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Abstract. How to choose the computational compartment or cell size for the stochastic simulation of a reaction-1

diffusion system is still an open problem, and a number of criteria have been suggested. A generalized measure of2

the noise for finite-dimensional systems based on the largest eigenvalue of the covariance matrix of the number of3

molecules of all species has been suggested as a measure of the overall fluctuations in a multivariate system, and we4

apply it here to a discretized reaction-diffusion system. We show that for a broad class of first-order reaction networks5

this measure converges to the square root of the reciprocal of the smallest mean species number in a compartment at6

the steady state. We show that a suitably re-normalized measure stabilizes as the volume of a cell approaches zero,7

which leads to a criterion for the maximum volume of the compartments in a computational grid. We then derive8

a new criterion based on the sensitivity of the entire network, not just of the fastest step, that predicts a grid size9

that assures that the concentrations of all species converge to a spatially-uniform solution. This criterion applies for10

all orders of reactions and for reaction rate functions derived from singular perturbation or other reduction methods,11

and encompasses both diffusing and non-diffusing species. We show that this predicts the maximal volume found in12

the linear problems, and we illustrate our results with an example motivated by anterior-posterior pattern formation13

in Drosophila, and with several other examples.14

1. Introduction15

It is now widely-recognized that stochastic effects can play an important role in diverse processes such as gene16

expression and spatial pattern formation in development because many key biological molecules are present in low copy17

numbers. For example, gene transcription in some bacteria involves interactions between 1-3 promoter elements, 10-2018

polymerase holoenzyme units, 10-20 copies of repressor proteins, 3000 RNA polymerase molecules, and approximately19

1000 ribosomes [26]. Since chemical reactions occur in discrete steps at the molecular level, the processes are inherently20

stochastic and the inherent “irreproducibility” in these dynamics has been demonstrated experimentally for single21

cell gene expression events [43,36,29]. In some contexts stochastic effects simply add noise to an output, but have22

no beneficial role, but in others, such as asymmetric cell division, their role is essential. In general organisms show a23

remarkable degree of resilience or robustness in the face of noise, and thus understanding the time-dependent behavior24

of a system of interacting species and how noise influences the outcome is important in numerous contexts, including25

temporal gene expression profiles, signal transduction, and other biochemical processes. Of course when the numbers26

of molecules of all species are large enough, a ‘law of large numbers’ argument shows that for finite times the stochastic27

formulation described later converges to the mass-action based deterministic description commonly used, at least in28

well-mixed systems [25].29

One of the earliest investigations of stochastic effects in reactions is due to Delbrück [13], who studied the30

distribution of the number of molecules for a single reacting species in a one-component, enzyme-catalyzed system.31

It was assumed there that the substrate is in excess and thus the process is effectively first-order. There are many32

other examples of first-order reaction networks that involve a small number of molecules, including transcription and33

translation modeled as first-order catalytic reactions [46], for which stochastic analysis is necessary. The evolution34

of the surface morphology during epitaxial growth involves the nucleation and growth of atomic islands, and these35

processes may be described by first-order adsorption and desorption reactions coupled with diffusion along the surface.36

Proteins exist in distinct conformational states, and the reversible transitions between states can be described as first-37

order conversion processes [30]. Fluctuating protein conformations are important in the movement of small molecules38

through proteins such as myoglobin; hence it is important to understand the distribution of these states [20,4]. RNA39

also exists in several conformations, and the transitions between various folding states follow first-order kinetics [9].40

In Gadgil et. al. [17] the linear problem for an arbitrary number of components is more or less completely solved,41

in that it is shown there how to obtain the evolution equations for the mean and variance in closed form. These42

results also address the problem of understanding how the interplay between the nature of the individual steps43

and the connectivity or topology of the entire network affects the dynamics of the system, irrespective of whether44

a deterministic or a stochastic description is the most appropriate, but this problem remains unsolved for general45

nonlinear reaction schemes.46

In the context of biological pattern formation, robustness or resilience is frequently defined with respect to the47

precision and sensitivity of the determination of boundaries between different cell types in a developing tissue [48]. A48

classical paradigm for this process is the French flag model, in which a one-dimensional domain is to be divided into49

three equal-size sub-domains [48]. In the simplest deterministic version of this model, either specialized source and50
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sink cells located at the boundary of the developmental field maintain the concentration of a signaling molecule, called1

a morphogen, at appropriate fixed levels, or boundary cells produce the morphogen at a fixed rate. In the former case,2

when there is no degradation of the morphogen in the interior of the domain a linear distribution can be established3

in a one-dimensional system of about 1 mm in length in the time that is normally available for commitment to4

differentiation [52,11]. Given fixed thresholds between different cell types, the tissue can be proportioned into any5

number of cell types and the determination of the boundaries is robust with respect to changes in the size of the system.6

In the latter case we consider a simple version in which the flux at the boundary is specified, and degradation by7

first-order reaction occurs throughout the domain - generalizations will be discussed later in the context of Drosophila8

patterning.9

However a deterministic description of either of these models ignores the possible effects of stochastic fluctuations10

in the signaling and gene control networks and the effect stochastic fluctuations may have on the precision of pattern-11

ing. Figure 1(a) shows one realization of a stochastic model of a linear chain of compartments with fixed numbers of12

molecules at the endpoints of the domain, and Figure 1(b) shows one realization for the second scheme, in which the13

input flux is fixed at the left. In both panels the solid line shows the mean of the distribution, which can be computed14

directly since the equations are linear [17]. These curves also represent the steady-state distribution for the corre-15

sponding deterministic system. Since each developing embryo represents one realization of the stochastic patterning
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Fig. 1. Two examples of the French flag model with stochastic dynamics. In each case the system is 1×0.01×0.01mm3,
the x-length is discretized into 50 compartments, the diffusion coefficient is 1000µm2min−1, and one realization is
shown at 100 mins. (a) The distribution for fixed concentrations at the boundaries: 35 molecules at the left and 5 at
the right, with diffusion and no degradation throughout. The color indicates the thresholds: black – greater than 25
and gray – greater than 15 molecules. (b) The distribution when there is an influx from a source at the left end at a
rate 0.1nM µmmin−1, and diffusion and degradation at a rate 0.01min−1 throughout. Initially, each compartment
has 10 molecules of morphogen. The color indicates the thresholds: black – greater than 12 and gray – greater than
6 molecules.

16

process, the results illustrate the difficulty in determining the location of the boundaries between cell types in the face17

of such fluctuations. In embryonic patterning in Drosophila, the primary morphogen Dpp has signaling activity in the18

range of 10−10M to 10−9M [39], and at these concentrations there are very few Dpp signaling molecules available to19

the receptors. Thus fluctuations will be significant, and how the embryos cope with such noise to pattern reliably is20

still not fully understood. Preliminary work has shown that a postulated positive feedback mechanism [38] increases21

the reliability of spatial patterning [53]. In any case, spatially-distributed systems add a new level of complexity to22

the problem of understanding the importance of noise in development.23

1.1. The description of reaction networks24

Throughout we deal with reacting systems that are not diffusion-limited, and thus a stochastic analysis and simulation25

of reaction and diffusion can be built around a discretized or compartmentalized model of the system in which each26

compartment is well-mixed. We discuss the rationale for this approach and the method for choosing the compartment27

size in more detail later, but we begin by developing the chemical master equation that can be used to describe28

such systems. We begin with some background on a deterministic description of reacting systems, then derive the29
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master equation for an arbitrary network of reacting species, and finally add diffusion. The formulation of the reaction1

component is described in more detail elsewhere [33,17,28].2

Suppose that a reacting mixture contains a set M of s chemical species Mi that participate in a total of r

reactions. Let νil be the stoichiometric coefficient of the ith species in the ℓth reaction. The νil are non-negative

integers that represent the normalized molar proportions of the species in a reaction. Each reaction is written in the

form
X

i

reac.
νreac

iℓ Mi −→
X

i

prod
νprod

iℓ Mi ℓ = 1, . . . r,

where the sums are over reactants and products, respectively in the ℓth reaction. Here the forward and reverse reaction

of a reversible pair are treated as two irreversible reactions. There may be other species that do not react, but they

play no role here. Once the reactants and products are specified the network topology of the associated reaction graph

is defined. The linear combinations of species that appear as reactants or products in the various elementary steps

are called complexes, and the relation defined by which complexes are connected by reaction gives rise to a directed

graph G in which each complex is identified with a vertex Vj in G and a directed edge Eℓ is introduced into G for

each reaction. Each edge carries a nonnegative weight R̂ℓ(c) given by the intrinsic rate of the corresponding reaction.

The topology of G is in turn represented in its vertex-edge incidence matrix E , which is defined as follows.

Ejℓ =

8

>

<

>

:

+1 if Eℓ is incident at Vj and is directed toward it

−1 if Eℓ is incident at Vj and is directed away from it

0 otherwise

If there are p complexes and r reactions, then E has p rows and r columns and every column has exactly one +1 and3

one −1.4

Once the complexes and reactions are fixed, the stoichiometry of the complexes is determined, and we let ν denote5

the s × p matrix whose jth column encodes the stoichiometric amounts of the reacting species in the jth complex.6

Then the deterministic temporal evolution of the composition of a spatially-uniform reacting mixture is governed by7

dc

dt
= νER̂(c). (1)8

A special but important class of rate functions is that in which the rate of the ℓth reaction can be written as

R̂ℓ(c) = kℓRℓ(c).

This includes ideal mass action rate laws, in which the rate is given by9

Rℓ =

n
Y

i=1

(ci)
νiℓ . (2)10

As it stands, (1) includes all reacting species, but those whose concentration is constant on the time scale of11

interest can be deleted from each of the complexes in which it appears, and its concentration or mole fraction can be12

absorbed into the rate constant for reactions in which it participates as a reactant1. Furthermore, some complexes13

may not comprise any time-dependent species; these will be called null complexes and denoted by M0, and each14

null complex gives rise to a column of zeroes in ν. The rate of any reaction in which the reactant complex is a null15

complex is usually constant. For instance, any transport reaction of the form M0 → Mi introduces a null complex16

and the corresponding flux of Mi represents a constant input to the reaction network, provided that the rate of the17

transport step does not depend on the concentration of a time-dependent species.18

One can also base the description of a reacting system on the number of molecules, and to connect the deterministic

and stochastic descriptions, we let n = (n1, n2, . . . , ns) denote the discrete composition vector whose ith component

ni is the number of molecules of species Mi present in the volume V. This is the discrete version of the composition

vector c, and they are related by n = NAVc, where NA is Avogadro’s number. From (1) we obtain the deterministic

1 Hereafter s will denote the number of species whose concentration may be time-dependent.
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evolution for n as
dn

dt
= νER̃(n)

where R̃(n) ≡ NAVR̂(n/NAV). In particular, for mass-action kinetics

R̃ℓ(n) = NAVkℓRℓ(n/NAV) = NAVkℓ

s
Y

i=1

„

ni

NAV

«νiℓ

=
kℓ

(NAV)
P

i νiℓ−1

s
Y

i=1

(ni)
νiℓ = k̂ℓ

s
Y

i=1

(ni)
νiℓ .

Care is needed in accounting for volume factors when one species in a bimolecular reaction is confined to a surface1

and the other to the adjacent fluid, as occurs in receptor-ligand interactions.2

1.2. The stochastic description of reactions3

In the stochastic description the evolution of the number of molecules of a species is modeled as a continuous-time

Markov jump process. Let Ni(t) be a random variable that represents the number of molecules of species Mi at time

t, and let N denote the vector of Nis. The state of the system at any time is a point in Zs
0 , where Z0 is the set of

nonnegative integers. Let P (n, t) be the joint probability that N(t) = n, i.e., N1 = n1, N2 = n2, . . . , Ns = ns; then

the master equation for the evolution of P is

d

dt
P (n, t) =

X

m∈S(n)

R(m,n) · P (m, t) −
X

m∈T (n)

R(n,m) · P (n, t)

where R(i, j) is the probability per unit time of a transition from state i to state j, the ‘source’ set S(n) is the set4

of all states that can terminate at n after one reaction step, and T (n), the ‘target’ set, is the set all states reachable5

from n in one step of the feasible reactions. The sets S(n) and T (n) are easily determined using the underlying graph6

structure. It follows from the definition of ν and E that the ℓth reaction C(k) → C(k′) induces a change ∆n(ℓ) = νE(ℓ)7

in the number of molecules of all species after one step of the reaction, where subscript ℓ denotes the ℓth column of E8

and C(k) denotes the kth complex of species. Therefore the state m = n− νE(ℓ) is a source or predecessor to n under9

one step of the ℓth reaction. Similarly, states of the form m = n+ νE(ℓ) are reachable from n in one step of the ℓth10

reaction.11

Once the graph of the network and the stoichiometry are fixed, we can sum over reactions rather than sources

and targets, and consequently the master equation takes the form

d

dt
P (n, t) =

X

ℓ

Rℓ(n− νE(ℓ)) · P (n− νE(ℓ), t) −
X

ℓ

Rℓ(n) · P (n, t).

However, the transition probabilities Rℓ(n) are not simply the macroscopic rates R̃ if the reactions are second-order

(or higher), but are given by [19,17]

Rℓ = cj(ℓ)hj(ℓ)(n).

Here j(ℓ) denotes the reactant complex for the ℓth reaction, the factor cj(ℓ) is the probability per unit time that the

molecular species in the jth complex react via the ℓth reaction, and hj(ℓ)(n) is the number of independent combinations

of the molecular components in this complex. Thus

cj(ℓ) =
kℓ

(NAV)
P

i νij(ℓ)−1
= k̂ℓ and hj(ℓ) =

Y

i

νij(ℓ)−1
Y

mi=0

(ni −mi).

For a first-order reaction k̂ℓ is the probability per unit time per molecule of a transition, for a bimolecular step of the12

form A+A→ C it represents the probability per unit time of a transition per ordered AA pair, and for a bimolecular13

step of the form A+B → C it represents the probability per unit time of a transition per AB pair. For a first-order14

reaction 1/k̂ℓ represents a bona fide time scale, as in the deterministic case, whereas for bimolecular reactions it does15

not. We return to this point later.16
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1.3. The master equation for a general system of reaction and diffusion1

Many biological problems involve more than just one well-mixed compartment, and this provides the motivation2

for describing a general framework for treating networks of cells or compartments that can communicate by various3

mechanisms, some of which involve material transport, and others of which merely involve signaling by, for instance, a4

ligand binding to a receptor. A schematic of an array of discrete cells that interact by several mechanisms is shown in5

Figure 2. An example of a system that can be described by such a network is the developing wing disc in Drosophila6

melanogaster. We illustrate the types of interactions within and between cells, but there may also be transport by7

diffusion within the gaps between cells and in the surrounding fluid. We allow reaction within cells, reaction between8

species at the membranes with either species in the associated cell or on the membrane of the adjacent cell, and9

transport between cells.

  

  
 

1 2 3
Y Y Y

Receptor−
interactions

Reaction 
within cells

Reaction between 
species on opposing

  membranes

Reaction at  
or transport 

to the membrane

Exchange between cellsligand 

Fig. 2. A schematic of a 1D network of coupled cells in which cells can interact either at their opposing membranes
or via transport between cells.

10

If we associate a graph with only one class of nodes to the array, then ordering them so that the first Nc are

cell labels and the remaining 2Nc (or smaller, depending on boundary conditions) are pairs of opposed membranes

produces the cleanest separation, for then the incidence matrix has the form

E =

2

4

E
cc

E
cm

E
mc

E
mm

3

5

where Ecc, Ecm, Emc, and Emm denote the cell-cell, the cell-membrane, the membrane-cell and the membrane-membrane11

connections, respectively.12

It is not difficult to formulate a master equation for the general network in Figure 2, since all the steps shown can13

be treated as chemical reactions, but the details depend on the specific steps involved. When there is no interaction14

between membranes the matrix collapses to Ecc, which encodes the connectivity of the cell network. It is clear that15

we can still allow receptor-ligand interactions, and examples of this are given later. In the remainder of the section we16

assume that transport is only by diffusion and that the network arises from the discretization of a reaction-diffusion17

problem.18

In a stochastic description of reaction-diffusion systems in which the reactions are not diffusion-limited, the19

domain Ω containing the mixture can be discretized into spatially-uniform compartments, and diffusion can be20

treated as a jump process between compartments. How to correctly choose the computational cell or compartment21

size is a significant problem, and we deal with this in the following sections – here we simply derive the master22

equation for a reaction-diffusion system. In fact the compartments need not be computational cells that arise from23

the discretization of a domain; they could be compartments in the wider sense used above, as long a transport is24

diffusion-like, and we describe all cases as compartments hereafter. However, for simplicity we assume that transport25

between compartments is symmetric and linear in the concentration differences, so as to describe diffusion, and that26

all compartments are cubes of side-length h. We will comment later on how to generalize the resulting equation for27

other transport mechanisms and unequal compartment sizes.28
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Earlier we introduced the reaction graph G and we indicated above that one can associate a graph with the cellular1

network as well. To distinguish between these we denote the former as Gr and the latter as Gc. We suppose that there2

are Nc nodes in Gc, we define the incidence matrix Ec, which was Ecc in the general case, and the discrete Laplacian3

as ∆c = −EcET
c /2. When the network stems from a regular grid, the Laplacian is the discretization, modulo a scale4

factor of h−2, of the spatial Laplacian [35].5

Let N(t) = (N1(t),N2(t), · · · , NNc (t)) be the vector of random variables whose kth vector component represents

the numbers of molecules of species in the kth compartment. Let P (n, t) be the probability that N(t) = n, i.e.,

the joint probability that N1(t) = n1 = (n1
1, n

1
2, · · · , n1

s), N
2(t) = n2 = (n2

1, n
2
2, · · · , n2

s), · · · , NNc (t) = nNc =

(nNc
1 , nNc

2 , · · · , nNc
s ). Then P (n, t) ≡ P (n1, n2, · · · , nk, · · · , nNc , t), and in the absence of coupling between the com-

partments the master equation for P (n, t) is

d

dt
P (n, t) =

Nc
X

k=1

"

X

ℓ

Rℓ(n
k − νE(ℓ)) · P (n1, . . . , nk − νE(ℓ), . . . , n

Nc , t) −
X

ℓ

Rℓ(n
k) · P (nk, t)

#

since this just involves the sum over all compartments of the changes in state of the individual compartments. Since6

the compartments evolve independently in the absence of coupling, the joint distribution can be factored into a7

product of Nc distributions, but this plays no role here.8

In the absence of reaction but in the presence of diffusive coupling between compartments, the flux of the ith

species from k to one of its neighbors k′ is assumed to be given by

Jkk′

i =
Di

h2
nk

i ,

while the reverse flux is

Jk′k
i =

Di

h2
(nk′

i + 1).

The transfer of one molecule in the first step involves the change nk
i → nk

i − 1, nk′

i → nk′

i + 1 whereas the reverse

flux involves the change nk′

i + 1 → nk′

i , n
k
i − 1 → nk

i . Of course both steps conserve the particle number. Thus the

evolution equation for P (n, t) when diffusion alone is considered is

d

dt
P (n, t) =

Nc
X

k=1

X

k′∈N (k)

"

s
X

i=1

Di

h2
(nk′

i + 1)P (n1, . . . , nk − ei, . . . , n
k′

+ ei . . . , n
Nc , t) − Di

h2
nk

i P (nk, t)

#

where N (k) is the set of all neighbors of k in Gc and ei = (0, 0, . . . , 1, . . . , 0)T has a 1 in the ith position and zeroes9

elsewhere. To obtain the full equation we simply add the reaction and diffusion contributions; thus10

d

dt
P (n, t) =

Nc
X

k=1

8

<

:

X

k′∈N (k)

"

s
X

i=1

Di

h2
(nk′

i + 1)P (n1, . . . , nk − ei, . . . , n
k′

+ ei . . . , n
Nc , t) − Di

h2
nk

i P (nk, t)

#

11

(3)12

+
X

ℓ

Rℓ(n
k − νE(ℓ)) · P (n1, . . . , nk − νE(ℓ), . . . , n

Nc , t) −
X

ℓ

Rℓ(n
k) · P (nk, t)

)

.13

The formulation at (3) is based on the assumption that the domain is decomposed into equal-size compartments14

defined by a Cartesian grid. However this is not necessary, and a general formulation based on the compartment graph15

that allows for unequal volumes goes as follows. A first step is to generalize the foregoing to arbitrary topologies,16

albeit with equal-size compartments. This can be done using the Laplacian and the adjacency matrix A, which is17

defined via ∆ = −d(∆) + A, where d(∆) is the diagonal matrix whose kth entry is the degree of the kth node. In18

the second step one incorporates unequal volumes of compartments and differences in the area for transfer between19

compartments. The latter is equivalent to allowing the diffusion coefficients to depend on the pair of compartments20

involved in the exchange. Finally, one has to scale the reaction rates differently in different compartments to account21

for the fact that the volumes of the compartments are not equal. We leave the details to the interested reader.22
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1.4. Overview of the paper1

If the compartment size used to develop the master equation (3) arises as a basic unit in the system, for example, a2

biological cell size, then no further analysis is needed, and a stochastic simulation based on (3) using the Gillespie’s3

algorithm [19] or one of its many modifications [14] is appropriate. However, if the system is described initially as a4

continuum and a reaction-diffusion equation of the form5

∂u(x, t)

∂t
= D∆u(x, t) + R

`

u(x, t)
´

(4)6

is used, then the conversion to the master equation (3) requires a choice of compartment size. A numerical algorithm7

for the solution of the deterministic equation (4) would involve a discretization of space, and finer discretizations would8

produce more accurate solutions under suitable conditions. However this assumes that the solution is continuous in9

x, but this is clearly not true when there are few molecules of any species present. One expects that for a fixed total10

number of molecules in a system, smaller compartments will produce larger variation in the number of molecules11

within a compartment, and the following example makes this precise.12

Consider a closed system containing N molecules distributed in Nc compartments that are connected by diffusion.

The steady-state distribution is spatially uniform, and it is known that it is multinomial [17] with mean and variance

given by

Mi =
N

Nc
σ2

i = Mi

„

1 − 1

Nc

«

=
N

Nc

„

1 − 1

Nc

«

.

Therefore, if we adopt the coefficient of variation, CV = σi/Mi as a suitable measure of the noise, then one has13

CV =

r

Nc − 1

N
, (5)14

which is zero for Nc = 1 and which grows as
√
Nc for large Nc. Thus choosing a very small compartment size leads to15

large fluctuations, as measured by the CV, in the amounts in various compartments. When reactions also occur the16

interaction between reaction and diffusion must be taken into account, and this will be done in later sections. Here we17

introduce some of the limitations of a compartmental analysis and then discuss previous work aimed at determining18

a suitable compartment size.19

One problem that presents difficulties, both for a continuum description such as (4), as well as for the master20

equation approach, arises when one or more reactions are diffusion-limited. This applies only for bimolecular and21

higher-order (should they ever occur) reactions, and refers to reactions of the type A + A → P or A + B → P in22

which the reaction occurs instantaneously when the reactants are in sufficiently close proximity. Thus formation of23

homo- and heterodimers, polymerization reactions, ligand-receptor interactions, and enzyme-catalyzed reactions are24

all potentially diffusion-limited. In this context neither (4) nor the conventional framework of a compartmentalized25

system can be used directly, and both require some modifications. The classical work of Smoluchowski [42] dealt with26

coagulation reactions, but since then it has been extended by many others (for a review see [5]). Suppose that the27

molecules are assigned a radius rA and rB, respectively, and assume that the molecules react with a probability k028

when the distance between their centers is rA + rB . In a coordinate frame in which B is fixed, the concentration of29

A satisfies30

∂c

∂t
=
D

r2
∂

∂r

„

r2
∂c

∂r

«

for r ∈ (rA + rB ,∞)31

4πr2D
∂c

∂r
= k0c at r = rA + rB32

lim
r→∞

c(r) = c0.33

In the strictly diffusion-limited case k0 is infinite, and one finds that as t→ ∞, the effective reaction rate ke reduces

to

ke = 4π(DA +DB)(rA + rB) = 4πDR
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where D = DA +DB and R = rA + rB [5]. The units of ke appear formally to be volume/time, but this is the rate

per molecule of B, and therefore the units of ke are

„

molecule of B

volume
time

«−1

as is necessary for a bimolecular rate constant. An associated time scale for a diffusion-limited reaction can be defined1

as2

τdl = (ke · c∗)−1 (6)3

where c∗ is a characteristic concentration of B in molecules/unit volume.4

An estimate obtained via a stochastic analysis begins with the problem of computing the mean first passage time5

for a random walker searching for a specified target. Suppose that the walker is confined to a spherical shell of inner6

radius r0 and outer radius r1, that it cannot escape through the outer boundary and is annihilated upon hitting7

the inner boundary. The mean first passage time τ (r) for annihilation beginning on a spherical surface of radius8

r ∈ (r0, r1) is given by the solution of9

D

r2
d

dr

„

r2
dτ

dr

«

= −110

τ (r0) = 0 (7)11

τ ′(r1) = 0.12

One finds that the solution is

τ (r) =
1

6D

„

r20 − r2 + 2r31

„

1

r0
− 1

r

««

and the average of this over the spherical shell is

τ (r) =
r21

2D(1 − ξ3)

»

−2ξ5

15
+

2ξ2

3
+

2

3ξ
− 6

5

–

where ξ ≡ r0/r1. If this ratio is sufficiently small, then to leading order

τ (r) =
r21
3D

r1
r0

=
Vs

4πDr0

where Vs is, to lowest order, the volume of the spherical domain. By identifying r0 with rA + rB one sees that the13

continuum and stochastic approaches agree to within the choice of a reference concentration in (6). When there are14

N non-interacting walkers in the shell, the spatially averaged mean first passage time remains unchanged. A proof of15

this is given in Appendix A.16

To estimate the magnitude of ke and hence the time scale in a typical solvent, we use the Stokes-Einstein relation

D =
kBT

6πµr′

to estimate the diffusion coefficient, where kB is Boltzmann’s constant, T is the absolute temperature, µ is the solvent

viscosity, and r′ is the hydrodynamic radius of the molecule. Assuming a solvent viscosity µ = 9 poise, one finds that

kBT/µ = 4.5 ·10−12cm3/sec, and if one assumes both molecules have the same encounter radius and a hydrodynamic

radius equal to that radius, then

ke =
8

3

kBT

µ
= 1.2 · 10−11cm3/sec

or in molar units

ke = 7.2 · 109M−1sec−1.

Based on this estimate, there appear to be few biochemical reactions that are severely diffusion-limited in vitro, since17

most of the available second-order rate constants lie in the range of 104 − 107(M sec)−1 (cf. Table 1). It may be that18

in vivo measurements will show more diffusion influence on reaction rates.19
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Table 1. On- and off-rates for second-order reactions

Receptor Ligand kf kr Ref
(M−1 sec−1) (sec−1)

Insulin Insulin 1.6 × 105 3.3 × 10−3 [27]
EGF EGF 3 × 106 2 × 10−3 [27]
Fibronectin Fibronectin 1.17 × 104 1 × 10−2 [27]
Surface bound protein BMP 1.67 × 107 3.33 × 10−2 [49]
Type I/II BMP receptor BMP 4 × 105 6.67 × 10−2 [49]
Vkg Dpp 3.92 × 103 2.90 × 10−3 [50]
Dcg1 Dpp 3.20 × 103 2.07 × 10−3 [50]
Human Collagen IV BMP4 2.75 × 104 2.50 × 10−3 [50]
Cv-2 BMP 1.67 × 106 3.33 × 10−3 [38]
Receptor BMP 4.0 × 105 4.0 × 10−4 [38]
Receptor BMP bound Cv-2 3.3 × 107 3.3 × 10−2 [38]
Cv-2 BMP bound Receptor 3.3 × 105 3.3 × 10−2 [38]

When reactions are strictly diffusion-limited, rather than just diffusion-influenced, a precise description involves

tracking individual particles as they diffuse in space, and algorithms for this have been developed [2,14]. If one

describes the motion of the Brownian particles A and B with stochastic differential equations, then in certain regimes

the positions evolve according to

dxi =
√

2DidWi i = A,B,

where Wi are independent standard Wiener processes. This is a more fundamental approach that also indicates a1

shortcoming in the previous analysis, because the previous analysis assumes that the motion of the two particles is2

perfectly correlated, which is not true if each executes an independent Brownian motion.3

Several different attempts to correctly treat diffusion-limited reactions via a compartment-based master equation4

have been made. Fange et al., [16] first derive a discretized description using spherical shells around a single particle,5

and then lift this description to a compartmental model using modified diffusion kinetic coefficients that reflect6

the discretization. However, in deriving the modified rates the authors use a model in which the diffusing particle7

is confined to a spherical shell around the reaction site, and thus implicitly assume that the particles will react8

with probability one. In 3D this is not strictly true, and in general it is an approximation that may be difficult to9

justify. Others have addressed the relationship between the continuum description (4) and the master equation for10

a diffusion-limited reaction [21]. It is shown that one cannot expect that the limit of the master equation is (4),11

since bimolecular reactions disappear in this limit. In [22] a pseudo-potential to capture the singular behavior is used,12

while the reaction rates in a compartmentalized model are modified so that the encounter probability of the molecules13

does not depend on the compartment size [15]. A more fundamental approach is to derive the evolution equation for14

the pair distribution function, as was done in a continuum description [45], but the discretization problem was not15

addressed there.16

Numerous authors have addressed the issue of how to choose a suitable compartment size h when reactions are

not diffusion-limited. Most criteria are based on the premise that the compartment size should be small enough that

all mobile species in a compartment can traverse the compartment on the time scale of the fastest reaction in a

compartment, since only then a compartment can be considered spatially uniform. For bimolecular reactions this

implies that all pairs of reactants have equal probability of reacting. Thus most criteria hinge on the relation between

the diffusion time scale for a chosen compartment size and a characteristic reaction time. As noted earlier, reaction

rates scale as V p ∼ hpd where p = 1, 0, -1, for zero-, first- and second-order reactions, respectively, and d is the space
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dimension. Thus a characteristic reaction time scales with the compartment size as follows.

τr ∼

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

c∗

k0hd
: zero-order

1

k1
: first-order

hd

k2c∗
: second-order

Here kj is a concentration-based reference kinetic coefficient, usually the deterministic value, and c∗ is a reference1

concentration.2

A characteristic diffusion time scale is given by τd = h2/mini Di and thus the following conditions on h3

h2+d <
mini Di

k0(c∗)−1
: zero-order4

h2 <
mini Di

k1
: first-order5

h2−d <
mini Di

k2c∗
: second-order6

will ensure that τd ≤ τr. Since no molecular interaction are involved in zero- and first-order reactions, one might7

conclude that the first two estimates are irrelevant. However, they arise naturally in the criterion for convergence to8

spatial uniformity derived later, and they indicate the crossover in h from a regime in which diffusion is fast compared9

to reaction to one in which the reverse holds. Understanding these regimes plays a role in stochastic simulations using10

Gillespie’s method, because if the compartment is too small the diffusion steps dominate the computations. A more11

detailed analysis using the known solutions for the mean and variance in systems of first-order reactions [17], which12

is in progress, will lead to a more precise characterization of this.13

Stundzia and Lumsden [44] describe diffusion as a jump process, but rather than using a constant jump rate, they14

use the inverse of the mean first passage time from a compartment to its neighbors. Baras and Mansour [6] suggest15

that the compartment size should be smaller than a two-particle correlation length, but larger than a mean free path16

λ, defined as the average distance traveled by a particle between two reactive collisions. Since the correlation length17

is smaller than the mean free path in dilute solutions, they assert that the compartment size should be chosen with18

the order of mean free path i.e. ,19

h ≈ O(λ).20

Since this only applies for gases we do not consider it further here. Bernstein [7] applies Gillespie’s algorithm to21

simulate diffusion with spatially-inhomogeneous coefficients in non-uniform Cartesian grids using a finite volume22

approximation with either Neumann or Dirichlet boundary conditions. To apply Gillespie’s algorithm to reaction-23

diffusion networks the slowest diffusion time should be much less than the fastest reaction time, i.e. , τd << τr.24

Isaacson and Peskin [23] suggest a lower and upper bound for the compartment size based on three facts: the25

compartment size should be much larger than the mean free path λ so that the system can be considered in local26

equilibrium in each compartment due to nonreactive collisions; the compartment size should be much smaller than27

the length scale of the system size Lx; and the time scale for diffusion through each compartment should be faster28

than the time scale for the fastest bimolecular reaction. This leads to the condition29

max
“

λ,
k

D

”

≪ h≪ Lx (8)30

but as we noted earlier, a reference concentration is needed to properly define a reaction time scale for bimolecular31

reactions.32

Erban and Chapman [15] suggest simulation algorithms for reaction-diffusion processes in which diffusion is treated33

as a jump process. They give a simple example of a bimolecular reaction for which the stationary distributions are34
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explicitly known, and point out the limitations of current SSAs by comparing the stationary distributions. Using a1

modified algorithm, they show that if the compartment size is larger than a critical value, the multi-compartment2

model can reproduce the known stationary distribution correctly. The reactions considered are ∅ → A and A+B
k→ B3

with diffusing species, A and B, and k is the deterministic reaction rate of the bimolecular reaction. Then the lower4

bound on the compartment size is5

h ≥ hcrit6

hcrit ≈ k

4(DA +DB)
.7

Table 2: Previous criteria for the compartment size

Reference Criteria

Bernstein τD ≈ h2

2dD
≪ τc

Isaacson and Peskin max
“

λ,
k

D

”

≪ h≪ Lx

Erban and Chapman
k

4(DA +DB)
≤ h

8

All of these estimates implicitly assume that all reacting species also diffuse, but this is rarely the case in biological9

problems, since diffusible species may bind to receptors or other essentially immobile proteins. In addition, none of the10

criteria deal with the possibility of reactions on the boundary of the domain. In later sections we develop a criterion11

based on the full chemical network for a reacting system in which some species may be immobilized either in the12

interior of the domain or on the boundary, and we compare the criteria in Table 2 with the criterion that emerges13

from our analysis.14

Another aspect inadequately addressed in previously-cited work is the effect of compartment size on the magnitude15

of the stochastic fluctuations, as measured by the CV of solutions. As suggested by the example of diffusion alone,16

the noise can be expected to grow as the compartment size decreases, and this raises the question of how to choose h17

so as to ensure that the discretized system is accurate, and yet minimizes some measure of the noise. In the following18

section we analyze linear reaction networks to address this issue, and show that a certain scaling of the coefficient19

of variation stabilizes as h decreases, which leads to an optimal choice of h (in the sense that it is taken as large as20

possible). In Section 3 we develop a general criterion for the choice of compartment size that applies to all orders of21

reactions and both diffusing and non-diffusing species.22

2. Linear stochastic reaction-diffusion networks23

2.1. Measures of the fluctuations in a compartmental system24

We consider a first-order chemical reaction-diffusion network, and from previous work we know that the reactions25

fall into one of four classes: production from a source, degradation, conversion, and catalytic production from a26

source [17]. Production from a source is an input reaction of the form ∅ → Mi; degradation is a reaction Mi → ∅;27

conversion is a reaction Mj → Mi; and catalytic production from a source is a reaction ∅

Mj→ Mi. We assume that28

degradation, conversion, and catalyzed production from a source occur at all spatial positions, but production from29

a source may be spatially nonuniform. Suppose that the domain Ω is a rectangular parallelepiped with dimensions30

Lx × Ly × Lz of volume V = LxLyLz. We divide Ω into Nc = NxNyNz compartments, each of which has volume31

V/Nc. Define the index k = (k1, k2, k3) to denote a compartment, where k1, k2, k3 = 1, · · · , Nx, Ny, Nz, respectively,32

and set η = (k, i) where i = 1, · · · , s denotes the species. Let Nk
i (t) ≡ Nη (t) be a random variable that represents the33

number of molecules of species Mi in the kth compartment at time t, and let Nk denote the vector of Nis. Several34

different measures of the noise will be introduced later to understand the dependence of noise on the discretization,35
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all of which involve the means and variances of the components in the network, and thus we first analyze the evolution1

of these quantities.2

The mean M(t) is an sNc-dimensional vector of first moments with elements defined by3

ˆ

M(t)
˜

i(η)
= E[Nη (t)], (9)4

where the index function i, which is defined as i(η) = i +
`

(k1 − 1)NyNz + (k2 − 1)Nz + (k3 − 1)
´

s, labels the5

components. Define ζ = (q, j) as the index for the jth species in the qth compartment. Then the matrix of second6

moments V (t) is an sNc × sNc matrix with elements7

ˆ

V (t)
˜

i(η),i(ζ)
= E[Nη (t)Nζ (t)]− E[Nη (t)]δ{η=ζ}.8

The covariance matrix, Cov(t), is defined as9

ˆ

Cov(t)
˜

i(η),i(ζ)
= E[Nη (t)Nζ(t)] −E[Nη (t)]E[Nζ (t)],10

and therefore can be expressed in terms of M(t) and V (t) as11

Cov(t) = V (t) −M(t)M(t)T +Md(t),12

where Md(t) = diag
ˆ

M(t)
˜

is a diagonal matrix whose entries are those of M(t).13

As in [17], let K be the s×s reaction matrix for conversion or degradation of species within a compartment, let D be14

the s×s diagonal diffusion matrix, let Kcat be the s×s matrix wherein the (i, j)th element is the catalytic production15

rate from a source of the ith species catalyzed by the jth species, and let KS be the sNc × sNc diagonal matrix with16

the i(η)th diagonal element representing an input of the ith species from a source into the kth compartment2. Further,17

let ∆ be the discrete Laplacian for the domain Ω with Neumann boundary conditions; ∆ encodes the topology of the18

network, and more general topologies can be treated similarly [35]. Finally, we let u and INc be a vector of length19

sNc, all of whose entries are 1, and the unit matrix of dimension Nc ×Nc, respectively. We let ks be the vector whose20

components are the diagonal elements of KS , and we define the rank one square matrix S = [ks|ks| · · · |ks] whose21

columns are ks.22

These definitions lead to a reaction-diffusion matrix defined as Ω ≡ ∆ ⊗ D + INc ⊗ K [17], and we assume23

throughout that Ω is semi-simple, that the kinetic system is stable, and that the spectrum σ(Ω) lies in the closed24

left-half plane, denoted LHP . A spectral representation of Ω is given in Appendix B. We consider two cases defined25

by whether Ω has a zero eigenvalue or not (multiple zero eigenvalues can be treated similarly). The presence or26

absence of a zero eigenvalue is determined solely by the kinetic matrix, and thus we exclude Turing-type instabilities27

that arise from the interaction of reaction and diffusion. If Gc is strongly connected, as in the case treated here, the28

Laplacian has exactly one zero eigenvalue for Neumann boundary conditions, and σ(Ω) ⊂ LHP if the system is either29

closed with degradation or open with production from a source and degradation. In the absence of inputs the mean30

and variance decay to zero as t → ∞, which is of no interest, and in the presence of inputs they are determined by31

the inputs as t→ ∞. On the other hand, if there is exactly one zero eigenvalue of Ω and no inputs, the steady-state32

probability distribution is determined by the eigenvector corresponding to the zero eigenvalue [17]. Other cases may33

arise, but are not treated here.34

The first and second moments M(t) and V (t) are solutions of the ordinary differential equations35

dM(t)

dt
= ΩM(t) + ks (10)36

d V (t)

dt
= ΩV (t) +

ˆ

ΩV (t)
˜T

+C(t) + C(t)T
37

2 This formulation can be generalized to allow catalyzed production from a source to be space-dependent as well,
but we do not include this here.
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where C(t) = W (t) + ksM(t)T [17]. Here W (t) is a block-diagonal matrix with elements defined as1

[W (t)]i(η),i(ζ) =

(

Kcat
ij [M(t)]i(ζ) if k = q

0 otherwise.
2

Define indices l, m, and n which run over compartments, let µ, χ, and γ be indices that label species, and define3

the indices l = (l, µ), m = (m,χ), and n = (n, γ). The eigenvalues of Ω = ∆ ⊗ D + INc ⊗ K can be computed4

once those of ∆, denoted by αl, are known [35]. They are eigenvalues of the matrix pencil K + αlD and thus are the5

solutions of6

˛

˛K + αlD − λlIs

˛

˛. = 0,7

The corresponding eigenvectors of Ω are the tensor product of eigenvectors of ∆ and those of K + αlD. Let φl and8

φ∗
l be the eigenvector and adjoint eigenvector of ∆ for the eigenvalue αl, and let ϕl and ϕ∗

l be the corresponding9

eigenvector and adjoint eigenvector of K + αlD for λl. Then φl ⊗ ϕl is the eigenvector of Ω corresponding to the10

eigenvalue λl, and the projection Pl associated with λl is defined as11

Pl =
`

φl ∗ φ∗
l

´

⊗
`

ϕl ∗ ϕ∗
l

´

,12

where φ∗
l and ϕ∗

l
are complex conjugates of φ∗

l and ϕ∗
l , respectively. Here ∗ is the dyad product defined operationally13

as (u ∗ v)w = 〈v, w〉u. Given these, we can compute the solution for the first two moments in terms of λl and Pl in14

the semisimple case.15

Later we focus primarily on the steady-state level of fluctuations, and therefore we define

M∞ ≡ lim
t→∞

M(t) and V∞ ≡ lim
t→∞

V (t).

First, consider the case in which σ(Ω) ⊂ LHP ; then one finds that16

M∞ = −
X

l

Pl

λl

ks, (11)17

V∞ =
X

m

X

l

"

1

λl(λl + λm)
PmK

S(PlS)T +
1

λm(λl + λm)
PmSK

SP T
l18

+
X

n

Pm

n

diag[PnS](Kcat)T +Kcatdiag[PnS]
o

P T
l

λn(λl + λm)

#

,19

where the sums range over the eigenvalues of K + αlD.20

To assess the fluctuations in the network we can use one of several forms of a coefficient of variation, defined21

as the standard deviation divided by the mean. The first measure results from defining the noise component- and22

compartment-wise, which may be appropriate when assessing the effect of fluctuations in a morphogen used to define23

the boundary between two tissue types. In this case one computes the standard deviation of the number of molecules24

for the ith species in the kth compartment divided by its mean, viz.,25

(CV (t))η ≡
p

E[Nη (t)2] −E[Nη (t)]2

E[Nη (t)]
(12)26

where η = (k, i). This reflects the fluctuations of each species in each compartment, and thereby leads to a total of27

sNc measures, but for our purpose a single global measure that averages over all species and compartments is more28

appropriate. There are many ways to do this – one could for instance use the average of the component measures in29

(12) or the maximum of these. However, we use a measure based on a normalized covariance matrix [47], which is30

defined as31

ˆ

Σ0(t)
˜

i(η),i(ζ)
=
E[Nη (t)Nζ(t)] − E[Nη (t)]E[Nζ(t)]

E[Nη (t)]E[Nζ (t)]
32
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≡ (Md(t)
−1Cov(t)Md(t)

−1)i(η),i(ζ).1

We then define a generalized coefficient of variation as the square root of the maximum eigenvalue of Σ0(t), and2

denote it3

CV ∗(t) ≡
p

λmax(Σ0(t)). (13)4

Since the covariance matrix is symmetric and at least positive semi-definite, this is well-defined.5

We define other steady-state variables as

Cov∞ ≡ lim
t→∞

Cov(t) Md,∞ ≡ lim
t→∞

Md(t)
`

CV∞
´η ≡ lim

t→∞

`

CV (t)
´η

Σ0,∞ ≡ lim
t→∞

Σ0(t)

and then the steady-state CV ∗ is given by6

CV ∗ =
p

λmax (Σ0,∞) =
q

λmax

`

Md,∞−1
`

V∞ −M∞MT∞ +Md,∞
´

Md,∞−1
´

.7

In the following proposition, we express CV ∗ in terms of M∞ alone when the eigenvalues of Ω are in the LHP and8

there are no catalyzed inputs to the system. When there is exactly one zero eigenvalue of Ω and no inputs, we express9

CV ∗ in terms of Md,∞, Md(0), and Ps, where Ps is the projection corresponding to the zero eigenvalue.10

Proposition 1. Suppose that the eigenvalues of Ω are in the LHP ; then11

1. If there are no non-catalyzed inputs (KS = 0 ), then Md,∞ = Cov∞ = 012

2. If KS 6= 0 then

Cov∞ = Md,∞ +
X

l,m,n

Pm

n

diag[PnS](Kcat)T +Kcatdiag[PnS]
o

P T
l

λn(λl + λm)
.

and

Σ0,∞ = M−1
d,∞ +M−1

d,∞

8

<

:

X

l,m,n

Pm

n

diag[PnS](Kcat)T +Kcatdiag[PnS]
o

P T
l

λn(λl + λm)

9

=

;

M−1
d,∞

If Kcat = 0, the second term vanishes and13

CV ∗ =

s

1

minη

ˆ

M∞
˜

i(η)

. (14)14

3. Suppose that σ(Ω) ⊂ LHP and there is exactly one zero eigenvalue of Ω and no inputs; then15

Cov∞ = Md,∞ − PsMd(0)P T
s16

where Ps is the projection corresponding to the zero eigenvalue and17

Σ0,∞ = M−1
d,∞ −M−1

d,∞PsMd(0)P
T
s M

−1
d,∞. (15)18

Proof. The proof is given in Appendix C. ⊓⊔19

It is clear from the foregoing that CV ∗ is an increasing function of the number of compartments in the system,20

since the mean number of molecules of each species in each compartment decreases. However, as the following example21

illustrates, and as will be proven later, a scaled version of CV ∗ stabilizes as the compartment number increases. Define22

Vc = V/Nc and the scaled variables23

M∞ ≡ M∞
Vc

, CV
∗ ≡

√
VcCV

∗,
`

CV∞
´η ≡

√
Vc

`

CV∞
´η
, (16)24

where η = (k, i) and (X)(k,i) represents the component of X corresponding to the ith species in the kth compartment.25

Eq. (14) shows that in the absence of catalyzed inputs, the least abundant species, evaluated over all compartments,26



16 Hye-Won Kang et al.

determines CV ∗, and one sees that convergence of M∞ implies convergence of CV
∗

as Nc → ∞. Convergence of the1

former as Nc → ∞ is shown in Theorem 1 below.2

Denote by K′ the reaction matrix for conversion or degradation of species in a compartment for systems with3

non-catalytic production of diffusing species, and rearrange the species order so that K′ can be partitioned into block4

matrices as5

K′ =

"

R S
T W

#

.6

Here R (W) is the reaction matrix for conversion between diffusing (non-diffusing) species or degradation of diffusing7

(non-diffusing) species, and S (T ) is the reaction matrix for conversion of non-diffusing (diffusing) species to diffusing8

(non-diffusing) species. We denote by X(t) and Y (t) the mean vectors for diffusing and non-diffusing species numbers,9

with each element defined as in (9), and write the governing equations for these means as follows:10

dX(t)

dt
= (∆⊗D + INc ⊗R)X(t) + (INc ⊗ S)Y (t) + ks,

dY (t)

dt
= (INc ⊗ T )X(t) + (INc ⊗W)Y (t).

(17)11

Let X∞ and Y∞ be the steady-state solutions of (17). Assuming that σ(W) ⊂ LHP , the steady-state mean vector12

for non-diffusing species can be expressed in terms of X∞, where X∞ is the solution of13

(∆⊗D + INc ⊗K)X∞ + ks = 0, (18)14

where K ≡ R − SW−1T . To show convergence of X∞/(NAVc) to the solution of the continuum deterministic15

reaction-diffusion system, we consider a 1-dimensional domain [0, Lx] for simplicity, and we let α̃l be the solution of16

the following scalar problem:17

d2q̃(x)

dx2
= α̃q̃(x), x ∈ [0, Lx],

q̃′(x) = 0, x = 0, Lx.

(19)18

Theorem 1. Let D̃ be the diffusion matrix for the continuum problem, and suppose that19

σ(Ω), σ(W), σ(K + αlD), σ
“

K + α̃lD̃
”

⊂ LHP,20

and that K + αlD and K + α̃lD̃ are semi-simple. Assume that Kcat = 0 and assume that only diffusing species are21

produced from a source and production occurs only in the left-most compartment. Then,22

•
ˆ

M∞
˜

i(η)
converges to the steady-state solution of the corresponding continuum deterministic reaction-diffusion23

system as Nc → ∞,24

• CV ∗
converges to the limit of

r

1

minη[M∞]
i(η)

as Nc → ∞.25

Proof. The proof is given in Appendix D. ⊓⊔26

For systems with no inputs, it follows from (15) that if we show that each element of Vc

“

M−1
d,∞PsMd(0)P T

s M
−1
d,∞

”

27

converges to zero as Nc → ∞, convergence of M∞ will imply convergence of CV
∗

as Nc → ∞, as stated in the28

following theorem, again under the assumption of a one-dimensional domain.29

Theorem 2. Suppose that there are no inputs, that σ(Ω) ⊂ LHP , and there is exactly one zero eigenvalue of Ω.30

Then,31

•
ˆ

M∞
˜

i(η)
converges to the steady-state solution of the corresponding continuum deterministic reaction-diffusion32

system as Nc → ∞,33

• CV ∗
converges to the limit of

r

1

minη[M∞]
i(η)

as Nc → ∞.34
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Proof. The proof is given in Appendix E. ⊓⊔1

In essence these results show that the concentration-based CV for the discretized problem stabilizes.2

2.2. Example3

The example in this section is motivated by the classical French flag paradigm of pattern formation in a one-4

dimensional system discussed earlier. In that context, a morphogen is produced at one end of a 1D domain, diffuses5

into the domain, and binds to receptors and is perhaps degraded by a first-order process [51]. The problem is to6

reliably partition the domain into 3 equal-size sub-domains (corresponding to blue, white and red, beginning at7

the staff) by setting thresholds that determine the extent of each domain. A system that exemplifies this arises in8

anterior-posterior pattern formation in the fruit fly Drosophila melanogaster. The Drosophila embryo is approximately9

ellipsoidal, and is surrounded by a thin fluid layer, called the perivitelline (PV) space, bounded by the outer membrane.10

The coordinate frame of the embryo is first established by gradients of inherited maternal factors in the anterior-11

posterior (AP) direction and by gradients of factors in the PV space in the dorsal-ventral direction. The first level of AP12

patterning is mediated by the morphogen Bicoid, which is a transcription factor that is transcribed from maternally-13

inherited mRNA localized at the anterior end of the embryo. Because production is localized at the anterior end, the14

concentration of the Bicoid protein forms a monotone distribution with the high point at the anterior end.15

We consider a rectangular solid continuum whose major axis lies along the x axis, and we let Lx = 275µm,16

Ly = 5µm, and Lz = 0.5µm represent the lengths of each side of the system, motivated by a slice of the PV space17

in Drosophila [48]. Since Lx ≫ Ly , Lz, we set Ny = Nz = 1, and determine the appropriate discretization defined18

by Nx = Nc in the x-direction. We suppose that there is one diffusing species, A, and two non-diffusing species, B19

and C, which represent ligand, receptor with ligand bound, and downstream signal, respectively. Assuming that the20

number of receptors is large, as it is in many biological systems, receptor-ligand binding is described as a first order21

reaction. The complete set of reactions is as follows.22

Ak
κ5R−⇀↽−
κ−5

Bk, for all k, (20)23

Ak κ6−→ ∅, for all k,24

Bk κ7−→ Ck, for all k,25

∅
κ8−→ A1, (21)26

Ck κ9−→ ∅, for all k,27

Ak
κd−⇀↽−
κd

Ak+1, for k = 1, · · · , Nc − 128

Here superscript k denotes the species in the kth compartment.29

All reactions are either production from a source, degradation, or conversion, in the terminology of Gadgil et al.30

[17]; there is no catalytic production from a source. The reaction (20) simply describes a linearized ligand-binding to31

receptors. The reaction (21) describes production of species A from a source located at the leftmost compartment,32

and thus A has an input only to the first compartment. The coefficients κm, for m = 5, 6, 7, 8, 9, are stochastic33

reaction rate constants and κd is the diffusion rate constant for species A. These are derived from the corresponding34

deterministic rate constants estimated in [49], and both the deterministic and the stochastic parameters are given in35

Table 3.36

Table 3: Deterministic and stochastic parameters in Example 2.2

Deterministic Stochastic

k5 1nM−1min−1 κ5 k5/(NAVc) ≈ 2.42 × 10−3Nc min
−1

k−5 2min−1 κ−5 2min−1

k6 1min−1 κ6 1min−1

k7 0.03min−1 κ7 0.03min−1

k8 250nM µmmin−1 κ8 k8(NAV)/Lx ≈ 376.38min−1

k9 0.03min−1 κ9 0.03min−1
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cR 320nM R cR(NAVc) ≈ 132484/Nc

D 4380 µm2min−1 κd D/(Lx/Nc)
2 ≈ 5.79 × 10−2N2

c min
−1

Lx 275µm

Ly 5µm

Lz 0.5µm

V 687.5 µm3

1

In the kinetic scheme κ5 is a stochastic rate constant for ligand-receptor binding, and thus depends on the volume,2

but since we assume that the receptor density is large compared to the signal, the product of the binding constant and3

the receptor density is a pseudo-first-order rate constant, and hence independent of the volume. All other reactions4

except for production of species A are first order, and the deterministic and stochastic rate constants are independent5

of the volume and hence Nc. To standardize the input as we change Nc, we must hold the total flux of A constant.6

An estimate of an input on a volumetric basis given in [49] is converted to a flux per unit area by multiplying by the7

length of the longest edge, Lx = 275µm; this yields k8. The corresponding stochastic rate, κ8, is given as follows:8

κ8 =
k8(NAV)

Lx
.9

Therefore, κ8 does not depend on Nc. The stochastic diffusion rate constant κd is computed by dividing the continuum10

deterministic diffusion rate constant by (Lx/Nc)
2, via discretization of the Laplacian, and thus scales as N2

c .11

Let X(t) be the first moment vector for the diffusing species A and Y (t) be the first moment vector for the non-12

diffusing species B and C. [X(t)]i(k,1) denotes the mean number of molecules of species A in the kth compartment,13

and [Y (t)]i(q,1) and [Y (t)]i(q,2) represent the mean numbers of species B and C in the qth compartment, respectively.14

The evolution of the first moments is governed by15

dX(t)

dt
= (∆ ⊗D + INc ⊗R)X(t) + (INc ⊗ S)Y (t) + ks (22)16

dY (t)

dt
= (INc ⊗ T )X(t) + (INc ⊗W)Y (t). (23)17

The diffusion matrix, reaction matrices, and a matrix for production rate from a source are given as18

D = κd, R = −κ5R− κ6, S =
h

κ−5 0
i

, T =

"

κ5R

0

#

,19

W =

"

−κ−5 − κ7 0

κ7 −κ9

#

, ks = [κ8, 0, . . . , 0]
T .20

In this example, the eigenvalues of all principal submatrices of the reaction matrices R and W are in the LHP .21

Let X∞ be the steady-state first moment vector for the number of molecules of species A and let Y∞ be the22

steady-state first moment vector for the numbers of molecules of species B and C. Using the fact that species B and23

C do not diffuse, we compute Y∞ in terms of X∞.24

Y∞ = −
`

INc ⊗ (W−1T )
´

X∞.25

Then we find that26

[Y∞]
i(k,1) =

κ5R

κ−5 + κ7
[X∞]

i(k,1) (24)27

[Y∞]
i(k,2) =

κ5κ7R

κ9(κ−5 + κ7)
[X∞]

i(k,1) (25)28

Converting the steady-state first moment of B into that of A, the effective reaction rate of species A at steady-state29

becomes30

K ≡ R− SW−1T31
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= − κ5κ7R

κ−5 + κ7
− κ6.1

Note that K is a scalar since there is exactly one diffusing species, A. Then, X∞ satisfies2

(∆⊗D + INc ⊗K)X∞ + ks = 0. (26)3

Define X∞ ≡ X∞/Vc. To calculate the steady-state first moment for species A, we first compute the eigenvalues4

and corresponding projections of the reaction-diffusion matrix Ω = ∆ ⊗ D + INc ⊗ K. As before, let αl denote an5

eigenvalue of ∆, let λl be an eigenvalue of Ω, and let Pl be the corresponding projection of Ω. Then according to6

(11), the scaled steady-state first moment of A is7

X∞ = − 1

Vc

X

l

Pl

λl

ks. (27)8

In Figure 3 we show the relation between αl and λl for Nc = 10, 20, 30, 40. The range of αl is fixed at [-4,0] by the9

structure of the network and the boundary conditions, but the range of λl increases as Nc is increased because higher10

spatial frequencies are captured with increasing Nc. Since we impose Neumann data on the boundary in the discrete11

problem, the smallest eigenvalue in magnitude is λNc,1 ≈ −5.73 corresponding to αNc = 0. The dominant term in12

(27) corresponds to λNc,1, and is independent of Nc. Using (24) and (25), we compute maxk

`

CV∞
´k,i

for i = A,B,C
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Fig. 3. Eigenvalues of ∆ and Ω when Nc = 10, 20, 30, 40

13

in terms of mink[X∞]i(k,1).14

max
k

`

CV∞
´k,A

=

s

1

mink[X∞]i(k,1)

(28)15

max
k

`

CV∞
´k,B

=

r

κ−5 + κ7

κ5R

s

1

mink[X∞]i(k,1)

(29)16

max
k

`

CV∞
´k,C

=

r

(κ−5 + κ7)κ9

κ5κ7R

s

1

mink[X∞]i(k,1)

(30)17

Also, we have18

CV
∗

=

v

u

u

t

1

min
“

mink[X∞]i(k,1),
κ5R

κ−5+κ7
mink[X∞]i(k,1),

κ5κ7R
κ9(κ−5+κ7)

mink[X∞]i(k,1)

” .19

In Appendix D we prove that X∞/NA converges to the concentration satisfying the corresponding continuum model20

in which the source is located at x = 0. Due to the source location at x = 0, the steady-state concentration is21

monotone decreasing in x. One can show that the same is true in the discrete problem, and the proof is left to the22

reader.23
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Since we later only use the steady-state measure for the noise to determine the number of compartments, one has1

to check that the steady-state is reached rapidly. In Figure 4 we show the transient evolution of
√
Vc

`

CV (t)
´Nc,C

in2

the last compartment for Nc = 10, 30, 60. In this example species C serves as the downstream signal, and as we see in3

Figure 4, the noise in the downstream signal stabilizes very quickly, which indicates that a compartment size based4

on the steady-state noise level is appropriate here. Of course it may not always be.
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Fig. 4. The evolution of ln
“√

Vc

`

CV (t)
´Nc,C

”

in time for Nc = 10, 30, 60, when production is restricted to the first

compartment and initial values are zero.

5

In Figures 5 and 6, we display the steady state noise for the kinetic scheme in Example 2.2 for the unscaled and6

scaled CVs as a function of Nc. In Figure 5, we show (CV∞)k,A for k = 1, Nc as we vary Nc. The values of (CV∞)k,B
7

and (CV∞)k,C are simply scaled versions of (CV∞)k,A and are not shown. [X∞]i(k,1) has its maximum and minimum8

values in the first and the last compartments, respectively, by virtue of the monotonicity of the profile. Therefore, using9

Proposition 1, (CV∞)k,i has its maximum and minimum values in the last and the first compartments, respectively.10

It is apparent in the figure that as Nc increases, (CV∞)k,i gets larger due to the smaller number of molecules in each
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Fig. 5. The CV of species A in the 1-dimensional model.

11

compartment, but (CV∞)k,i stabilizes due to convergence of X∞ to the corresponding concentration multiplied by12

NA as Nc → ∞. This indicates that the contribution of diffusion to this scaled measure is dominated by the kinetic13

contribution for large enough Nc. This explanation could be made rigorous by analyzing the asymptotic behavior of14

the covariance as h→ 0, but we will not pursue this here.15
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In Figure 6 we illustrate the effect of the source location on the global measures CV ∗ and CV
∗
. In (a) the source1

for species A is in the first compartment as previously, while in (b) the input is divided amongst all compartments,2

scaled so that the total input is fixed and independent of Nc. In (a) CV
∗

stabilizes at about Nc = 30, while in (b)3

CV
∗

is constant in Nc, whereas CV ∗ is monotone increasing in Nc in both cases. The stabilization of CV
∗

with Nc4

suggests that the minimum number of compartments needed for an accurate representation of the noise is defined5

by the smallest Nc at which CV
∗

reaches a chosen percentage of the asymptotic value. As we show in the following6

section, this agrees remarkably well with a criterion based on convergence of solutions to a uniform state. Although it
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Fig. 6. A comparison of the noise for (a) spatially-nonuniform and (b) spatially-uniform inputs.

7

is not shown in (a), an increase of the diffusion constant decreases the value of Nc at which CV
∗

stabilizes, as is to be8

expected. The results in (b) suggest that distributing the input is an effective way of reducing the noise, but of course9

this cannot be done if A is a morphogen that is used to determine cell types in a developing tissue. A comparison of10

`

CV∞)Nc,A in Figure 5(b) and CV
∗

in Figure 6(a) shows that these two values are equal, since [X∞]i(Nc,1) is the11

smallest among all first moments of species A in all compartments, which is what is used for computing CV
∗
.12

In Section 1.4 we discussed different criteria to determine the compartment size, and here we apply Bernstein’s13

criterion to the foregoing example. Denote Atot, Btot, and Ctot as the total numbers of molecules of species A, B,14

and C at steady state, respectively. To compute the reaction timescale we have to compute the propensity of each15

reaction, for which we use the steady-state first moments for species A, B, and C, and this yields Atot = 65.69 and16

Btot = Ctot = 10356. Since the propensity of conversion from A to B is the largest, we use this to compute the17

timescale of the process, τc. Thus18

τc ≈ 1

320min−1 × Atot

Nc

19

=
1

76.44 × hx
min.20

The diffusion timescale computed using the diffusion coefficient of species A is21

h2
x

2D
=

hx µm
2

2 × 4380 µm2min−1
=

h2
x

8760
min.22

If we demand that the diffusion timescale be much smaller than the reaction timescale, we obtain23

hx ≪
„

8760

76.44

«1/3

µm24

≈ 4.86µm.25

In Section 3 we derive an upper bound for the compartment size for general systems, and as we show in Section26

4, this leads to an estimate hx < 8.25µm (which corresponds to Nc > 33). This result confirms the fact that it27
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is not necessary to discretize in the y or z-direction, since those dimensions are less than the maximum allowable1

compartment size.2

3. An upper bound for the compartment size3

As was discussed earlier, current criteria for choosing an appropriate cell or compartment size for discretizing a4

reaction-diffusion system are based on first estimating the smallest reaction time-scale and then choosing a compart-5

ment size to ensure that the diffusion time scale is less than this. Since this is based on the objective of ensuring that6

all molecules within a cell are accessible to each other, an alternate approach is to ask what conditions guarantee that7

the solution of the coupled reaction-diffusion system converges to spatially-uniform solutions, whether stationary or8

time-dependent. This obviously requires that diffusion dominates reaction in an appropriate sense, and that sense9

was first developed in [31,3]. There it was shown that every species approaches a spatially-uniform solution at an10

exponential rate in time when the diffusion constant for each species is sufficiently large relative to a measure of the11

sensitivity of the kinetic network. More precisely, if c is the vector of species concentrations and c̄ is the spatial average12

of c, then under the assumption that all species diffuse, the authors prove that ‖c(x, t)− c̄(t)‖L2 → 0 exponentially in13

t in any bounded domain Ω in 1-, 2-, or 3-dimensional space if |α1δ| > r̂. Here δ is the smallest diffusion coefficient,14

α1 is the largest non-zero eigenvalue of the Laplacian with homogeneous Neumann conditions on ∂Ω, and r̂ is the15

maximum Euclidean norm, taken over an appropriate set, of the Jacobian of the reaction terms. That result was gen-16

eralized in [10]. Here we extend this result to allow non-diffusing species and reactions at the boundary, as described17

below, and use the result to compute a maximal compartment size for a discretized reaction-diffusion system. We do18

this in two steps – first we treat homogeneous Neumann boundary data to analyze the effect of non-diffusing species,19

and then we summarize the results for other boundary conditions.20

3.1. Homogeneous Neumann conditions21

Let Ω ⊂ R3 be a domain with a smooth boundary ∂Ω. Denote generic spatial locations as x = (x, y, z) and22

ξ = (ξx, ξy, ξz), where either can lie in the interior of or on the boundary of Ω. Let u(x, t) ∈ Rm and v(x, t) ∈ Rn
23

denote the concentrations of diffusing and non-diffusing species, respectively, that react in Ω at time t, and let24

w(x, t) ∈ Rp denote the concentrations of non-diffusing species that do not affect the evolution of any species in u25

and v. We write the governing equations and the boundary conditions for all species as follows.26

∂u(x, t)

∂t
= D∆u(x, t) + R

`

u(x, t), v(x, t)
´

, x ∈ Ω27

∂v(x, t)

∂t
= S

`

u(x, t), v(x, t)
´

, x ∈ Ω28

∂w(x, t)

∂t
= T

`

u(x, t), v(x, t), w(x, t)
´

, x ∈ Ω29

∂u(x, t)

∂n
= 0, x ∈ ∂Ω30

u(x, 0) = u0(x), x ∈ Ω31

v(x, 0) = v0(x), x ∈ Ω32

w(x, 0) = w0(x), x ∈ Ω33

Here differentiation with respect to n is along the outward unit normal vector to Ω, and D is a diagonal matrix of34

diffusion coefficients. Note that the non-diffusing species in w(x, t), which do not affect any species in u or v, can35

be ignored in the following, since they do not affect the convergence to a uniform solution of the diffusing species.36

Hereafter we exclude the governing equation for w(x, t) from the system equations, and this leads to the following37
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simplified set of equations that we use for the analysis3.1

∂u(x, t)

∂t
= D∆u(x, t) + R

`

u(x, t), v(x, t)
´

, x ∈ Ω

∂v(x, t)

∂t
= S

`

u(x, t), v(x, t)
´

, x ∈ Ω

∂u(x, t)

∂n
= 0, x ∈ ∂Ω

u(x, 0) = u0(x), x ∈ Ω

v(x, 0) = v0(x), x ∈ Ω

(31)2

We assume that R and S are C1 in the non-negative cone of (u, v)-space, and in general both are nonlinear functions3

of (u, v).4

Define the vector c(x, t) ≡
h

u(x, t)T , v(x, t)T
iT

of all species concentrations and let c0(x) be the initial distri-5

bution. For a given c0(x), define C0 = {c0(x)|x ∈ Ω̄}. In the following theorem we assume that the concentration6

c(x, t), which is the image of c0(x) under the mapping defined by the integral representation given in (43) and (44)7

is contained in a closed, bounded, convex set C∞ ⊇ C0, for all t ∈ [0,∞). We define the spatial average of the8

concentrations for diffusing species as9

ū(t) ≡ 1

|Ω|

Z

Ω

u(x, t) dx,10

and we further assume that for each t > 0, there exists a spatially-uniform solution v̄(t) satisfying11

dv̄(t)

dt
= S

`

ū(t), v̄(t)
´

,

v̄(0) =
1

|Ω|

Z

Ω

v0(x) dx.
(32)12

Given ū(t), the existence and uniqueness of v̄ is guaranteed by the smoothness assumptions, but v̄(t) may not be the13

spatial average of v(x, t) when S is a nonlinear function of either u or v.14

We define the L2 norm15

‖f(x, t)‖2
L2

≡ 〈f(x, t), f(x, t)〉L2 ≡
Z

Ω

‖f(x, t)‖2
E dx16

where ‖·‖E is the Euclidean matrix norm, and we define c̄(t) ≡
h

ū(t)T , v̄(t)T
iT

. Then we say that ‖c(x, t)−c̄(t)‖L2 → 017

if ‖u(x, t) − ū(t)‖L2 → 0 and ‖v(x, t) − v̄(t)‖L2 → 0.18

The Jacobians of a function f : Rm ×Rn → Rm ×Rn with respect to u and v are denoted19

Duf(u, v) ≡ ∂f(u, v)

∂u
, Dvf(u, v) ≡ ∂f(u, v)

∂v
.20

We define measures of kinetic sensitivity via the Jacobians of the reaction terms as follows21

r̂u ≡ sup
c∈C∞

‖DuR(c)‖E , r̂v ≡ sup
c∈C∞

‖DvR(c)‖E ,

ŝu ≡ sup
c∈C∞

‖DuS(c)‖E , šv ≡ inf
c∈C∞

|σ (WcDvS(c))| .
(33)22

The matrix Wc is defined in the following.23

For a Hermitian operator H , let λm(H) and λM (H) be the smallest and the largest eigenvalues of H , which are24

defined as25

λM (H) = sup
x

{〈x,Hx〉|‖x‖ = 1} and λm(H) = inf
x

{〈x,Hx〉|‖x‖ = 1} , (34)26

3 In fact, as we show in an example later, inclusion of such species can lead to an inappropriate estimate of the
compartment size, and for this reason we include it in the above.
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respectively, and define ‖H‖ ≡ max{λM (H),−λm(H)}. An operator H is said to be uniformly positive if λm(H) > 01

[12], which we denote as H ≫ 0. If H ≫ 0, the norm defined as ‖x‖2
H = 〈x,Hx〉 satisfies2

λm(H)‖x‖2 ≤ ‖x‖2
H ≤ λM (H)‖x‖2 = ‖H‖‖x‖2. (35)3

In case all species are diffusible, the proof of the convergence result in [31] does not require that the spectrum of4

the Jacobian of the kinetics lies in the LHP ; only that a norm of the Jacobian can be dominated by the diffusion5

terms. However this fails when there are non-diffusing species, and this raises several technical difficulties, even when6

the spectrum of the Jacobian of the kinetics lies in the LHP pointwise in time. These are overcome in part by use of7

a time-dependent metric, but this raises additional difficulties. We assume that for all c ∈ C∞,8

σ (DvS(c)) ⊂ LHP, (36)9

where σ(A) denotes the spectrum of A. A generalized Lyapunov theorem (Theorem 5.1 in [12]) states that if A is10

a real bounded linear operator on a real Hilbert space, and if σ (A) ⊂ LHP , then there exists a uniformly positive11

operator WA such that WAA≪ 0. Thus in view of (36), for each t > 0 there is a uniformly positive operator Wc such12

that13

WcDvS(c) ≪ 0. (37)14

Since c is time-dependent W is also, and one cannot apply the standard result which states that for a linear system15

with a real constant matrix A, the zero solution of16

dz

dt
= Az, (38)17

is exponentially stable if and only if the Lyapunov equation

ATW +WA = −Q

has a positive definite solution W for any positive definite matrix Q [18]. When A is time-dependent the spectral

condition no longer suffices, but it is known that the fundamental solution U(t, s) of the nonautonomous version of

(38) is exponentially stable if and only if the Lyapunov equation

dW

dt
= −(AT (t)W (t) +W (t)A(t) +Q)

has a solution for any positive definite matrix Q [37]. Here we do not assume exponential stability, but later we18

require a bound on the derivative with respect to time of Wc, and one can see that this is equivalent to requiring19

that the Jacobian DvS(c) does not vary too rapidly. We define20

λm ≡ inf
c∈C∞

λm(Wc),

λM ≡ sup
c∈C∞

λM (Wc),

w ≡ 1

2
sup

U∈C∞

‚

‚

‚

‚

∂Wc

∂t

‚

‚

‚

‚

E

.

(39)21

In the definition of w the supremum is taken over all solutions U = (u(x, t), v(x, t), v̄(t)) where (u(x, t), v(x, t)) satisfy22

(31), the third component satisfies (32), and (x, τ ) ∈ (Ω, [0,∞)).23

The following theorem gives conditions for exponential convergence in time of c(x, t) to a spatially-uniform24

solution under homogeneous Neumann boundary conditions. In essence the condition requires that the smallest non-25

zero diffusion coefficient should be large enough compared to some function of the kinetic sensitivities, r̂u, r̂v, ŝu, and26

šv, and of the constants, λm, λM , and w, defined by the positive operator Wc.27
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Theorem 3. ‖c(x, t) − c̄(t)‖L2 → 0 exponentially in t if1

(i) σ (DvS(c)) ⊂ LHP for all c ∈ C∞,

(ii) šv > w,

(iii) |α1δ| > r̂u +
r̂v ŝu

šv −w
· λ

2
M

λm
,

(40)2

where δ = mini Dii and α1 is the largest non-zero eigenvalue of the scalar problem3

∆φ(x) = αφ(x), x ∈ Ω,4

(41)5

∂φ

∂n
= 0, x ∈ ∂Ω.6

Proof. Define the Green’s function G(x, ξ, t) as the solution of7

∂G(x, ξ, t)

∂t
= D∆G(x, ξ, t), x ∈ Ω,

∂G(x, ξ, t)

∂n
= 0, x ∈ ∂Ω,

G(x, ξ, 0) = δ(x, ξ).

(42)8

G is a diagonal matrix and Gii represents the ith diagonal element. Then for x ∈ Ω, u and v satisfy9

u(x, t) =

Z

Ω

G(x, ξ, t)u0(ξ) dξ +

Z t

0

Z

Ω

G(x, ξ, t− τ )R
`

u(ξ, τ ), v(ξ, τ )
´

dξ dτ, (43)10

v(x, t) = v0(x) +

Z t

0

S
`

u(x, τ ), v(x, τ )
´

dτ. (44)11

The ith diagonal element of G satisfies12

Z

Ω

Gii(x, ξ, t− τ ) dξ = 1,13

and by defining14

G0
ii(x, ξ, t) ≡ Gii(x, ξ, t) − 1

|Ω| , (45)15

we have16

Z

Ω

G0
ii(x, ξ, t) dξ = 0. (46)17

Therefore18

u(x, t) =

Z

Ω

„

1

|Ω| +G0(x, ξ, t)

«

u0(ξ) dξ

+

Z t

0

Z

Ω

„

1

|Ω| +G0(x, ξ, t− τ )

«

R
`

u(ξ, τ ), v(ξ, τ )
´

dξ dτ,

(47)19

and it follows that20

ū(t) =
1

|Ω|

Z

Ω

u0(ξ) dξ +
1

|Ω|

Z t

0

Z

Ω

R
`

u(ξ, τ ), v(ξ, τ )
´

dξ dτ (48)21

and22

0 =

Z

Ω

G0(x, ξ, t)ū(0) dξ +

Z t

0

Z

Ω

G0(x, ξ, t− τ )R
`

ū(τ ), v̄(τ )
´

dξ dτ. (49)23
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We define1

Ψ(x, t) ≡ u(x, t) − ū(t), Φ(x, t) ≡ v(x, t) − v̄(t),2

and then find that3

Ψ(x, t) =

Z

Ω

G0(x, ξ, t)Ψ(ξ, 0) dξ +

Z t

0

Z

Ω

G0(x, ξ, t− τ )R(ξ, τ ) dξ dτ (50)4

where5

R(ξ, τ ) ≡ R
`

u(ξ, τ ), v(ξ, τ )
´

−R
`

ū(τ ), v̄(τ )
´

.6

Consider the diffusion problem7

∂ψ(x, t)

∂t
= Dii∆ψ(x, t), x ∈ Ω,

∂ψ(x, t)

∂n
= 0, x ∈ ∂Ω.

(51)8

The solution of (51) can be written9

ψ(x, t) =
X

l

alφl(x)eαlDiit
10

where the eigenvalues αl are non-positive and the φl(x)’s are the corresponding orthonormal eigenfunctions. For those11

having zero mean over Ω, αl < 0 and ψ(x, t) satisfies12

d

dt
‖ψ‖2

L2
=

d

dt
〈ψ,ψ〉L2 = 2

D

ψ,
∂ψ

∂t

E

L2

13

= 2〈ψ, Dii∆ψ〉L2 ≤ 2α1Dii‖ψ‖2
L2

14

where α1 is the largest non-zero eigenvalue. It follows that ψ(x, t) satisfies15

‖ψ(x, t)‖L2 ≤ e−|α1|Diit‖ψ(x, 0)‖L2 . (52)16

The Green’s function defined at (42) has an eigenfunction expansion in terms of the φ′s, and from this it follows

that the first term in (50) satisfies the inequality

‚

‚

‚

‚

Z

Ω

G0(x, ξ, t)Ψ(ξ, 0) dξ

‚

‚

‚

‚

L2

≤ e−|α1|δt‖ψ(x, 0)‖L2 .

Using this, and the inequality17

‚

‚R
`

u(ξ, τ ), v(ξ, τ )
´

−R
`

ū(τ ), v̄(τ )
´‚

‚

L2
≤ r̂u ‖Ψ(x, τ )‖L2

+ r̂v ‖Φ(x, τ )‖L2
, (53)18

it follows from (50) that19

e|α1δ|t‖Ψ(x, t)‖L2 ≤ ‖Ψ(x, 0)‖L2 (54)20

+r̂u

Z t

0

e|α1δ|τ‖Ψ(x, τ )‖L2 dτ + r̂v

Z t

0

e|α1δ|τ‖Φ(x, τ )‖L2 dτ.21

From (32), we have22

v̄(t) = v̄(0) +

Z t

0

S
`

ū(τ ), v̄(τ )
´

dτ (55)23
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and therefore the difference Φ(x, t) ≡ v(x, t) − v̄(t) satisfies1

Φ(x, t) = Φ(x, 0) +

Z t

0

˘

S
`

u(x, τ ), v(x, τ )
´

− S
`

ū(τ ), v̄(τ )
´¯

dτ. (56)2

Since C∞ is convex, for each x ∈ Ω and τ ∈ [0, t <∞), there exist c1(x, τ ) and c2(x, τ ) such that3

S
`

u(x, τ ), v(x, τ )
´

− S
`

ū(τ ), v̄(τ )
´

= DuS
`

c1(x, τ )
´

(u(x, τ ) − ū(τ )) +DvS
`

c2(x, τ )
´

(v(x, τ ) − v̄(τ )) .4

As a result, (56) can be rewritten as5

Φ(x, t) = Φ(x, 0) +

Z t

0

˘

DuS
`

c1(x, τ )
´

Ψ(x, τ ) +DvS
`

c2(x, τ )
´

Φ(x, τ )
¯

dτ. (57)6

In view of (36) and (37), for each c ∈ C∞ we can define a weighted Euclidean norm by Wc as7

‖A‖2
E,Wc

≡ 〈A,WcA〉E.8

Since Wc is a uniformly positive operator for each c ∈ C∞, λm > 0 in (39). Using (35) and (39), for each x ∈ Ω and9

t ∈ [0,∞), we obtain the upper and lower bounds10

λm‖Φ(x, t)‖2
E ≤ ‖Φ(x, t)‖2

E,Wc2(x,t)
≤ λM‖Φ(x, t)‖2

E . (58)11

Define a weighted L2 norm as12

‖f(x, t)‖2
L2,Wf

≡
Z

Ω

‖f(x, t)‖2
E,Wf(x,t)

dx.13

Then,14

λm‖Φ(x, t)‖2
L2

≤ ‖Φ(x, t)‖2
L2,Wc2

≤ λM‖Φ(x, t)‖2
L2
, (59)15

and differentiating this we obtain16

d

dt
‖Φ(x, t)‖2

E,Wc2(x,t)
=
˙

Φ(x, t),DtWc2(x,t)Φ(x, t)
¸

E
+
˙

Φ(x, t),Wc2(x,t)DtΦ(x, t)
¸

E

+
˙

DtΦ(x, t),Wc2(x,t)Φ(x, t)
¸

E
.

(60)17

From (57) and (60) it follows that18

d

dt
‖Φ(x, t)‖2

E,Wc2(x,t)
=
˙

Φ(x, t),DtWc2(x,t)Φ(x, t)
¸

E
19

+
˙

Φ(x, t),Wc2(x,t)DuS
`

c1(x, τ )
´

Ψ(x, t)
¸

E
+
˙

Φ(x, t),Wc2(x,t)DvS
`

c2(x, τ )
´

Φ(x, t)
¸

E
20

+
˙

DuS
`

c1(x, τ )
´

Ψ(x, t),Wc2(x,t)Φ(x, t)
¸

E
+
˙

DvS
`

c2(x, τ )
´

Φ(x, t),Wc2(x,t)Φ(x, t)
¸

E
.21

After applying the Cauchy-Schwarz inequality and using the fact that σ (WcDvS(c)) ⊂ LHP for all c ∈ C∞, we22

obtain23

d

dt
‖Φ(x, t)‖2

E,Wc2(x,t)
≤ 2w‖Φ(x, t)‖2

E + 2ŝuλM‖Φ(x, t)‖E‖Ψ(x, t)‖E24

+
D

Φ(x, t),
`

Wc2(x,t)DvS
`

c2(x, τ )
´

+
ˆ

DvS
`

c2(x, τ )
´˜T

Wc2(x,t)

´

Φ(x, t)
E

E
25

≤ 2ŝuλM‖Φ(x, t)‖E‖Ψ(x, t)‖E − (2šv − 2w) ‖Φ(x, t)‖2
E (61)26
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where
ˆ

DvS
`

c2(x, τ )
´˜T

is the transpose of DvS
`

c2(x, τ )
´

for fixed x ∈ Ω and τ ∈ [0,∞). From the second condition1

in (40), we assume that šv − w > 0. Then using (58) and dividing by 2‖Φ(x, t)‖E,Wc2(x,t)
, (61) becomes2

d

dt
‖Φ(x, t)‖E,Wc2(x,t)

≤ ŝuλM√
λm

‖Ψ(x, t)‖E − šv − w

λM
‖Φ(x, t)‖E,Wc2(x,t)

. (62)3

From this one obtains4

e|α1δ|t‖Φ(x, t)‖E,Wc2(x,t)
≤ ‖Φ(x, 0)‖E,Wc2(x,0)

+
ŝuλM√
λm

Z t

0

e|α1δ|τ‖Ψ(x, τ )‖E dτ5

+

„

|α1δ| − šv − w

λM

«Z t

0

e|α1δ|τ‖Φ(x, τ )‖E,Wc2(x,τ)
dτ (63)6

which the reader can verify by integration by parts. Integrating (63) over x ∈ Ω, we get7

e|α1δ|t‖Φ(x, t)‖L2,Wc2
≤ ‖Φ(x, 0)‖L2,Wc2

+
ŝuλM√
λm

Z t

0

e|α1δ|τ‖Ψ(x, τ )‖L2 dτ8

+

„

|α1δ| − šv −w

λM

«Z t

0

e|α1δ|τ‖Φ(x, τ )‖L2,Wc2
dτ. (64)9

We now have the estimates on the diffusing and non-diffusing species needed, and we combine these as follows.10

Define11

g(t) ≡
h

e|α1δ|t‖Ψ(x, t)‖L2 , e|α1δ|t‖Φ(x, t)‖L2,Wc2

iT

;12

then from (54) and (64) we have13

g(t) ≤ g(0) +

Z t

0

"

r̂u
r̂v√
λm

ŝuλM√
λm

|α1δ| − šv−w
λM

#

g(τ )dτ,14

where the inequality is defined componentwise. Since the off-diagonal elements of the matrix K in the integral are

positive, the map defined by the right-hand side preserves the order in the positive cone of R2[40], and it follows that

g(t) ≤ eKtg(0).

Therefore15

"

‖Ψ(x, t)‖L2

‖Φ(x, t)‖L2,Wc2

#

≤ eAt

"

‖Ψ(x, 0)‖L2

‖Φ(x, 0)‖L2,Wc2

#

16

where17

A =

"

−|α1δ| + r̂u
r̂v√
λm

ŝuλM√
λm

− šv−w
λM

#

.18

Consequently, if all eigenvalues of A have negative real part, then it follows, after using (59), that ‖c(x, t)−c̄(t)‖L2 → 019

exponentially in t.20

We can compute the characteristic equation explicitly and find the factored form21

(λ+ |α1δ| − r̂u)

„

λ+
šv −w

λM

«

− r̂v√
λm

ŝuλM√
λm

= 0.22

Therefore the λ’s are negative if23

`

|α1δ| − r̂u

´

+
šv − w

λM
> 0

`

|α1δ| − r̂u

´ šv − w

λM
− r̂v ŝuλM

λm
> 0.

(65)24
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Since we assume that šv > w, these conditions are satisfied if1

|α1δ| > r̂u +
r̂vŝu

šv − w
· λ

2
M

λm
, (66)2

which then guarantees exponential in t convergence to the uniform solution. This proves the theorem. ⊓⊔3

Remark 1. If all species diffuse, the criterion in (66) reduces to4

|α1δ| > r̂u,5

since S(u(x, t), v(x, t)) = 0. This is the condition given in [3] .6

Remark 2. If Ω = [0, hx] × [0, hy ] × [0, hz],

αlD = −
„

l1π

hx

«2

Dx −
„

l2π

hy

«2

Dy −
„

l3π

hz

«2

Dz

for l1, l2, l3 = 0, 1, · · · where Dx, Dy , and Dz are diffusion matrices of diffusing species in x-,y-, and z- directions. If7

diffusion is isotropic, we have8

|α1δ| = min
n

„

π

hx

«2

,

„

π

hy

«2

,

„

π

hz

«2
o

min
i

Dii.9

If one adopts the criterion that the largest computational cell size for a stochastic simulation of a reaction-diffusion10

system should be small enough that the cell is uniform on time scales relevant to the coupled deterministic reaction11

network, one can apply the criterion in (66) to predict the minimum number of computational cells. We do this in12

detail for Example 2.2, as later shown in Example 4.1. There we set Wc = 1 since DvS is a scalar, and therefore13

λm = λM = 1 and w = 0 in (66).14

3.2. Other types of boundary conditions15

The convergence result in Theorem 3 can be extended in several ways. For example, when there are no non-diffusing16

species, exponential convergence to a uniform state under homogeneous Robin boundary conditions on ∂Ω was proven17

in [10]. That result can be extended to allow homogeneous Robin conditions on ∂Ω1 ⊂ ∂Ω and homogeneous Neumann18

data on ∂Ω/∂Ω1, since it is easy to show that the principal eigenvalue for the spectral problem with mixed data is19

strictly less than zero.20

When there are non-diffusing species, the Neumann conditions in (31) are replaced by21

D∂u(x, t)
∂n

= −Bu(x, t), x ∈ ∂Ω1,

∂u(x, t)

∂n
= 0, x ∈ ∂Ω/∂Ω1.

(67)22

We assume that B is a diagonal matrix with positive diagonal elements, and thus the reactions represent degradation23

or sequestration on the boundary, or transfer through the boundary. In any case, the flux of diffusing species to ∂Ω124

balances reactions of diffusing species on ∂Ω1.25

We could allow a slightly more general boundary condition by replacing the term −Bu(x, t) in (67) with −B(u(x, t)−
us), where us is a solution of

R
`

us, vs´ = 0 and S
`

us, vs´ = 0,

but by translating the steady state, we can assume that (us, vs) = (0, 0), which we do hereafter.26

We then have the following.27
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Theorem 4. Consider the system (31) with boundary conditions replaced by (67). Further, suppose that the system1

admits the uniform steady state (us, vs) = (0, 0). Let αi1 be the principal eigenvalue of the scalar problem2

∆φ(x) = αiφ(x), x ∈ Ω,

∂φ

∂n
=

Bii

Dii
φ, x ∈ ∂Ω1,

∂φ

∂n
= 0, x ∈ ∂Ω/∂Ω1,

(68)3

and suppose that

(i) σ (DvS(c)) ⊂ LHP for all c ∈ C∞,

(ii) šv > w,

(iii) δ1 > r̂u +
r̂vŝu

šv − w
· λ

2
M

λm
,

where δ1 ≡ mini(|αi1|Dii). Then ‖c(x, t)‖L2 → 0 exponentially in t.4

Proof. The proof follows along the same lines as that of Theorem 3. The equations are cast into integral form using a5

Green’s function for the Robin problem. From the analog of (51) one finds that since the principal eigenvalue αil < 06

[41], ψ(x, t) satisfies the inequality7

‖ψ(x, t)‖L2 ≤ e−|αi1|Diit‖ψ(x, 0)‖L2 , (69)8

where αi1 is the largest eigenvalue of the scalar problem analogous to (51). This leads to the estimates9

eδ1t ‖u(x, t)‖L2
≤ ‖u0(x)‖L2

+ r̂u

Z t

0

eδ1τ ‖u(x, τ )‖L2
dτ10

+
r̂v√
λm

Z t

0

eδ1τ ‖v(x, τ )‖L2,Wc4
dτ, (70)11

eδ1t ‖v(x, t)‖L2,Wc4
≤ ‖v0(x)‖L2,Wc4

+
ŝuλM√
λm

Z t

0

eδ1τ ‖u(x, τ )‖L2
dτ12

+

„

δ1 − šv − w

λM

«Z t

0

eδ1τ ‖v(x, τ )‖L2,Wc4
dτ, (71)13

and from these it follows that ‖c(x, t)‖L2
→ 0 exponentially in t under the hypotheses in the statement of the14

theorem. Here Wc4 in (70) and (71) is analogous to Wc2 in (64). This is used to estimate S
`

u(x, τ ), v(x, τ )
´

, rather15

than S
`

u(x, τ ), v(x, τ )
´

− S
`

ū(τ ), v̄(τ )
´

as in Theorem 3. The functions c3 and c4 are defined as follows: for each16

x ∈ Ω and τ where 0 ≤ τ ≤ t <∞, there exist c3(x, τ ) in
`

0, u(x, τ )
´

and c4(x, τ ) in
`

0, v(x, τ )
´

satisfying17

S
`

u(x, τ ), v(x, τ )
´

= DuS
`

c3(x, τ )
´

u(x, τ ) +DvS
`

c4(x, τ )
´

v(x, τ ).18

The details of the proof are left to the reader. ⊓⊔19

Other types of boundary conditions can be treated under suitable constraints on the boundary values. For example,

if non-homogeneous Dirichlet conditions of the form u(x, t) = uB for x ∈ ∂Ω are imposed, then a uniform steady

state exists only if there is a constant vector vs such that

R
`

uB , vs´ = 0 and S
`

uB , vs´ = 0.

In other words, the boundary values must coincide with the u-component of a constant, spatially-uniform steady20

state of the governing reaction-diffusion equations. In this case, as in the above, the proof of convergence to a uniform21

solution follows that from Robin data, since the principal eigenvalue of the associated spectral problem is negative22

[41].23



A new method for choosing the computational cell in stochastic reaction-diffusion systems 31

4. Applications1

In this section we apply the results in Section 2 and 3 to Example 2.2 and to a simple nonlinear reaction-diffusion2

system with the bimolecular reaction 2A ⇋ C. We compute CV
∗

as a function of Nc and determine at what number3

of compartments, CV
∗

stabilizes, so as to determine the number of compartments in the stochastic model. We also4

compute the upper bound for the computational cell size by applying Theorem 3 to obtain the minimal number of5

compartments, and we compare this number to the one determined by CV
∗
. Erban and Chapman [15] also analyzed6

a system with bimolecular reaction, 2A → C, but their reaction is irreversible and there is production of A from a7

source in their model. They consider both the compartment-based model using a master equation and the molecular-8

based model using stochastic differential equations. We consider a multi-compartment model to illustrate another9

aspect of how the criterion of Theorem 3 can be used.10

4.1. Example 2.2 revisited11

Consider the reactions involving species A, B, and C in Example 2.2 with corresponding deterministic rate constants12

given in Table 3. Species A can diffuse, species B and C do not, and species C does not affect species A and B. Let13

u(x, t), v(x, t), and w(x, t) be the concentrations of species A, B, and C, respectively. Since C does not affect the14

dynamics of A or B, we first consider the system with only A and B. The domain is Ω = [0, hx] and ∂Ω = {0, hx}.15

u(x, t) and v(x, t) satisfy (31) with16

R(u(x, t), v(x, t)) =
h

−(k5cR + k6) k−5

i

"

u(x, t)

v(x, t)

#

,17

S(u(x, t), v(x, t)) =
h

k5cR −(k−5 + k7)
i

"

u(x, t)

v(x, t)

#

,18

D = D.19

Since DvS is a scalar, we may set Wc = 1. Then, the variables defined by Jacobian of the reaction terms are found20

to be21

r̂u = k5cR + k6, r̂v = k−5, ŝu = k5cR, šv = k−5 + k7.22

After computing the convergence criterion given in Theorem 3, we obtain the following upper bound for the compu-23

tational cell size that guarantees convergence to a spatially-uniform solution in the deterministic calculation.24

hx <

v

u

u

t

Dπ2

“

k5cR(2k−5+k7)

k−5+k7
+ k6

” ≈ 8.25µm25

We then use hx as the compartment size for the corresponding stochastic model, apply the fact that hx = Lx/Nc,26

and replace the deterministic reaction rate constants by stochastic reaction rate constants. As a result we obtain the27

following lower bound for the number of compartments,28

Nc >

v

u

u

t

“

κ5R(2κ−5+κ7)

κ−5+κ7
+ κ6

”

L2
x

Dπ2
≈ 33. (72)29

Comparing this lower bound for Nc to the number at which the CV
∗

in Figure 6(a) stabilizes, we conclude that (72)30

gives a good estimate for the maximum allowable compartment size. This shows that Theorem 3, applied appropriately,31

provides a rational basis for computing the minimum number of compartments. However, some thought is required,32

as the following illustrates.33
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Suppose that we had not recognized that C does not affect the upstream reactions. Now w becomes v2 and the1

reaction matrices are2

R(u(x, t), v(x, t)) =
h

−(k5cR + k6) k−5 0
i

2

6

4

u(x, t)

v1(x, t)

v2(x, t)

3

7

5
,3

S(u(x, t), v(x, t)) =

"

k5cR −(k−5 + k7) 0

0 k7 −k9

#

2

6

4

u(x, t)

v1(x, t)

v2(x, t)

3

7

5
,4

D = D.5

Since σ
“

(DvS(c) + [DvS(c)]T )/2
”

⊂ LHP for all c ∈ C∞, we can take Wc to be the identity matrix. The sensitivities6

defined by the Jacobians of the reaction terms are found to be7

r̂u = k5cR + k6, r̂v = k−5,8

ŝu = k5cR, šv =
(k−5 + k7 + k9) −

p

(k−5 + k7 − k9)2 + k2
7

2
.9

Using αl = −
“

lπ
hx

”2

and applying Theorem 3, we find that10

hx <

s

Dπ2

`k5cR(k−5+šv)

šv
+ k6

´
≈ 1.41µm.11

Treating [0, hx] as one compartment, we obtain a lower bound for the number of compartments,12

Nc >

s

`κ5R(κ−5+šv)

šv
+ κ6

´

L2
x

Dπ2
≈ 195. (73)13

Comparing (72) and (73), we see that the condition in Theorem 3 over estimates a lower bound for the number of14

compartments if we include the non-diffusing species which do not affect the diffusing species. The difference between15

(72) and (73) arises from the fact that κ−5 + κ7 ≈ 2.03min−1 in (72), whereas šv ≈ 0.03min−1 appears in (73).16

The difference reflects the fact that the relaxation time of the non-diffusible species (more generally, a measure of the17

sensitivity of the non-diffusible species) enters into the calculation of the overall relaxation time, and this is much18

longer when C is included. Clearly if downstream uncoupled components relax faster than upstream components19

their inclusion will not have this effect.20

4.2. Why network properties must be considered21

Condition (i) in Theorem 3 is very important, since without it diffusive instabilities (such as the Turing instability)22

can arise [31,32]. In fact, if a self-activating species is also immobile, instabilities of arbitrarily-short wavelengths can23

arise [34], which precludes establishing a minimum non-zero compartment size. To illustrate some of the effects of24

violating this condition, we investigate a simple reaction-diffusion network which does not satisfy this condition.25

Example 1. Consider a model for the glycolytic reactions, which involves positive feedback and leads to a generic26

back-activation oscillator [3]. The kinetic steps are27

Substrate −→ X −→ Y −→ Products28

and assuming that the enzyme is far from saturation, these can be described via polynomials. To illustrate some29

of the problems as simply as possible, we consider a two-compartment model, since the deterministic case for that30

system has been analyzed in detail [3]. We assume that Y does not diffuse and therefore the governing equations are31

du1(t)

dt
=

Dx

(Lx/2)2
`

u2(t) − u1(t)
´

+ k0 − k1u1(t)v1(t)
2 − k2u1(t),32



A new method for choosing the computational cell in stochastic reaction-diffusion systems 33

Table 4. Deterministic and stochastic parameters in Example 1

Deterministic Stochastic
k0 5.25 nM min−1 κ0 k0 × (NAVc) ≈ 158.22 min−1

k1 1 nM−2 min−1 κ1 k1/(NAVc)
2 ≈ 0.0011 min−1

k2 0.005 min−1 κ2 k2 = 0.005 min−1

k3 5 min−1 κ3 k3 = 5 min−1

Dx 1000 µm2min−1 κd,x Dx/(Lx/2)2 = 0.4 min−1

u1(0) 2 nM N (1,1)(0) 2 nM × 6.022×10−1 µm−3

1 nM
× 50 µm3 ≈ 60

u2(0) 2 nM N (2,1)(0) 2 nM × 6.022×10−1 µm−3

1 nM
× 50 µm3 ≈ 60

v1(0) 7 nM N (1,2)(0) 7 nM × 6.022×10−1 µm−3

1 nM
× 50 µm3 ≈ 210

v2(0) 0 nM N (2,2)(0) 0 nM × 6.022×10−1 µm−3

1 nM
× 50 µm3 ≈ 0

Lx 100 µm
Ly 1 µm
Lz 1 µm
V 100 µm3

dv1(t)

dt
= k1u1(t)v1(t)

2 + k2u1(t) − k3v1(t),1

du2(t)

dt
=

Dx

(Lx/2)2
`

u1(t) − u2(t)
´

+ k0 − k1u2(t)v2(t)
2 − k2u2(t),2

dv2(t)

dt
= k1u2(t)v2(t)

2 + k2u2(t) − k3v2(t),3

where uk(t) and vk(t) are concentrations of species X and Y in the kth compartment at time t for k = 1, 2. The term4

k1uk(t)vk(t)2 comes from the positive feedback step in which Y activates its production. The uniform steady state is5

u∗ = u∗
1 = u∗

2 =

k0
k3

k2
k3

+
“

k0
k3

q

k1
k3

”2
,6

v∗ = v∗1 = v∗2 =
k0

k3
.7

The diffusion matrix and the Jacobian of the kinetic terms are8

D =

"

Dx

(Lx/2)2
0

0 0

#

,9

K(uk(t), vk(t)) =

"

−(k2 + k1vk(t)2) −2k1uk(t)vk(t)

k2 + k1vk(t)2 2k1uk(t)vk(t) − k3

#

.10

The stability of the uniform steady state to spatially uniform disturbance is determined by the eigenvalues of K(u∗, v∗)11

and the stability of the uniform steady state to nonuniform disturbance is determined by the eigenvalues of K(u∗, v∗)−12

2D [3].13

We choose parameter values so that the uniform steady state is unstable, in which case a well-mixed system14

evolves to a unique periodic solution. This solution is also a solution of the coupled systems, since both cells are15

identical, and therefore a stochastic simulation should be expected to exhibit periodic behavior if averaged over many16

realizations. Using the stochastic and deterministic parameters given in Table 4, we compare the time evolution of17

X and Y in the two compartment model. Let N (k,1)(t) and N (k,2)(t) represent the numbers of molecules of X and18

Y in the kth compartment at time t, respectively.19

Note that in Table 4, we multiply k0 by the volume of each compartment (Vc) to obtain the corresponding20

stochastic rate constant, since the corresponding reaction is production from a source occurring in both compartments.21

Similarly, we divide k1 by square of the volume of each compartment to obtain the stochastic rate constant, since22

the corresponding reaction, X + 2Y → 3Y , is trimolecular. Diffusion coefficients in both the deterministic and the23
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stochastic two-compartment model are scaled by the square of each compartment size due to the discretization of1

the Laplacian. For the parameter values chosen, the second diagonal element of K(u∗, v∗), corresponding to the2

non-diffusing species Y , is positive, which reflects the self-activation of that species. Thus a deterministic spatially-3

continuous system with these kinetics does not satisfy condition (i) in Theorem 3, and thus we cannot apply the4

criterion to determine an appropriate discretization. Furthermore, we have5

Tr (K(u∗, v∗)) > 0,6

det (K(u∗, v∗)) > 0,7

Tr (K(u∗, v∗) − 2D) > 0,8

det (K(u∗, v∗) − 2D) > 0,9

and therefore the eigenvalues of K(u∗, v∗) and K(u∗, v∗) − 2D are positive and the uniform steady state is unstable10

to both uniform and nonuniform disturbances.11

In Figure 7 we compare the stochastic and deterministic simulations of the two-compartment model. In (a) and12

(b), we show the uniform periodic solution of the deterministic two-compartment model for initial values given in13

Table 4. One sees that when uk(t) approaches zero, vk(t) approaches to its maximum. In (c)−(f) and (g)−(j) we give14

two realizations of stochastic simulations of the two-compartment model. Clearly there is no hint of periodicity in the15

stochastic simulations, despite running for a long time compared to that needed for relaxation to the uniform periodic16

solution in the deterministic case, and the compartments are certainly not synchronized. As in (a) and (b), when X17

peaks, Y in the same compartment has a local minimum value. However, the local minimum and maximum values18

of the numbers of molecules for the same species vary, and the burst times of the same species in two compartments19

are not synchronized. One reason for the discrepancy between the deterministic and stochastic solutions is that there20

is also a stable non-uniform periodic solution in the deterministic system, and though the initial data lies in the21

domain of attraction of the uniform solution for the deterministic problem, the non-uniform solution appears to exert22

a significant influence on the stochastic evolution. A detailed analysis of the deterministic case is done on Ashkenazi23

and Othmer [3], where the reader can see the full complexity of the solution set for this simple system.24

The complexity of the solution set is solely the result of the self-activation in the local dynamics – without that the25

system would not show oscillations and the condition (i) in Theorem 3 would be satisfied. Thus a full understanding26

of the local dynamics is needed to determine whether a sufficiently small compartment size will produce meaningful27

results in a stochastic simulation.28

4.3. The reaction 2A ⇋ C in a distributed setting29

Consider a multi-compartment system of Nc compartments. Let Ak and Ck denote species A and C in the kth
30

compartment for k = 1, · · · , Nc. The system has the following reactions31

2Ak
κ1−⇀↽−

κ−1

Ck, for all k,32

Ak
κd,A−⇀↽−
κd,A

Ak+1, for k = 1, · · · , Nc − 1,33

Ck
κd,C−⇀↽−
κd,C

Ck+1, for k = 1, · · · , Nc − 1,34

wherein the parameter values are as given in Table 5.35

In Table 5, k1 is divided by the volume of the compartment (Vc) to obtain the stochastic rate constant κ1.36

As before, we assume that Lx ≫ Ly , Lz, and discretize Lx into Nc compartments. Since this system is closed, the37

components are strongly connected, the deficiency is zero, and the steady-state probability density function has a38

product form [1]. (Zero-deficiency of the network means that ν does not annihilate any elements in the range of E39

[33].)40

Let N (k,1)(t) and N (k,2)(t) represent the numbers of molecules of species A and C in the kth compartment at time41

t, respectively. Then,
PNc

k=1

“

N (k,1)(t) + 2N (k,2)(t)
”

is conserved and equal to its initial value N0. The steady-state42
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Fig. 7. Deterministic and stochastic simulation for the two-compartment model. uk(t) and vk(t) are concentrations

of species X and Y in the kth compartment at time t. N (k,1)(t) and N (k,2)(t) are the numbers of molecules of species

X and Y in the kth compartment at time t.
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Table 5. Deterministic and stochastic parameters in Example 4.3

Deterministic Stochastic
k1 0.05 nM−1min−1 κ1 k1/(NAVc) ≈ 1.21 × 10−4Nc min−1

k−1 0.05 min−1 κ−1 0.05 min−1

DA = DC 73 µm2 sec−1 κd,A = κd,C DA/(Lx/Nc)
2 ≈ 9.65 × 10−4N2

c sec−1

0.73 µm2 sec−1 DA/(Lx/Nc)
2 ≈ 9.65 × 10−6N2

c sec−1

Lx 275 µm
Ly 5 µm
Lz 0.5 µm
V 687.5 µm3

probability density function can be expressed as [1]1

P∞(n(1,1), n(1,2), · · · , n(k,1), n(k,2), · · · , n(Nc,1), n(Nc,2)) = M

Nc
Y

k=1

(wk
A)n(k,1)

(n(k,1))!

(wk
C)n(k,2)

(n(k,2))!
(74)2

where wk
A and wk

C for k = 1, · · · , Nc are the components of the steady-state solution of the following deterministic3

system.4

dwk
A(t)

dt
= −2κ1w

k
A(t)2 + 2κ−1w

k
C(t) + κd,A

h

(wk−1
A (t) −wk

A(t))I{k 6=1} + (wk+1
A (t) − wk

A(t))I{k 6=Nc}
i

(75)5

dwk
C(t)

dt
= κ1w

k
A(t)2 − κ−1w

k
C(t) + κd,C

h

(wk−1
C (t) −wk

C(t))I{k 6=1} + (wk+1
C (t) − wk

C(t))I{k 6=Nc}
i

(76)6

Here I is the indicator function, wk
A and wk

C satisfy the conservation law,
PNc

k=1

`

wk
A + 2wk

C

´

= 1, and in (74), M is a

normalizing constant that depends on Nc. The steady-state solution of (75) and (76) is spatially uniform and given

by

wk
A = Kd, wk

C =
K

2
d2,

where

K =
κ−1

2κ1
, d =

−1 +
q

1 + 4
KNc

2
.

Since d and K do not depend on the diffusion coefficients of species A and C, the steady-state probability density7

function does not depend on them neither. (Compare the earlier example of diffusion only in Section 1.4, which led8

to a multinomial distribution independent of the diffusion constant.) Using P∞(·) in (74) and parameters given in9

Table 5, the computed CV ∗ and CV
∗

for N0 = 6 is given in Table 6. For Nc ≥ 2, CV
∗

is approximately constant.10

Thus the results suggest that the number of compartments should be at least 2 in a multi-compartment stochastic11

model.

Table 6. CV ∗ and CV
∗

when N0 = 6

Nc CV ∗ CV
∗

1 3.7164 97.4456
2 5.3659 99.4871
3 6.5719 99.4871
4 7.5886 99.4871
5 8.4843 99.4871
6 9.2941 99.4871
7 10.0387 99.4871
8 10.7319 99.4871
9 11.3829 99.4871
10 11.9986 99.4871
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Next, we apply Theorem 3 to estimate an upper bound for each compartment size in the stochastic model. Let1

u1(x, t) and u2(x, t) be concentrations of species A and C on x at time t, and denote u(x, t) ≡ [u1(x, t), u2(x, t)]
T .2

The reaction and diffusion matrices are given as3

R
`

u(x, t)
´

=

"

−2k1u1(x, t)
2 + 2k−1u2(x, t)

k1u1(x, t)
2 − k−1u2(x, t)

#

,4

D =

"

DA 0

0 DC

#

.5

Since we assume that both species A and C diffuse, (40) is reduced to6

|α1δ| > r̂u (77)7

where α1 = −(π/hx)2 and δ = DA. The Jacobian matrix for the kinetic terms is8

DuR
`

u(x, t)
´

=

"

−4k1u1(x, t) 2k−1

2k1u1(x, t) −k−1

#

.9

Using
‚

‚DuR
`

u(x, t)
´‚

‚

E
=
p

20(k1u1(x, t))2 + 5(k−1)2, we have10

r̂u = max
u1(x,t)∈C∞

p

20(k1u1(x, t))2 + 5(k−1)2.11

For fixed volume Vc, r̂u has a maximum value when all molecules of species A are located in one compartment.12

Therefore, we approximate the maximum value of u1(x, t) by N0/(NAVc) = N0/(NAhxLyLz) where N0 = 6 is the13

conserved number of molecules. Using the upper bound of r̂u, we find the following is a sufficient condition to satisfy14

(77):15

DAπ
2

h2
x

>

s

20

„

k1N0

NAhxLyLz

«2

+ 5(k−1)2.16

It follows that hx must be chosen so that17

5(k−1)
2h4

x + 20

„

k1N0

NALyLz

«2

h2
x −D2

Aπ
4 < 0,18

which leads to the following condition on hx.19

hx < 621.79 µm when DA = DC = 73µm2 sec−1
20

hx < 61.93 µm when DA = DC = 0.73µm2 sec−1
21

Said otherwise, a single compartment suffices if Lx < 622µm, which compares well with the result in Table22

6, which depends on Lx through the rate constants, and are computed for Lx = 275µm. However when DA =23

DC = 0.73µm2 sec−1, the upper bound for the compartment size gives Nc > 4 which overestimates the number of24

compartments needed according to Table 6. This is not surprising, since the theoretical estimate is based on the25

relaxation rate to the uniform solution, and for the second case, in which diffusion is 100-fold slower, the approach to26

the uniform solution takes much longer and at least four compartments are needed to capture the temporal evolution.27

Once again, care is needed in applying the criterion.28

Finally, we compare our result to the one using Bernstein’s criterion for the compartment size introduced in29

Section 1.4. Consider the case when DA = DC = 73µm2 sec−1. To compute the reaction timescale, we use the30

reaction with the largest propensity, since Bernstein sets the reaction time as the reciprocal of the propensity. Denote31
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Atot and Ctot as the total numbers of molecules of species A and C, respectively. Using Atot +2Ctot = 6, we compute1

κ1
Atot

Nc

„

Atot

Nc
− 1

«

≈ (1.21 × 10−4Nc)
6

Nc

„

6

Nc
− 1

«

≈ 0.0044

„

1

Nc
− 1

6

«

,2

κ−1
Ctot

Nc
≈ 0.05

3

Nc
= 0.15

„

1

Nc

«

.3

Therefore, the propensity of the first-order reaction, C
κ1→ 2A, is the largest. Based on the conservation law, we assume4

that the total number of molecules of species C is 3. The reaction time-scale is given as5

τC ≈ 1

0.05min−1 × 3
Nc

6

=
1833.33

hx
min.7

The diffusion time-scale is computed using the diffusion coefficient of species A.8

h2
x

2DA
≈ h2

x µm
2

2 × 4380µm2min−1
=

h2
x

8760
min9

Since the diffusion time-scale should be much faster than the reaction time-scale, we have10

hx ≪ (8760 × 1833.33)1/3 µm11

≈ 252.30 µm.12

Similarly, when DA = DC = 0.73µm2 sec−1, Bernstein’s criterion yields hx ≪ 54.36 µm. Therefore, in both cases the13

upper bound for the compartment size using our criterion is larger than the one obtained from Bernstein’s criterion.14

5. Discussion15

A number of criteria have been suggested for determining the appropriate compartment size for a stochastic treatment16

of a reaction-diffusion system, but none incorporates measures of the noise in the process, nor do they account for the17

properties of the integrated reaction network. We incorporate those factors here and develop a criterion for choosing18

the compartment size.19

We first define a suitably scaled, generalized coefficient of variation as an appropriate measure for the noise level of20

the system, and use this scaled measure, CV
∗
, to determine a lower bound for the number of compartments based on21

simulations of a particular network. Using results from [17], we compute the asymptotic mean M∞ and variance V∞,22

and we express CV
∗

in terms of M∞ for specific cases of a linear reaction-diffusion network. We show the convergence23

of each component in M∞ multiplied by some constant to the corresponding concentration in the continuum model24

for an open linear network with production from a source, and for a closed linear network with no inputs and no25

degradation (in case there is exactly one zero eigenvalue in the reaction matrix). We then show computationally that26

the scaled measure converges for a sufficiently large number of compartments in a linear network, which suggests the27

minimum value for the number of compartments.28

However, it is not easy in general to compute the minimum value of the number of compartments using CV
∗

29

analytically, and therefore we developed an alternate criterion based on convergence of solutions of the deterministic30

reaction-diffusion system to a spatially-uniform solution. In previous work, conditions for this convergence were31

derived for closed systems in which all species diffuse [31,3], and we extend this here to allow both non-diffusing32

species and degradation of diffusing species on the boundary of the domain. Of course the system size plays a role33

in the convergence, and this leads to an estimate of the minimal compartment size by requiring that the dynamics34

converge to a spatially-uniform solution for that compartment size. The exponential convergence condition involved35

is applicable to the nonlinear reaction-diffusion networks for which it is known that solutions are bounded in L2,36

which include the majority of biologically-realistic systems. We apply the results to a simple dimerization reaction37

that illustrates some of the issues that must be considered in general.38
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APPENDICES1

A. Proof of the mean first passage time for N walkers2

Consider the first passage time for annihilation beginning on a spherical surface of radius r ∈ (a, b). Define Pi(R, t|r, s)3

as the probability that the ith particle starts on a spherical surface of radius r at time s and ends on a spherical4

surface of radius R at time t. Define τi(r) ≡ τi as the first passage time for annihilation of the ith particle when it5

begins on the spherical surface of radius r and τ (r1, r2, · · · , rN ) ≡ τ as the first passage time for annihilation of the6

N particles, where for i = 1, 2, · · · , N , the ith particle begins on a spherical surface of radius ri. Define a cumulative7

distribution function for τi as8

Fi(r, t) ≡ P (τi ≤ t),9

=

Z t

0

− d

ds

Z b

a

Pi(R, s|r, 0) dRds = 1 −
Z b

a

Pi(R, t|r, 0) dR,10

and define the operator ∆r as11

∆rf(r, t) =
1

r2
∂

∂r

„

r2
∂f(r, t)

∂r

«

,12

∆rg(r) =
1

r2
d

dr

„

r2
dg(r)

dr

«

.13

Then, for i = 1, · · · , N , Fi(r, t) is a solution of14

∂

∂t
Fi(r, t) = D∆rFi(r, t),

Fi(r, t)|{r=a} = 1,

∂

∂r
Fi(r, t)|{r=b} = 0.

(78)15

Let F (r1, r2, · · · , rN , t) be the cumulative distribution function of τ when N particles are initially located on spherical16

surface of radius ri ∈ (a, b) for i = 1, · · · , N . Then17

P (τ > t) = 1 − F (r1, r2, · · · , rN , t)18

=
N
Y

i=1

(1 − Fi(ri, t)).19

The mean first passage time of N particles is defined as λ ≡ E[τ ], and is computed in terms of the cumulative20

distribution function of the first passage time of each particle.21

λ(r1, r2, · · · , rN ) =

Z ∞

0

P (τ > s) ds22

=

Z ∞

0

N
Y

i=1

(1 − Fi(ri, s)) ds23

Using (78), λ satisfies24

D∆riλ(r1, r2, · · · , rN ) = −
Z ∞

0

(D∆riFi(ri, s))
Y

j 6=i

(1 − Fj(rj , s)) ds25

= −
Z ∞

0

∂Fi(ri, s)

∂s

Y

j 6=i

(1 − Fj(rj , s)) ds. (79)26

Summing (79) over i = 1, · · · , N , we find that27

N
X

i=1

D∆riλ(r1, r2, · · · , rN) =

Z ∞

0

∂
QN

i=1(1 − Fi(ri, s))

∂s
ds28
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= lim
t→∞

N
Y

i=1

(1 − Fi(ri, t)) −
N
Y

i=1

(1 − Fi(ri, 0))1

= −1.2

λ also satisfies the boundary conditions3

λ(r1, r2, · · · , rN)|{ri=a} = 0,4

∂

∂ri
λ(r1, r2, · · · , rN)|{ri=b} = 0,5

for each i = 1, · · · , N . Substituting r0 = a, r1 = b, and τ = τi in (7) in Section 1.4, for each i = 1, · · · , N , E[τi(r)]6

satisfies7

D∆rE[τi(r)] = −1,8

E[τi(a)] = 0,9

E[τ ′i(b)] = 0.10

11

Thus, λ is given as12

λ(r1, r2, · · · , rN) =
1

N

N
X

i=1

E[τi(ri)]
Y

j 6=i

(1 − δ(rj − a)).13

B. Spectral representation of the reaction-diffusion matrix Ω14

In this section, we give the explicit form of the eigenvalues and eigenvectors of the reaction-diffusion matrix Ω, which15

are used in Section 2.1. Consider the first-order chemical reaction-diffusion network in the 3-dimensional parallelepiped16

with dimension Lx×Ly×Lz. ∆n is a finite difference approximation of the 1-dimensional Laplacian with homogeneous17

Neumann conditions. Then, modulo terms in h−2
x , the entries of ∆n are18

(∆n)ij =

8

>

>

>

<

>

>

>

:

−1 when i = j = 1 or i = j = n,

−2 when i = j, i 6= 1, and i 6= n,

1 when |i− j| = 1,

0 otherwise.

19

Let Dx, Dy, and Dz be diagonal matrices whose diagonal elements are the scaled diffusion coefficients for diffusion20

along the x, y, and z directions, respectively. The reaction-diffusion matrix Ω is expressed as21

Ω = ∆z ⊗Dz +∆y ⊗Dy +∆x ⊗Dx + (INz ⊗ INy ⊗ INx) ⊗K22

where23

∆x ≡ INz ⊗ INy ⊗∆Nx ,24

∆y ≡ INz ⊗∆Ny ⊗ INx ,25

∆z ≡ ∆Nz ⊗ INy ⊗ INx .26

Define an index for compartments as l = (l1, l2, l3). Let l = (l, µ) for l1, l2, l3 = 1, · · · , Nx, Ny , Nz, respectively,27

and for µ = 1, · · · , s. Denote by αl1 , αl2 and αl3 the eigenvalues of ∆Nx , ∆Ny , and ∆Nz given as28

αl1 = −4 sin2
` πl1
2Nx

´

(1 − δl1Nx),29

αl2 = −4 sin2 ` πl2
2Ny

´

(1 − δl2Ny ),30
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αl3 = −4 sin2
` πl3
2Nz

´

(1 − δl3Nz ),1

where δij is the Kronecker delta. Denote φl1 , φl2 , and φl3 as the corresponding eigenvectors of ∆Nx , ∆Ny , and ∆Nz2

with elements given as3

(φl1)l′1
=

r

2

Nx
cos
“πl1(l

′
1 − 1/2)

Nx

”

(1 − δl1Nx) +

r

1

Nx
δl1Nx ,

(φl2)l′2
=

s

2

Ny
cos
“πl2(l

′
2 − 1/2)

Ny

”

(1 − δl2Ny ) +

s

1

Ny
δl2Ny ,

(φl3)l′3
=

r

2

Nz
cos
“πl3(l

′
3 − 1/2)

Nz

”

(1 − δl3Nz ) +

r

1

Nz
δl3Nz ,

(80)4

for l′1, l
′
2, l

′
3 = 1, · · · , Nx, Ny , Nz , respectively. Then, the eigenvalue of ∆x+∆y +∆z is expressed as αl ≡ αl1 +αl2 +αl35

and the corresponding eigenvector and adjoint eigenvector are given as φl ≡ φl3 ⊗ φl2 ⊗ φl1 and φ∗
l .6

Define the complete diffusion matrix as αlD ≡ αl1Dx + αl2Dy + αl3Dz, and then the eigenvalue λl of Ω is a7

solution of8

˛

˛K + αlD − λlIns

˛

˛ = 0.9

Let ϕl and ϕ∗
l be the eigenvector and the adjoint eigenvector of K + αlD corresponding to the eigenvalue λl. Then,10

φl ⊗ ϕl is an eigenvector of Ω corresponding to λl, and the projection Pl associated with λl is11

Pl =
`

φl ∗ φ∗
l

´

⊗
`

ϕl ∗ ϕ∗
l

´

(81)12

where ∗ is the dyad product and φ∗
l is the complex conjugate of φ∗

l .13

In Example 2.2, Ny = Nz = 1 and we set Nx = Nc. The eigenvalues of ∆ are14

αl =

(

−4 sin2
`

πl
2Nc

´

, l 6= Nc,

0, l = Nc,
(82)15

and the corresponding eigenvectors are16

φl =

8

>

<

>

:

q

2
Nc

„

cos
“

πl
2Nc

”

, · · · , cos
“

(2l′−1)πl
2Nc

”

, · · · , cos
“

(2Nc−1)πl
2Nc

”

«T

, l 6= Nc,
q

1
Nc

(1, 1, · · · , 1)T , l = Nc.

(83)17

In Example 2.2,18

K + αlD = − κ5κ7R

κ−5 + κ7
− κ6 + αl

D

(Lx/Nc)2
,19

and the eigenvalue of K + αlD is20

λl = − κ5κ7R

κ−5 + κ7
− κ6 + αl

D

(Lx/Nc)2
.21

The corresponding eigenvector and adjoint eigenvector of K + αlD are ϕl = 1, ϕ∗
l = 1. In Example 2.2, we only need22

the first column of Pl to compute the first and the second moments, since we assume that production from a source23

only occurs in the first compartment. Thus we have24

Plk
s = κ8P

(1)
l

25

where P
(1)
l

represents the first column of Pl. From (81), we obtain the first column of the projection as26

P
(1)
l

=
`

φl ∗ φ∗
l

´(1) ⊗
`

ϕl ∗ ϕ∗
l

´(1)
27
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=
`

φl ∗ φ∗
l

´(1)
.1

Using φl = φ∗
l , we compute2

P
(1)
l

=

8

>

<

>

:

2
Nc

cos
“

πl
2Nc

”

„

cos
“

πl
2Nc

”

, · · · , cos
“

(2l′−1)πl
2Nc

”

, · · · , cos
“

(2Nc−1)πl
2Nc

”

«T

, l 6= Nc,

1
Nc

(1, 1, · · · , 1)T , l = Nc.

3

C. Proof of Proposition 14

In this section, we prove Proposition 1 in Section 2.1. Using (10) in Section 2.1, we have5

d
“

M(t)M(t)T
”

dt
=
dM(t)

dt
M(t)T +M(t)

dM(t)T

dt
6

=
“

ΩM(t) + ks
”

M(t)T +M(t)
“

ΩM(t) + ks
”T

7

= ΩM(t)M(t)T + [ΩM(t)M(t)T ]T + C(t) + C(t)T −W (t) −W (t)T . (84)8

where C(t) = W (t) + ksM(t)T and W (t) is a block-diagonal matrix with elements defined as9

[W (t)]i(η),i(ζ) =

(

Kcat
ij [M(t)]i(ζ), if k = q,

0, otherwise.
10

Recall that Md(t) = diag
ˆ

M(t)
˜

. Using (84), (10), and11

Cov(t) = V (t) −M(t)M(t)T +Md(t),12

we have13

dCov(t)

dt
=
d V (t)

dt
− d

`

M(t)M(t)T
´

dt
+
dMd(t)

dt
14

=
n

ΩV (t) + [ΩV (t)]T + C(t) + C(t)T
o

15

−
n

ΩM(t)M(t)T + [ΩM(t)M(t)T ]T + C(t) + C(t)T −W (t)−W (t)T
o

16

+
dMd(t)

dt
17

= ΩCov(t) + [ΩCov(t)]T −ΩMd(t) −
`

ΩMd(t)
´T

+W (t) +W (t)T
18

+
dMd(t)

dt
. (85)19

From this we obtain20

d
`

Cov(t) −Md(t)
´

dt
= Ω

`

Cov(t) −Md(t)
´

+ [Ω
`

Cov(t) −Md(t)
´

]T +W (t) +W (t)T . (86)21

Define col(A) as a vector by concatenating all columns of A in order, i.e. col(A) =
h

(A(1))T , (A(2))T , · · · , (A(m))T
iT

22

where A(l) is the lth column of A. Define v(t) = col(Cov(t) − Md(t)), V = Ω ⊗ IsNc + IsNc ⊗ Ω, and γ(t) =23

col(W (t) +W (t)T ). We change matrices in (86) to column vectors, and obtain [17],24

dv(t)

dt
= Vv(t) + γ(t). (87)25

The solution of (87) is26

v(t) = eVtv(0) +

Z t

0

eV(t−τ)γ(τ ) dτ27
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=
X

l,m

e(λl+λm)tPl ⊗ Pmv(0)1

+
X

l,m

Z t

0

e(λl+λm)(t−τ)
“

PlK
cat ⊗ Pm + Pl ⊗ PmK

cat
”

col(Md(τ )) dτ. (88)2

Reverting to the matrix form in (88), we find that3

`

Cov(t) −Md(t)
´

=
X

l,m

e(λl+λm)tPm

`

Cov(0) −Md(0)
´

P T
l4

+
X

l,m

Z t

0

e(λl+λm)(t−τ)
“

PmMd(τ )(PlK
cat)T + PmK

catMd(τ )P T
l

”

dτ. (89)5

Next we compute Md(t). Following [17], the evolution of the mean matrix is expressed as6

M(t) =
X

n

eλntPnM(0) −
X

n

1 − eλnt

λn

Pnks. (90)7

Define L(t) and S as sNc × sNc matrices satisfying8

L(t) =
h

M(t) M(t) · · · M(t)
iT

,9

S =
h

ks ks · · · ks
i

.10

Define diag[b1, b2, · · · , bn] as an n×n diagonal matrix with the ith diagonal element equal to bi. Define diagonalization11

of matrices and of vectors as12

diag
ˆ

A
˜

≡ diag
ˆ

a11, a22, · · · , ann

˜

,13

diag
ˆ

X
˜

≡ diag
ˆ

x1, x2, · · · , xn

˜

,14

where A is an n×nmatrix with each element aij andX is an n-dimensional vector with each element xi. Diagonalizing15

both sides in (90), we have16

Md(t) =
X

n

eλntdiag
ˆ

PnL(0)T ˜−
X

n

1 − eλnt

λn

diag
ˆ

PnS
˜

. (91)17

In (89), we first calculate
R t

0
e(λl+λm)(t−τ)PmMd(τ )(PlK

cat)T dτ using (91), and find that18

Z t

0

e(λl+λm)(t−τ)PmMd(τ )(PlK
cat)T dτ19

=

Z t

0

e(λl+λm)(t−τ)Pm

n

X

n

eλnτdiag
ˆ

PnL(0)T ˜−
X

n

1 − eλnτ

λn

diag
ˆ

PnS
˜

o

(PlK
cat)T dτ20

=
X

λn 6=λl+λm

eλnt − e(λl+λm)t

−(λl + λm) + λn

Pm diag
ˆ

PnL(0)T ˜ (PlK
cat)T

21

+
X

λn=λl+λm

(teλnt)Pm diag
ˆ

PnL(0)T ˜ (PlK
cat)T

22

−
X

λn 6=λl+λm

1

λn

h1 − e(λl+λm)t

−(λl + λm)
− eλnt − e(λl+λm)t

−(λl + λm) + λn

i

Pm diag[PnS] (PlK
cat)T

23

−
X

λn=λl+λm

1

λn

h eλnt − 1

λn

− teλnt
i

Pm diag[PnS] (PlK
cat)T , (92)24
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and
R t

0
e(λl+λm)(t−τ)PmK

catMd(τ )P T
l dτ as1

Z t

0

e(λl+λm)(t−τ)PmK
catMd(τ )P

T
l dτ2

=
X

λn 6=λl+λm

eλnt − e(λl+λm)t

−(λl + λm) + λn

PmK
cat diag

ˆ

PnL(0)T
˜

P T
l3

+
X

λn=λl+λm

(teλnt)PmK
cat diag

ˆ

PnL(0)T
˜

P T
l4

−
X

λn 6=λl+λm

1

λn

h1 − e(λl+λm)t

−(λl + λm)
− eλnt − e(λl+λm)t

−(λl + λm) + λn

i

PmK
cat diag[PnS]P T

l5

−
X

λn=λl+λm

1

λn

heλnt − 1

λn

− teλnt
i

PmK
cat diag[PnS]P T

l . (93)6

Now we prove the second and the third cases in Proposition 1, using the results of the previous computations.7

First, consider the open system with σ(Ω) ⊂ LHP . Using (89), (92), and (93) and letting t→ ∞, we get8

Cov∞ −Md,∞ =
X

l,m

X

λn 6=λl+λm

Pm

n

diag[PnS](Kcat)T +Kcatdiag[PnS]
o

P T
l

λn(λl + λm)
9

+
X

l,m

X

λn=λl+λm

Pm

n

diag[PnS](Kcat)T +Kcatdiag[PnS]
o

P T
l

λ2
n

10

=
X

l,m,n

Pm

n

diag[PnS](Kcat)T +Kcatdiag[PnS]
o

P T
l

λn(λl + λm)
. (94)11

From (94), either if there is no production from a source or if there is no catalytic inputs, which is KS = 0 (S = 0)12

or Kcat = 0, we have Cov∞ = Md,∞.13

Second, consider a closed system for which σ(Ω) is in the closed left-half plane. We only consider the case in14

which there is exactly one zero eigenvalue of Ω and no inputs. Then (89) becomes15

`

Cov(t) −Md(t)
´

=
X

l,m

e(λl+λm)tPm

`

Cov(0) −Md(0)
´

P T
l . (95)16

Letting t → ∞ in (95) and using the fact that there is exactly one zero eigenvalue of Ω and that the remaining17

eigenvalues are negative, we get18

Cov∞ −Md,∞ = Ps (Cov(0) −Md(0))P
T
s19

where Ps is the projection corresponding to the zero eigenvalue. Assuming that initial values are deterministic,20

Cov(0) = 0. As a result, Cov∞ can be expressed in terms of Md,∞, Md(0), and Ps as follows.21

Cov∞ = Md,∞ − PsMd(0)P
T
s22

D. Proof of Theorem 123

To prove the theorem, we first introduce and prove a lemma. The proof of the theorem is given at the end of this24

appendix. In the following lemma we show that as Nc → ∞, each component of X∞/(NAVc) converges to the25

corresponding value of the steady-state concentration in the continuum deterministic reaction-diffusion system.26

Let u∞(x) and v∞(x) be the steady-state solution of the corresponding continuum model. u∞(x) and v∞(x)27

represent concentration vectors for diffusing and non-diffusing species, respectively, which satisfy28

D̃∆u∞(x) + Ru∞(x) + Sv∞(x) + δ(x, 0)k̃s = 0,

T u∞(x) + Wv∞(x) = 0.
(96)29
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In (96), each component of k̃s is defined as1

k̃s
i ≡ ks

i(1,i)
Lx

NAV
,2

where V is the volume of the system. Letting [ks](1) ≡
ˆ

ks
i(1,i), · · · ,ks

i(1,m)

˜T
, k̃s is written as3

k̃s =
Lx

NAV
[ks](1). (97)4

In (96), D̃ is a diagonal matrix with diagonal elements the diffusion coefficients in the continuum description, while5

diagonal elements of D in (18) are the corresponding diffusion coefficients in the discretized system. The two are6

related by7

D =
D̃

(Lx/Nc)
2
.8

Lemma 1. Let X∞ be the solution of (18) and u∞(x) be the solution of (96). Define U∞(x) as a vector with each9

element satisfying10

(U∞(x))i ≡
Nc
X

k=1

1

NAVc
[X∞]i(k,i)Inh

(k−1)Lx
Nc

, kLx
Nc

”o(x), i = 1, · · · ,m,11

where m is the number of diffusing species. Then, ‖U∞(x) − u∞(x)‖L2
= O

“

ln Nc

Nc

”

and converges to 0 as Nc → ∞.12

Note that for x ∈ [ (k−1)Lx

Nc
, kLx

Nc
), (U∞(x))i gives the concentration of the ith species in the kth compartment.13

Proof. The proof of the Lemma 1 is lengthy, and we split it into 6 steps:14

– Step 1 Express U∞(x) and u∞(x) in terms of the discrete and continuous Green’s functions;15

– Step 2 Split the error between U∞(x) and u∞(x) into three parts, (I), (II), and (III) and split (I) into four16

parts, (i), (ii), (iii), and (iv);17

– Step 3 To get an upper bound for (ii), we prove ‖Ql‖E ≤ O(1);18

– Step 4 Prove
P

µ

˛

˛

˛λ̃−1
l

˛

˛

˛ ≤ O
`

1
l2

´

and finish showing ‖(ii)‖E , ‖(iii)‖E ≤ O
“

ln Nc

Nc

”

;19

– Step 5 Show ‖(i)‖E , ‖(iv)‖E ≤ o
“

1
Nc

”

;20

– Step 6 Show ‖(II)‖E, ‖(III)‖E ≤ O
“

1
Nc

”

.21

Step 1:22

First, we show that U∞(x), which is defined in terms of X∞, is expressed in the form with a discrete version of23

Green’s function. X∞ is a solution of (18) and is given as24

X∞ =
X

l

1

λl

`

φl ∗ φ∗
l

´

⊗
`

ϕl ∗ ϕ∗
l

´

ks.25

Recall that l = (l, µ) where l = (l1, l2, l3) is an index for the compartment and µ is an index for the species. Also,26

recall from Section 2.1 that αl and φl are the eigenvalue and eigenvector of ∆ and λl and ϕl are the eigenvalue and27

eigenvector of K + αlD. φ∗
l and ϕ∗

l are the corresponding adjoint eigenvectors. Denote28

Ql ≡ ϕl ∗ ϕ∗
l

29

and define a spatial variable ql(x) as30

ql(x) ≡
r

Nc

Lx

Nc
X

l′=1

(φl)l′Inh

(l′−1)Lx
Nc

,
l′Lx
Nc

”o(x), l = 1, 2, · · · , Nc. (98)31
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Then, define each element of a spatial vector for the production rates from a source as1

ks
i (x) ≡

Nc
X

k=1

ks
i(k,i)

NAVc
Inh

(k−1)Lx
Nc

,
kLx
Nc

”o(x), i = 1, · · · ,m,2

=
ks

i(1,i)

NAVc
Inh

0,
Lx
Nc

”o(x).3

Using [ks](1), ks(x) is written as4

ks(x) =
1

NAVc
[ks](1)Inh

0,
Lx
Nc

”o(x). (99)5

Using the fact that φl = φ∗
l , define a matrix for a discrete Green’s function as6

G(x, ξ) ≡
X

l

1

λl

ql(x)ql(ξ)Ql. (100)7

Then, the vector for the scaled species numbers in different locations is expressed as8

U∞(x) =

Z Lx

0

G(x, ξ)ks(ξ) dξ. (101)9

Next, we show that u∞(x), which corresponds to U∞(x) in the deterministic reaction-diffusion equations, can also10

be expressed in terms of a Green’s function. Using our assumption that σ(W) ⊂ LHP , the steady-state concentration11

of non-diffusing species is expressed in terms of the steady-state concentration of diffusing species and (96) is reduced12

to13

D̃∆u∞(x) + Ku∞(x) + δ(x, 0)k̃s = 0, x ∈ [0, Lx], (102)14

where K = R− SW−1T . Consider an eigenvalue problem related to (102).15

D̃∆Υ (x) + (K − λIm)Υ (x) = 0, x ∈ [0, Lx],

Υ ′(x) = 0, x = 0, Lx

(103)16

Let λ̃l and ϕ̃l be a solution of the algebraic eigenvalue problem17

(K + α̃lD̃ − λ̃lIm)ϕ̃l = 0,18

and let ϕ̃∗
l be the solution in the adjoint algebraic eigenvalue problem. We find that the solution of the scalar problem19

in (19) is20

α̃l = −
„

lπ

Lx

«2

, l = 0, 1, · · · , (104)21

and22

q̃l(x) =

8

<

:

q

1
Lx
, l = 0,

q

2
Lx

cos
“

lπx

Lx

”

, l 6= 0.
(105)23

Then, the eigenfunction of (103) is written as Υl(x) ≡ q̃l(x)ϕ̃l. Using our assumption that K + α̃lD̃ is semi-simple,24

the eigenfunctions are complete and the solution of (103) is given as25

Υ (x) =
X

l

1

λ̃l

q̃l(x)ϕ̃l.26
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Define1

Q̃l ≡ ϕ̃l ∗ ϕ̃∗
l
.2

Since we assume that σ
`

K+ α̃lD̃
´

⊂ LHP , we have λ̃l 6= 0 for all l and the Green’s function of the operator D̃∆+K3

is given as4

G̃(x, ξ) ≡
X

l

1

λ̃l

q̃l(x)q̃l(ξ)Q̃l.5

Then, the steady-state concentration vector which is a solution of (102) is written as6

u∞(x) =

Z Lx

0

G̃(x, ξ)δ(ξ, 0)k̃s dξ. (106)7

Step 2:8

Now, we estimate the error between U∞(x) and u∞(x) and show that ‖U∞(x) − u∞(x)‖L2
is O

“

ln Nc

Nc

”

. Define a9

projection of the Green’s function onto the space with a finite number of frequencies and its remainder as10

πNcG̃(x, ξ) ≡
X

l<Nc,l

1

λ̃l

q̃l(x)q̃l(ξ)Q̃l, (107)11

(Im − πNc)G̃(x, ξ) ≡
X

l≥Nc,l

1

λ̃l

q̃l(x)q̃l(ξ)Q̃l. (108)12

Subtracting (106) from (101) and breaking U∞(x) − u∞(x) into three parts, we get13

U∞(x) − u∞(x) =

Z Lx

0

“

G(x, ξ) − πNc G̃(x, ξ)
”

ks(ξ) dξ · · · (I) (109)14

+

Z Lx

0

πNc G̃(x, ξ)
“

ks(ξ) − k̃sδ(ξ, 0)
”

dξ · · · (II)15

−
Z Lx

0

(Im − πNc )G̃(x, ξ)k̃sδ(ξ, 0) dξ · · · (III).16

Using (100) and (107), the first part in (109) is computed as17

(I) =

Z Lx

0

“

G(x, ξ) − πNc G̃(x, ξ)
”

ks(ξ) dξ18

=

Z Lx

0

X

l,0<l<Nc

„

1

λl

ql(x)ql(ξ)Ql − 1

λ̃l

q̃l(x)q̃l(ξ)Q̃l

«

ks(ξ) dξ. (110)19

In (110), the first term in the parenthesis with l = Nc is canceled out by the second term in the parenthesis with20

l = 0. Using (99), (I) is computed as21

(I) =

Z Lx

0

X

l,0<l<Nc

„

1

λl

ql(x)ql(ξ)Ql − 1

λ̃l

q̃l(x)q̃l(ξ)Q̃l

«

1

NAVc
[ks](1)Inh

0, Lx
Nc

”o(ξ) dξ22

=
1

NAV
max

i
ks

i(1,i)

Z Lx
Nc

0

X

l,0<l<Nc

Nc

„

1

λl

ql(x)ql(ξ)Ql − 1

λ̃l

q̃l(x)q̃l(ξ)Q̃l

«

um dξ,23

where um is an m-dimensional vector with each element equal to 1. We break (I) into four parts by adding and24

subtracting terms as25

ABCD − ÃB̃C̃D̃ = (A− Ã)BCD + Ã(B − B̃)CD + ÃB̃(C − C̃)D + ÃB̃C̃(D − D̃).26
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Then, we get1

(I) =
1

NAV
max

i
ks

i(1,i)2

×
» Z Lx

Nc

0

X

l,0<l<Nc

Nc

„

1

λl

− 1

λ̃l

«

ql(x)ql(ξ)Qlum dξ · · · (i)3

+

Z Lx
Nc

0

X

l,0<l<Nc

Nc
1

λ̃l

(ql(x) − q̃l(x)) ql(ξ)Qlum dξ · · · (ii)4

+

Z Lx
Nc

0

X

l,0<l<Nc

Nc
1

λ̃l

q̃l(x) (ql(ξ) − q̃l(ξ))Qlum dξ · · · (iii)5

+

Z Lx
Nc

0

X

l,0<l<Nc

Nc
1

λ̃l

q̃l(x)q̃l(ξ)
“

Ql − Q̃l

”

um dξ

–

· · · (iv).6

Step 3:7

We will show that ‖(ii)‖E ≤ O
“

ln Nc

Nc

”

. Using (98) and (83), for each l where 0 < l < Nc we get8

|ql(x)| =

˛

˛

˛

˛

˛

r

2

Lx

Nc
X

l′=1

cos

„

(2l′ − 1)πl

2Nc

«

Ih

(l′−1)Lx
Nc

, l′Lx
Nc

”(x)

˛

˛

˛

˛

˛

9

≤ O (1) . (111)10

Next, using (98) and (105), for each l where 0 < l < Nc and for x ∈
h

(k−1)Lx

Nc
, kLx

Nc

”

, a difference between ql(x)11

and q̃l(x) is estimated as12

|ql(x) − q̃l(x)| =

˛

˛

˛

˛

˛

r

2

Lx

Nc
X

l′=1

cos

„

(2l′ − 1)πl

2Nc

«

Ih

(l′−1)Lx
Nc

,
l′Lx
Nc

”(x) −
r

2

Lx
cos

„

lπx

Lx

«

˛

˛

˛

˛

˛

13

=

r

2

Lx

˛

˛

˛

˛

cos

„

(2k − 1)πl

2Nc

«

− cos

„

lπx

Lx

«˛

˛

˛

˛

14

=

r

2

Lx

˛

˛

˛

˛

„

(2k − 1)πl

2Nc
− lπx

Lx

«

sin b

˛

˛

˛

˛

(112)15

≤
r

2

Lx
· lπ

2Nc
· | sin b|16

≡ O

„

1

Nc

«

× l. (113)17

(112) is obtained by the Mean value theorem where b is between (2k−1)πl
2Nc

and lπx

Lx
. Then using (111) and (113),18

‖(ii)‖E is estimated as19

‖(ii)‖E =

‚

‚

‚

‚

‚

‚

Z Lx
Nc

0

X

l,0<l<Nc

Nc
1

λ̃l

(ql(x) − q̃l(x)) ql(ξ)Qlu dξ

‚

‚

‚

‚

‚

‚

E

20

≤

‚

‚

‚

‚

‚

‚

X

l,0<l<Nc

|λ̃−1
l

|
Z Lx

Nc

0

Nc ×O

„

1

Nc

«

× l ×O(1) dξ

‚

‚

‚

‚

‚

‚

E

max
l

‖Qlum‖E21

≤ O

„

1

Nc

«

X

l,0<l<Nc

l · |λ̃−1
l

|max
l

‖Ql‖E . (114)22

Now, we will show that maxl‖Ql‖E ≤ O(1) by showing maxl‖Q̃l‖E ≤ O(1), because Q̃l −Ql = o
“

1
Nc

”

as we will23

show later in (118). To estimate difference between Ql and Q̃l, we use a perturbation theory of the linear operator24

in a finite-dimensional space (Theorem 5.4, p111 [24]). Define the operator A = K + α̃lD̃, and express K + αlD as a25
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series of perturbed operators from A. Using (82) and (104), we obtain1

A(ǫ) = A− α̃lD̃ + αlD2

= A− α̃lD̃ + αl
D̃

(Lx/Nc)2
3

= A+

„

lπ

Lx

«2

D̃ −

0

@

2Nc sin
“

lπ
2Nc

”

Lx

1

A

2

D̃4

= A+

„

lπ

Lx

«2

D̃ −
 

sin
`

lπǫ
2

´

`

Lxǫ
2

´

!2

D̃5

where ǫ = 1
Nc

. We can show that A(ǫ) is differentiable at ǫ = 0 and A′(0) = 0. Let λ be the semi-simple eigenvalue6

of A and let Q be the projection of A corresponding to λ. Then, using Theorem 5.4 in [24], we get7

λ(ǫ) = λ+ o(ǫ), (115)8

Q(ǫ) = Q+ o(ǫ), (116)9

where λ(ǫ) and Q(ǫ) are eigenvalues and projections of A(ǫ). From (115) and (116), λ(ǫ)−λ
ǫ

and
‚

‚

‚

Q(ǫ)−Q
ǫ

‚

‚

‚

E
go to zero10

as ǫ → 0. In our setting, λ = λ̃l and λ(ǫ) = λl. Similarly, Q = Q̃l and Q(ǫ) = Ql. Since we assume that A = K+ α̃lD̃11

is semi-simple, the condition that λ is the semi-simple eigenvalue of A is satisfied. Then, (115) and (116) yields12

λ̃l − λl = o

„

1

Nc

«

, (117)13

Q̃l −Ql = o

„

1

Nc

«

. (118)14

Using (118) and ‖Qlum‖E ≤ ‖Ql‖E‖um‖E =
√
m‖Ql‖E where m is the number of diffusing species, we only need15

to show that16

max
l

‚

‚

‚Q̃l

‚

‚

‚

E
= O(1).17

Define the operator B = α̃lD̃ and consider K + α̃lD̃ as perturbation of B as follows:18

B(ǫ) =

 

−K
„

Lxǫ

π

«2

D̃−1 + I

!

α̃lD̃19

where ǫ = 1
l
. As ǫ → 0, B(ǫ) → B and B′(0) = 0. Therefore, using Theorem 5.4 in [24],20

J(ǫ) − J = o (ǫ)21

where J(ǫ) and J are projections of B(ǫ) and B. Define M > 0 large enough so that ǫ = 1
l

is small for l ≥ M . eµ22

denotes an m-dimensional vector with its µth entry equal to 1 and all others equal to zero. Since B
`

1
l

´

= K + α̃lD̃,23

J
`

1
l

´

= Q̃l, and J = eµ ∗ eµ, for l ≥M we estimate the upper bound of
‚

‚

‚Q̃l

‚

‚

‚

E
as24

‚

‚

‚Q̃l

‚

‚

‚

E
≤
‚

‚

‚Q̃l −Q
‚

‚

‚

E
+ ‖Q‖E25

= o

„

1

l

«

+ ‖eµ ∗ eµ‖E26

≤ o

„

1

M

«

+ 1, for l ≥M .27
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Since Q̃l and M do not depend on Nc where l = (l, µ), we get1

max
l

‚

‚

‚Q̃l

‚

‚

‚

E
≤ max

„

max
l<M,µ

‚

‚

‚Q̃(l,µ)

‚

‚

‚

E
, o

„

1

M

«

+ 1

«

2

= O (1) . (119)3

Step 4:4

Next, we estimate
P

µ |λ̃−1
l

|. Since λ̃l is an eigenvalue of K + α̃lD̃, λ̃−1
l

is an eigenvalue of
“

K + α̃lD̃
”−1

. For l > 0,5

α̃l 6= 0 and we expand the inverse matrix as6

“

K + α̃lD̃
”−1

=

»

“

α̃lD̃
”

„

I +
“

α̃lD̃
”−1

K
«–−1

7

=

„

I +
“

α̃lD̃
”−1

K
«−1

“

α̃lD̃
”−1

8

=

" ∞
X

p=0

„

−
“

α̃lD̃
”−1

K
«p
#

“

α̃lD̃
”−1

. (120)9

We estimate the upper and lower bounds of the spectrum of −
“

α̃lD̃
”−1

K to show convergence of the matrix series10

in (120). Using the fact that all diagonal elements of D̃ are positive and using the definition of α̃l, we get11

˛

˛

˛

˛

σ

„

−
“

α̃lD̃
”−1

K
«˛

˛

˛

˛

≤
˛

˛α̃−1
l

˛

˛

1

minχ D̃χχ

|σ (K)|12

=

„

Lx

lπ

«2
1

minχ D̃χχ

|σ (K)| .13

Therefore, there exists A > 0 such for l ≥ A14

˛

˛

˛

˛

σ

„

−
“

α̃lD̃
”−1

K
«˛

˛

˛

˛

≤ 1.15

Since the spectrum of −
“

α̃lD̃
”−1

K is bounded by ±1 for l ≥ A, the matrix series in (120) converges. From Levy-16

Hadamard theorem [8], each eigenvalue , λ̃−1
l

, of
“

K + α̃lD̃
”−1

satisfies17

˛

˛

˛

˛

˛

λ̃−1
l

−
»

“

K + α̃lD̃
”−1

–

χχ

˛

˛

˛

˛

˛

<
X

γ 6=χ

˛

˛

˛

˛

˛

»

“

K + α̃lD̃
”−1

–

χγ

˛

˛

˛

˛

˛

18

and the inequality can be rewritten as19

»

“

K + α̃lD̃
”−1

–

χχ

−
X

γ 6=χ

˛

˛

˛

˛

˛

»

“

K + α̃lD̃
”−1

–

χγ

˛

˛

˛

˛

˛

<
˛

˛

˛λ̃
−1
l

˛

˛

˛ <

»

“

K + α̃lD̃
”−1

–

χχ

+
X

γ 6=χ

˛

˛

˛

˛

˛

»

“

K + α̃lD̃
”−1

–

χγ

˛

˛

˛

˛

˛

. (121)20

Using (121) and (120), for each l ≥ A we get21

X

µ

˛

˛

˛λ̃
−1
l

˛

˛

˛ <
m
X

µ=1

max
χ

X

γ

˛

˛

˛

˛

˛

»

“

K + α̃lD̃
”−1

–

χγ

˛

˛

˛

˛

˛

22

< m

„

Lx

lπ

«2

max
χ

X

γ

∞
X

p=0

˛

˛

˛

˛

˛

˛

" 

„

Lx

lπ

«2

D̃−1K
!p#

χγ

˛

˛

˛

˛

˛

˛

D̃−1
γγ23

≤ m

„

Lx

lπ

«2

max
χ

X

γ

»

I +O

„

1

l2

«–

χγ

D̃−1
γγ24
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≤ C̃

„

1

l

«2

,1

where m is the number of diffusing species. Define C ≡ max
“

C̃,maxl<A

“

mA2
˛

˛

˛λ̃−1
l

˛

˛

˛

””

. Then, for each l > 0 the2

eigenvalues are bounded as3

X

µ

|λ̃−1
l

| ≤ C

l2
= O

„

1

l2

«

. (122)4

Therefore, using (119) and (122) in (114), we get5

‖(ii)‖E ≤ O

„

1

Nc

«

X

l,0<l<Nc

l · |λ̃−1
l

|max
l

‖Ql‖E6

≤ O

„

1

Nc

«

X

l,0<l<Nc

l ×O

„

1

l2

«

×O(1)7

≤ O

„

1

Nc

«

X

l,0<l<Nc

O

„

1

l

«

8

≤ O

„

1

Nc

«

O

„

1 +

Z Nc−1

1

1

y
dy

«

9

≤ O

„

lnNc

Nc

«

. (123)10

Now, we estimate an upper bound for ‖(iii)‖E . Using (105), for l > 0 we get11

|q̃l(x)| =

˛

˛

˛

˛

˛

r

2

Lx
cos

„

lπx

Lx

«

˛

˛

˛

˛

˛

12

≤ O(1). (124)13

Since the estimates in (111), (113), and (124) do not depend on x and since the integrands in (ii) and (iii) are the14

same vice verse when we exchange x and ξ, using (123) we can get15

‖(iii)‖E ≤ O

„

lnNc

Nc

«

. (125)16

Step 5:17

We will show that ‖(i)‖E ≤ o
“

1
Nc

”

. Using (111), (118), and (119), we get18

‖(i)‖E =

‚

‚

‚

‚

‚

‚

Z Lx
Nc

0

X

l,0<l<Nc

Nc

„

1

λl

− 1

λ̃l

«

ql(x)ql(ξ)Qlum dξ

‚

‚

‚

‚

‚

‚

E

19

≤

˛

˛

˛

˛

˛

˛

Z Lx
Nc

0

Nc ×O(1) dξ
X

l,0<l<Nc

λ̃l − λl

λlλ̃l

˛

˛

˛

˛

˛

˛

×O(1)20

= O(1) ×
X

l,0<l<Nc

˛

˛

˛

˛

λ̃l − λl

λlλ̃l

˛

˛

˛

˛

. (126)21

Then using (117) and (122) in (126), we get22

‖(i)‖E ≤
X

l,0<l<Nc

˛

˛

˛

˛

˛

˛

o
“

1
Nc

”

λ̃l

“

λ̃l + o
“

1
Nc

””

˛

˛

˛

˛

˛

˛

23
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≤
X

0<l<Nc

˛

˛

˛

˛

˛

˛

o
“

1
Nc

”

“

l4 + o
“

1
Nc

””

˛

˛

˛

˛

˛

˛

1

≤
o
“

1
Nc

”

“

1 + o
“

1
Nc

”” +

Z Nc−1

1

o
“

1
Nc

”

“

y4 + o
“

1
Nc

”” dy2

≤
o
“

1
Nc

”

“

1 + o
“

1
Nc

”” +
o
“

1
Nc

”

(Nc − 1)3
≤ o

„

1

Nc

«

. (127)3

Next, We will show that ‖(iv)‖E ≤ o
“

1
Nc

”

. Using (111), (124), and (118), we get4

‖(iv)‖E =

‚

‚

‚

‚

‚

‚

Z Lx
Nc

0

X

l,0<l<Nc

Nc
1

λ̃l

q̃l(x)q̃l(ξ)
“

Ql − Q̃l

”

um dξ

‚

‚

‚

‚

‚

‚

E

5

=

˛

˛

˛

˛

˛

˛

Z Lx
Nc

0

Nc ×O(1) dξ
X

l,0<l<Nc

1

λ̃l

˛

˛

˛

˛

˛

˛

× o

„

1

Nc

«

6

=
X

l,0<l<Nc

˛

˛

˛λ̃
−1
l

˛

˛

˛× o

„

1

Nc

«

. (128)7

Using (122) in (128), we get8

‖(iv)‖E ≤
X

l,0<l<Nc

O

„

1

l2

«

× o

„

1

Nc

«

9

≤ O

„

1 +

Z Nc−1

1

1

y2
dy

«

× o

„

1

Nc

«

10

≤ o

„

1

Nc

«

. (129)11

Step 6:12

We will show that ‖(II)‖E ≤ O
“

1
Nc

”

. Using (107), (99), and (97), we get13

(II) =

Z Lx

0

πNcG̃(x, ξ)
“

ks(ξ) − k̃sδ(ξ, 0)
”

dξ14

=

Z Lx

0

X

l,l<Nc

1

λ̃l

q̃l(x)q̃l(ξ)Q̃l

„

1

NAVc
[ks](1)Inh

0, Lx
Nc

”o(ξ) − Lx

NAV
[ks](1)δ(ξ, 0)

«

dξ. (130)15

In (130), the term with l = 0 in the series becomes zero. Using (122), (124), (119) in (130), we get16

‖(II)‖E ≤
X

l,0<l<Nc

O

„

1

l2

«

×O(1) × Lx

NAV
max

i
ks

i(1,i) ×
˛

˛

˛

˛

Z Lx

0

q̃l(ξ)

„

Nc

Lx
Inh

0, Lx
Nc

”o(ξ) − δ(ξ, 0)

«

dξ

˛

˛

˛

˛

17

≤
X

l,0<l<Nc

O

„

1

l2

«

×
˛

˛

˛

˛

Z Lx

0

q̃l(ξ)

„

Nc

Lx
Inh

0,
Lx
Nc

”o(ξ) − δ(ξ, 0)

«

dξ

˛

˛

˛

˛

. (131)18

Using (105) in (131), we estimate19

‖(II)‖E ≤
X

l,0<l<Nc

O

„

1

l2

«

×
r

2

Lx

˛

˛

˛

˛

Nc

lπ
sin

„

lπ

Nc

«

− 1

˛

˛

˛

˛

. (132)20
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By approximating the series in (132), we get1

‖(II)‖E ≤ O(1) ×
X

l,0<l<Nc

˛

˛

˛

˛

1 − sin
“

lπ
Nc

”

“

lπ
Nc

”

˛

˛

˛

˛

l2
2

≤ O(1) ×
X

l,0<l<Nc

1 −
“

lπ
Nc

”

− ( lπ
Nc

)3

3!
“

lπ
Nc

”

l2
3

≤ O

„

1

Nc

«

. (133)4

Now, we will show that ‖(III)‖E ≤ O
“

1
Nc

”

. Using (108) and (97), we compute5

(III) =

Z Lx

0

“

Im − πNcG̃(x, ξ)
”

k̃sδ(ξ, 0) dξ6

=

Z Lx

0

0

@

X

l,l≥Nc

1

λ̃l

q̃l(x)q̃l(ξ)Q̃l

1

A

Lx

NAV
[ks](1)δ(ξ, 0) dξ7

=
X

l,l≥Nc

„

1

λ̃l

q̃l(x)q̃l(0)Q̃l

«

Lx

NAV
[ks](1). (134)8

Using (124), (122), and (119) in (134), we get9

‖(III)‖E ≤
X

l≥Nc

O

„

1

l2

«

×O(1) × max
i

ks
i(1,i)10

≤ O(1) ×
Z ∞

Nc−1

1

y2
dy11

≤ O

„

1

Nc

«

. (135)12

In conclusion, we prove that for any x ∈ [0, Lx], ‖U∞(x) − u∞(x)‖E ≤ O
“

ln Nc

Nc

”

as shown in (123), (125), (127),13

(129), (133), and (135). Since the upper bound is independent of x, we get ‖U∞(x) − u∞(x)‖L2
= O

“

ln Nc

Nc

”

. ⊓⊔14

Using Lemma 1, we prove the convergence of U∞(x) to u∞(x), and this implies the convergence of 1
NAVc

X∞ as15

Nc → ∞. Since Y∞ is expressed in terms of X∞, M∞ converges as Nc → ∞, and this implies the convergence of16

CV
∗
.17

E. Proof of Theorem 218

Before proving the theorem, we first state and prove a lemma which is used to prove the theorem. The proof of the19

theorem is given at the end of this appendix. In the following lemma, we prove that each component of M∞/NA20

converges to the corresponding value of the steady-state concentration in the continuum deterministic reaction-21

diffusion system.22

The mean vector of the stochastic system with no inputs is governed by23

dM(t)

dt
= ΩM(t), (136)24

where Ω = ∆⊗D + INc ⊗K. The corresponding deterministic reaction-diffusion system is governed by25

∂u(x, t)

∂t
= D̃∆u(x, t) + Ku(x, t), x ∈ [0, Lx], (137)26

∂u(x, t)

∂x
= 0, x = 0, Lx,27
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u(x, 0) = u0(x),1

where u(x, t) is a concentration vector for species in x ∈ [0, Lx] at time t. In (137), the diffusion matrix is given as2

D̃ = (Lx/Nc)
2D. The integrated initial concentration, u0(x), between x ∈

h

(k−1)Lx

Nc
, kLx

Nc

”

is expressed in terms of3

M(0) as follows:4

Z kLx
Nc

(k−1)Lx
Nc

(u0(ξ))i dξ =
Lx

NAV
[M(0)]

i(k,i) . (138)5

Lemma 2. Let M∞ be the steady-state solution of (136) and let u∞(x) be the steady-state solution of (137). Define6

U∞(x) as a vector with each component satisfying7

(U∞(x))i ≡
Nc
X

k=1

1

NAVc
[M∞]i(k,i)Inh

(k−1)Lx
Nc

,
kLx
Nc

”o(x), i = 1, · · · , s,8

where s is the number of species. Then, ‖U∞(x) − u∞(x)‖L2 = O
“

1
Nc

”

and converges to 0 as Nc → ∞.9

Proof. The proof of Lemma 2 is given in 2 steps:10

– Step 1 Express U∞(x) and u∞(x) in terms of the Green’s function;11

– Step 2 Show ‖U∞(x) − u∞(x)‖L2 = O
“

1
Nc

”

.12

Step 1:13

We first express U∞(x) in terms of the Green’s function. Recall that φNc and φ∗
Nc

are the eigenvector and the adjoint14

eigenvector of ∆ corresponding to αNc = 0. Rearrange the order of species in the mean vector, M(t), so that that15

ϕ(Nc,s) and ϕ∗
(Nc,s) become an eigenvector and an adjoint eigenvector corresponding to the zero eigenvalue of Ω.16

Define17

Q(Nc,s) ≡ ϕ(Nc,s) ∗ ϕ∗
(Nc,s)

. (139)18

Then, the projection corresponding to the zero eigenvalue is expressed as19

Ps =
`

φNc ∗ φ∗
Nc

´

⊗Q(Nc,s). (140)20

Letting t→ ∞ in (90) and using (140), the steady-state mean vector for species numbers is expressed as21

M∞ = PsM(0)22

=
`

φNc ∗ φ∗
Nc

´

⊗Q(Nc,s)M(0).23

Here, note that24

φNc = φ∗
Nc

25

=

r

1

Nc
[1, 1, · · · , 1]T . (141)26

We define a spatial variable qNc (x) as27

qNc (x) ≡
r

Nc

Lx

Nc
X

l′=1

(φNc)l′I{[ (l′−1)Lx
Nc

, l′Lx
Nc

)}(x)28

=

r

1

Lx
. (142)29

where the last equality comes from (141). Define a matrix for a discrete Green’s function as follows, and using (142)30

we get31

G(x, ξ) ≡ qNc (x)qNc(ξ)Q(Nc,s)32
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=
1

Lx
Q(Nc,s) ≡ G. (143)1

Then, U∞(x) is expressed as2

U∞(x) = GU0(x). (144)3

Here, U0(x) is defined as follows:4

(U0(x))i ≡
Nc
X

k=1

1

NAVc
[M(0)]

i(k,i) I
nh

(k−1)Lx
Nc

,
kLx
Nc

”o(x), 1 = 1, · · · , s. (145)5

Using (138), (145) is written as6

(U0(x))i =

Nc
X

k=1

 

Nc

Lx

Z kLx
Nc

(k−1)Lx
Nc

(u0(ξ))i dξ

!

Inh

(k−1)Lx
Nc

, kLx
Nc

”o(x), 1 = 1, · · · , s. (146)7

Next, we express u∞(x) in terms of the Green’s function. Let α̃0 = 0 and q̃0(x) be a solution of the scalar problem8

∆q̃(x) = α̃q̃(x), x ∈ [0, Lx],9

q̃′(x) = 0, x = 0, Lx,10

satisfying ‖q̃(x)‖L2
= 1. Then, we get11

q̃0(x) =

r

1

Lx
. (147)12

Let λ̃(0,s) = 0 and ϕ̃(0,s) be a solution of the algebraic eigenvalue problem13

“

K + α̃lD̃ − λ̃lIs

”

ϕ̃l = 0,14

and let ϕ̃∗
(0,s) be the solution of the corresponding adjoint eigenvalue problem. Define15

Q̃(0,s) ≡ ϕ̃(0,s) ∗ ϕ̃∗
(0,s),16

and the Green’s function as17

G̃(x, ξ) ≡ q̃0(x)q̃0(ξ)Q̃(0,s)18

=
1

Lx
Q̃(0,s) ≡ G̃,19

where (147) is used to compute G̃(x, ξ). Note that20

Q(Nc,s) = Q̃(0,s),21

G = G̃. (148)22

Then, the steady-state concentration vector is given as23

u∞(x) = G̃u0(x). (149)24

Step 2:25

We will show that ‖U∞(x) − u∞(x)‖L2
is O

“

1
Nc

”

. Subtracting (149) from (144) and using (148), we get26

‖U∞(x) − u∞(x)‖L2
=

„Z Lx

0

‚

‚

‚GU0(x) − G̃u0(x)
‚

‚

‚

2

E
dx

«1/2

27
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≤ ‖G‖E

„Z Lx

0

‖U0(x) − u0(x)‖2
E dx

«1/2

. (150)1

Using (143) and (139) we get2

‖G‖E =

‚

‚

‚

‚

1

Lx
Q(Nc,s)

‚

‚

‚

‚

E

3

=

‚

‚

‚

‚

1

Lx

“

ϕ(Nc,s) ∗ ϕ∗
(Nc,s)

”

‚

‚

‚

‚

E

4

≤ O(1), (151)5

where the last inequality comes from the fact that ϕ(Nc,s) and ϕ∗
(Nc,s) do not depend on Nc, which are the eigenvector6

and adjoint eigenvector of K + αlD corresponding to αNc = 0. Using (146) for x ∈
h

(k−1)Lx

Nc
, kLx

Nc

”

, we have7

˛

˛(U0(x))i − (u0(x))i

˛

˛

2 ≤
˛

˛

˛

˛

˛

1

Lx/Nc

Z kLx
Nc

(k−1)Lx
Nc

ˆ

(u0(ξ))i − (u0(x))i

˜

dξ

˛

˛

˛

˛

˛

2

8

≤ max
b∈

h

(k−1)Lx
Nc

,
kLx
Nc

”

(u0(b))
2
i

„

Lx

Nc

«2

9

= O

„

1

N2
c

«

. (152)10

When A is an m× n matrix, ‖A‖E ≤ √
mn‖A‖max. Therefore, using (152) we get11

‖U0(x) − u0(x)‖E ≤ √
s ‖U0(x) − u0(x)‖max12

=
√
smax

i

˛

˛(U0(x))i − (u0(x))i

˛

˛

13

≤ O

„

1

N2
c

«

. (153)14

Using (150), (151), and (153), we get15

‖U∞(x) − u∞(x)‖L2
= O

„

1

Nc

«

.⊓⊔16

In Lemma 2, we prove the convergence of U∞(x) to u∞(x). Now, we show the convergence of CV
∗

as Nc → ∞.17

Define Md(0)
(k) and M

(k)
d,∞ be s× s diagonal matrices where diagonal elements are given as18

“

Md(0)(k)
”

ii
= [Md(0)]i(k,i) ,19

“

M
(k)
d,∞

”

ii
= [Md,∞]

i(k,i) ,20

for k = 1, · · · , Nc and for i = 1, · · · , s. Among the terms in (15), we first compute PsMd(0)P
T
s using (140) and (141)21

as follows:22

PsMd(0)P
T
s =

``

φNc ∗ φ∗
Nc

´

⊗Q(Nc,s)

´

Md(0)
“

`

φNc ∗ φ∗
Nc

´

⊗QT
(Nc,s)

”

23

=
1

N2
c

(uNc ∗ uNc) ⊗
Nc
X

p=1

Q(Nc,s)Md(0)
(p)QT

(Nc,s),24
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where uNc is an Nc-dimensional vector with each element equal to 1. Then, each component of M−1
d,∞PsMd(0)P

T
s M

−1
d,∞1

is written as2

h

M−1
d,∞PsMd(0)P

T
s M

−1
d,∞

i

i(k,i),i(q,j)

=
1

N2
c

"

“

M
(k)
d,∞

”−1
 

Nc
X

p=1

Q(Nc,s)Md(0)
(p)QT

(Nc,s)

!

“

M
(q)
d,∞

”−1
#

ij

.
(154)3

Using the fact that sum of the initial mean species numbers in all compartments is bounded and using (151), we get4

‚

‚

‚

‚

‚

Nc
X

p=1

Q(Nc,s)Md(0)(p)QT
(Nc,s)

‚

‚

‚

‚

‚

E

≤
‚

‚

‚

‚

‚

Nc
X

p=1

Md(0)
(p)

‚

‚

‚

‚

‚

E

‚

‚Q(Nc,s)

‚

‚

E

‚

‚

‚Q
T
(Nc,s)

‚

‚

‚

E
5

≤ O(1). (155)6

Since each component of
“

M
(k)
d,∞

”−1

is bounded by O(Nc), using (155) (154) is bounded by O(1). Therefore, we get7

CV
∗

=

r

Vc × λmax

“

M−1
d,∞ −M−1

d,∞PsMd(0)P T
s M

−1
d,∞

”

8

=

v

u

u

tσ

 

„

Md,∞
Vc

«−1

−O

„

1

Nc

«

usNc ∗ usNc

!

9

−→
s

1

mini,x (u∞(x))i

10

as Nc → ∞ where usNc is an sNc-dimensional vector with each element equal to 1. Therefore, this gives the conver-11

gence of CV
∗
.12
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