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SEPARATION OF TIME-SCALES AND MODEL REDUCTION FOR
STOCHASTIC REACTION NETWORKS1

BY HYE-WON KANG AND THOMAS G. KURTZ

University of Minnesota and University of Wisconsin, Madison

A stochastic model for a chemical reaction network is embedded in a
one-parameter family of models with species numbers and rate constants
scaled by powers of the parameter. A systematic approach is developed for
determining appropriate choices of the exponents that can be applied to large
complex networks. When the scaling implies subnetworks have different
time-scales, the subnetworks can be approximated separately, providing in-
sight into the behavior of the full network through the analysis of these lower-
dimensional approximations.

1. Introduction. Chemical reaction networks in biological cells involve
chemical species with vastly differing numbers of molecules and reactions with
rate constants that also vary over several orders of magnitude. This wide variation
in number and rate yield phenomena that evolve on very different time-scales.
As in many other areas of application, these differing time-scales can be ex-
ploited to obtain simplifications of complex models. Papers by Rao and Arkin
(2003) and Haseltine and Rawlings (2002) stimulated considerable interest in
this approach and notable contributions by Cao, Gillespie and Petzold (2005),
Goutsias (2005), E, Liu and Vanden-Eijnden (2007), Mastny, Haseltine and Rawl-
ings (2007), Crudu, Debussche and Radulescu (2009) and others. All of the cited
work considers models of chemical reaction networks given by continuous time
Markov chains where the state of the chain is an integer vector whose compo-
nents give the numbers of molecules of each of the chemical species involved in
the reaction. Most of the analysis carried out in this previous work is based on
the chemical master equation (the Kolmogorov forward equation) determining the
one-dimensional distributions of the process and is focused on simplifying sim-
ulation methods for the process. In contrast, the analysis in Ball et al. (2006) is
based primarily on stochastic equations determining the process and focuses on
the derivation of simplified models obtained as limits of rescaled versions of the
original model.

The present paper gives a systematic development of many of the ideas intro-
duced in Ball et al. (2006). First, recognizing that the variation in time-scales is
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due both to variation in species number and to variation in rate constants, we nor-
malize species numbers and rate constants by powers of a fixed constant N0 which
we assume to be “large.”

Second, we replace N0 by a parameter N to obtain a one-parameter family of
models and obtain our approximate models as rigorous limits as N → ∞. It is
natural to compare this approach to singular perturbation analysis of deterministic
models [cf. Segel and Slemrod (1989)] and many of the same ideas and problems
arise. This kind of analysis is implicit in some of the earlier work and is the basis
for the work in Ball et al. (2006).

Third, as in Ball et al. (2006), the different time-scales are identified with pow-
ers N

γ
0 , and making a change of time variable (replacing t by tNγ ), we get dif-

ferent limiting/approximate models involving different subsets of the chemical
species. As observed in Cao, Gillespie and Petzold (2005) and E, Liu and Vanden-
Eijnden (2007), the variables in the approximate models may correspond to linear
combinations of species numbers. We identify the time-scale of a species or a re-
action with the exponent γ for which the asymptotic behavior is nondegenerate,
that is, the quantity has a nonconstant, well-behaved limit. The time-scale of a re-
action is determined by the scaling of its rate constant and by the scaling of the
species numbers of the species that determine the intensity/propensity function for
the reaction. The time-scale of a species will depend both on the scaling of the
intensity/propensity functions (the reaction time-scales) and on the scaling of the
species number. It can happen that the scaling of a species number will need to be
different for different time scales, and a species may appear in the limiting model
for more than one of the time scales.

Fourth, the limiting models may be stochastic, deterministic or “hybrid” in-
volving stochastically driven differential equations, that is, piecewise determinis-
tic Markov processes [see Davis (1993)]. Haseltine and Rawlings (2002) obtain
hybrid models and hybrid models have been used elsewhere in reaction network
modeling [e.g., Hensel, Rawlings and Yin (2009), Zeiser, Franz and Liebscher
(2010)] and are a primary focus of Crudu, Debussche and Radulescu (2009).

Finally, as in Ball et al. (2006), we carry out our analysis using stochastic equa-
tions of the form

X(t) = X(0) + ∑
k

Yk

(∫ t

0
λk(X(s)) ds

)
ζk

that determine the continuous time Markov chain model. Here the Yk are inde-
pendent unit Poisson processes and the ζk are vectors in Z

d . These equations are
rescaled and the analysis carried out exploiting the law of large numbers and mar-
tingale properties of the Yk . [For more information, see Kurtz (1977/78) and Ethier
and Kurtz (1986), Chapter 11.] The other critical component of the analysis is aver-
aging methods that date back at least to Khas’minskiı̆ (1966a, 1966b). [We follow
Kurtz (1992). See that paper for additional references.]
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If N0 is large but not large enough, the limiting model obtained by the proce-
dure outlined above may have components that exhibit no fluctuation but corre-
sponding to components in the original model that exhibit substantial fluctuation.
This observation suggests the possibility of some kind of diffusion/Langevin ap-
proximation. Under what we will call the classical scaling (see Section 2), diffu-
sion/Langevin approximations can be determined simply by replacing the rescaled
Poisson processes by their appropriate Brownian approximations. In systems with
multiple time-scales that involve averaging fast components, fluctuations around
averaged quantities may also contribute to the diffusion terms, and identifying an
appropriate diffusion approximation becomes more delicate. These “higher order”
corrections will be discussed in a later paper [Kang, Kurtz and Popovic (2012)].

Section 2 introduces the general class of models to be considered and defines
the scaling parameters used in our approach. For comparison purposes, we will
also describe the “classical scaling” that leads to the deterministic law of mass
action. Section 3 describes systematic approaches to the selection of the scaling
parameters. Unfortunately, even with these methods there may be as much art as
science in their selection, although perhaps we should claim that this is a “feature”
(flexibility) rather than a “bug” (ambiguity). Section 4 discusses identification of
principal time-scales and derivation of the limiting models. Section 5 reviews gen-
eral averaging methods, and Section 6 gives additional examples.

We believe that these methods provide tools for the systematic reduction of
highly complex models. Further evidence for that claim is provided in Kang (2011)
in which the methods are applied to obtain a three time-scale reduction of a model
of the heat shock response in E. coli given by Srivastava, Peterson and Bentley
(2001). We should point out, however, that there are natural examples of model re-
ductions that do not fit into our primary framework. We have focused on situations
in which all species abundances remain positive, at least on average, in the limiting
models. In Section 6.5, we consider examples which fail the balance conditions of
Section 3, but for which reduced models can still be obtained in which some of the
species are completely eliminated from the system.

1.1. Terminology. This paper relies on work in both the stochastic processes
and the chemical physics and biochemical literature. Since the two communities
use different terminology, we offer a brief translation table.

Chemistry Probability

Propensity Intensity
Master equation Forward equation
Langevin approximation Diffusion approximation
Van Kampen approximation Central limit theorem
Quasi steady state/partial equilibrium analysis Averaging
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The terminology in the last line is less settled on both sides, and the methods we
will discuss in Section 5 may not yield “averages” at all, although when they do
not they still correspond well to the quasi-steady state assumption in the chemical
literature.

2. Equations for the system state. The standard notation for a chemical re-
action

A + B ⇀ C

is interpreted as “a molecule of A combines with a molecule of B to give a
molecule of C.”

A + B � C

means that the reaction can go in either direction, that is, in addition to the previous
reaction, a molecule of C can dissociate into a molecule of A and a molecule of B .
We consider a network of reactions involving s0 chemical species, S1, . . . , Ss0 , and
r0 chemical reactions

s0∑
i=1

νikSi ⇀

s0∑
i=1

ν′
ikSi, k = 1, . . . , r0,

where the νik and ν′
ik are nonnegative integers. If the kth reaction occurs, then for

i = 1, . . . , s0, νik molecules of Si are consumed and ν′
ik molecules are produced.

We write reversible reactions as two separate reactions.
Let X(t) ∈ N

s0 be the vector whose components give the numbers of molecules
of each species in the system at time t . Let νk be the vector with components νik

and ν′
k the vector with components ν′

ik . If the kth reaction occurs at time t , then
the state satisfies

X(t) = X(t−) + ν′
k − νk.

If Rk(t) is the number of times that the kth reaction occurs by time t , then

X(t) = X(0) + ∑
k

Rk(t)(ν
′
k − νk) = X(0) + (ν′ − ν)R(t),

where ν′ is the s0 × r0-matrix with columns given by the ν′
k , ν is the matrix with

columns given by the νk , and R(t) ∈ N
r0 is the vector with components Rk(t).

Modeling X as a continuous time Markov chain, we can write

Rk(t) = Yk

(∫ t

0
λk(X(s)) ds

)
,(2.1)

where the Yk are independent unit Poisson processes and λk(x) is the rate at which
the kth reaction occurs if the chain is in state x, that is, λk(X(t)) gives the intensity
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(propensity in the chemical literature) for the kth reaction. Then X is the solution
of

X(t) = X(0) + ∑
k

Yk

(∫ t

0
λk(X(s)) ds

)
(ν′

k − νk).(2.2)

Define ζk = ν′
k − νk . The generator of the process has the form

Bf (x) = ∑
k

λk(x)
(
f (x + ζk) − f (x)

)
.

Assuming that the solution of (2.2) exists for all time, that is, X jumps only finitely
often in a finite time interval,

f (X(t)) − f (X(0)) −
∫ t

0
Bf (X(s)) ds(2.3)

is at least a local martingale for all functions on the state space of the process X.
If (2.3) is a martingale, then its expectation is zero and∑

x

f (x)p(x, t) = ∑
x

f (x)p(x,0) +
∫ t

0
Bf (x)p(x, s) ds,(2.4)

where p(x, t) = P {X(t) = x}. Taking f (x) = 1{y}(x), (2.4) gives the Kolmogorov
forward equations (or master equation in the chemical literature)

ṗ(y, t) = ∑
k

λk(y − ζk)p(y − ζk, t) − ∑
k

λk(y)p(y, t).(2.5)

The stochastic equation (2.2), the martingales (2.3) and the forward equation
(2.5) provide three different ways of specifying the same model. This paper focuses
primarily on the stochastic equation which seems to be the simplest approach to
identifying and analyzing the rescaled families of models that we will introduce.

In what follows, we will focus on reactions that are at most binary (i.e., consume
at most two molecules), so λk(x) must have one of the following forms:

λk Reaction νk

κ ′
k ∅ → stuff 0

κ ′
kxi Si → stuff ei

κ ′
kV

−1xi(xi − 1) 2Si → stuff 2ei

κ ′
kV

−1xixj Si + Sj → stuff ei + ej

Here V denotes some measure of the volume of the system, and the form of
the rates reflects the fact that the rate of a binary reaction in a well-stirred system
should vary inversely with the volume of the system. Note that if ζik < 0, then
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λk(x) must have xi as a factor. Higher order reactions can be included at the cost
of more complicated expressions for the λk .

Our intent is to embed the model of primary interest X into a family of models
XN indexed by a large parameter N . The model X corresponds to a particular
value of the parameter N = N0, that is, X = XN0 .

For each species i, let αi ≥ 0 and define the normalized abundance (or simply,
the abundance) for the N th model by

ZN
i (t) = N−αiXN

i (t).

Note that the abundance may be the species number (αi = 0), the species concen-
tration or something else. The exponent αi should be selected so that ZN

i = O(1).
To be precise, we want {ZN

i (t)} to be stochastically bounded, that is, for each
ε > 0, there exists Kε,t < ∞ such that

inf
N

P
{
sup
s≤t

ZN
i (s) ≤ Kε,t

}
≥ 1 − ε.

In other words, we want αi to be “large enough.” On the other hand, we do not
want αi to be so large that ZN

i converges to zero as N → ∞. For example, the
existence of δε,t such that

inf
N

P
{

inf
s≤t

ZN
i (s) ≥ δε,t

}
≥ 1 − ε

would suffice; however, there are natural situations in which αi = 0 and ZN
i is

occasionally or even frequently zero, so this requirement would in general be too
restrictive. For the moment, we just keep in mind that αi cannot be “too big.”

The rate constants may also vary over several orders of magnitude, so we de-
fine κk by setting κ ′

k = κkN
βk

0 for unary reactions and κ ′
kV

−1 = κkN
βk

0 for binary
reactions. The βk should be selected so that the κk are of order one, although we
again avoid being too precise regarding the meaning of “order one.” For a unary
reaction, the intensity for the model of primary interest becomes

κ ′
kxi = N

βk+αi

0 κkzi = N
βk+νk ·α
0 κkzi

and for binary reactions,

κ ′
kV

−1xixj = N
βk+αi+αj

0 κkzizj = N
βk+νk ·α
0 κkzizj

and

κ ′
kV

−1xi(xi − 1) = N
βk+2αi

0 κkzi(zi − N
−αi

0 ) = N
βk+νk ·α
0 κkzi(zi − N

−αi

0 ).(2.6)

The N th model in the scaled family is given by the system

ZN
i (t) = ZN

i (0) + ∑
k

N−αiYk

(∫ t

0
Nβk+νk ·αλk(Z

N(s)) ds

)
(ν′

ik − νik).
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For binary reactions of the form 2Si → stuff with αi > 0, λk(z) = κkzi(zi −N−αi )

depends on N , but to simplify notation we still write λk rather than λN
k .

Let �N = diag(N−α1, . . . ,N−αs0 ), ρk = βk + νk · α, and ζk = ν′
k − νk . The

generator for ZN is

BNf (z) = ∑
k

Nρkλk(z)
(
f (z + �Nζk) − f (z)

)
.

Even after the βk and αi are selected, we still have the choice of time-scale on
which to study the model, that is, we can consider

Z
N,γ
i (t) = ZN

i (tNγ )

= ZN
i (0) + ∑

k

N−αiYk

(∫ t

0
Nγ+βk+νk ·αλk(Z

N,γ (s)) ds

)
(2.7)

× (ν′
ik − νik)

for any γ ∈ R. Different choices of γ may give interesting approximations
for different subsets of species. To identify that approximation, note that if
limN→∞ Z

N,γ
i = Z

γ
i and N0 is “large,” then we should have

Xi(t) ≡ X
N0
i (t) ≈ N

αi

0 Z
γ
i (tN

−γ
0 ).

In what we will call the classical scaling [see, e.g., Kurtz (1972, 1977/78)] N0
has the interpretation of volume times Avogadro’s number and αi = 1, for all i, so
Z

N0
i is the concentration of Si . Taking βk = 0 for a unary reaction and βk = −1

for a binary reaction, the intensities are all of the form Nλk(z), and, hence, taking
γ = 0, ZN = ZN,0 converges to the solution of

Zi(t) = Zi(0) + ∑
k

∫ t

0
κkZ(s)νk ds(ν′

ik − νik),(2.8)

where zνk = ∏
i z

νik

i . Note that (2.8) is just the usual law of mass action model for
the network.

3. Determining the scaling exponents. For systems with a diversity of scales
because of wide variations in species numbers or rate constants or both, the chal-
lenge is to select the αi and the βk in ways that capture this variation and produce
interesting approximate models. Once the exponents and N0 are selected,

XN
i (0) =

⌊(
N

N0

)αi

Xi(0)

⌋
,

and the family of models to be studied is determined.
Suppose

κ ′
1 ≥ κ ′

2 ≥ · · · ≥ κ ′
r0

.
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Then it is reasonable to select the βi so that β1 ≥ · · · ≥ βr0 , although it may be
natural to impose this order separately for unary and binary reactions. (See the
“classical” scaling.)

Typically, we want to select the αi so that ZN
i (t) = N−αiXN

i (t) = O(1),
or, more precisely, assuming limN→∞ ZN

i (0) = Zi(0) > 0, for all i, we want
to avoid α, β and γ for which limN→∞ ZN

i (tNγ ) = 0, for all t > 0 or
limN→∞ ZN

i (tNγ ) = ∞, for all t > 0. This goal places constraints on α, β and
possibly γ .

3.1. Species balance. Consider the reaction system

S1 + S2 ⇀ S3 + S4,

S3 + S5 ⇀ S6.

Then the equation for Z
N,γ
3 is

Z
N,γ
3 (t) = ZN

3 (0) + N−α3Y1

(
Nγ+β1+α1+α2

∫ t

0
κ1Z

N,γ
1 (s)Z

N,γ
2 (s) ds

)
− N−α3Y2

(
Nγ+β2+α3+α5

∫ t

0
κ2Z

N,γ
3 (s)Z

N,γ
5 (s) ds

)
.

Assuming that Z
N,γ
i = O(1) for i 
= 3 and ZN

3 (0) = O(1), Z
N,γ
3 = O(1) if

(β1 + α1 + α2 + γ ) ∨ (β2 + α3 + α5 + γ ) ≤ α3

(the power of N outside the Poisson processes dominates the power inside) or if

β1 + α1 + α2 = β2 + α3 + α5.(3.1)

Assuming (3.1), if Z
N,γ
3 (s) >

κ1Z
N,γ
1 (s)Z

N,γ
2 (s)

κ2Z
N,γ
5 (s)

, the rate of consumption of S3 ex-

ceeds the rate of production, and if the inequality is reversed, the rate of production
exceeds the rate of consumption ensuring that Z

N,γ
3 neither explodes nor is driven

to zero.
In general, let �+

i = {k :ν′
ik > νik}, that is, �+

i gives the set of reactions that
result in an increase in the ith species, and let �−

i = {k :ν′
ik < νik}. Then for each i,

we want either

max
k∈�−

i

(βk + νk · α) = max
k∈�+

i

(βk + νk · α)(3.2)

or

max
k∈�+

i ∪�−
i

(βk + νk · α) + γ ≤ αi.(3.3)
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We will refer to (3.2) as the balance equation for species i and to (3.3) as a time-
scale constraint since it is equivalent to

γ ≤ αi − max
k∈�+

i ∪�−
i

(βk + νk · α).

The requirement that either a species be balanced or the time-scale constraint be
satisfied will be called the species balance condition.

Equation (3.2) is the requirement that the maximum rate at which a species is
produced is of the same order of magnitude as the rate at which it is consumed.
Since consumption rates are proportional to the normalized species state Zi ,
Zi should remain O(1), provided the same is true for the other Zj even if the
normalized reaction numbers blow up. If (3.2) fails to hold, then (3.3) ensures that
Zi(t) = O(1), again provided the other Zj remain O(1).

Note that if ζik 
= 0, then

γ = αi − (βk + νk · α)(3.4)

is in some sense the natural time-scale for the normalized reaction number

N−αiR
N,γ
k (t) = N−αiYk

(
Nγ+βk+νk ·α

∫ t

0
λk(Z

N,γ (s)) ds

)
.

Then, regardless of whether (3.2) or (3.3) holds,

γi = αi − max
k∈�+

i ∪�−
i

(βk + νk · α)(3.5)

is the natural time-scale for species Si . With reference to (2.7), if γ < γi , we expect
Z

N,γ
i (t) to converge to limN→∞ ZN

i (0). If γ = γi and αi > 0, then we expect

lim
N→∞Z

N,γi

i (t) = lim
N→∞

(
ZN

i (0) + ∑
k∈�i,0

∫ t

0
λk(Z

N,γi (s)) ds(ν′
ik − νik)

)
,

where

�i,0 =
{
l :βl + νl · α = max

k∈�+
i ∪�−

i

(βk + νk · α)
}

and each integral on the right-hand side is nonconstant but well behaved. If αi = 0,
we expect

lim
N→∞Z

N,γi

i (t) = lim
N→∞

(
ZN

i (0) + ∑
k∈�i,0

Yk

(∫ t

0
λk(Z

N,γi (s)) ds

)
(ν′

ik − νik)

)
.

It is important to notice that we associate “time-scales” with species (and as we
will see below, with collections of species) and that one reaction may determine
different time-scales associated with different species.
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3.2. Collective species balance. The species balance condition, however, does
not by itself ensure that the normalized species numbers are asymptotically
all O(1). There may also be subsets of species such that the collective rate of pro-
duction is of a different order of magnitude than the collective rate of consumption.
Consider the following simple network:

∅
κ ′

1
⇀S1

κ ′
2�

κ ′
3

S2
κ ′

4
⇀∅.

If 0 < β4 < β1 < β2 = β3 and α1 = α2 = 0, then

ZN
1 (t) = ZN

1 (0) + Y1(κ1N
β1 t) + Y3

(
κ3N

β3

∫ t

0
ZN

2 (s) ds

)
− Y2

(
κ2N

β2

∫ t

0
ZN

1 (s) ds

)
,

(3.6)

ZN
2 (t) = ZN

2 (0) + Y2

(
κ2N

β2

∫ t

0
ZN

1 (s) ds

)
− Y3

(
κ3N

β3

∫ t

0
ZN

2 (s) ds

)
− Y4

(
κ4N

β4

∫ t

0
ZN

2 (s) ds

)
.

Since β2 = β3 ∨β1 and β2 = β3 ∨β4, the species balance condition is satisfied for
all species, but noting that

ZN
1 (t) + ZN

2 (t) = ZN
1 (0) + ZN

2 (0) + Y1(κ1N
β1 t) − Y4

(
κ4N

β4

∫ t

0
ZN

2 (s) ds

)
,

the species numbers still go to infinity as N → ∞. This example suggests the need
to consider linear combinations of species. These linear combinations may, in fact,
play the role of “virtual” species or auxiliary variables needed in the specifica-
tion of the reduced models [cf. Cao, Gillespie and Petzold (2005) and E, Liu and
Vanden-Eijnden (2005, 2007)].

To simplify notation, define

ρk = βk + νk · α,

so the scaled model satisfies

ZN,γ (t) = ZN,γ (0) + �N

∑
k

Yk

(
Nβk+νk ·α+γ

∫ t

0
λk(Z

N,γ (s)) ds

)
ζk

= ZN,γ (0) + �N

∑
k

Yk

(
Nρk+γ

∫ t

0
λk(Z

N,γ (s)) ds

)
ζk,

where �N is the diagonal matrix with entries N−αi .

DEFINITION 3.1. For θ ∈ [0,∞)s0 , define �+
θ = {k : θ · ζk > 0} and �−

θ =
{k : θ · ζk < 0}.
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Then, noting that

θT �−1
N ZN,γ (t) =

s0∑
i=1

θiN
αiZ

N,γ
i (t) =

s0∑
i=1

θiX
N
i (Nγ t),

θT �−1
N ZN,γ (t) = θT �−1

N ZN,γ (0) + ∑
k

(θ · ζk)Yk

(
Nρk+γ

∫ t

0
λk(Z

N,γ (s)) ds

)

= θT �−1
N ZN,γ (0) + ∑

k∈�+
θ

(θ · ζk)R
N,γ
k (t)

− ∑
k∈�−

θ

|(θ · ζk)|RN,γ
k (t).

To avoid some kind of degeneracy in the limit, either the positive and negative sums
must cancel, or they must grow no faster than Nαθ , where αθ = max{αi : θi > 0}.
Consequently, we extend the species balance condition to linear combinations of
species.

CONDITION 3.2. For each θ ∈ [0,∞)s0 ,

max
k∈�−

θ

(βk + νk · α) = max
k∈�+

θ

(βk + νk · α)(3.7)

or

γ ≤ γθ ≡ max
i : θi>0

αi − max
k∈�+

θ ∪�−
θ

(βk + νk · α) = αθ − max
k∈�+

θ ∪�−
θ

ρk.(3.8)

Of course, if θi > 0 for only a single species, then this requirement is just the
species balance condition, so Condition 3.2 includes that condition. Again, we will
refer to (3.7) as the balance equation for the linear combination θ ·X = ∑

i θiXi . In
the special case of θ = ei , the vector with ith component 1 and other components 0,
we say that Xi is balanced or that the species Si is balanced. If (3.7) fails for θ ,
we say that θ · X is unbalanced. The inequalities given by (3.8) are again called
time-scale constraints, as they imply

γ ≤ min
θ ·X unbalanced

γθ .(3.9)

For example, consider the network

∅
κ ′

1
⇀S1

κ ′
2�

κ ′
3

S2

and assume that κ ′
k = κkN

βk

0 , where β1 = β2 > β3. For S2 to be balanced, we must
have β2 + α1 = β3 + α2 and for S1 to be balanced, we must have

β1 ∨ (β3 + α2) = β2 + α1.
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Let α1 = 0 and α2 = β2 − β3 so S1 and S2 are balanced. For θ = (1,1), �+
θ = {1},

and �−
θ = ∅. Consequently, (3.7) fails, so we require

γ ≤ α1 ∨ α2 − β1 = −β3.(3.10)

There are two time-scales of interest in this model: γ = −β1, the natural time-scale
of S1, and γ = −β3, the natural time-scale of S2. The system of equations is

Z
N,γ
1 (t) = ZN

1 (0) + Y1(κ1N
γ+β1 t)

− Y2

(
κ2N

γ+β2

∫ t

0
Z

N,γ
1 (s) ds

)
+ Y3

(
κ3N

γ+β3+α2

∫ t

0
Z

N,γ
2 (s) ds

)
,

Z
N,γ
2 (t) = ZN

2 (0) + N−α2Y2

(
κ2N

γ+β2

∫ t

0
Z

N,γ
1 (s) ds

)
− N−α2Y3

(
κ3N

γ+β3+α2

∫ t

0
Z

N,γ
2 (s) ds

)
.

For γ = −β1, since β1 = β2 = β3 + α2, the limit of ZN,γ satisfies

Z1(t) = Z1(0) + Y1(κ1t) − Y2

(
κ2

∫ t

0
Z1(s) ds

)
+ Y3

(
κ3

∫ t

0
Z2(s) ds

)
= Z1(0) + Y1(κ1t) − Y2

(
κ2

∫ t

0
Z1(s) ds

)
+ Y3(κ3Z2(0)t),

Z2(t) = Z2(0).

For γ = −β3, if we divide the equation for Z
N,γ
1 by Nα2 = Nβ1−β3 , we see that

0 = lim
N→∞N−α2Z

N,γ
1 (t)

= lim
N→∞N−α2ZN

1 (0) + N−α2Y1(κ1N
γ+β1 t)

− N−α2Y2

(
κ2N

γ+β2

∫ t

0
Z

N,γ
1 (s) ds

)
(3.11)

+ N−α2Y3

(
κ3N

γ+β3+α2

∫ t

0
Z

N,γ
2 (s) ds

)
= lim

N→∞

(
κ1t + κ3

∫ t

0
Z

N,γ
2 (s) ds − κ2

∫ t

0
Z

N,γ
1 (s) ds

)
and Z

N,γ
2 converges to

Z2(t) = Z2(0) + κ1t.
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With reference to (3.10), if γ > −β3, then Z
N,γ
2 (t) → ∞, for each t > 0, demon-

strating the significance of the time-scale constraints.
For γ = −β3, Z

N,γ
1 fluctuates rapidly and does not converge in a functional

sense. Its behavior is captured, at least to some extent, by its occupation measure

V
N,γ
1 (C × [0, t]) =

∫ t

0
1C(Z

N,γ
1 (s)) ds.

Applying the generator to functions of z1 and using the fact that β1 − β3 = β2 −
β3 = α2, B

N,γ f (z1, z2) = Nα2Cz2f (z1), where

Cz2f (z1) = (κ1 + κ3z2)
(
f (z1 + 1) − f (z1)

)
+ κ2z1

(
f (z1 − 1) − f (z1)

)
.

Then

f (Z
N,γ
1 (t)) − f (Z

N,γ
1 (0)) − Nα2

∫
N×[0,t]

C
Z

N,γ
2 (s)

f (z1)V
N,γ
1 (dz1 × ds)

is a martingale, and dividing by Nα2 and passing to the limit, it is not difficult to
see that V

N,γ
1 converges to a measure satisfying∫

N×[0,t]
CZ2(s)f (z1)V1(dz1 × ds) = 0.

(See Section 5.) Writing V1(dz1 × ds) = vs(dz1) ds, it follows that vs is the Pois-
son distribution with mean κ1+κ3Z2(s)

κ2
. We will refer to vs as the conditional-

equilibrium or local-averaging distribution.

3.3. Auxiliary variables. While (3.5) gives the natural time-scale for individ-
ual species, it is clear from examples considered by E, Liu and Vanden-Eijnden
(2005) that the species time-scales may not be the only time-scales of interest. As
above, define

αθ = max
i : θi>0

αi(3.12)

and

Z
N,γ
θ (t) = N−αθ θ · �−1

N ZN,γ (t) = N−αθ

s0∑
i=1

θiX
N
i (Nγ t).(3.13)

Then the natural time scale for Z
N,γ
θ is

γθ = αθ − max
k∈�+

θ ∪�−
θ

ρk.(3.14)
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For example, E, Liu and Vanden-Eijnden (2005) consider the network

S1
κ ′

1�
κ ′

2

S2
κ ′

3�
κ ′

4

S3
κ ′

5�
κ ′

6

S4

with the rate constants for reactions 3 and 4 much smaller than the others. The
scaled model is given by

ZN
1 (t) = ZN

1 (0) + N−α1Y2

(
κ2N

β2+α2

∫ t

0
ZN

2 (s) ds

)
− N−α1Y1

(
κ1N

β1+α1

∫ t

0
ZN

1 (s) ds

)
,

ZN
2 (t) = ZN

2 (0) + N−α2Y1

(
κ1N

β1+α1

∫ t

0
ZN

1 (s) ds

)
− N−α2Y2

(
κ2N

β2+α2

∫ t

0
ZN

2 (s) ds

)
+ N−α2Y4

(
κ4N

β4+α3

∫ t

0
ZN

3 (s) ds

)
− N−α2Y3

(
κ3N

β3+α2

∫ t

0
ZN

2 (s) ds

)
,

ZN
3 (t) = ZN

3 (0) + N−α3Y6

(
κ6N

β6+α4

∫ t

0
ZN

4 (s) ds

)
− N−α3Y5

(
κ5N

β5+α3

∫ t

0
ZN

3 (s) ds

)
+ N−α3Y3

(
κ3N

β3+α2

∫ t

0
ZN

2 (s) ds

)
− N−α3Y4

(
κ4N

β4+α3

∫ t

0
ZN

3 (s) ds

)
,

ZN
4 (t) = ZN

4 (0) + N−α4Y5

(
κ5N

β5+α3

∫ t

0
ZN

3 (s) ds

)
− N−α4Y6

(
κ6N

β6+α4

∫ t

0
ZN

4 (s) ds

)
.

The rate constants used in E, Liu and Vanden-Eijnden (2005) would correspond
to β1 = β2 = β5 = β6 > β3 = β4, but in order to introduce some complexity in
the solution of the balance conditions, assume that β1 = β2 > β5 = β6 > β3 > β4.
Then if we look for a scaling under which all θ ·X are balanced, α1 = α2, α3 = α4,
and α2 + β3 = α3 + β4, so α3 = α2 + β3 − β4. For definiteness, take α1 = α2 = 0.



MODEL REDUCTION FOR REACTION NETWORKS 543

The natural time-scale for S1 and S2 is −β1, and the natural time-scale for S3
and S4 is −β5, but on either of these time-scales Z1 +Z2 and Z3 +Z4 are constant.
In particular,

U
N,γ
1 (t) ≡ Z

N,γ
1 (t) + Z

N,γ
2 (t)

= ZN
1 (0) + ZN

2 (0) + Y4

(
κ4N

γ+β4+α3

∫ t

0
Z

N,γ
3 (s) ds

)
− Y3

(
κ3N

γ+β3

∫ t

0
Z

N,γ
2 (s) ds

)
,

U
N,γ
2 (t) ≡ Z

N,γ
3 (t) + Z

N,γ
4 (t)

= ZN
3 (0) + ZN

4 (0) − N−α3Y4

(
κ4N

γ+β4+α3

∫ t

0
Z

N,γ
3 (s) ds

)
+ N−α3Y3

(
κ3N

γ+β3

∫ t

0
Z

N,γ
2 (s) ds

)
.

For γ1 = γ2 = −β1 = −β2, (Z
N,γ1
1 ,Z

N,γ1
2 ) converges to

Z
γ1
1 (t) = Z1(0) + Y2

(
κ2

∫ t

0
Z

γ1
2 (s) ds

)
− Y1

(
κ1

∫ t

0
Z

γ1
1 (s) ds

)
,

Z
γ1
2 (t) = Z2(0) + Y1

(
κ1

∫ t

0
Z

γ1
1 (s) ds

)
− Y2

(
κ2

∫ t

0
Z

γ1
2 (s) ds

)
and for γ3 = γ4 = −β5 = −β6,

Z
γ3
3 (t) = Z3(0) + κ6

∫ t

0
Z

γ3
4 (s) ds − κ5

∫ t

0
Z

γ3
3 (s) ds,

Z
γ3
4 (t) = Z4(0) + κ5

∫ t

0
Z

γ3
3 (s) ds − κ6

∫ t

0
Z

γ3
4 (s) ds.

Let γ12 = γθ for θ = (1,1,0,0). Then γ12 = −β3 = −(α3 + β4) and dividing
the equation for Z

N,γ12
4 by Nβ5−β3 , we see that

κ5

∫ t

0
Z

N,γ12
3 (s) ds − κ6

∫ t

0
Z

N,γ12
4 (s) ds → 0(3.15)

and, hence, ∫ t

0
Z

N,γ12
3 (s) ds − κ6

κ5 + κ6

∫ t

0
U

N,γ12
2 (s) ds → 0.(3.16)

Similarly, dividing the equation for Z
N,γ12
1 by Nβ2−β3 ,∫ t

0
Z

N,γ12
2 (s) ds − κ1

κ1 + κ2

∫ t

0
U

N,γ12
1 (s) ds → 0.
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Since U
N,γ12
2 converges to U2(0) uniformly on bounded time intervals, U

N,γ12
1

converges to the solution of

U1(t) = U1(0) + Y4

(
κ4κ6

κ5 + κ6
U2(0)t

)
− Y3

(
κ3κ1

κ1 + κ2

∫ t

0
U1(s) ds

)
.

Finally, for θ = (0,0,1,1) and γ34 = γθ , γ34 = −β4 and, as in (3.16),∫ t

0
Z

N,γ34
3 (s) ds − κ6

κ5 + κ6

∫ t

0
U

N,γ34
2 (s) ds → 0.

Dividing the equation for U
N,γ34
1 by Nβ3−β4 ,∫ t

0
Z

N,γ34
2 (s) ds − κ4

κ3

∫ t

0
Z

N,γ34
3 (s) ds → 0.

Consequently, even on this faster time-scale, U
N,γ34
2 converges to U2(0) uniformly

on bounded time intervals.

3.4. Checking the balance conditions. Condition 3.2 only depends on the sup-
port of θ , supp(θ) = {i : θi 
= 0}, and on the signs of θ · ζk , so the condition needs
to be checked for only finitely many θ . For k ∈ {1, . . . , r0}, define

�+
k = {θ ∈ [0,∞)s0 : θ · ζk > 0}, �−

k = {θ ∈ [0,∞)s0 : θ · ζk < 0},
�0

k = {θ ∈ [0,∞)s0 : θ · ζk = 0}
and for disjoint �−, �+, �0 satisfying �− ∪ �+ ∪ �0 = {1, . . . , r0}, define

��−,�+,�0 =
( ⋂

k∈�−
�−

k

)
∩

( ⋂
k∈�+

�+
k

)
∩

( ⋂
k∈�0

�0
k

)
.

The following lemma is immediate.

LEMMA 3.3. Fix γ . Condition 3.2 holds for all θ ∈ [0,∞)s0 , provided

max
k∈�−

(βk + νk · α) = max
k∈�+

(βk + νk · α)(3.17)

or

γ ≤ min
θ∈��−,�+,�0

max
i : θi>0

αi − max
k∈�+∪�−

(βk + νk · α)(3.18)

for all partitions {�−,�+,�0} for which ��−,�+,�0 
= ∅.

Checking the conditions of Lemma 3.3 could still be a formidable task. The next
lemmas significantly reduce the effort required. Observe that for θ1, θ2 ∈ [0,∞)s0
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and c1, c2 > 0, k ∈ �+
c1θ

1+c2θ
2 implies k ∈ �+

θ1 ∪ �+
θ2 and similarly for �−

c1θ
1+c2θ

2 ,
so

max
k∈�+

c1θ1+c2θ2

ρk ≤ max
k∈�+

θ1

ρk ∨ max
k∈�+

θ2

ρk(3.19)

and

max
k∈�−

c1θ1+c2θ2

ρk ≤ max
k∈�−

θ1

ρk ∨ max
k∈�−

θ2

ρk.(3.20)

Let G be a directed graph in which the nodes are identified with the species and
a directed edge is drawn from Si to Sj if there is a reaction that consumes Si and
produces Sj . A subgraph G0 ⊂ G is strongly connected if and only if for each pair
Si, Sj ∈ G0, there is a directed path in G0 beginning at Si and ending at Sj . Single
nodes are understood to form strongly connected subgraphs. Recall that G has a
unique decomposition G = ⋃

j Gj into maximal strongly connected subgraphs.
The following lemma may significantly reduce the work needed to verify Con-

dition 3.2.

LEMMA 3.4. Let θ ∈ [0,∞)s0 , and fix γ . Write

θ =
m∑

j=1

θj ,(3.21)

where supp(θj ) ⊂ Gj for some maximal strongly connected subgraph Gj and
Gj 
= Gi for i 
= j . If Condition 3.2 holds for each θj , then it holds for θ . More
specifically, if the balance equation (3.7) holds for each θj , then the balance equa-
tion holds for θ , and if (3.8) holds for each θj , then (3.8) holds for θ .

Consequently, if Condition 3.2 holds for each θ ∈ [0,∞)s0 with support in some
strongly connected subgraph, then Condition 3.2 holds for all θ ∈ [0,∞)s0 ; if (3.7)
holds for each θ ∈ [0,∞)s0 with support in some strongly connected subgraph,
then (3.7) holds for all θ ∈ [0,∞)s0 ; and if (3.8) holds for each θ ∈ [0,∞)s0 with
support in some strongly connected subgraph, then (3.8) holds for all θ ∈ [0,∞)s0 .

PROOF. Assume that Condition 3.2 holds for each θj , j = 1, . . . ,m. First,
assume that �+

θ 
= ∅. Select l1 ∈ �+
θ satisfying

ρl1 = max
k∈�+

θ

ρk.(3.22)

Since �+
θ ⊂ ⋃

j �+
θj , there exists j1 such that l1 ∈ �+

θj1
, and using (3.22), we have

max
k∈�+

θ

ρk = ρl1 ≤ max
k∈�+

θj1

ρk.(3.23)
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We have three possible cases. First, if maxk∈�+
θj1

ρk 
= maxk∈�−
θj1

ρk , then by (3.8),

there exists i1 ∈ supp(θj1) such that

γ + max
k∈�+

θj1
∪�−

θj1

ρk ≤ αi1(3.24)

and by (3.23),

γ + max
k∈�+

θ

ρk ≤ αi1 ≤ max
i∈supp(θ)

αi.(3.25)

Second, if maxk∈�+
θj1

ρk = maxk∈�−
θj1

ρk ≤ maxk∈�−
θ

ρk , then by (3.23), we ob-

tain

max
k∈�+

θ

ρk ≤ max
k∈�+

θj1

ρk = max
k∈�−

θj1

ρk ≤ max
k∈�−

θ

ρk.(3.26)

Finally, if

max
k∈�+

θj1

ρk = max
k∈�−

θj1

ρk > max
k∈�−

θ

ρk,(3.27)

we select l2 in �−
θj1

with ρl2 = maxk∈�−
θj1

ρk . The fact that ρl2 > maxk∈�−
θ

ρk en-

sures the existence of j2 such that l2 ∈ �+
θj2

. Then we have

max
k∈�+

θj1

ρk = max
k∈�−

θj1

ρk = ρl2 ≤ max
k∈�+

θj2

ρk.(3.28)

We recursively select ln and jn with ln ∈ �+
θjn

such that

max
k∈�+

θ
jn−1

ρk = max
k∈�−

θ
jn−1

ρk = ρln ≤ max
k∈�+

θjn

ρk

until we find ln for which this is no longer possible. Since the Gj are maximal
strongly connected subgraphs, there is no possibility that the same θj is selected
more than once. Thus, the process will terminate for some n and when it does
maxk∈�+

θjn
ρk 
= maxk∈�−

θjn
ρk and

γ + max
k∈�+

θ

ρk ≤ γ + max
k∈�+

θjn

ρk ≤ max
i∈supp(θjn )

αi ≤ max
i∈supp(θ)

αi.(3.29)

Consequently, we always have either

γ + max
k∈�+

θ

ρk ≤ max
i∈supp(θ)

αi(3.30)

or

max
k∈�+

θ

ρk ≤ max
k∈�−

θ

ρk.(3.31)
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If �−
θ 
= ∅, interchanging − and +, we see that either

γ + max
k∈�−

θ

ρk ≤ max
i∈supp(θ)

αi(3.32)

or

max
k∈�−

θ

ρk ≤ max
k∈�+

θ

ρk.(3.33)

Assume that both �+
θ and �−

θ are nonempty. If both (3.31) and (3.33) hold, then
(3.7) is satisfied. If (3.30) and (3.32) hold, then taking the maximum of the left
and right-hand sides, (3.8) holds. If (3.30) and (3.33) hold, then (3.8) holds and
similarly for (3.31) and (3.32).

If (3.7) holds for all θj , then the first and third cases above cannot hold, so
(3.26) must hold, giving (3.31) and by the same argument (3.33). Consequently,
(3.7) must hold for θ . If (3.8) holds for all θj , then the first case above holds,
giving (3.30) and by the same argument (3.32), so (3.8) must hold for θ .

If �+
θ = ∅ and �−

θ 
= ∅, then (3.32) must hold and (3.8) holds for θ and simi-
larly with the + and − interchanged.

If both �+
θ and �−

θ are empty, then (3.7) holds (−∞ = −∞). In particular,
θ · ζk = 0 for all ζk . �

The remaining lemmas in this section may be useful in verifying Condition 3.2
for the cases that remain, that is, for θ with support in some strongly connected
subgraph.

LEMMA 3.5. Fix γ ∈ R, and suppose (3.8) holds for θ1, . . . , θm ∈ [0,∞)s0 .
Then for cj > 0, j = 1, . . . ,m, (3.8) holds for θ = ∑m

j=1 cj θ
j .

PROOF. Since θ ·ζk > 0 implies cj θ
j ·ζk > 0 for some j and θ ·ζk < 0 implies

cj θ
j · ζk < 0 for some j ,

max
k∈�+

θ ∪�−
θ

ρk ≤ max
1≤j≤m

max
k∈�+

θj ∪�−
θj

ρk

and there exists j such that

γ ≤ max
i : θ

j
i >0

αi − max
k∈�+

θj ∪�−
θj

ρk ≤ max
i : θi>0

αi − max
k∈�+

θ ∪�−
θ

ρk.
�

LEMMA 3.6. For θ1, θ2 ∈ [0,∞)s0 , suppose that

max
k∈�−

θ1

ρk = max
k∈�+

θ1

ρk > max
k∈�+

θ2∪�−
θ2

ρk.(3.34)

Then for c1, c2 > 0, (3.7) holds for c1θ
1 + c2θ

2.
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PROOF. If l ∈ �+
θ1 and ρl = maxk∈�+

θ1
ρk , then by (3.34), l /∈ �−

θ2 . Conse-

quently, l ∈ �+
c1θ

1+c2θ
2 and by (3.19), we must have

max
k∈�+

c1θ1+c2θ2

ρk = max
k∈�+

θ1

ρk.

By the same argument,

max
k∈�−

c1θ1+c2θ2

ρk = max
k∈�−

θ1

ρk,

and it follows that (3.7) holds for c1θ
1 + c2θ

2. �

LEMMA 3.7. Fix γ , and suppose that (3.7) holds for θ1 and (3.8) for θ2. Then
for c1, c2 > 0, Condition 3.2 holds for c1θ

1 + c2θ
2.

PROOF. If

max
k∈�−

θ1

ρk = max
k∈�+

θ1

ρk > max
k∈�−

θ2

ρk ∨ max
k∈�+

θ2

ρk,(3.35)

then Lemma 3.6 implies c1θ
1 + c2θ

2 satisfies (3.7), so assume that

max
k∈�−

θ1

ρk = max
k∈�+

θ1

ρk ≤ max
k∈�−

θ2

ρk ∨ max
k∈�+

θ2

ρk.(3.36)

Then

max
k∈�−

c1θ1+c2θ2

ρk ≤ max
k∈�−

θ1

ρk ∨ max
k∈�−

θ2

ρk ≤ max
k∈�−

θ2

ρk ∨ max
k∈�+

θ2

ρk

and

max
k∈�+

c1θ1+c2θ2

ρk ≤ max
k∈�+

θ1

ρk ∨ max
k∈�+

θ2

ρk ≤ max
k∈�−

θ2

ρk ∨ max
k∈�+

θ2

ρk,

so

max
k∈�−

c1θ1+c2θ2

ρk ∨ max
k∈�+

c1θ1+c2θ2

ρk ≤ max
k∈�−

θ2

ρk ∨ max
k∈�+

θ2

ρk,

and since supp(c1θ
1 +c2θ

2) ⊃ supp(θ2), (3.8) for θ2 implies (3.8) for c1θ
1 +c2θ

2.
�

If Condition 3.2 holds for θ1 and θ2 and c1, c2 > 0, then the previous lemmas
imply Condition 3.2 holds for c1θ

1 + c2θ
2 except in one possible situation, that is,

max
k∈�−

θ1

ρk = max
k∈�+

θ1

ρk = max
k∈�−

θ2

ρk = max
k∈�+

θ2

ρk.(3.37)
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Since the species balance condition does not imply Condition 3.2 for θ = (1,1) for
the system (ZN

1 ,ZN
2 ) given by (3.6), some additional condition must be required

to be able to conclude Condition 3.2 holds for c1θ
1 + c2θ

2 when (3.37) holds. The
following lemmas give such conditions.

LEMMA 3.8. Fix γ ∈ R, and suppose that Condition 3.2 holds for θ1, θ2 ∈
[0,∞)s0 . If �+

θ1 ∩ �−
θ2 = ∅ or �−

θ1 ∩ �+
θ2 = ∅ and c1, c2 > 0, then Condition 3.2

holds for c1θ
1 + c2θ

2.
If (3.7) holds for θ1 and θ2, �+

θ1 ∩ �−
θ2 = ∅ or �−

θ1 ∩ �+
θ2 = ∅, and c1, c2 > 0,

then (3.7) holds for c1θ
1 + c2θ

2.

REMARK 3.9. If no reaction that consumes a species in the support of θ1

produces a species in the support of θ2, then �−
θ1 ∩ �+

θ2 = ∅. That condition is, of
course, equivalent to the requirement that a reaction that produces a species in the
support of θ2 does not consume a species in the support of θ1.

PROOF OF LEMMA 3.8. As noted, the previous lemmas cover all possible sit-
uations except in the case that (3.37) holds. Suppose �−

θ1 ∩�+
θ2 = ∅. If θ1 · ζk < 0,

then θ2 · ζk ≤ 0 and (c1θ
1 + c2θ

2) · ζk < 0, and if (c1θ
1 + c2θ

2) · ζk < 0, then either
θ1 · ζk < 0 or θ2 · ζk < 0, so

max
k∈�−

θ1

ρk ≤ max
k∈�−

c1θ1+c2θ2

ρk ≤ max
k∈�−

θ1

ρk ∨ max
k∈�−

θ2

ρk.(3.38)

Similarly, noting that θ2 · ζk > 0 implies θ1 · ζk ≥ 0,

max
k∈�+

θ2

ρk ≤ max
k∈�+

c1θ1+c2θ2

ρk ≤ max
k∈�+

θ1

ρk ∨ max
k∈�+

θ2

ρk.(3.39)

But (3.37) implies equality holds throughout (3.38) and (3.39) and (3.7) holds for
c1θ

1 + c2θ
2. �

LEMMA 3.10. Suppose (3.7) holds for θ1 and θ2 and for θ1 − θ1·ζk

θ2·ζk
θ2 for

all k ∈ (�+
θ1 ∩ �−

θ2) ∪ (�−
θ1 ∩ �+

θ2). (Note that − θ1·ζk

θ2·ζk
> 0.) Then (3.7) holds for

c1θ
1 + c2θ

2 for all c1, c2 > 0.

PROOF. By Lemma 3.6, we can restrict our attention to the case (3.37), and it
is enough to consider θ1 +cθ2 for c > 0. For c sufficiently small, �+

θ1 ⊂ �+
θ1+cθ2 ⊂

�+
θ1 ∪ �+

θ2 and �−
θ1 ⊂ �−

θ1+cθ2 ⊂ �−
θ1 ∪ �−

θ2 , so assuming (3.37), with reference to
(3.19) and (3.20),

max
k∈�+

θ1+cθ2

ρk = max
k∈�+

θ1

ρk = max
k∈�−

θ1+cθ2

ρk = max
k∈�−

θ1

ρk.
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Let

c0 = inf
{
c : max

k∈�+
θ1+cθ2

ρk 
= max
k∈�+

θ1

ρk or max
k∈�−

θ1+cθ2

ρk 
= max
k∈�−

θ1

ρk

}
,

and note that for 0 < c < c0, (3.7) holds for θ = θ1 +cθ2. If c0 < ∞, then for ε > 0
there must exist c0 ≤ c ≤ c0 +ε and k such that either k ∈ �+

θ1 and (θ1 +cθ2) ·ζk ≤
0 or k ∈ �−

θ1 and (θ1 + cθ2) · ζk ≥ 0. In either case, 0 < − θ1·ζk

θ2·ζk
≤ c. Since for each

such k and c′ < c0, − θ1·ζk

θ2·ζk
≥ c′, it follows that c0 = − θ1·ζk

θ2·ζk
> 0. Consequently, by

the assumptions of the lemma,

max
k∈�+

θ1+c0θ2

ρk = max
k∈�−

θ1+c0θ2

ρk < max
k∈�+

θ1

ρk = max
k∈�−

θ1

ρk.(3.40)

But (3.40) can hold only if there exists l+ ∈ �+
θ1

such that ρl+ = maxk∈�+
θ1

ρk and

c0 = − θ1·ζl+
θ2·ζl+

and l− ∈ �−
θ1

such that ρl− = maxk∈�−
θ1

ρk and c0 = − θ1·ζl−
θ2·ζl−

. Then,

for c > c0, (θ1 + cθ2)ζl+ < (θ1 + c0θ
2)ζl+ = 0, so l+ ∈ �−

θ1+cθ2 . Similarly, l− ∈
�+

θ1+cθ2 , and the lemma follows. �

4. Derivation of limiting models. As can be seen from the examples, deriva-
tion of the limiting models can frequently be carried out by straightforward anal-
ysis of the stochastic equations. The results of this section take a more general
approach and may be harder to apply than direct analysis of the stochastic equa-
tions, but they should give added confidence that the limits hold in great generality
for complex models.

We assume throughout this section that limN→∞ Z
N,γ
i (0) exists and is positive

for all i. If

γ = r1 ≡ min
i

γi = min
i

(
αi − max

k∈�+
i ∪�−

i

(βk + νk · α)
)
,(4.1)

then limN→∞ ZN,γ exists, at least on some interval [0, τ∞) with τ∞ > 0, and is
easy to calculate since on any time interval over which supt≤T |ZN,γ (t)| < ∞,
each term

N−αiYk

(∫ t

0
Nγ+ρkλk(Z

N,γ (s)) ds

)
either converges to zero (if αi > γ +ρk), is dependent on N only through ZN,γ (if
αi = γ + ρk = 0), or is asymptotic to∫ t

0
λk(Z

N,γ (s)) ds
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(if αi = γ + ρk > 0), since

lim
N→∞ sup

u≤u0

|N−αiYk(N
αiu) − u| = 0, u0 > 0.

The caveat regarding the interval [0, τ∞) reflects the fact that we have not ruled
out “reaction” networks of the form 2S1 → 3S1, S1 → ∅ which would be modeled
by

X1(t) = X1(0) + Y1

(
κ1

∫ t

0
X1(s)

(
X1(s) − 1

)
ds

)
− Y2

(
κ2

∫ t

0
X1(s) ds

)
and has positive probability of exploding in finite time, if X1(0) > 1.

For α ≥ 0 and γ ∈ R, define

�γ
α = {k :γ + ρk = α,Dαζk 
= 0},(4.2)

where

Dα = diag
(
. . .1{αi=α} . . .

)
.(4.3)

THEOREM 4.1. For r1 defined by (4.1), ZN,r1 ⇒ Zr1 on [0, τ∞), where if
αi > 0,

Z
r1
i (t) = Zi(0) + ∑

k∈�
r1
αi

∫ t

0
λk(Z

r1(s)) ds(ν′
ik − νik),

if αi = 0,

Z
r1
i (t) = Zi(0) + ∑

k∈�
r1
αi

Yk

(∫ t

0
λk(Z

r1(s)) ds

)
(ν′

ik − νik)

and

τ∞ = lim
c→∞ τc ≡ inf

{
t : sup

s≤t
|Zr1(s)| ≥ c

}
.

REMARK 4.2. By ZN,r1 ⇒ Zr1 on [0, τ∞), we mean that there exist τN,n and
τn such that (ZN,r1(· ∧ τN,n), τN,n) ⇒ (Zr1(· ∧ τn), τn) and limn→∞ τn = τ∞.

We can write

Zr1(t) = Z(0) + ∑
k : r1+ρk>0

∫ t

0
λk(Z

r1(s))Dr1+ρkζk

+ ∑
k : r1+ρk=0

Yk

(∫ t

0
λk(Z

r1(s)) ds

)
D0ζk.
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PROOF OF THEOREM 4.1. Let τN,c = inf{t : sups≤t |ZN,r1(s)| ≥ c}. The rel-
ative compactness of {ZN,r1(· ∧ τN,c)} follows from the uniform boundedness of
λk(Z

N,r1(· ∧ τN,c)). Then (ZN,r1(· ∧ τN,c), τN,c) ⇒ (Zr1(· ∧ τc), τc) at least for
all but countably many c. �

Note that γθ ≥ mini : θi>0 γi , so r1 = minθ∈[0,∞)s0 γθ , and Condition 3.2 always
holds for γ = r1. Recall that αθ = maxi : θi>0 αi and

Z
N,γ
θ (t) = N−αθ θ · �−1

N ZN,γ (t) = N−αθ

s0∑
i=1

θiX
N
i (Nγ t).

If γθ = r1, then

lim
N→∞Z

N,γθ

θ ⇒ θ · Dαθ Zr1

on [0, τ∞).
If Condition 3.2 holds for some γ > r1, then the balance equality (3.7) must

hold for all θ ∈ [0,∞)s0 with γθ = r1. Let

γ̂ = sup{γ : Condition 3.2 holds}.
Either γ̂ = ∞, that is, (3.7) holds for all θ , or γ̂ = γθ for some θ . Assume that
there is at least one θ ∈ [0,∞)s0 such that γθ > r1, that is, there is more than one
natural time-scale. If γ̂ > r1, then

r1 < r2 ≡ inf{γθ :γθ > r1} ≤ γ̂ ,

and r2 should be the second time-scale for the system. Note that Dα�N = �NDα

and that we can write

ZN,r2(t) = ZN(0) + ∑
k

Yk

(
Nr2+ρk

∫ t

0
λk(Z

N,r2(s)) ds

)
�Nζk

= ZN(0) + ∑
k

N−(r1+ρk)Yk

(
Nr2+ρk

∫ t

0
λk(Z

N,r2(s)) ds

)
Dr1+ρkζk

(4.4)

+ ∑
k

N−(r2+ρk)Yk

(
Nr2+ρk

∫ t

0
λk(Z

N,r2(s)) ds

)
Dr2+ρkζk

+ ∑
k

Yk

(
Nr2+ρk

∫ t

0
λk(Z

N,r2(s)) ds

)
�N(I − Dr1+ρk − Dr2+ρk )ζk,

where the third sum on the right should converge to zero.
Let L1 be the space spanned by

S1 = {ei :∃k, ei · Dr1+ρkζk 
= 0},
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and L2 be the space spanned by

S2 = {θ ∈ [0,∞)s0 : θ · Dr1+ρkζk = 0,∀k}.
Let �1 be the projection onto L1 and �2 be the projection onto L2. Of course,
S2 contains {ei : ei /∈ S1}, but as in the example of Section 3.3, it may be larger.
Consequently, the projections �1 and �2 are not necessarily orthogonal, but for
any x ∈ R

s0 , x − �2x ∈ L1.

LEMMA 4.3. For each x ∈ R
s0 , x − �2x ∈ L1.

PROOF. Note that L1 = {x ∈ R
s0 : ei · x = 0,∀ei ∈ S2} and that for ei ∈ S2,

ei · �2x = ei · x. Consequently, for ei ∈ S2, ei · (x − �2x) = 0 and x − �2x ∈ L1.
�

With reference to (4.4),

�2Z
N,r2(t) ≈ �2Z

N(0)

+ ∑
k

N−(r2+ρk)Yk

(
Nr2+ρk

∫ t

0
λk(Z

N,r2(s)) ds

)
�2D

r2+ρkζk,

since the projection of the first sum on the right in (4.4) is zero and the third sum
on the right goes to zero.

Unfortunately, while r2 can naturally be viewed as the second time scale, we
cannot guarantee a priori that the system will converge to a nondegenerate model
on that time scale. For example, consider the network

∅ → S1, ∅ → S2, ∅ → S3,

S1 + S2 → ∅, S1 + S3 → ∅

and assume that the parameters scale so that

X1(t) = X1(0) + Y1(κ1t) − Y2

(
κ2

∫ t

0
X1(s)X2(s) ds

)
− Y5

(
κ5N

−1
∫ t

0
X1(s)X3(s) ds

)
,

X2(t) = X2(0) + Y3(κ3t) − Y2

(
κ2

∫ t

0
X1(s)X2(s) ds

)
,

X3(t) = X3(0) + Y4(κ4N
−1t) − Y5

(
κ5N

−1
∫ t

0
X1(s)X3(s) ds

)
.

Then (3.7) is satisfied for all θ , r1 = 0, and r2 = 1. But if κ1 > κ3, X1(Nt) → ∞
and X2(Nt) → 0 for all t > 0.

The problem is that even though the balance equations are satisfied for the fast
subnetwork (X1,X2), the subnetwork is not stable. Consequently, to guarantee
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convergence on the second time scale, we need some additional condition to ensure
stability for the fast subnetwork so that the influence of the fast components can
be averaged in the system on the second time scale.

Of course, with reference to (3.11) and (3.15), it is frequently possible to verify
convergence without any special techniques, but we will outline a more systematic
approach.

Define the random measure on L1 × [0,∞) by

V
N,r2
1 (C × [0, t]) =

∫ t

0
1C

(
(I − �2)Z

N,r2(s)
)
ds.

Assume that

V
N,r2
1 ⇒ V1(4.5)

in the sense that∫
L1×[0,t]

f (x)V
N,r2
1 (dx × ds) ⇒

∫
L1×[0,t]

f (x)V1(dx × ds)

for all f ∈ Cb(L1) and all t > 0. This requirement is essentially an ergodicity
assumption on the fast subsystem.

For q > 0, define τN
q = inf{t : |�2Z

N,r2(t)| ≥ q} and

hq(y) = sup
{ ∑

k : �2D
r2+ρk ζk 
=0

λk(x) : |�2x| ≤ q, x − �2x = y

}
.

Assume that ψq : [0,∞) → [0,∞) satisfies limr→∞ r−1ψq(r) = ∞ and{∫
L1×[0,t∧τN

q ]
ψq(hq(y))V

N,r2
1 (dy × ds)

}
(4.6)

is stochastically bounded. In addition, assume∑
k

|Nr2+ρk�N(I − Dr1+ρk − Dr2+ρk )ζk|

×
∫

L1×[0,t∧τN
q ]

λk

(
�2Z

N,r2(s) + y
)
V

N,r2
1 (dy × ds) → 0.

[Recall |Nr2+ρk�N(I − Dr1+ρk − Dr2+ρk )ζk| → 0.] Then at least along a subse-
quence, for all but countably many q , �2Z

N,r2(· ∧ τN
q ) converges in distribution

to a process Ẑr2(· ∧ τq) and for k such that �2D
r2+ρkζk 
= 0, by Lemma A.6,∫ t∧τN

q

0
λk(Z

N,r2(s)) ds ⇒
∫

L1×[0,t∧τq ]
λk

(
Ẑr2(s) + y

)
V1(dy × ds).(4.7)
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THEOREM 4.4. Under the above assumptions, there exists a L2-valued pro-
cess Ẑr2 and a random variable τ∞ > 0 such �2Z

N,r2 converges in distribution
to Ẑr2 on [0, τ∞) where

Ẑr2(t) = �2Z(0) + ∑
k : r2+ρk>0

∫
L1×[0,t]

λk

(
Ẑr2(s) + y

)
V1(dy × ds)Dr2+ρkζk

+ ∑
k : r2+ρk=0

Yk

(∫
L1×[0,t]

λk

(
Ẑr2(s) + y

)
V1(dy × ds)

)
Dr2+ρkζk

for t ∈ [0, τ∞).

REMARK 4.5. The statement of this theorem is somewhat misleading. We
are assuming V

N,r2
1 converges to V1. Then given V1, Ẑr2 is uniquely determined.

However, as we will see in the next section, typically V1 depends on Ẑr2 . There
we will give conditions under which the sequence of pairs {(V N,r2

1 ,ZN,r2)} is rel-
atively compact. Then any limit point (V1, Ẑ

r2) will satisfy the equations given by
the present theorem, but it will still be necessary to show that the pair is uniquely
determined.

PROOF OF THEOREM 4.4. As for the first time-scale, stopping the process at

τN
q = inf{t : |�2Z

N,r2(t)| ≥ q}
ensures that {�2Z

N,r2(· ∧ τN
q )} is relatively compact, and (4.7) ensures that any

limit process satisfies the stochastic equations. Uniqueness for the limiting system
then follows by the smoothness of the λk . �

5. Averaging. Stochastic averaging methods go back at least to Khas’minskiı̆
(1966a, 1966b). In this section we summarize the approach taken in Kurtz (1992).
See that article for additional detail and references.

Recall that �N = diag(N−α1, . . . ,N−αs0 ), ρk = βk + νk · α, and ζk = ν′
k − νk .

The generator for ZN,0 is

BNf (z) = ∑
k

Nρkλk(z)
(
f (z + �Nζk) − f (z)

)
.

Another way of characterizing r1 is as the largest γ (possibly negative) such that
limN→∞ Nγ

BNf (z) exists for each f ∈ C2
c (Rm) and z ∈ R

m. As before, define
Dα = diag(. . .1{αi=α} . . .) and �r1

α = {k : r1 + ρk = α,Dαζk 
= 0}. Then

C0f (x) ≡ lim
N→∞Nr1BNf (x)

= ∑
k : r1+ρk=0

λk(x)
(
f (x + D0ζk) − f (x)

)
+ ∑

k : r1+ρk>0

λk(x)Dr1+ρkζk · ∇f (x),
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which is the generator for the limit of the system on the first time scale. The state
space for the limit process is E = ∏s0

i=1 Ei , where Ei = N if αi = 0 and Ei =
[0,∞) if αi > 0.

By the definition of L2, �2D
r1+ρkζk = 0. Consequently, for z ∈ �2E and

Ez = {y ∈ L1 :y = (I − �2)x,�2x = z, x ∈ E},
C

zf (y) ≡ C0f (z + y)

defines a generator with state space Ez.
As before, define

V
N,r2
1 (C × [0, t]) =

∫ t

0
1C

(
(I − �2)Z

N,r2(s)
)
ds

and observe that

MN
f (t) = f (ZN,r2(t)) − f (ZN,r2(0)) −

∫ t

0
Nr2BNf (ZN,r2(s)) ds

= f (ZN,r2(t)) − f (ZN,r2(0))

−
∫

L1×[0,t]
Nr2BNf

(
�2Z

N,r2(s) + y
)
V

N,r2
1 (dy × ds)

is a martingale. Since f and Nr1BNf are bounded by constants, Nr1−r2MN
f is

bounded by a constant on any bounded time interval. It follows that {Nr1−r2MN
f }

is relatively compact, any limit point is a martingale with initial value zero, and any
limit point is Lipschitz continuous with Lipschitz constant supz |C0f (z)|. Since
any continuous martingale with finite variation paths is constant, it follows that
the limit must be zero. Combining these observations with those of the previous
section, we have the following theorem.

THEOREM 5.1. Suppose that {V N,r2
1 } is relatively compact and that for each

q > 0, (4.6) is stochastically bounded. Selecting a convergent subsequence if nec-
essary, let Z

r2
2 and τ∞ be as in the conclusion of Theorem 4.4. Then for all

f ∈ C2
c (Rs0), ∫

L1×[0,τ∞)
C0f

(
Z

r2
2 (s) + y

)
V1(dy × ds)

=
∫

L1×[0,τ∞)
C

Z
r2
2 (s)f (y)V1(dy × ds) = 0.

If for each z ∈ �2E, πz is the unique stationary distribution for C
z, then

V1(dy × ds) = πZ
r2
2 (s)(dy) ds,
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and the limiting equation in Theorem 4.4 becomes

Z
r2
2 (t) = �2Z(0) + ∑

k : r2+ρk>0

∫ t

0

∫
L1

λk

(
Z

r2
2 (s) + y

)
πZ

r2
2 (s)(dy) dsDr2+ρkζk

+ ∑
k : r2+ρk=0

Yk

(∫ t

0

∫
L1

λk

(
Z

r2
2 (s) + y

)
πZ

r2
2 (s)(dy) ds

)
Dr2+ρkζk

for t ∈ [0, τ∞).

REMARK 5.2. Assuming uniqueness, the system determines a piecewise de-
terministic Markov process in the sense of Davis (1993). If one defines

βk(z) =
∫

L1

λk(z + y)πz(dy), z ∈ �2E,

the description of the system will simplify.

We still need to address conditions for the relative compactness of the sequence
of occupation measures. If (I − �2)E is compact, relative compactness is imme-
diate. Otherwise, it is natural to look for some kind of Lyapunov function. Note
that if γ N

c = inf{t : |ZN,r2(t)| ≥ c}, then

f
(
ZN,r2(t ∧ γ N

c )
) − f (ZN,r2(0)) −

∫ t∧γ N
c

0
Nr2BNf (ZN,r2(s)) ds

is a martingale for all locally bounded f .

LEMMA 5.3. Let hq and ψq be as in (4.6). Suppose that f N
q are nonnegative

functions and that there exist positive constants c1, c2 such that

sup
N

Nr2BNf N
q (z) < c1 − c2ψq

(
hq

(
(I − �2)z

))
for all z satisfying |�2z| ≤ q and for each c ∈ R,

sup
{
|(I − �2)z| : |�2z| and sup

N

Nr2BNf N
q (z) ≥ c

}
< ∞.

Then for each t > 0, {V N,r2
1 } is relatively compact and (4.6) is stochastically

bounded.

6. Examples. We give some additional examples that demonstrate how iden-
tifying exponents satisfying the balance condition leads to reasonable approxima-
tions to the original model. For a “production level” example, see the analysis of
an E. coli heat shock model in Kang (2011).
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6.1. Goutsias’s model of regulated transcription. We consider the following
model of transcription regulation introduced in Goutsias (2005) and studied further
in Macnamara, Burrage and Sidje (2007). The model involves six species:

X1 = # of M Protein monomer,

X2 = # of D Transcription factor,

X3 = # of RNA mRNA,

X4 = # of DNA Unbound DNA,

X5 = # of DNA · D DNA bound at one site,

X6 = # of DNA · 2D DNA bound at two sites,

and ten reactions:

RNA → RNA + M,

M → ∅,

DNA · D → RNA + DNA · D,

RNA → ∅,

DNA + D → DNA · D,

DNA · D → DNA + D,

DNA · D + D → DNA · 2D,

DNA · 2D → DNA · D + D,

M + M → D,

D → 2M.

Taking the volume V = 1, the corresponding system of equations becomes

X1(t) = X1(0) + Y1

(
κ ′

1

∫ t

0
X3(s) ds

)
+ 2Y10

(
κ ′

10

∫ t

0
X2(s) ds

)
− Y2

(
κ ′

2

∫ t

0
X1(s) ds

)
− 2Y9

(
κ ′

9

∫ t

0
X1(s)

(
X1(s) − 1

)
ds

)
,

X2(t) = X2(0) + Y6

(
κ ′

6

∫ t

0
X5(s) ds

)
+ Y8

(
κ ′

8

∫ t

0
X6(s) ds

)
+ Y9

(
κ ′

9

∫ t

0
X1(s)

(
X1(s) − 1

)
ds

)
− Y5

(
κ ′

5

∫ t

0
X2(s)X4(s) ds

)
− Y7

(
κ ′

7

∫ t

0
X2(s)X5(s) ds

)
− Y10

(
κ ′

10

∫ t

0
X2(s) ds

)
,
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X3(t) = X3(0) + Y3

(
κ ′

3

∫ t

0
X5(s) ds

)
− Y4

(
κ ′

4

∫ t

0
X3(s) ds

)
,

X4(t) = X4(0) + Y6

(
κ ′

6

∫ t

0
X5(s) ds

)
− Y5

(
κ ′

5

∫ t

0
X2(s)X4(s) ds

)
,

X5(t) = X5(0) + Y5

(
κ ′

5

∫ t

0
X2(s)X4(s) ds

)
+ Y8

(
κ ′

8

∫ t

0
X6(s) ds

)
− Y6

(
κ ′

6

∫ t

0
X5(s) ds

)
− Y7

(
κ ′

7

∫ t

0
X2(s)X5(s) ds

)
,

X6(t) = X6(0) + Y7

(
κ ′

7

∫ t

0
X2(s)X5(s) ds

)
− Y8

(
κ ′

8

∫ t

0
X6(s) ds

)
.

6.2. A scaling with two fast reactions. In his analysis of the model, Goutsias
assumes two time-scales and identifies reactions 9 and 10 as “fast” reactions. In
our approach, that is the same as assuming β9 = β10 > β1 = · · · = β8, so we take
N0 = 100, β9 = β10 = 0 and β1 = · · · = β8 = −1. Recall the relationships κ ′

k =
κkN

βk

0 (we are assuming the volume V = 1) and ρk = βk + νk · α. Employing the
rate constants from Goutsias (2005), and taking αi = 0 for all i, we have Table 1.

Then, for γ = 0, (Z
N,0
1 ,Z

N,0
2 ) converges to the solution of

Z0
1(t) = X1(0) + 2Y10

(
κ10

∫ t

0
Z0

2(s) ds

)
− 2Y9

(
κ9

∫ t

0
Z0

1(s)
(
Z0

1(s) − 1
)
ds

)
,

Z0
2(t) = X2(0) + Y9

(
κ9

∫ t

0
Z0

1(s)
(
Z0

1(s) − 1
)
ds

)
− Y10

(
κ10

∫ t

0
Z0

2(s) ds

)
,

and for k > 2, Z
N,0
k converges to Xk(0).

TABLE 1
Scaling exponents for reaction rates

Rates Scaled rates ρ

κ ′
1 4.30 × 10−2 κ1 4.30 ρ1 −1

κ ′
2 7.00 × 10−4 κ2 0.07 ρ2 −1

κ ′
3 7.15 × 10−2 κ3 7.15 ρ3 −1

κ ′
4 3.90 × 10−3 κ4 0.390 ρ4 −1

κ ′
5 1.99 × 10−2 κ5 1.99 ρ5 −1

κ ′
6 4.79 × 10−1 κ6 47.9 ρ6 −1

κ ′
7 1.99 × 10−4 κ7 0.0199 ρ7 −1

κ ′
8 8.77 × 10−12 κ8 8.77 × 10−10 ρ8 −1

κ ′
9 8.30 × 10−2 κ9 0.0830 ρ9 0

κ ′
10 5.00 × 10−1 κ10 0.500 ρ10 0
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For γ = 1, the kind of argument employed in (3.15) implies

κ9

∫ t

0
Z

N,1
1 (s)

(
Z

N,1
1 (s) − 1

)
ds −

∫ t

0
κ10Z

N,1
2 (s) ds → 0,(6.1)

but does not lead to a closed system for the limit of (Z
N,1
3 , . . . ,Z

N,1
6 ). To obtain a

closed limiting system, we introduce the following auxiliary variable:

Z
N,1
12 (t) = Z

N,1
1 (t) + 2Z

N,1
2 (t)

= ZN
12(0) + Y1

(
κ1

∫ t

0
Z

N,1
3 (s) ds

)
+ 2Y6

(
κ6

∫ t

0
Z

N,1
5 (s) ds

)
+ 2Y8

(
κ8

∫ t

0
Z

N,1
6 (s) ds

)
− 2Y5

(
κ5

∫ t

0
Z

N,1
2 (s)Z

N,1
4 (s) ds

)
− 2Y7

(
κ7

∫ t

0
Z

N,1
2 (s)Z

N,1
5 (s) ds

)
− Y2

(
κ2

∫ t

0
Z

N,1
1 (s) ds

)
and observe that the conditional equilibrium distribution satisfies

κ9(z1 + 2)(z1 + 1)μs(z1 + 2, z2 − 1) + κ10(z2 + 1)μs(z1 − 2, z2 + 1)

= (
κ9z1(z1 − 1) + κ10z2

)
μs(z1, z2)

and is uniquely determined by the requirement that

z1 + 2z2 = Z1
12(s),

where Z1
12 is the limit of Z

N,1
12 . For m = z1 + 2z2, the conditional equilibrium

distribution is

μm(z1, z2) = Mm

(κ10/κ9)
z1+z2

z1!z2! ,(6.2)

where Mm is a normalizing constant making μm a probability distribution on the
collection of (z1, z2) such that z1 and z2 are nonnegative integers satisfying z1 +
2z2 = m. Define

α(m) =
∫

z2μm(dz1, dz2) = Mm

∑
1≤z2≤m/2

(κ10/κ9)
(m−z2)

(m − 2z2)!(z2 − 1)!(6.3)
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and observe that m − 2α(m) = ∫
z1μm(dz1, dz2). Then (Z

N,1
12 ,Z

N,1
3 , . . . ,Z

N,1
6 )

converges to the solution of

Z1
12(t) = Z1

12(0) + Y1

(
κ1

∫ t

0
Z1

3(s) ds

)
+ 2Y6

(
κ6

∫ t

0
Z1

5(s) ds

)
+ 2Y8

(
κ8

∫ t

0
Z1

6(s) ds

)
− 2Y5

(
κ5

∫ t

0
α(Z1

12(s))Z
1
4(s) ds

)
− 2Y7

(
κ7

∫ t

0
α(Z1

12(s))Z
1
5(s) ds

)
− Y2

(
κ2

∫ t

0

(
Z1

12(s) − 2α(Z1
12(s))

)
ds

)
,

Z1
3(t) = Z1

3(0) + Y3

(
κ3

∫ t

0
Z1

5(s) ds

)
− Y4

(
κ4

∫ t

0
Z1

3(s) ds

)
,

Z1
4(t) = Z1

4(0) + Y6

(
κ6

∫ t

0
Z1

5(s) ds

)
− Y5

(
κ5

∫ t

0
α(Z1

12(s))Z
1
4(s) ds

)
,

Z1
5(t) = Z1

5(0) + Y5

(
κ5

∫ t

0
α(Z1

12(s))Z
1
4(s) ds

)
+ Y8

(
κ8

∫ t

0
Z1

6(s) ds

)
,

− Y6

(
κ6

∫ t

0
Z1

5(s) ds

)
− Y7

(
κ7

∫ t

0
α(Z1

12(s))Z
1
5(s) ds

)
,

Z1
6(t) = Z1

6(0) + Y7

(
κ7

∫ t

0
α(Z1

12(s))Z
1
5(s) ds

)
− Y8

(
κ8

∫ t

0
Z1

6(s) ds

)
,

which is essentially the approximation obtained by Goutsias. Note that the “fast”
reactions, reactions 9 and 10, have been eliminated from the model.

This system is not entirely satisfactory as α(m) is not computable analytically.
For simulations, values of α(m) could be precomputed using (6.3). E, Liu and
Vanden-Eijnden (2007) suggest a Monte Carlo approach for computing α(m) as
needed. Goutsias suggests a way of approximating the transition rates which is
equivalent to the following: The limit in (6.1) implies

κ10α(m) = κ9

∫
z1(z1 − 1)μm(dz1, dz2)(6.4)

as can be verified directly from the definition of μm. A moment closure argument
suggests replacing (6.4) by

κ10α(m) = κ9

∫
z1μm(dz1, dz2)

∫
(z1 − 1)μm(dz1, dz2)

= κ9
(
m − 2α(m)

)(
m − 2α(m) − 1

)
,

which gives a quadratic equation for the approximation for α(m).
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TABLE 2
Balance equations

Variable Balance equation

X1 ρ1 ∨ ρ10 = ρ2 ∨ ρ9
X2 ρ6 ∨ ρ8 ∨ ρ9 = ρ5 ∨ ρ7 ∨ ρ10
X3 ρ3 = ρ4
X4 ρ5 = ρ6
X5 ρ5 ∨ ρ8 = ρ6 ∨ ρ7
X6 ρ7 = ρ8
X1 + 2X2 + 2X5 + 4X6 ρ1 = ρ2
X2 + X5 + 2X6 ρ9 = ρ10
X5 + X6 ρ5 = ρ6
X4 + X5 + X6 0 = 0
X4 + X5 ρ8 = ρ7

6.3. Alternative scaling. Observe that κ ′
9 < κ ′

6, so reaction 6 is actually
“faster” than reaction 9. Consequently, it is reasonable to look for a different so-
lution of the balance conditions with β10 = β6 > β9. Drop the assumption that
αi = 0, and consider a subset of the balance equations. Recall that ρk = βk +νk ·α.

We take N0 = 100, α1 = α2 = 1, and αi = 0 for 3 ≤ i ≤ 6. We see that the
following exponents satisfy the balance conditions and the additional requirement
that κ ′

k ≥ κ ′
l implies βk ≥ βl , except for β8, the exponent associated with the ex-

tremely small rate constant κ ′
8. Recall that κk is determined by the requirement

κ ′
k = κkN

βk

0 .

TABLE 3
Scaling exponents for reaction rates

Rates Exponents Scaled rates ρ

κ ′
1 4.30 × 10−2 β1 −1 κ1 4.30 ρ1 −1

κ ′
2 7.00 × 10−4 β2 −2 κ2 7.00 ρ2 −1

κ ′
3 7.15 × 10−2 β3 −1 κ3 7.15 ρ3 −1

κ ′
4 3.90 × 10−3 β4 −1 κ4 0.390 ρ4 −1

κ ′
5 1.99 × 10−2 β5 −1 κ5 1.99 ρ5 0

κ ′
6 4.79 × 10−1 β6 0 κ6 0.479 ρ6 0

κ ′
7 1.99 × 10−4 β7 −3 κ7 199 ρ7 −2

κ ′
8 8.77 × 10−12 β8 −2 κ8 8.77 × 10−8 ρ8 −2

κ ′
9 8.30 × 10−2 β9 −1 κ9 8.30 ρ9 1

κ ′
10 5.00 × 10−1 β10 0 κ10 0.500 ρ10 1
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Defining Z
N,γ
i (t) = N−αiXN

i (Nγ t) and κk = N
−βk

0 κ ′
k ,

Z
N,γ
1 (t) = ZN

1 (0) + N−1Y1

(∫ t

0
κ1N

γ−1Z
N,γ
3 (s) ds

)
+ 2N−1Y10

(∫ t

0
κ10N

γ+1Z
N,γ
2 (s) ds

)
− N−1Y2

(∫ t

0
κ2N

γ−1Z
N,γ
1 (s) ds

)
− 2N−1Y9

(∫ t

0
κ9N

γ+1Z
N,γ
1 (s)

(
Z

N,γ
1 (s) − N−1)

ds

)
,

Z
N,γ
2 (t) = ZN

2 (0) + N−1Y6

(∫ t

0
κ6N

γ Z
N,γ
5 (s) ds

)
+ N−1Y8

(∫ t

0
κ8N

γ−2Z
N,γ
6 (s) ds

)
+ N−1Y9

(∫ t

0
κ9N

γ+1Z
N,γ
1 (s)

(
Z

N,γ
1 (s) − N−1)

ds

)
− N−1Y5

(∫ t

0
κ5N

γ Z
N,γ
2 (s)Z

N,γ
4 (s) ds

)
− N−1Y7

(∫ t

0
κ7N

γ−2Z
N,γ
2 (s)Z

N,γ
5 (s) ds

)
− N−1Y10

(∫ t

0
κ10N

γ+1Z
N,γ
2 (s) ds

)
,

Z
N,γ
3 (t) = ZN

3 (0) + Y3

(∫ t

0
κ3N

γ−1Z
N,γ
5 (s) ds

)
− Y4

(∫ t

0
κ4N

γ−1Z
N,γ
3 (s) ds

)
,

Z
N,γ
4 (t) = ZN

4 (0) + Y6

(∫ t

0
κ6N

γ Z
N,γ
5 (s) ds

)
− Y5

(∫ t

0
κ5N

γ Z
N,γ
2 (s)Z

N,γ
4 (s) ds

)
,

Z
N,γ
5 (t) = ZN

5 (0) + Y5

(∫ t

0
κ5N

γ Z
N,γ
2 (s)Z

N,γ
4 (s) ds

)
+ Y8

(∫ t

0
κ8N

γ−2Z
N,γ
6 (s) ds

)
− Y6

(∫ t

0
κ6N

γ Z
N,γ
5 (s) ds

)
− Y7

(∫ t

0
κ7N

γ−2Z
N,γ
2 (s)Z

N,γ
5 (s) ds

)
,
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Z
N,γ
6 (t) = ZN

6 (0) + Y7

(∫ t

0
κ7N

γ−2Z
N,γ
2 (s)Z

N,γ
5 (s) ds

)
− Y8

(∫ t

0
κ8N

γ−2Z
N,γ
6 (s) ds

)
.

Useful auxiliary variables include

NZ
N,γ
1 (t) + 2NZ

N,γ
2 (t) + 2Z

N,γ
5 (t) + 4Z

N,γ
6 (t)

= NZN
1 (0) + 2NZN

2 (0) + 2ZN
5 (0) + 4ZN

6 (0)

+ Y1

(∫ t

0
κ1N

γ−1Z
N,γ
3 (s) ds

)
− Y2

(∫ t

0
κ2N

γ−1Z
N,γ
1 (s) ds

)
,

NZ
N,γ
2 (t) + Z

N,γ
5 (t) + 2Z

N,γ
6 (t)

= NZN
2 (0) + ZN

5 (0) + 2ZN
6 (0)

+ Y9

(∫ t

0
κ9N

γ+1Z
N,γ
1 (s)

(
Z

N,γ
1 (s) − N−1)

ds

)
− Y10

(∫ t

0
κ10N

γ+1Z
N,γ
2 (s) ds

)
,

Z
N,γ
5 (t) + Z

N,γ
6 (t)

= ZN
5 (0) + ZN

6 (0) + Y5

(∫ t

0
κ5N

γ Z
N,γ
2 (s)Z

N,γ
4 (s) ds

)
− Y6

(∫ t

0
κ6N

γ Z
N,γ
5 (s) ds

)
,

Z
N,γ
4 (t) + Z

N,γ
5 (t) + Z

N,γ
6 (t) = ZN

4 (0) + ZN
5 (0) + ZN

6 (0),

Z
N,γ
4 (t) + Z

N,γ
5 (t)

= ZN
4 (0) + ZN

5 (0) + Y8

(∫ t

0
κ8N

γ−2Z
N,γ
6 (s) ds

)
− Y7

(∫ t

0
κ7N

γ−2Z
N,γ
2 (s)Z

N,γ
5 (s) ds

)
.

For γ = 0, the limiting system is the piecewise deterministic model

Z0
1(t) = Z1(0) +

∫ t

0

(
2κ10Z

0
2(s) − 2κ9Z

0
1(s)2)

ds,

Z0
2(t) = Z2(0) +

∫ t

0

(
κ9Z

0
1(s)2 − κ10Z

0
2(s)

)
ds,

Z0
4(t) = Z4(0) + Y6

(∫ t

0
κ6Z

0
5(s) ds

)
− Y5

(∫ t

0
κ5Z

0
2(s)Z0

4(s) ds

)
,(6.5)
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Z0
5(t) = Z5(0) + Y5

(∫ t

0
κ5Z

0
2(s)Z0

4(s) ds

)
− Y6

(∫ t

0
κ6Z

0
5(s) ds

)
with Z0

3(t) ≡ Z3(0) and Z0
6(t) ≡ Z6(0).

For γ = 1, we introduce the auxiliary variables

Z
N,1
12 (t) ≡ Z

N,1
1 (t) + 2Z

N,1
2 (t),

Z
N,1
45 (t) ≡ Z

N,1
4 (t) + Z

N,1
5 (t)

= ZN
4 (0) + ZN

5 (0) + Y8

(∫ t

0
κ8N

−1Z
N,1
6 (s) ds

)
− Y7

(∫ t

0
κ7N

−1Z
N,1
2 (s)Z

N,1
5 (s) ds

)
.

Observing that Z
N,1
12 is asymptotically the same as Z

N,1
1 + 2Z

N,1
2 + 2N−1Z

N,1
5 +

4N−1Z
N,1
6 , ZN,1

12 converges to Z1
12(t) ≡ Z12(0) = limN→∞(ZN

1 (0)+2ZN
2 (0)). In

particular, Z1
12 is constant in time. We also have Z1

45(t) ≡ Z45(0) =
limN→∞(ZN

4 (0) + ZN
5 (0)).

Let V N,1 denote the occupation measure for (Z
N,1
1 ,Z

N,1
2 ,Z

N,1
4 ,Z

N,1
5 ). The

stochastic boundedness of Z
N,1
12 and Z

N,1
45 ensures the relative compactness of

{V N,1}, and as in Section 5, V N,1 converges to V 1(dz, ds) = vs(dz) ds, where
vs satisfies ∫

Cf vs(dz) = 0

and

Cf (z1, z2, z4, z5) = (κ10z2 − κ9z
2
1)

(
2∂z1f (z) − ∂z2f (z)

)
+ κ6z5

(
f (z + e4 − e5) − f (z)

)
+ κ5z2z4

(
f (z − e4 + e5) − f (z)

)
.

Consequently, vs is uniquely determined for each s by the requirement that z1 +
2z2 = Z1

12(s) = Z12(0) and z4 + z5 = Z1
45(s) = Z45(0), and, hence,

vs(dz) = δϕ1(Z12(0))(dz1)δϕ2(Z12(0))(dz2)

× B

(
Z45(0),

κ6

κ6 + κ5ϕ2(Z12(0))
, dz4, dz5

)
,

where

ϕ1(y) =
√

κ2
10 + 8κ9κ10y − κ10

4κ9
,

ϕ2(y) = 4κ9y + κ10 −
√

κ2
10 + 8κ9κ10y

8κ9
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and B(n,p, dz4, dz5) is given by the binomial distribution

P {Z4 = k,Z5 = n − k} =
(

n

k

)
pk(1 − p)n−k.

Averaging gives

Z1
3(t) = Z3(0) + Y3

(∫ t

0

κ3κ5ϕ2(Z12(0))

κ6 + κ5ϕ2(Z12(0))
Z45(0) ds

)
(6.6)

− Y4

(∫ t

0
κ4Z

1
3(s) ds

)
.

Finally, for γ = 2, dividing the equation for Z
N,2
3 by N , we see that∫ t

0
Z

N,2
3 (s) ds ≈ κ3

κ4

∫ t

0
Z

N,2
5 (s) ds,

and (Z
N,2
12 ,Z

N,2
45 ,Z

N,2
6 ) converges to the solution of

Z2
12(t) = Z12(0) +

∫ t

0

(
κ1κ3

κ4
Z2

5(s) − κ2ϕ1(Z
2
12(s))

)
ds,

Z2
45(t) = Z45(0) + Y8

(∫ t

0
κ8Z

2
6(s) ds

)
− Y7

(∫ t

0
κ7ϕ2(Z

2
12(s))Z

2
5(s) ds

)
,

Z2
6(t) = Z6(0) + Y7

(∫ t

0
κ7ϕ2(Z

2
12(s))Z

2
5(s) ds

)
− Y8

(∫ t

0
κ8Z

2
6(s) ds

)
,

Z2
5(t) = κ5ϕ2(Z

2
12(t))

κ6 + κ5ϕ2(Z
2
12(t))

Z2
45(t).

6.3.1. Simulation results. We compare simulation results for the full model
with the approximations given by the limiting systems. The mean and standard de-
viations of the number of molecules for each species or for the auxiliary variables
of interest are given from 100 simulations of the full model and from 1000 sim-
ulations of the limiting systems. The evolution of the processes in the full model
is approximated by the evolution of the processes in the limiting system using the
relationship

Xi(t) ≡ X
N0
i (t) ≈ N

αi

0 Z
γ
i (tN

−γ
0 ).

The initial values are taken as X1(0) = 2, X2(0) = 6, X5(0) = 2 and all other
values equal to zero.

For γ = 0, we observe the evolution of the processes during the time interval
[0,100]. The full model is reduced to the four-dimensional hybrid model (6.5) in
which Z0

1 and Z0
2 are the solution of a pair of ordinary differential equations and

Z0
4 and Z0

5 are discrete with transition intensities depending on Z0
2. The evolution

of X1, X2, X4 and X5 in the full model is given in Figure 1 and the evolution of
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FIG. 1. Simulation of the full model during t = 0 to t = 100.

the approximation is given in Figure 2. The exact simulations of the full model
are done using Gillespie’s stochastic simulation algorithm (SSA) from Gillespie
(1977). For the approximation, Z0

1 and Z0
2 are solved by the Matlab ODE solver,

FIG. 2. Approximation using the limiting model for γ = 0 in the alternative scaling.



568 H.-W. KANG AND T. G. KURTZ

FIG. 3. Simulation of the full model during t = 0 to t = 1000.

and Z0
4 and Z0

5 are computed by Gillespie’s SSA taking Z0
2 from the solution of

ODE. The evolution of X1 and X2 are well captured by Z0
1 and Z0

2 in Figure 2.
These deterministic values approximate the evolution of the mean of X1 and X2
given in Figure 1 except for a slight increase over time in the simulation of the full
model. Note that in the approximate model Z0

1(t) + 2Z0
2(t) is constant, but that is

not the case in the full model.
For γ = 1, we consider the evolution of the processes on the time interval

[0,1000]. The full model is reduced to the one-dimensional limiting system (6.6)
with a single jump process Z1

3. Comparing the governing equations for Z
N,1
3

and Z1
3 , the different behavior of the evolution of the two processes comes from

the difference between Z
N,1
5 and Z1

5(t) = κ5ϕ2(Z12(0))
κ6+κ5ϕ2(Z12(0))

Z45(0). Therefore, plots
of the evolution of both X3 and X5 in the exact simulation are given in Figure 3.
In Figure 4, the evolution of Z1

3 and of Z1
5 is given. For both exact and approx-

imate simulations, we use Gillespie’s SSA. In Figure 3, Z
N,1
5 increases slightly

and then decreases to zero. Since Z1
5 is approximated as constant in Figure 4, the

increase during the early time and the decrease to zero of X3 is not captured by the
approximation.

For γ = 2, the simulation is carried out on the time interval [0,10,000]. The
three-dimensional limiting model is piecewise deterministic and includes the aux-

FIG. 4. Approximation using the limiting model for γ = 1 in the alternative scaling.
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iliary variables Z2
12, Z2

45 and the species abundance Z2
6 . Z2

12 is governed by a
random differential equation driven by a component of the jump process, Z2

45.
Z2

45 and Z2
6 are discrete with transition intensities that depend on Z2

12. Since there
is mutual dependence between the continuous and discrete components, we mod-
ify Gillespie’s SSA to simulate the limiting system. Here is a brief description of
the simulation method for the limiting system.

(1) Assume that the process has been simulated up to ti , the ith jump time of
the jump process. Simulate a unit exponential random variable � by simulating a
uniform [0,1] random number r1 and setting � = log 1

r1
.

(2) Solve the differential equation for Z2
12 starting at Z2

12(ti) holding Z2
45(t) =

Z2
45(ti) and Z2

6(t) = Z2
6(ti) until time ti+1 satisfying∫ ti+1

ti

(
κ7ϕ2(Z

2
12(s))Z

2
5(s) + κ8Z

2
6(s)

)
ds

= Z2
45(ti)

∫ ti+1

ti

κ5κ7ϕ2(Z
2
12(s))

2

κ6 + κ5ϕ2(Z
2
12(s))

ds + κ8Z
2
6(ti)(ti+1 − ti)

= �.

(We compute the integral by the trapezoid rule using the grid points from the ODE
solver.)

(3) Simulate a uniform [0,1] random number r2. If

r2 ≤ κ7ϕ2(Z
2
12(ti+1))Z

2
5(ti+1−)

κ7ϕ2(Z
2
12(ti+1))Z

2
5(ti+1−) + κ8Z

2
6(ti+1−)

(6.7)

= κ5κ7ϕ2(Z
2
12(ti+1))

2Z2
45(ti)

κ5κ7ϕ2(Z
2
12(ti+1))2Z2

45(ti) + κ8Z
2
6(ti)(κ6 + κ5ϕ2(Z

2
12(ti+1)))

,

set (
Z2

45(ti+1)

Z2
6(ti+1)

)
=

(
Z2

45(ti)

Z2
6(ti)

)
+

(−1
1

)
and if the reverse inequality holds in (6.7), set(

Z2
45(ti+1)

Z2
6(ti+1)

)
=

(
Z2

45(ti)

Z2
6(ti)

)
+

(
1

−1

)
.

(4) Go back to step (1).

Comparing plots for X1(t) + 2X2(t) in Figure 5 and for N0Z
2
12(tN

−2
0 ) in Fig-

ure 6, the plot in the approximation increases more rapidly at early times and starts
to drop earlier than the plot in the exact simulation. Also, the peak level in the
approximation is much lower than the peak level in the exact simulation.
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FIG. 5. Simulation of the full model during t = 0 to t = 10,000.

Since κ8 = 8.77 × 10−8 is small compared to the time interval, reaction 8 will
rarely occur on the time scales we are considering. We retained this reaction in
the limiting model only to emphasize that a long time after the model appears to

FIG. 6. Approximation using the limiting model for γ = 2 in the alternative scaling.
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equilibrate, action may restart after the dissociation

DNA · 2D ⇀ DNA · D + D.

If reaction 8 does not occur, the stochastic behavior of the limiting model just
depends on the two jump times

τ 2
1 = inf{t :Z2

45(t) = 1}, τ 2
0 = inf{t :Z2

45(t) = 0},
so we compare these random variables to the corresponding variables

τ1 = inf{t :X4(t) + X5(t) = 1}, τ0 = inf{t :X4(t) + X5(t) = 0}
from the original model or, more precisely, because of the change of time scale,
we compare (N2

0 τ 2
1 ,N2

0 τ 2
0 ) to (τ1, τ0).

In Figure 5, plots for τ1 and τ0 for 100 exact simulations are given. Taking the
average, the mean of first hitting time of X4(t) + X5(t) to 1 is 305.44 and the
mean of the first hitting time of X4(t) + X5(t) to 0 is 512.45. In Figure 6, plots
for 1000 simulations of τ 2

1 and τ 2
0 are given. The mean of the first hitting time of

Z2
45(tN

−2
0 ) to 1 is 155.95 and the mean of the first hitting time of Z2

45(tN
−2
0 ) to 0

is 261.01. Comparing the two stopping times in the simulations of the full model
and of the approximation, the mean hitting time to 1 and 0 in the approximation is
much faster than in the full model. Consequently, the quicker decrease of Z2

45 to 0
gives a discrepancy in the peak levels and the peak times in the full model and in
the approximation.

6.4. Derivation of Michaelis–Menten equation. Darden (1979, 1982) derives
the Michaelis–Menten equation from a stochastic reaction network model. His
result can be obtained as a special case of the methods developed here.

Consider the reaction system

S1 + S2
κ ′

1�
κ ′

2

S3
κ ′

3
⇀S4 + S2,

where S1 is the substrate, S2 the enzyme, S3 the enzyme-substrate complex and S4
the product. Assume that the parameters scale so that

ZN
1 (t) = ZN

1 (0) − N−1Y1

(
N

∫ t

0
κ1Z

N
1 (s)ZN

2 (s) ds

)
+ N−1Y2

(
N

∫ t

0
κ2Z

N
3 (s) ds

)
,

ZN
2 (t) = ZN

2 (0) − Y1

(
N

∫ t

0
κ1Z

N
1 (s)ZN

2 (s) ds

)
+ Y2

(
N

∫ t

0
κ2Z

N
3 (s) ds

)
+ Y3

(
N

∫ t

0
κ3Z

N
3 (s) ds

)
,
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ZN
3 (t) = ZN

2 (0) + Y1

(
N

∫ t

0
κ1Z

N
1 (s)ZN

2 (s) ds

)
− Y2

(
N

∫ t

0
κ2Z

N
3 (s) ds

)
− Y3

(
N

∫ t

0
κ3Z

N
3 (s) ds

)
,

ZN
4 (t) = N−1Y3

(
N

∫ t

0
κ3Z

N
3 (s) ds

)
,

that is, α1 = α4 = 1, α2 = α3 = 0, β1 = 0, and β2 = β3 = 1.
Note that M = ZN

3 (t) + ZN
2 (t) is constant, and define

V N
2 (t) =

∫ t

0
ZN

2 (s) ds.

THEOREM 6.1. Assume that ZN
1 (0) → x1(0). Then (ZN

1 ,V N
2 ) converges to

(x1(t), v2(t)) satisfying

x1(t) = x1(0) −
∫ t

0
κ1x1(s)v̇2(s) ds +

∫ t

0
κ2

(
M − v̇2(s)

)
ds,

(6.8)

0 = −
∫ t

0
κ1x1(s)v̇2(s) ds +

∫ t

0
(κ2 + κ3)

(
M − v̇2(s)

)
ds

and, hence, v̇2(s) = (κ2+κ3)M
κ2+κ3+κ1x1(s)

and

ẋ1(t) = − Mκ1κ3x1(t)

κ2 + κ3 + κ1x1(t)
.

PROOF. Relative compactness of the sequence (ZN
1 ,V N

2 ) is straightforward.
Dividing the second equation by N and passing to the limit, we see that any limit
point (x1, v2) of (ZN

1 ,V N
2 ) must satisfy

0 = −
∫ t

0
κ1x1(s) dv2(s) + (κ2 + κ3)Mt −

∫ t

0
(κ2 + κ3) dv2(s).(6.9)

Since v2 is Lipschitz, it is absolutely continuous, and rewriting (6.9) in terms of
the derivative gives the second equation in (6.8). The first equation follows by a
similar argument. �

6.5. Limiting models when the balance conditions fail. The balance condition,
Condition 3.2, has as its goal ensuring that the normalized species numbers remain
positive, at least on average, and bounded. Even if the balance condition fails, it
may still be possible to obtain a limiting model in which one or more of the species
abundances are driven to zero and completely disappear from the limiting model.
A referee suggested the following simple example:

∅
κ ′

1
⇀S1

κ ′
2

⇀S2
κ ′

3
⇀S3

κ ′
4

⇀∅
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under the assumption that κ ′
3 � κ ′

1, κ
′
2, κ

′
4. Clearly, the natural reduced model

should be

∅
κ ′

1
⇀S1

κ ′
2

⇀S3
κ ′

4
⇀∅.

Taking the αi = 0, β1 = β2 = β4 = 0, and β3 = 1, the scaled system becomes

ZN
1 (t) = Z1(0) + Y1(κ1t) − Y2

(∫ t

0
κ2Z

N
1 (s) ds

)
,

ZN
2 (t) = Z2(0) + Y2

(∫ t

0
κ2Z

N
1 (s) ds

)
− Y3

(∫ t

0
κ3NZN

2 (s) ds

)
,

ZN
3 (t) = Z3(0) + Y3

(∫ t

0
κ3NZN

2 (s) ds

)
− Y4

(∫ t

0
κ4Z

N
3 (s) ds

)
.

Clearly, the species balance condition fails for both species 2 and species 3. Di-
viding the second equation by N and passing to the limit, it follows easily that
for each T > 0, the Lebesgue measure of the set {t ≤ T :ZN

2 (t) > 0} converges to
zero. Consequently, the Lebesgue measure of the set of t ≤ T such that

ZN
3 (t) 
= Z3(0) + Z2(0) + Y2

(∫ t

0
κ2Z

N
1 (s) ds

)
− Y4

(∫ t

0
κ4Z

N
3 (s) ds

)
goes to zero, and (ZN

1 ,ZN
3 ) converges to the solution of

Z1(t) = Z1(0) + Y1(κ1t) − Y2

(∫ t

0
κ2Z1(s) ds

)
,

Z3(t) = Z3(0) + Z2(0) + Y2

(∫ t

0
κ2Z1(s) ds

)
− Y4

(∫ t

0
κ4Z3(s) ds

)
.

Note that the sequence does not converge in the Skorohod topology on DR2[0,∞)

(distinct discontinuities of ZN
1 and ZN

2 coalesce in the limit), but it does converge
in DR[0,∞) × DR[0,∞) and the finite-dimensional distributions of (ZN

1 ,ZN
3 )

converge to the finite-dimensional distributions of (Z1,Z3).
Mastny, Haseltine and Rawlings (2007) consider a more complex example in

which the balance conditions fail,

S1
κ ′

1�
κ ′

2

2S2, S2
κ ′

3
⇀S3,

where we assume κ ′
2, κ

′
3 � κ ′

1. Take the scaled system to be

ZN
1 (t) = Z1(0) − Y1

(∫ t

0
κ1Z

N
1 (s) ds

)
+ Y2

(
N

∫ t

0
κ2Z

N
2 (s)

(
ZN

2 (s) − 1
)
ds

)
,
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ZN
2 (t) = Z2(0) + 2Y1

(∫ t

0
κ1Z

N
1 (s) ds

)
− 2Y2

(
N

∫ t

0
κ2Z

N
2 (s)

(
ZN

2 (s) − 1
)
ds

)
− Y3

(
N

∫ t

0
κ3Z

N
2 (s) ds

)
,

ZN
3 (t) = Z3(0) + Y3

(
N

∫ t

0
κ3Z

N
2 (s) ds

)
.

Consequently, assuming Z2(0) = 0, for most t > 0, ZN
2 (t) = 0 and

2Y1

(∫ t

0
κ1Z

N
1 (s) ds

)
= Y3

(
N

∫ t

0
κ3Z

N
2 (s) ds

)
+ 2Y2

(
N

∫ t

0
κ2Z

N
2 (s)

(
ZN

2 (s) − 1
)
ds

)
.

To be precise, letting Λ denote the Lebesgue measure and defining

R̂N
2 (t) =

∫ t

0
1{ZN

2 (r−)=2} dRN
2 (r), R̂N

3 (t) =
∫ t

0
1{ZN

2 (r−)=2} dRN
3 (r)

for each t > 0,

lim
N→∞Λ{0 ≤ s ≤ t :ZN

2 (s) 
= 0} ≤ lim
N→∞

∫ t

0
ZN

2 (s) ds = 0,

lim sup
N→∞

sup
s≤t

ZN
2 (s) ≤ 2,

lim
N→∞

∫ t

0
|RN

2 (s) − R̂N
2 (s)|ds = 0,

lim
N→∞

∫ t

0
|RN

3 (s) − 2R̂N
3 (s)|ds = 0,

so

lim
N→∞

∫ t

0
|RN

1 (s) − R̂N
2 (s) − R̂N

3 (s)|ds = 0.

Setting QN(t) = 1{ZN
2 (t)=2},

R̂N
2 (t) −

∫ t

0
NQN(s)κ22ds and R̂N

3 (t) −
∫ t

0
NQN(s)κ32ds

are martingales. Working first with a subsequence satisfying (A.7), by Lem-
ma A.13, (R̂N

2 , R̂N
3 ) converges to counting processes (R̂2, R̂3) with intensities

λ̂2(t) = κ1κ2

κ2 + κ3
Z1(t), λ̂3(t) = κ1κ3

κ2 + κ3
Z1(t),
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where Z1(t) = Z1(0) − R̂3(t). It follows that the finite-dimensional distributions
of (ZN

1 ,ZN
3 ) converge to those of a solution to

Z1(t) = Z1(0) − Y

(∫ t

0

κ1κ3

κ2 + κ3
Z1(s) ds

)
,

Z3(t) = Z3(0) + 2Y

(∫ t

0

κ1κ3

κ2 + κ3
Z1(s) ds

)
,

which is the reduced model obtained in Mastny, Haseltine and Rawlings (2007).
In this example, ZN

1 does not converge in the Skorohod topology, but (ZN
1 ,ZN

3 )

does converge in the Jakubowski topology as described in Remark A.14.
[Note the relationship between our rate constants and those of Mastny, Haseltine

and Rawlings (2007): κ1 = k1, κ2 = 1
2k−1 and κ3 = k2.]

APPENDIX

A.1. Convergence of random measures. The material in this section is taken
from Kurtz (1992). Proofs of the results can be found there.

Let (L, d) be a complete, separable metric space, and let M(L) be the space
of finite measures on L with the weak topology. The Prohorov metric on M(L) is
defined by

ρ(μ, ν) = inf{ε > 0 :μ(B) ≤ ν(Bε) + ε, ν(B) ≤ μ(Bε) + ε,B ∈ B(L)},(A.1)

where Bε = {x ∈ L : infy∈B d(x, y) < ε}. The following lemma is a simple conse-
quence of Prohorov’s theorem.

LEMMA A.1. Let {�n} be a sequence of M(L)-valued random variables.
Then �n is relatively compact if and only if {�n(L)} is relatively compact as a
family of R-valued random variables and for each ε > 0, there exists a compact
K ⊂ L such that supn P {�n(K

c) > ε} < ε.

COROLLARY A.2. Let {�n} be a sequence of M(L)-valued random vari-
ables. Suppose that supn E[�n(L)] < ∞ and that for each ε > 0, there exists a
compact K ⊂ L such that

lim sup
n→∞

E[�n(K
c)] ≤ ε.

Then {�n} is relatively compact.

Let L(L) be the space of measures on L × [0,∞) such that μ(L × [0, t]) < ∞
for each t > 0, and let Lm(L) ⊂ L(L) be the subspace on which μ(L × [0, t]) = t .
For μ ∈ L(L), let μt denote the restriction of μ to L × [0, t]. Let ρt denote the
Prohorov metric on M(L × [0, t]), and define ρ̂ on L(L) by

ρ̂(μ, ν) =
∫ ∞

0
e−t1 ∧ ρt (μ

t , νt ) dt,
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that is, {μn} converges in ρ̂ if and only if {μt
n} converges weakly for almost every t .

In particular, if ρ̂(μn,μ) → 0, then ρt (μ
t
n,μ

t ) → 0 if and only if μn(L×[0, t]) →
μ(L × [0, t]). The following lemma is an immediate consequence of Lemma A.1.

LEMMA A.3. A sequence of (Lm(L), ρ̂)-valued random variables {�n} is rel-
atively compact if and only if for each ε > 0 and each t > 0, there exists a compact
K ⊂ L such that infn E[�n(K × [0, t])] ≥ (1 − ε)t .

LEMMA A.4. Let � be an (L(L), ρ̂)-valued random variable adapted to a
complete filtration {Ft } in the sense that for each t ≥ 0 and H ∈ B(L), �(H ×
[0, t]) is Ft -measurable. Let λ(G) = �(L×G). Then there exists an {Ft }-optional,
P(L)-valued process γ such that∫

L×[0,t]
h(y, s)�(dy × ds) =

∫ t

0

∫
L

h(y, s)γs(dy)λ(ds)(A.2)

for all h ∈ B(L × [0,∞)) with probability one. If λ([0, t]) is continuous, then γ

can be taken to be {Ft }-predictable.

LEMMA A.5. Let {(xn,μn)} ⊂ DE[0,∞) × L(L), and (xn,μn) → (x,μ).
Let h ∈ C(E × L) and ψ be a nonnegative function on [0,∞) satisfying
limr→∞ ψ(r)/r = ∞ such that

sup
n

∫
L×[0,t]

ψ(|h(xn(s), y)|)μn(dy × ds) < ∞(A.3)

for each t > 0.
Define

un(t) =
∫

L×[0,t]
h(xn(s), y)μn(dy × ds),

u(t) =
∫

L×[0,t]
h(x(s), y)μ(dy × ds),

zn(t) = μn(L × [0, t]) and z(t) = μ(L × [0, t]).
(a) If x is continuous on [0, t] and limn→∞ zn(t) = z(t), then limn→∞ un(t) =

u(t).
(b) If (xn, zn,μn) → (x, z,μ) in DE×R[0,∞)× L(L), then (xn, zn, un,μn) →

(x, z, u,μ) in DE×R×R[0,∞) × L(L). In particular, limn→∞ un(t) = u(t) at all
points of continuity of z.

(c) The continuity assumption on h can be replaced by the assumption that h is
continuous a.e. νt for each t , where νt ∈ M(E × L) is the measure determined by
νt (A × B) = μ{(y, s) :x(s) ∈ A, s ≤ t, y ∈ B}.

Lemma A.5 and the continuous mapping theorem give the following.



MODEL REDUCTION FOR REACTION NETWORKS 577

LEMMA A.6. Suppose (ZN,V N) ⇒ (Z,V ) in DE[0,∞) × Lm(L). Let h ∈
C(E × L) and ψ be as in Lemma A.5. If {∫ t

0 ψ(|h(ZN(s), y)|)V N(dy × ds)} is
stochastically bounded for all t > 0, then∫

L×[0,·]
h(ZN(s), y)V N(dy × ds) ⇒

∫
L×[0,·]

h(Z(s), y)V (dy × ds).

A.2. Martingale properties of counting processes. A cadlag stochastic pro-
cess R is a counting process if R(0) = 0 and R is constant except for jumps of plus
one. If R is adapted to a filtration {Ft }, then a nonnegative {Ft }-adapted process λ

is an {Ft }-intensity for R if

M(t) = R(t) −
∫ t

0
λ(s) ds

is an {Ft }-local martingale. Specifically, letting τl denote the lth jump time of R,

Mτl (t) ≡ M(t ∧ τl) = R(t ∧ τl) −
∫ t∧τl

0
λ(s) ds

is an {Ft }-martingale for each l.
For simplicity, we assume that λ is cadlag.

REMARK A.7. For Rk defined in (2.1) and {Ft } = σ(Rl(s) : s ≤ t, l =
1, . . . , r0), the intensity for Rk is t → λk(X(t)).

LEMMA A.8. For each t ≥ 0 and each l,

l ≥ E[R(t ∧ τl)] = E

[∫ t∧τl

0
λ(s) ds

]
(A.4)

and

E[R(t)] = E

[∫ t

0
λ(s) ds

]
,

where we allow ∞ = ∞. If E[R(t)] < ∞ for all t > 0, then

R(t) −
∫ t

0
λ(s) ds

is an {Ft }-martingale.

Two counting processes, R1, R2, are orthogonal if they have no simultaneous
jumps.

LEMMA A.9. Let R1, . . . ,Rm be pairwise orthogonal {Ft }-adapted counting
processes with {Ft }-intensities λk . Then, perhaps on a larger probability space,
there exist independent unit Poisson processes Y1, . . . , Ym such that

Rk(t) = Yk

(∫ t

0
λk(s) ds

)
,



578 H.-W. KANG AND T. G. KURTZ

and R = ∑m
k=1 Rk is a counting process with intensity λ = ∑m

k=1 λk .
If τl is the lth jump time of R, then

P {Rk(τl) − Rk(τl−) = 1|Fτl
} = λk(τl−)

λ(τl−)
.(A.5)

REMARK A.10. Note that the right-hand side of (A.5) involves the left limits
of the intensities. If the intensities are not cadlag, then λk(τl−) should be replaced
by

lim sup
h→0+

h−1
∫ τl

τl−h
λk(s) ds.

The intensity of a counting process does not necessarily uniquely determined
its distribution. For example, consider the system

R1(t) = Y1

(∫ t

0
λ(R1(s)) ds

)
,

R2(t) = Y2

(∫ t

0
λ(R1(s)) ds

)
.

The intensity for each component is λ(R1(t)), but the two components will not
have the same distribution.

PROOF OF LEMMA A.9. See Meyer (1971) and Kurtz (1980). �

LEMMA A.11. Suppose that RN
1 , . . . ,RN

m are pairwise orthogonal counting
processes adapted to a filtration {F N

t } with {F N
t }-intensities λN

1 , . . . , λN
m . Let

�N
k (t) = ∫ t

0 λN
k (s) ds, and suppose that (�N

1 , . . . ,�N
m) ⇒ (�1, . . . ,�m) in the

Skorohod topology on DRm[0,∞). Then {(RN
1 , . . . ,RN

m)} is relatively compact in
the Skorohod topology and any limit point (R1, . . . ,Rm) consists of pairwise or-
thogonal counting processes.

At least along a further subsequence,

(�N
1 , . . . ,�N

m,RN
1 , . . . ,RN

m) ⇒ (�1, . . . ,�m,R1, . . . ,Rm),

and letting {F �,R
t } be the filtration generated by (�1, . . . ,�m,R1, . . . ,Rm),

Rk − �k are {F �,R
t }-local martingales and there exist independent unit Poisson

processes (Y1, . . . , Ym) such that

Rk(t) = Yk(�k(t)), k = 1, . . . ,m.(A.6)

REMARK A.12. If the �k are adapted to {F R
t }, then R will be the unique

solution of (A.6) and RN ⇒ R in the Skorohod topology.
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PROOF OF LEMMA A.11. See Kabanov, Liptser and Shiryaev (1984). �

In Section 6.5, we consider an example for which the integrated intensities did
not have a continuous limit. The next lemma covers that situation.

LEMMA A.13. Suppose that RN
0 ,RN

1 , . . . ,RN
m are counting processes adapt-

ed to a filtration {F N
t }, and RN

1 , . . . ,RN
m are pairwise orthogonal. Suppose RN

0
has {F N

t }-intensity λN
0 , and RN

1 , . . . ,RN
m have {F N

t }-intensities λN
k = NQNμN

k ,
where QN ≥ 0. Suppose

(λN
0 ,μN

1 , . . . ,μN
m) ⇒ (λ0,μ1, . . . ,μm)(A.7)

and ∫ t

0

∣∣∣∣∣RN
0 (s) −

m∑
k=1

RN
k (s)

∣∣∣∣∣ds → 0(A.8)

for each t > 0. Then {(RN
0 ,RN

1 , . . . ,RN
m)} is relatively compact in the Jakubowski

topology and for any limit point (R0,R1, . . . ,Rm),

R0 =
m∑

k=1

Rk,

and R1, . . . ,Rm are pairwise orthogonal counting processes with intensities

λk(t) = μk(t)∑m
l=1 μl(t)

λ0(t).

REMARK A.14. The sequence may not be relatively compact in the Skoro-
hod topology since we have not ruled out the possibility that the sequence has
discontinuities that coalesce. See the example in Section 6.5.

The Meyer–Zheng conditions [Meyer and Zheng (1984)] imply relative com-
pactness in the Jakubowski topology [Jakubowski (1997)]. A sequence of cadlag
functions {xn} converges to a cadlag function x in the Jakubowski topology if
and only if there exists a sequence of time changes {γn} such that (xn ◦ γn, γn) →
(x ◦γ, γ ) in the Skorohod topology. [See Kurtz (1991).] The time-changes are con-
tinuous, nondecreasing mappings from [0,∞) onto [0,∞) but are not necessarily
strictly increasing. Convergence implies

∫ t
0 |xn(s) − x(s)| ∧ 1ds → 0. In contrast

to the Skorohod topology, if xn → x and yn → y in the Jakubowski topology, then
(xn, yn) → (x, y) in the Jakubowski topology on cadlag functions in the product
space.

PROOF OF LEMMA A.13. By Lemma A.11, {RN
0 } is relatively compact in the

Skorohod topology and hence in the Jakubowski topology. Let

R̂N
0 =

m∑
k=1

RN
k .
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The stochastic boundedness of {RN
0 (t)} for each t > 0 and (A.8) imply the stochas-

tic boundedness of {R̂N
0 (t)} for each t > 0 which by (A.4) implies the stochastic

boundedness of {∫ t

0
NQN(s)

m∑
k=1

μN
k (s) ds

}
.

Let γN be defined by∫ γN (t)

0

(
1 + NQN(s)

m∑
k=1

μN
k (s)

)
ds = t.

Since |γN(s) − γN(t)| ≤ |s − t |, {γN } is relatively compact. Define

�N
k (t) =

∫ t

0
λN

k (s) ds

and observe that

�N
l ◦ γN(t) =

∫ t

0

NQN ◦ γN(s)μN
l ◦ γN(s)

1 + NQN ◦ γN(s)
∑

k μN
k ◦ γN(s)

ds

is also Lipschitz with Lipschitz constant 1. Since {γN(t), t ≥ 0} are stopping times,

RN
l − �N

l ◦ γN

are martingales with respect to the filtration {F N
γN(t)}.

The Lipschitz properties imply the relative compactness of

{(�N
1 ◦ γN, . . . ,�N

m ◦ γN, γN)}
in the Skorohod topology, which, in turn, by Lemma A.11, implies the relative
compactness of

{(�N
1 ◦ γN, . . . ,�N

m ◦ γN, γN,RN
1 ◦ γN, . . . ,RN

m ◦ γN)}.
Relative compactness of this sequence in the Skorohod topology ensures relative
compactness of {(RN

1 , . . . ,RN
m)} in the Jakubowski topology, which, in turn, im-

plies relative compactness of {(RN
0 ,RN

1 , . . . ,RN
m)} in the Jakubowski topology.

Along an appropriate subsequence, we have convergence of γN to a limit γ ,∫ t

0

NQN ◦ γN(s)
∑

k μN
k ◦ γN(s)

1 + NQN ◦ γN(s)
∑

k μN
k ◦ γN(s)

ds ⇒ �̂,

convergence of �N
k ◦ γN to

�̂k(t) =
∫ t

0

μk ◦ γ (s)∑
l μl ◦ γ (s)

d�̂(ds),
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and convergence of (RN
0 ,RN

1 , . . . ,RN
m) in the Jakubowski topology to a process

satisfying

R0 =
m∑

k=1

Rk.

Since R0 ◦ γ (t) − ∫ γ (t)
0 λ0(s) ds is a martingale, we must have∫ γ (t)

0
λ0(s) ds = �̂(t)

and

�̂k(t) =
∫ t

0

μk ◦ γ (s)∑
l μl ◦ γ (s)

λ0 ◦ γ (s)γ ′(s) ds.

Since R0 is a counting process, the Rk , k = 1, . . . ,m, must be orthogonal, and Rk

must have intensity μk∑
l μl

λ0. �
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KHAS’MINSKIĬ, R. Z. (1966a). On stochastic processes defined by differential equations with a
small parameter. Theory Probab. Appl. 11 211–228.
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