from 2,000 realizations of simulation.
doi:10.1371/journal.pone.0053663.g015
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Parameters in the let-7 equation
Half-life of let-7 after TAM treatment is 4 hours [46].

Accordingly, we take the degradation rate of dL~0:0029=min.

Then, in steady state in Eq. (6),

0~mL

KL

C0zKL

{dLL0:

Table 2. Summary of the parameter values.

Name Description Value used References

E0 concentration of EGF-EGFR complex 0:2488mM:mm [32]

(constant)

Stot total concentration of SOS 0:2120mM [32]

Rtot total concentration of Ras 0:2120mM [32]

Ektot total concentration of ERK 1:0599mM [32]

S0 Steady-state concentration of active SOS 0:0298mM estimated

R0 Steady-state concentration of active Ras 0:0053mM estimated

Ek0 Steady-state concentration of active ERK 0:2746mM estimated

C0 Steady-state concentration of MYC protein 0:2189mM [41]

M0 Steady-state concentration of miR-9 1:8|10{5 mM estimated

L0 Steady-state concentration of let-7 0:0023mM [43]

H0 Steady-state concentration of E-Cadherin 0:1mM [47]

P0 Steady-state concentration of MMP mRNA 1:1574|10{13 mM [49]

KS1 Saturation of inactive SOS on active SOS 10:7515mM [32]

KS2 Saturation of active SOS on inactive SOS 1:5844mM [32]

KR1 Saturation of inactive Ras on active Ras 0:0635mM [32]

KR2 Control of let-7 on Ras 0:0230mM estimated

KR3 Saturation of active Ras on inactive Ras 2:5305mM [32]

KEk1 Saturation of inactive ERK on active ERK 1:7795mM [32]

KEk2 Saturation of active ERK on inactive ERK 6:1768mM [32]

KM Saturation of MYC on miR-9 22:9606mM4 estimated

KL Control of MYC on let-7 0:2189mM estimated

KH Control of MYC on E-Cadherin 1:8|10{5 mM estimated

KP Control of E-Cadherin on MMP mRNA 0:1mM estimated

mS Catalytic production rate of active SOS 394:5868=(mm:min) [32]

mR0 Catalytic production rate of active Ras 32:344=min [32]

mEk Catalytic production rate of active ERK 49:2683=min [32]

mC Catalytic production rate of MYC 0:0184=min estimated

mM Catalytic production rate of miR-9 0:0026mM=min estimated

mL Catalytic production rate of let-7 1:3340|10{5 mM=min estimated

mH Catalytic production rate of E-Cadherin 0:2087=min estimated

mP Catalytic production rate of MMP 9:8379|10{17 mM=min estimated

dS0 Degradation rate of active SOS 322:3940=min [32]

dR Degradation rate of active Ras 319:9672mM=min [32]

dEk Degradation rate of active ERK 1:8848mM=min [32]

dC Degradation rate of MYC protein 0:0231=min [42]

dM Degradation rate of miR-9 0:0144=min [45]

dL Degradation rate of let-7 0:0029=min [46]

dH Degradation rate of E-Cadherin 0:0024=min [48]

dP Degradation rate of MMP mRNA 0:0017=min [51]

The table summarizes all the parameter values of the model equations (1)–(8).
doi:10.1371/journal.pone.0053663.t002
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Taking KL~C0 gives

mL~
dLL0

1=2
~1:3340|10{5mM=min:

Parameters in the E-Cadherin equation
Using the total E-Cadherin concentration in Chaplain (2011)

[47], we set steady-state concentration, H0~100nM~0:1mM.

Half-life of E-Cadherin is 4:8 hours [48], so the degradation rate is

dH~0:0024=min. In steady state in Eq. (7),

0~mH L0
KH

M0zKH

{dHH0:

Taking KH~M0 gives

mH~
dH H0

1=2L0
~0:2087=min:

Parameters in the MMP mRNA equation
According to Safranek et al. (2009), the number of MMP-9

mRNA in human lung tissue is 20:50=100mg [49]. Using the

human lung tissue density of 0:34g=cm3 [50], we compute the

MMP mRNA concentration in steady state,

P0~20:50=100mg|0:34g=cm3|

1

6:022|1023 mol{1
~1:1574|10{13 mM:

Half-life of MMP-9 mRNA is 7 hours [51], so the degradation

rate is dP~0:0017=min. Using the steady state equation for MMP

concentration,

0~mP{
H0

H0zKP

dPP0,

and taking KP~H0, we get

mP~
1

2
dPP0~9:8379|10{17mM=min:

Cell culture and drug treatment
For our experiments shown in Figure 16, we obtained the

EGFR mutant lung cancer cell line (HCC827) (E746-A750

deletion) as a generous gift from our collaborator (Michela

Garofalo, OSU). Cells were maintained in appropriate media.

HCC827 cell lines were subsequently treated with Gefitinib

(generous gift from Michela Garofalo, OSU) at concentrations of

1mM, 5mM, and 10mM. Following 24 hours of exposure, cells

were harvested for RNA and assessed for miR-9 (Assay ID#
Hs000583), let-7a (Assay ID# Hs00377), c-MYC (Assay ID#
Hs00153408_m1) (Applied Biosystems) by QRT-PCR. For

miRNA assessment RNU48 was used as the endogenous control

and for c-MYC GAPDH was used. Data is presented as fold

difference based on 2{DCt. Statistical analyses were performed

using ANOVA with Tukey Post Hoc analysis.

Table 3. Parameter ranges and partial rank correlation
coefficient (PRCC) values.

Parameter Range PRCC

S0 ½0:0149,0:0596�mM 0:0072

R0 ½0:0027,0:0106�mM 0:0084

Ek0 ½0:1373,0:5492�mM 0:0178

M0 ½0:0900,0:3600�10{4 mM 0:0027

KR2 ½0:0115,0:0460�mM 0:2516�

KM ½11:4803,45:9212�mM4 {0:7870�

KL ½0:1095,0:4378�mM {0:6427�

KH ½0:0900,0:3600�10{4 mM 0:0294

KP ½0:0500,0:2000�mM {0:0397

mC ½0:0092,0:0368�=min 0:9867�

mM ½0:0013,0:0052�mM =min 0:7869�

mL ½0:0667,0:2668�10{4 mM=min {0:8404�

mH ½0:1043,0:4174�=min {0:0283

mP ½0:0492,0:1968�10{15 mM=min {0:0231

Statistically significant parameters are denoted as * (p-valuev0:01).
doi:10.1371/journal.pone.0053663.t003

Figure 16. QRT-PCR expression of miR-9, let-7a and c-MYC in HCC827 lung cancer cell lines treated with Gefitinib. Statistical
significance is defined as *p,0.05 in (A) and **p,0.01 in (C).
doi:10.1371/journal.pone.0053663.g016
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Supporting Information

Material S1 Experimental results of miR-9 in lung
tumor tissues. Experimental results using quantitative reverse

transcription polymerase chain reaction and in situ hybridization

for miR-9 are provided.

(PDF)
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