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Abstract

The dynamics of a chemical reaction network (CRN) is often modelled
under the assumption of mass action kinetics by a system of ordinary
differential equations (ODEs) with polynomial right-hand sides that
describe the time evolution of concentrations of chemical species involved.
Given an arbitrarily large integer K ∈ N, we show that there exists
a CRN such that its ODE model has at least K stable limit cycles.
Such a CRN can be constructed with reactions of at most second order
provided that the number of chemical species grows linearly with K.
Bounds on the minimal number of chemical species and the minimal
number of chemical reactions are presented for CRNs with K stable
limit cycles and at most second order or seventh order kinetics. We
also show that CRNs with only two chemical species can have K stable
limit cycles, when the order of chemical reactions grows linearly with K.

Keywords: chemical reaction networks, limit cycles, mass action kinetics

1 Introduction

Chemical reaction networks (CRNs) are often modelled by reaction rate equations,
which are systems of first-order, autonomous, ordinary differential equations (ODEs)
describing the time evolution of the concentrations of chemical species involved.
Considering CRNs which are subject to the law of mass action, their reaction rate
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equations have polynomials on their right-hand sides [1, 2]. The mathematical inves-
tigation of ODEs with polynomial right-hand sides has a long history and includes
a number of challenging open mathematical problems, for example, Hilbert’s 16th

Problem [3], which asks questions about the number and position of limit cycles of
the planar ODE system of the form

dx

dt
= f(x, y), (1.1)

dy

dt
= g(x, y), (1.2)

where f(x, y) and g(x, y) are real polynomials of degree at most n. Denoting H(n)
the maximum number of limit cycles for the system (1.1)–(1.2), neither the value of
H(n) (for n ≥ 2) nor any upper bound on H(n) have yet been found [4]. Since a
quadratic system with 4 limit cycles has been constructed [5], we know thatH(2) ≥ 4.
Similarly, H(3) ≥ 13, because cubic systems with at least 13 limit cycles have been
found [6, 7].

Considering CRNs with two chemical species undergoing chemical reactions of
at most n-th order, their reaction rate equations are given in the form (1.1)–(1.2),
where f(x, y) and g(x, y) are real polynomials of degree at most n. In particular,
if we denote by C(n) the maximum number of stable limit cycles in such reaction
rate equations, then we have C(n) ≤ H(n). Considering CRNs with two chemical
species undergoing chemical reactions of at most second order, it has been previously
shown [8, 9] that their reaction rate equations cannot have any limit cycles (i.e.
C(2) = 0), while general ODEs with quadratic right-hand sides can have multiple
limit cycles, with H(2) ≥ 4. In particular, we observe that finding CRNs with two
chemical species which have, under mass action kinetics, multiple stable limit cycles,
is even more challenging than finding planar polynomial ODEs with multiple limit
cycles. Considering cubic systems, we have H(3) ≥ 13, but most of the chemical
systems (with at most third-order reactions) in the literature often have at most
one limit cycle [10–12]. A chemical system with two stable limit cycles has been
constructed [13], giving C(3) ≥ 2, but this is still much less than 13 limit cycles which
can be found in some ODE systems with cubic right-hand sides in the literature [6, 7].
To obtain multiple stable limit cycles in chemical systems, we have to consider higher-
order chemical reactions or systems with more than two chemical species [14, 15].

Considering CRNs with N chemical species undergoing chemical reactions of at
most n-th order, their reaction rate equations are given as the following system of
ODEs

dx

dt
= f(x), (1.3)

where x = (x1, x2, . . . , xN ) ∈ R
N is the vector of concentrations of N chemical

species and its right-hand side f : RN → R
N is a vector of real polynomials of degree

at most n. In this paper, we prove the following first main result:

Theorem 1 Let K be an arbitrary positive integer. Then there exists a CRN with

N(K) chemical species which are subject to M(K) chemical reactions of at most

seventh order such that

(i) reaction rate equations (1.3) have at least K stable limit cycles,

(ii) we have N(K) ≤ K + 2 and M(K) ≤ 29K.
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Theorem 1 provides a stronger result than findingK limit cycles in a polynomial ODE
system of the form (1.3), because not every polynomial ODE system corresponds to
a CRN and, therefore, the set of reaction rate equations is a proper subset of ODEs
with polynomial right-hand sides. To make the existence of K limit cycles possible
while restricting to polynomials of degree at most n = 7, we allow for more than two
chemical species, replacing the two ODE system (1.1)–(1.2) by a more general ODE
system (1.3) with N(K) equations. In particular, the next important question is how
small the CRN can be so that it has K limit cycles. Our answer is partially given in
part (ii) of Theorem 1 where we provide upper bounds on the number of chemical
species involved and the number of chemical reactions (of at most seventh order).
Another important parameter to consider is the maximum order of the chemical
reactions involved, i.e. the degree n of the polynomials on the right-hand side of ODE
system (1.3). Since systems of at most second-order reactions (the case n = 2) is
of special interest in the theory of CRNs and applications [16], we state our second
main result as:

Theorem 2 Let K be an arbitrary positive integer. Then there exists a CRN with

N(K) chemical species which are subject to M(K) chemical reactions of at most

second order such that

(i) reaction rate equations (1.3) have at least K stable limit cycles,

(ii) we have N(K) ≤ 7K + 14 and M(K) ≤ 42K + 24.

By restricting to second-order (bimolecular) reactions, we obtain CRNs with more
realistic second-order kinetics, but our construction increases the number of species
and chemical reactions involved, as it can be seen by comparing parts (ii) of The-
orems 1 and 2. The precise definitions of CRNs, mass action kinetics, reaction rate
equations and limit cycles in N-dimensional systems are given in Section 2.

In both Theorems 1 and 2, we restrict our considerations to systems described
by polynomial ODEs where the degree of polynomials is bounded by a constant
independent of K, i.e. we consider polynomials of the degree at most n = 7 (in
Theorem 1) or at most n = 2 (in Theorem 2), and we increase the number of chemical
species, N(K), as K increases, to get K stable limit cycles. Another approach is to
restrict our considerations to chemical systems with only N = 2 chemical species. In
Section 8, we construct two-species CRNs with K stable limit cycles which include
chemical reactions of at most n(K)-th order, where n(K) = 6K− 2. This establishes
our third main result:

Theorem 3 Let C(n) be the maximum number of stable limit cycles of reaction rate

equations (1.1)–(1.2) corresponding to CRNs with two chemical species undergoing

chemical reactions of at most n-th order. Then we have

C(n) ≥
⌊

n+ 2

6

⌋

, (1.4)

where the floor function ⌊.⌋ denotes the integer part of a positive real number.

To prove Theorems 1, 2 and 3, we first construct a planar system given by
equations (1.1)–(1.2), where f and g are continuous non-polynomial functions cho-
sen in such a way that the ODE system (1.1)–(1.2) has K stable limit cycles in the
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positive quadrant [0,∞)× [0,∞). Such a planar non-polynomial ODE system is con-
structed in Section 3. In Section 4, we then increase the number of chemical species
from 2 to N(K) to transform the non-polynomial ODE system to a polynomial one.
In Section 5, we modify this construction by using an x-factorable transformation
to arrive at reaction rate equations corresponding to a CRN [17]. Theorem 1 is then
proven in Section 6 by showing that the reaction rate equations have at least K sta-
ble limit cycles. This is followed by our proof of Theorems 2 and 3 in Sections 7
and 8, respectively.

2 Notation and mathematical terminology

Definition 1 A chemical reaction network (CRN) is defined as a collection (S ,C,R)
consisting of chemical species S , reaction complexes C and chemical reactions R.
We denote by N the number of chemical species and by M the number of chemical
reactions, i.e. |S| = N and |R| = M . Each chemical reaction is of the form

N
∑

i=1

νi,jXi −→
N
∑

i=1

ν′i,jXi, for j = 1, 2, . . . ,M, (2.1)

where Xi, i = 1, 2, . . . , N , are chemical species, and linear combinations
∑N

i=1 νi,jXi

and
∑N

i=1 ν
′
i,jXi of species with non-negative integers νi,j and ν′i,j are reaction

complexes.

Definition 2 Let (S ,C,R) be a CRN with N chemical species and M chemical
reactions. Let xi(t) be the concentration of chemical species Xi ∈ S , i = 1, 2, . . . , N .
The time evolution of xi(t) is, under the assumption of the mass action kinetics,
described by the reaction rate equations, which are written as a system of N ODEs
in the form

dxi
dt

(t) =
M
∑

j=1

kj (ν
′
i,j − νi,j)

N
∏

ℓ=1

x
νℓ,j
ℓ , for i = 1, 2, . . . , N, (2.2)

where kj , j = 1, 2, . . . ,M , is a positive constant called the reaction rate for the j-th
reaction.

The reaction rate equations (2.2) are ODEs of the form (1.3), where the right-hand
side f : RN → R

N is a vector of real polynomials. However, not every polynomial
ODE system can be obtained as the reaction rate equations of a CRN as we formalize
in the following Lemma.

Lemma 1 Consider a system of N ODEs with polynomial right-hand sides describ-

ing the time evolution of xi(t), i = 1, 2, . . . , N, in the form

dxi
dt

(t) =
M
∑

j=1

αi,j

N
∏

ℓ=1

x
νℓ,j
ℓ , for i = 1, 2, . . . , N, (2.3)

where αi,j are real constants and νi,j are nonnegative integers, for i = 1, 2, . . . , N
and j = 1, 2, . . . ,M. Then the polynomial ODE system (2.3) can be written as the

reaction rate equations (2.2) of a CRN if and only if

νi,j = 0 implies αi,j ≥ 0 for any i = 1, 2, . . . , N and j = 1, 2, . . . ,M. (2.4)
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Proof The reaction rate equations (2.2) are of the form (2.3). The non-negativity
condition (2.4) follows from νi,j = 0 and the non-negativity of both kj and ν′i,j in
equation (2.2).
Conversely, if an ODE is of the form (2.3) and αi,j > 0, then we can choose ν′i,j =
νi,j + 1 in equation (2.2) and put the reaction rate as kj = αi,j . On the other hand,
if αi,j < 0, then the condition (2.4) implies that νi,j ≥ 1. Therefore, we can put
ν′i,j = νi,j − 1 and kj = −αi,j > 0. �

In this paper, we prove the existence of limit cycles in chemical systems in Sections 6,
7 and 8 by proving the existence of limit cycles in systems of ODEs (2.3) with
polynomial right-hand sides satisfying the condition (2.4). Then the approach used
in the proof of Lemma 1 can be used to construct the corresponding CRN. However,
the construction of a CRN corresponding to reaction rate equations is not unique. For
example, consider a term of the form −x31 on the right-hand side of equation (2.3).
Using the construction in the proof of Lemma 1, it would correspond to the chemical
reaction 3X −→ 2X with the rate constant equal to 1, but the same term can also
correspond to the chemical reaction 3X −→ X with the rate constant equal to 1/2.
We conclude this section by a formal definition of a stable limit cycle.

Definition 3 Consider a system of N ODEs given by (1.3), where their right-hand
side f : R

N → R
N is continuous. A stable limit cycle is a trajectory xc(t) for

t ∈ [0,∞) such that
(i) xc(t) is a solution of the ODE system (1.3),
(ii) there exists a positive constant T > 0 such that xc(T ) = xc(0) and

xc(t) 6= xc(0) for 0 < t < T,
(iii) there exists ε > 0 such that

dist{x(0),xc} < ε implies dist{x(t),xc} → 0 as t → ∞.

In Definition 3, constant T is the period of the limit cycle and the property (iii)
states that the limit cycle attracts all trajectories which start sufficiently close to it.
The distance in the property (iii) of Definition 3 is the Euclidean distance defined by

dist{z,xc} = min
t∈[0,T ]

dist{z,xc(t)} = min
t∈[0,T ]

(

N
∑

i=1

(

zi − xc,i(t)
)2

)1/2

for z = [z1, z2, . . . , zN ] ∈ R
N and xc(t) = [xc,1(t), xc,2(t), . . . , xc,N (t)] ∈ R

N .

3 Planar ODE systems with arbitrary number
of limit cycles

In this section, we construct a planar ODE system of the form (1.1)–(1.2) with K
limit cycles in the positive quadrant. It is constructed as a function of 2K parameters
denoted by a1, a2, . . . , aK and b1, b2, . . . , bK , as

dx

dt
=

K
∑

k=1

(x− ak)
{

1− (x− ak)
2 − (y − bk)

2}− (y − bk)

1 + (x− ak)6 + (y − bk)6
= f(x, y) , (3.1)

dy

dt
=

K
∑

k=1

(y − bk)
{

1− (x− ak)
2 − (y − bk)

2}+ (x− ak)

1 + (x− ak)6 + (y − bk)6
= g(x, y) . (3.2)
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Fig. 1 (a) Twenty illustrative trajectories of the ODE system (3.1)–(3.2) for K = 4 and

the parameter choices a1 = b1 = a2 = b3 = 2 and a3 = b2 = a4 = b4 = 6. As t → ∞, all

presented trajectories approach one of the four limit cycles, which are plotted as the black

dashed lines.

(b) Twenty illustrative trajectories of the ODE system (3.1)–(3.2) for K = 4 and the param-

eter choices a1 = b1 = a2 = b3 = 2 and a3 = b2 = a4 = b4 = 4. As t → ∞, some trajectories

converge to the stable limit cycle denoted by the black dashed line, while some trajectories,

which started inside the limit cycle converge to the stable fixed point denoted as the red dot.

An illustrative dynamics of the ODE system (3.1)–(3.2) is shown in Figure 1(a)
for K = 4, where the ODE system has four limit cycles, which is highlighted in
Figure 1(a) by plotting some representative trajectories. The existence of K stable
limit cycles for the ODE system (3.1)–(3.2) can also be proven analytically, as it is
done in Lemma 2. In Figure 1(a), we have presented an example with K = 4 and
parameter choices

(a1, b1) = (2, 2), (a2, b2) = (2, 6), (a3, b3) = (6, 2) and (a4, b4) = (6, 6).

In particular, the distance between points (ai, bi), i = 1, 2, 3, 4, is at least four. If we
decrease this distance, then the ODE system (3.1)–(3.2) can have less limit cycles.
This is highlighted in Figure 1(b), where we present an example with K = 4 and
parameter choices

(a1, b1) = (2, 2), (a2, b2) = (2, 4), (a3, b3) = (4, 2) and (a4, b4) = (4, 4).

In Figure 1(b), we observe that there is only one limit cycle, denoted as the black
dashed line. This limit cycle is stable and a number of illustrative trajectories con-
verge to this limit cycle as t → ∞. However, there is also a stable equilibrium point
at (3, 3), which attracts some of the trajectories. In particular, we can only expect
that the ODE system (3.1)–(3.2) will have K stable limit cycles provided that points
(ai, bi) are sufficiently separated. This is proven in our next lemma.

Lemma 2 Let us assume that

(ai − aj)
2 + (bi − bj)

2 > 15
(

K2/3 + 2
)

for all i 6= j, (3.3)

where i, j = 1, 2, . . . , K. Then the ODE system (3.1)–(3.2) has at least K stable limit

cycles.
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Proof We define the sets

Ωi =
{

(x, y) : 1/2 < (x− ai)
2 + (y − bi)

2 < 2
}

, for i = 1, 2, . . . ,K. (3.4)

Then the condition (3.3) implies that

Ωi ∩ Ωj = ∅, for all i 6= j, where i, j = 1, 2, . . . , K,

i.e. the sets Ωi are pairwise disjoint sets. We will show that each of them contains
at least one stable limit cycle. The boundary of Ω consists of two parts: outer and
inner circles defined by

∂Ωi1 =
{

(x, y) : (x− ai)
2 + (y − bi)

2 = 2
}

(3.5)

and
∂Ωi2 =

{

(x, y) : (x− ai)
2 + (y − bi)

2 = 1/2
}

, (3.6)

respectively, that is, ∂Ωi = ∂Ωi1 ∪ ∂Ωi2. Define the following functions for k =
1, 2, . . . ,K:

fk(z1, z2) =
z1
{

1− z21 − z22
}

− z2

1 + z61 + z62
, (3.7)

gk(z1, z2) =
z2
{

1− z21 − z22
}

+ z1

1 + z61 + z62
. (3.8)

Then, the ODE system (3.1)–(3.2) can be rewritten as

dx

dt
= f(x, y) , (3.9)

dy

dt
= g(x, y) , (3.10)

where

f(x, y) =
K
∑

k=1

fk(x− ak, y − bk) and g(x, y) =
K
∑

k=1

gk(x− ak, y − bk). (3.11)

First, we will show that Ωi for i = 1, 2, . . . ,K does not contain any equilibrium
points. Let us consider any point (x∗, y∗) ∈ Ωi. Substituting

x∗ = ai + r cos θ, y∗ = bi + r sin θ, (3.12)

in the terms for k = i in (3.11), we obtain

f(x∗, y∗) =
r cos θ {1− r2} − r sin θ

1 + r6 cos6 θ + r6 sin6 θ
+

K
∑

k=1,k 6=i

fk(x
∗ − ak, y

∗ − bk) , (3.13)

g(x∗, y∗) =
r sin θ {1− r2}+ r cos θ

1 + r6 cos6 θ + r6 sin6 θ
+

K
∑

k=1,k 6=i

gk(x
∗ − ak, y

∗ − bk) . (3.14)

The first terms in (3.13)–(3.14) can be rewritten as

4r
√

(r2 − 1)2 + 1 sin(θ + θ̃)

4 + r6
(

4− 3 sin2 2θ
) , (3.15)

where θ̃ = α with tanα = r2 − 1 and π/2 < α < 3π/2 in the case of (3.13) and
θ̃ = α− π/2 in the case of (3.14). Since we have

max(| sin(θ + α)|, | sin(θ + α− π/2)|) > 1/
√
2

7



for any θ and α, at least one of the two terms expressed in the form (3.15) is greater
than

1√
2

r
√

(r2 − 1)2 + 1

1 + r6
,

which has a minimum
√
2/9 when 1/2 < r2 < 2. Therefore, at least one of the

absolute values of the i-th components, fi(x
∗ − ai, y

∗ − bi) and gi(x
∗ − ai, y

∗ − bi),
in (3.13)–(3.14) at any point (x∗, y∗) ∈ Ωi is greater than equal to

√
2/9. Without

loss of generality, we assume

|fi(x∗ − ai, y
∗ − bi)| ≥ |gi(x∗ − ai, y

∗ − bi)|.
Then we have |fi(x∗−ai, y

∗−bi)| ≥
√
2/9. We want to show that the second term in

(3.13) (i.e. the sum) has a smaller magnitude than the first term fi(x
∗ − ai, y

∗ − bi)
so that we could conclude that f(x∗, y∗) 6= 0. The k-th component in the second
term in (3.13) is bounded by

|fk(z1, z2)| ≤
|z1| |1− z21 − z22 |+ |z2|

|1 + z61 + z62 |
(3.16)

where (z1, z2) = (x∗ − ak, y
∗ − bk). Denoting c2 = z21 + z22 , we have

1 +
c6

4
≤ 1 + z61 + z62 ≤ 1 + c6. (3.17)

Using |zi| ≤ c and (3.17), we estimate (3.16) as

|fk(z1, z2)| ≤
c
(

|1− c2|+ 1
)

1 + c6/4
. (3.18)

Since (x∗, y∗) ∈ Ωi and (ak, bk) ∈ Ωk where k 6= i, our assumption (3.3) implies that
c2 ≥ 2. Thus, (3.18) becomes

|fk(z1, z2)| ≤
c3

1 + c6/4
≤ 4

c3
. (3.19)

Therefore, the magnitude of the second term in (3.13) is bounded by 4(K − 1)/c3.
Since |fi(x∗ − ai, y

∗ − bi)| ≥
√
2/9, a sufficient condition for f(x∗, y∗) 6= 0 is

4(K − 1)

c3
<

√
2

9
. (3.20)

Using the assumption (3.3), the distance c =
√

(x∗ − ak)2 + (y∗ − bk)2 is bounded
by

c >
√

(ai − ak)2 + (bi − bk)2 −
√
2 >

√

15
(

K2/3 + 2
)

−
√
2 , (3.21)

which implies the sufficient condition (3.20). Therefore, (x∗, y∗) is not an equilibrium
point.

Next, consider an arbitrary point (xb, yb) ∈ ∂Ωi1. Let us calculate the scalar
product of vectors

(xb − ai, yb − bi) and
(

f(xb, yb), g(xb, yb)
)

. (3.22)

Using (3.11), we obtain this scalar product as

(xb − ai)fi(xb − ai, yb − bi) + (yb − bi)gi(xb − ai, yb − bi) (3.23)

+(xb − ai)

K
∑

k=1,k 6=i

fk(xb − ak, yb − bk) + (yb − bi)

K
∑

k=1,k 6=i

gk(xb − ak, yb − bk) .

8



The first two terms in (3.23) become

−2

1 + (xb − ai)6 + (yb − ai)6
,

which has a magnitude greater than 2/9 using (3.17) with c2 = (xb−ai)
2+(yb−bi)

2 =
2. Using (3.19), |xb − ai| ≤

√
2 and |yb − bi| ≤

√
2, we can estimate the third and

fourth terms in (3.23), namely, we have

|(xb − ai) fk(z1, z2)| ≤
4
√
2

d3
and |(yb − bi) gk(z1, z2)| ≤

4
√
2

d3
, (3.24)

where d2 = (xb − ak)
2 + (yb − bk)

2. Then the sum of the third and fourth terms
in (3.23) is bounded by 8

√
2(K − 1)/d3. Therefore, the sufficient condition that the

scalar product in (3.23) is negative is

8
√
2(K − 1)

d3
<

2

9
. (3.25)

Using the assumption (3.3), the distance d =
√

(xb − ak)2 + (yb − bk)2 is bounded
by

d >
√

(ai − ak)2 + (bi − bk)2 −
√
2 >

√

15
(

K2/3 + 2
)

−
√
2 , (3.26)

which implies the sufficient condition (3.25). Therefore, the vector
(

f(xb, yb), g(xb, yb)
)

always points inside the domain Ωi for each boundary point (xb, yb) ∈ ∂Ωi1.
Similarly, for an arbitrary point (xb, yb) ∈ ∂Ωi2, we can show that the scalar

product of vectors in (3.22) is always positive due to that the sum of the first two
terms in (3.23) is equal to

1/4

1 + (xb − ai)6 + (yb − bi)6
,

which is greater than 2/9 by using (3.17) with c2 = 1/2, and the sum of the third
and fourth terms in (3.23) is bounded by 8(K − 1)/(d3

√
2). Therefore, the sufficient

condition that the scalar product in (3.23) is positive is

8(K − 1)

d3
√
2

<
2

9
,

which is a weaker condition then the condition (3.25), i.e. it is again satisfied because
of our assumption (3.3). This implies that the scalar product in (3.23) is positive.
Thus, the directional vector always points inside the domain Ωi on all parts of the
boundary ∂Ωi.

Therefore, applying Poincaré-Bendixson theorem, we conclude that each Ωi con-
tains at least one stable limit cycle. Since Ωi, i = 1, 2, . . . , K, are pairwise disjoint,
this implies that the ODE system (3.1)–(3.2) has at least K stable limit cycles. �

4 ODE systems with polynomial right-hand
sides and arbitrary number of limit cycles

Considering an auxiliary variable

ui =
1

1 + (x− ai)6 + (y − bi)6
, for i = 1, 2, . . . ,K, (4.1)

9



we can formally convert the non-polynomial ODE system (3.1)–(3.2) to a system of
(K + 2) ODEs with polynomial right-hand sides [18]. We obtain

dx

dt
=

K
∑

k=1

uk

[

(x− ak)
{

1− (x− ak)
2 − (y − bk)

2}− (y − bk)
]

, (4.2)

dy

dt
=

K
∑

k=1

uk

[

(y − bk)
{

1− (x− ak)
2 − (y − bk)

2}+ (x− ak)
]

, (4.3)

dui
dt

= −6u2i (x− ai)
5

K
∑

k=1

uk

[

(x− ak)
{

1− (x− ak)
2 − (y − bk)

2}− (y − bk)
]

− 6u2i (y − bi)
5

K
∑

k=1

uk

[

(y − bk)
{

1− (x− ak)
2 − (y − bk)

2}+ (x− ak)
]

, (4.4)

for i = 1, 2, . . . ,K. The dynamics of the original ODE system (3.1)–(3.2) with initial
condition (x(0), y(0)) = (x0, y0) is the same as the dynamics of the extended ODE
system (4.2)–(4.4), when we initialize the additional variables by

ui(0) =
1

1 + (x0 − ai)6 + (y0 − bi)6
, for i = 1, 2, . . . ,K. (4.5)

However, when we use a general initial condition,

(x(0), y(0), u1(0), u2(0), . . . , uK(0)) ∈ R
K+2,

the trajectory of the extended ODE system (4.2)–(4.4) may become unbounded and
it may not converge to a limit cycle. To illustrate this behaviour, let us consider the
initial condition

ui(0) =
c

1 + (x0 − ai)6 + (y0 − bi)6
, for i = 1, 2, . . . ,K, (4.6)

where c > 0 is a constant. If c = 1, then the initial condition (4.6) reduces to (4.5).
In particular, Figure 1(a) shows an illustrative behaviour of both the extended ODE
system (4.2)–(4.4) for c = 1 and the planar ODE system (3.1)–(3.2), assuming that
we use a sufficiently accurate numerical method to solve ODEs (4.2)–(4.4) and plot
the projection of the calculated trajectory to the (x, y)-plane. Changing c = 1 to
c = 0.5, we plot the dynamics of the extended ODE system in Figure 2(a), where
the black dots denote the end points of the calculated trajectories at the final time
(t = 100). We observe that only the trajectories which started ‘inside a limit cycle’
(i.e. their projections to the (x, y)-plane are initially inside a black dashed circle)
seem to converge to it, while the other trajectories do not seem to approach the ‘limit
cycles’. This is indeed the case even if we continue these trajectories for times t > 100.
In fact, depending on the accuracy of the numerical method used, all trajectories
eventually stop somewhere in the phase plane, because ui(t) → 0 as t → ∞.

On the other hand, considering the extended ODE system (4.2)–(4.4) with the
initial condition (4.6) for c > 1, some additional variables ui(t) tend to infinity as
t → ∞, and we again do not observe sustained oscillations in our numerical experi-
ments (results not shown). In particular, the formal conversion of the non-polynomial
ODE system (3.1)–(3.2) into the polynomial system (4.2)–(4.4) does not preserve the
dynamics well. Therefore, we augment our polynomial ODE system (3.1)–(3.2) in a
different way. We introduce K new variables vi, i = 1, 2, . . . ,K, and formulate the
extended ODE system as the following (K + 2) equations:

dx

dt
=

K
∑

k=1

vk

[

(x− ak)
{

1− (x− ak)
2 − (y − bk)

2}− (y − bk)
]

, (4.7)
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Fig. 2 (a) Twenty illustrative trajectories of the ODE system (4.2)–(4.4) for K = 4, the

parameter choices a1 = b1 = a2 = b3 = 2, a3 = b2 = a4 = b4 = 6 and the initial

condition (4.6) with c = 1/2. The black dots denote the final position of each calculated

trajectory at time t = 100. The black dashed lines are limit cycles shown in Figure 1(a).
(b) Twenty illustrative trajectories of the ODE system (4.7)–(4.9) for K = 4, the parameter

choices ε = 1, a1 = b1 = a2 = b3 = 2, a3 = b2 = a4 = b4 = 6 and the initial condition (4.6)
with c = 1/2. As t → ∞, all trajectories approach one of the four limit cycles, which are

plotted as the black dashed lines. The black dots denote the final position of each calculated

trajectory at time t = 100.

dy

dt
=

K
∑

k=1

vk

[

(y − bk)
{

1− (x− ak)
2 − (y − bk)

2}+ (x− ak)
]

, (4.8)

ε
dvi
dt

= 1− vi

[

1 + (x− ai)
6 + (y − bi)

6
]

, for i = 1, 2, . . . ,K, (4.9)

where ε > 0 is a constant. The first two ODEs (4.7)–(4.8) are the same as ODEs (4.2)–
(4.3) with vk taking place of uk. The difference is in the dynamics of the additional
variables, i.e. in equation (4.9) which removes the non-polynomial factor (4.1) in a
different way. Rather than defining new variable ui in the form (4.1) and deriving
ODEs which have equivalent dynamics to the ODE system (3.1)–(3.2) for a very
special initial condition (4.5), we have written the ODE (4.9) in such a way that it
formally recovers the non-polynomial factor (4.1) in the limit ε → 0, which will be
used in our proof of Lemma 3, where we consider small values of ε. However, even for
larger values of ε, the ODE system (4.7)–(4.9) has multiple limit cycles for general
initial conditions, as it is illustrated for ε = 1 and K = 4 in Figure 2(b), where all
plotted trajectories finish on a limit cycle (see the final calculated positions, at time
t = 100, plotted as black dots).

Next, we prove that the extended system (4.7)–(4.9) has K limit cycles in the
sense of Definition 3 for general values of K. Since (4.7)–(4.9) is a system of (K +2)
ODEs, we cannot directly apply the Poincaré-Bendixson theorem as we did for the
planar system in the proof of Lemma 2. While one possible approach to proving the
existence of limit cycles is to work with generalizations of the Poincaré-Bendixson
theorem to higher dimensional ODEs [19–21], we will base our proof of Lemma 3
on the application of Tikhonov’s theorem [22, 23] and the result of Lemma 2. In
particular, we show that the extended system (4.7)–(4.9) is a polynomial system
which has K limit cycles for sufficiently small values of ε.
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Lemma 3 Let us assume that parameters ai > 0 and bi > 0, i = 1, 2, . . . ,K, satisfy
the inequality (3.3). Then there exists ε0 > 0 such that the ODE system (4.7)–(4.9)
has at least K stable limit cycles for all ε ∈ (0, ε0).

Proof Let us consider ε = 0. Then the right-hand side of the ODE (4.9) is equal
to zero. This equation can be solved for vi, i = 1, 2, . . . ,K, to obtain vi = qi(x, y),
where we define

qi(x, y) =
1

1 + (x− ai)6 + (y − bi)6
. (4.10)

Substituting vi = qi(x, y) into (4.7)–(4.8), we obtain that the reduced problem in
the sense of Tikhonov’s theorem [22, 23] is equal to

dx

dt
= f(x, y) , (4.11)

dy

dt
= g(x, y) , (4.12)

where functions f(·, ·) and g(·, ·) are defined in (3.1) and (3.2). This means that
the reduced system (4.11)–(4.12) corresponding to the fast–slow extended ODE sys-
tem (4.7)–(4.9) is the same as our original non-polynomial ODE system (3.1)–(3.2).
Therefore, using Lemma 2, we know that the reduced system (4.11)–(4.12) has (at
least) K stable limit cycles in the sense of Definition 3, i.e. there exist K solutions

(xc,i(t), yc,i(t)) for t ∈ [0,∞), i = 1, 2, . . . ,K, (4.13)

of the reduced system (4.11)–(4.12) which are periodic with period Ti > 0 for
i = 1, 2, . . . , K. Moreover, there exist εi > 0, i = 1, 2, . . . ,K, such that any
solution (x(t), y(t)) of the reduced system (4.11)–(4.12) approaches the limit cycle
(xc,i(t), yc,i(t)) as t → ∞ provided that the initial condition (x(0), y(0)) satisfies

min
t∈[0,Ti]

(

x(0)− xc,i(t)
)2

+
(

y(0)− yc,i(t)
)2

< εi. (4.14)

Next, we define pairwise disjoint sets Ωi ⊂ R
K+2 for i = 1, 2, . . . ,K by

Ωi =

{

(x, y, v1, v2, . . . , vK ) ∈ R
K+2 such that (4.15)

min
t∈[0,Ti]

(

x− xc,i(t)
)2

+
(

y − yc,i(t)
)2

+

K
∑

j=1

(

vj − qj(xc,i(t), yc,i(t))
)2

< εi

}

,

where functions qj(·, ·) are defined by (4.10). Let us define

ε0 = min
i∈{1,2,...,K}

εi.

Let ε ∈ (0, ε0) be chosen arbitrarily. To show that the extended fast-slow polyno-
mial ODE system (4.7)–(4.9) has (at least) K stable limit cycles, it is sufficient to
show that each set Ωi contains one stable limit cycle. We will do this by apply-
ing Tikhonov’s theorem [22, 23]. Considering the ODEs (4.9) for i = 1, 2, . . . ,K,
where x > 0 and y > 0 are taken as parameters, we obtain the adjoined sys-
tem as a K-dimensional system of ODEs with an isolated stable equilibrium point
[q1(x, y), q2(x, y), . . . , qK (x, y)], where qi(·, ·) is defined in (4.10). This equilibrium
point attracts the solutions of adjoined system for any initial condition. Therefore,
the ODE system (4.7)–(4.9) has a limit cycle in Ωi. Moreover, this limit cycle attracts
any solution

(

x(t), y(t), v1(t), v2(t), . . . , vK (t)
)

of the system (4.7)–(4.9) with initial
condition satisfying

(

x(0), y(0), v1(0), v2(0), . . . , vK (0)
)

∈ Ωi. �

12



5 Chemical systems with arbitrary many limit
cycles

To construct a CRN with K limit cycles, we first construct a system of ODEs with
polynomial right-hand sides which satisfy the condition (2.4) in Lemma 1, i.e. it will
be a system of reaction rate equations, which correspond to a CRN. Once we have
such reaction rate equations, there are infinitely many CRNs described by them, so
we conclude this section by specifying some illustrative CRNs corresponding to the
derived reaction rate equations.

Our starting point is the polynomial ODE system (4.7)–(4.9), which has K limit
cycles provided that the conditions of Lemma 3 are satisfied. The reaction rate
equations are constructed by applying the so called x-factorable transformation [12]
to the right-hand sides of equations (4.7) and (4.8). We do not modify the right-hand
sides of ODEs (4.9), because they already satisfy the conditions of Definition 2. We
obtain the ODE system:

dx

dt
=

K
∑

k=1

x vk

[

(x− ak)
{

1− (x− ak)
2 − (y − bk)

2}− (y − bk)
]

, (5.1)

dy

dt
=

K
∑

k=1

y vk

[

(y − bk)
{

1− (x− ak)
2 − (y − bk)

2}+ (x− ak)
]

, (5.2)

ε
dvi
dt

= 1− vi

[

1 + (x− ai)
6 + (y − bi)

6
]

, for i = 1, 2, . . . ,K. (5.3)

The illustrative dynamics of the ODE system (5.1)–(5.3) is presented in Figure 3(a),
where we use the same parameters as we use in Figure 2(b) for the ODE system (4.7)–
(4.9). We observe that the presented trajectories converge to one of the four limit
cycles as in Figure 2(b). The shape of the limit cycles is slightly modified by using
the x-factorable transformation, but the limit cycles are still there as we formally
prove in Section 6.

The x-factorable transformations modify the dynamics on the x-axis and y-axis.
In Figure 3(a), we present illustrative trajectories which all start with the positive
values of x(0) and y(0), while in Figure 2(b), some of the illustrative trajectories
have zero initial values of x(0) and y(0). To get a comparable plot, we use the same
initial conditions in both Figure 2(b) and Figure 3(a), with the only exception that
all initial conditions with x(0) = 0 (resp. y(0) = 0) in Figure 2(b) are replaced by
x(0) = 1/2 (resp. y(0) = 1/2) in Figure 3(a). We note that if we start a trajectory
of the ODE system (5.1)–(5.3) on the x-axis or the y-axis, then it stays on the axis.

In Figure 3(b), we present illustrative dynamics of the ODE system (5.1)–(5.3) for
K = 9, showing that each computed trajectory converges to one of the 9 limit cycles
denoted by black dashed lines. To illustrate that this behaviour does not require
special choices of initial conditions, we used different initial conditions for x(0) and
y(0) together with the initial conditions for variables vi satisfying

vi(0) = 1, for i = 1, 2, . . . , K. (5.4)

However, a similar figure can be obtained if we replace (5.4) with the initial condition
(4.6), or if we initialize all values of vi, i = 1, 2, . . . ,K as zero (results not shown).

A CRN corresponding to reaction rate equations (5.1)–(5.3) can be obtained (by
applying the construction in the proof of Lemma 1) as the CRN with K+2 chemical
species, i.e. using the notation in Definition 1, we have

S = {X,Y, V1, V2, . . . , VK} . (5.5)
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Fig. 3 (a) Twenty illustrative trajectories of the ODE system (5.1)–(5.3) for K = 4, the

parameter choices a1 = b1 = a2 = b3 = 2, a3 = b2 = a4 = b4 = 6, ε = 1 and the initial

condition (4.6) with c = 1/2. As t → ∞, all trajectories approach one of the four limit

cycles, which are plotted as the black dashed lines. As in Figure 2, the black dots denote the

final position of each calculated trajectory at time t = 100.
(b) Twenty illustrative trajectories of the ODE system (5.1)–(5.3) for K = 9, the parameter

choices a1 = b1 = a2 = b3 = a6 = b7 = 2, a3 = b2 = a4 = b4 = a5 = b8 = 6,
a7 = a8 = a9 = b5 = b6 = b9 = 10, ε = 1 and the initial condition (5.4). As t → ∞,

all trajectories approach one of the nine limit cycles, which are plotted as the black dashed

lines. The black dots denote the final position of each calculated trajectory at time t = 100.

To specify the reaction complexes and chemical reactions, we expand the right-hand
side of reaction rate equations (5.1)–(5.3). First, we rewrite ODEs (5.3) as

dvi
dt

= −ki,1 vi + ki,2 vix+ ki,3 viy − ki,4 vix
2 − ki,5 viy

2 + ki,6 vix
3 + ki,7 viy

3

− ki,8 vix
4 − ki,9 viy

4 + ki,10 vix
5 + ki,11 viy

5 − vix
6/ε− viy

6/ε+ 1/ε, (5.6)

where ki,j , i = 1, 2, . . . ,K, j = 1, 2, . . . , 11, are positive constants given by

ki,1 = (1 + a6i + b6i )/ε, ki,2 = 6a5i /ε, ki,3 = 6b5i /ε, ki,4 = 15a4i /ε,

ki,5 = 15b4i /ε, ki,6 = 20a3i /ε, ki,7 = 20b3i /ε, ki,8 = 15a2i /ε, (5.7)

ki,9 = 15b2i /ε, ki,10 = 6ai/ε and ki,11 = 6bi/ε.

Consequently, the right-hand side of equation (5.3) can be interpreted as the set of
14 chemical reactions for each i = 1, 2, . . . ,K. We define it as

Ri =

{

Vi
ki,1−→∅, Vi +X

ki,2−→ 2Vi +X, Vi + Y
ki,3−→ 2Vi + Y, Vi + 2X

ki,4−→ 2X,

Vi + 2Y
ki,5−→ 2Y, Vi + 3X

ki,6−→ 2Vi + 3X, Vi + 3Y
ki,7−→ 2Vi + 3Y, (5.8)

Vi + 4X
ki,8−→ 4X, Vi + 4Y

ki,9−→ 4Y, Vi + 5X
ki,10−→ 2Vi + 5X,

Vi + 5Y
ki,11−→ 2Vi + 5Y, Vi + 6X

1/ε−→ 6X, Vi + 6Y
1/ε−→ 6Y, ∅ 1/ε−→Vi

}

.

Consequently, reaction rate equations (5.3) correspond to 14K chemical reactions in
sets Ri, i = 1, 2, . . . , K. Similarly, we rewrite ODEs (5.1)–(5.2) as

dx

dt
=

K
∑

i=1

[

− vix
4 + ki,12 vix

3 − ki,13 vix
2 + ki,14 vix+ ai vixy

2
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+ki,15 vix
2y − ki,16 vixy − vix

2y2
]

, (5.9)

dy

dt
=

K
∑

k=1

[

− viy
4 + ki,17 viy

3 − ki,18 viy
2 + ki,19 viy + bi vix

2y

+ki,20 vixy
2 − ki,21 vixy − vix

2y2
]

, (5.10)

where ki,j , i = 1, 2, . . . ,K, j = 12, 13, . . . , 21, are constants given by

ki,12 = 3ai, ki,13 = 3a2i + b2i − 1, ki,14 = a3i + aib
2
i + bi − ai, ki,15 = 2bi,

ki,16 = 1 + 2aibi, ki,17 = 3bi, ki,18 = a2i + 3b2i − 1, (5.11)

ki,19 = b3i + a2i bi − ai − bi, ki,20 = 2ai, ki,21 = 2aibi − 1.

Considering sufficiently large ai and bi (say, for ai > 1 and bi > 1), the con-
stants (5.11) are positive. Moreover, since the term −vix

2y2 appears in both
equations (5.9) and (5.10), the right-hand sides of equations (5.1)–(5.2) can be
interpreted as the set of 15K chemical reactions. We define

R∗
i =

{

Vi + 4X
1−→Vi + 3X, Vi + 3X

ki,12−→ Vi + 4X, Vi + 2X
ki,13−→ Vi +X,

Vi +X
ki,14−→ Vi + 2X, Vi +X + 2Y

ai−→Vi + 2X + 2Y,

Vi + 2X + Y
ki,15−→ Vi + 3X + Y, Vi +X + Y

ki,16−→ Vi + Y,

Vi + 2X + 2Y
1−→Vi +X + Y, Vi + 4Y

1−→Vi + 3Y,

Vi + 3Y
ki,17−→ Vi + 4Y, Vi + 2Y

ki,18−→ Vi + Y, Vi + Y
ki,19−→ Vi + 2Y,

Vi + 2X + Y
bi−→Vi + 2X + 2Y, Vi +X + 2Y

ki,20−→ Vi +X + 3Y,

Vi +X + Y
ki,21−→ Vi +X

}

, for i = 1, 2, . . . ,K. (5.12)

Then, we conclude that the reaction rate equations (5.1)–(5.3) correspond to the
CRN with N = K + 2 chemical species and 29K chemical reactions of at most
seventh order given by

R =
K
⋃

i=1

Ri ∪R∗
i . (5.13)

The CRN (S ,C,R) consisting of chemical species S given by (5.5) and chemical
reactions R given by (5.13) is the CRN which we will use to prove Theorem 1 in
Section 6. The corresponding set of reaction complexes C can be inferred from the
provided lists of reactions Ri and R∗

i , i = 1, 2, . . . ,K, given by (5.8) and (5.12).

6 Proof of Theorem 1

The idea of the proof of Theorem 1 is similar to the one chosen in Sections 3 and 4,
where we have first proved Lemma 2 about the existence of K limit cycles in the
planar ODE system (3.1)–(3.2) and then we have used it to prove the existence of
K limit cycles in the (K + 2)-dimensional ODE system in Lemma 3. In this section,
we will again start by formulating Lemma 4 for a planar ODE system, which we
will use in Lemma 5 to prove Theorem 1 considering the (K + 2)-dimensional ODE
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system (5.1)–(5.3). The planar ODE system is derived by applying the x-factorable
transformation to the planar ODE system (3.1)–(3.2). We obtain

dx

dt
=

K
∑

k=1

x fk(x− ak, y − bk)=x f(x, y) , (6.1)

dy

dt
=

K
∑

k=1

y gk(x− ak, y − bk)=y g(x, y) , (6.2)

where we have used the notation fk(·, ·) and gk(·, ·) introduced in equations (3.7),
(3.8) and (3.11).

The dynamics of the ODE system (6.1)–(6.2) is similar to the dynamics of the
original planar ODE system (3.1)–(3.2) in the same way as the dynamics of the
(K + 2)-dimensional extended ODE system (5.1)–(5.3) is similar to the dynamics of
the (K+2)-dimensional extended ODE system (4.7)–(4.9). We have already observed
in Figure 3(a) that the limit cycle around the point (ai, bi) = (6, 6) of the ODE
system (4.7)–(4.9) is relatively circular. On the other hand, the shape of the limit
cycles can more significantly differ between Figures 2(b) and 3(a) if the corresponding
parameters ai and bi are not equal to each other. Motivated by this observation, we
will study the case ai = bi in Lemma 4 and prove that it is possible to choose these
parameters in a way that the planar ODE system (6.1)–(6.2) has (at least) K stable
limit cycles. This result is sufficient for the proof of Theorem 1. However, we also
note that the existence of limit cycles of the ODE system (6.1)–(6.2) is not restricted
to the case ai = bi and a more general lemma could be stated and proven, as we did
in Lemma 2 where the existence of K limit cycles has been proven under a relatively
general condition (3.3). The advantage of the case ai = bi is that it simplifies the
proof of Lemma 4, because we can use the approach and notations introduced in the
proof of Lemma 2.

Lemma 4 Let us assume that

ai = bi = 8iK (6.3)

for i = 1, 2, . . . ,K. Then the ODE system (6.1)–(6.2) has at least K stable limit

cycles.

Proof Let us define regions Ωi ⊂ R
2, i = 1, 2, . . . ,K, together with their boundary

parts ∂Ωi1 and ∂Ωi2 by (3.4), (3.5) and (3.6). Our choice of values of ai and bi in (6.3)
satisfies the assumption (3.3) in Lemma 2. Therefore, the ODE system (3.1)–(3.2) has
with parameters given by (6.3) at least K stable limit cycles. Moreover, in the proof
of Lemma 2, we have shown that each region Ωi does not include any equilibrium
of the planar ODE system (3.1)–(3.2). Any equilibrium of the ODE system (6.1)–
(6.2) is either located on the x-axis or y-axis, or it is also an equilibrium of the ODE
system (3.1)–(3.2). However, our assumption (6.3) implies that no region Ωi, i =
1, 2, . . . ,K, intersects with the x-axis or y-axis. Therefore, we conclude that each Ωi,
for i = 1, 2, . . . ,K, does not contain any equilibrium of the ODE system (6.1)–(6.2).

Next, consider any point (xb, yb) ∈ ∂Ωi. We will compute the scalar product of
vectors

(xb − ai, yb − bi) and
(

xb f(xb, yb), yb g(xb, yb)
)

(6.4)
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by rewriting the second vector as a sum of two vectors
(

xb f(xb, yb), yb g(xb, yb)
)

= xb
(

f(xb, yb), g(xb, yb)
)

+
(

0, (yb − xb) g(xb, yb)
)

. (6.5)

The scalar product of vectors

(xb − ai, yb − bi) and xb
(

f(xb, yb), g(xb, yb)
)

(6.6)

has already been calculated in the proof of Lemma 2 starting with equation (3.22).
We obtained that it is negative for (xb, yb) ∈ ∂Ωi1 and positive for (xb, yb) ∈ ∂Ωi2.
Therefore, the vector xb

(

f(xb, yb), g(xb, yb)
)

always points inside the domain Ωi on
all parts of the boundary ∂Ωi. Next, we want to show that this conclusion also holds if
vector xb

(

f(xb, yb), g(xb, yb)
)

is modified by adding the vector
(

0, (yb−xb) g(xb, yb)
)

as it is done in equation (6.5). To do this, we note that our choice of parameters (6.3)
implies that

(ai − aj)
2 + (bi − bj)

2 = 128(i− j)2K2

for all i, j = 1, 2, . . . ,K, which not only satisfies the assumption (3.3) but it can
be used in equation (3.26) to make a stronger conclusion that the scalar product of
vectors (6.6) is at most −1.45 for (xb, yb) ∈ ∂Ωi1 and at least 1.45 for (xb, yb) ∈ ∂Ωi2.
Thus, we only need to show that the scalar product of vectors

(xb − ai, yb − bi) and
(

0, (yb − xb) g(xb, yb)
)

(6.7)

is in absolute value less than 1.45 to conclude that the original scalar product (6.4)
is negative for (xb, yb) ∈ ∂Ωi1 and positive for (xb, yb) ∈ ∂Ωi2. Using the definition
of g(·, ·) in (3.11) and the notation z1 = xb− ai, z2 = yb− bi introduced in the proof
of Lemma 2, we have yb−xb = z2−z1 and the scalar product (6.7) can be written as

(z2 − z1) z2 gi(z1, z2) + (z2 − z1) z2

K
∑

k=1,k 6=i

gk(xb − ak, yb − ak). (6.8)

Since we have

max
(xb,yb)∈∂Ωi

∣

∣(z2 − z1) z2 gi(z1, z2)
∣

∣ = max
z2

1
+z2

2
=2 (or 1/2)

∣

∣(z2 − z1) z2 gi(z1, z2)
∣

∣ ≤ 1.4

and the second term in (6.8) is also less than 0.05, we conclude that the scalar prod-
uct (6.4) is negative for (xb, yb) ∈ ∂Ωi1 and positive for (xb, yb) ∈ ∂Ωi2. Therefore,
the vector

(

xb f(xb, yb), yb g(xb, yb)
)

always points inside the domain Ωi on all parts
of the boundary ∂Ωi. In particular, applying Poincaré-Bendixson theorem, we con-
clude that each Ωi contains at least one stable limit cycle. Since Ωi, i = 1, 2, . . . ,K,
are pairwise disjoint, this implies that the ODE system (6.1)–(6.2) has at least K
stable limit cycles. �

Lemma 5 Let us assume that constants ai, bi, i = 1, 2, . . . ,K are given by (6.3).
Then there exists ε0 > 0 such that the reaction rate equations (5.1)–(5.3) have at

least K stable limit cycles for all ε ∈ (0, ε0).

Proof This follows directly from Lemma 4 and Tikhonov’s theorem [22, 23]. �

The existence of K limit cycles in the CRN (5.13) follows by application of Lemma 5.
The chemical system (5.13) has (K + 2) chemical species X, Y, V1, V2, . . . , VK ,
which are subject to 29K chemical reactions, so, by construction, we also establish
bounds in part (ii) of Theorem 1 on N(K) and M(K). This concludes the proof of
Theorem 1.
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7 Proof of Theorem 2

In Theorem 1, we have established that the reaction rate equations (5.1)–(5.3)
describing the CRN (5.13) have at least K stable limit cycles. Since the right-hand
sides of ODEs (5.1)–(5.3) include polynomials up to the order 7, the resulting chem-
ical reactions (5.13) are reactions of the order at most 7. However, in practice, every
higher-order reactions can be subdivided into elementary steps, which are at most
bimolecular (second order). Therefore, we focus here on the proof of Theorem 2 which
restricts our considerations to at most second-order kinetics. We prove it by further
extending the number of variables in the reaction rate equations (5.1)–(5.3), i.e. by
adding intermediary chemical species and elementary reactions into the CRN (5.13).
The resulting CRN has N = 7K + 14 chemical species denoted by

S =
{

X,Y,W1,W2, . . . ,W12
}

∪
K
⋃

i=1

{

Vi, Zi,1, Zi,2, Zi,3, Zi,4, Zi,5, Zi,6

}

, (7.1)

where we use the notation introduced in Definition 1 of CRNs. The concentrations
x, y, vi, w1, w2, . . . , w12, zi,j for i = 1, 2, . . . , K and j = 1, 2, . . . , 6 evolve according
to reaction rate equations

dx

dt
=

K
∑

i=1

[

− xzi,3 + ki,12 viw2 − ki,13 xzi,1 + ki,14 vix+ ai viw11

+ki,15 viw12 − ki,16 xzi,2 − xzi,5

]

, (7.2)

dy

dt
=

K
∑

k=1

[

− yzi,4 + ki,17 viw7 − ki,18 yzi,2 + ki,19 viy + bi viw12

+ki,20 viw11 − ki,21 yzi,1 − yzi,6

]

, (7.3)

dvi
dt

= −ki,1 vi + ki,2 vix+ ki,3 viy − ki,4 viw1 − ki,5 viw6

+ ki,6 viw2 + ki,7 viw7 − ki,8 viw3 − ki,9 viw8 (7.4)

+ ki,10 viw4 + ki,11 viw9 − viw5/ε− viw10/ε + 1/ε,

δ
dw1

dt
= x2 − w1, δ

dw2

dt
= xw1 − w2, δ

dw3

dt
= xw2 − w3, (7.5)

δ
dw4

dt
= xw3 − w4, δ

dw5

dt
= xw4 −w5, δ

dw6

dt
= y2 − w6, (7.6)

δ
dw7

dt
= yw6 − w7, δ

dw8

dt
= yw7 − w8, δ

dw9

dt
= yw8 − w9, (7.7)

δ
dw10

dt
= yw9 − w10, δ

dw11

dt
= xw6 − w11, δ

dw12

dt
= yw1 −w12, (7.8)

δ
dzi,1
dt

= vix− zi,1, δ
dzi,2
dt

= viy − zi,2, δ
dzi,3
dt

= viw2 − zi,3, (7.9)

δ
dzi,4
dt

= viw7 − zi,4, δ
dzi,5
dt

= viw11 − zi,5, δ
dzi,6
dt

= viw12 − zi,6, (7.10)

where δ > 0, ε > 0 and ki,j , i = 1, 2, . . . ,K, j = 1, 2, . . . , 21, are positive constants
given by (5.7) and (5.11). Considering the limit δ → 0 in equations (7.5)–(7.10), we
obtain

w1 = x2, w2 = x3, w3 = x4, w4 = x5, w5 = x6, w6 = y2,
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w7 = y3, w8 = y4, w9 = y5, w10 = y6, w11 = xy2, w12 = x2y, (7.11)

zi,1 = vix, zi,2 = viy, zi,3 = vix
3, zi,4 = viy

3, zi,5 = vixy
2, zi,6 = vix

2y.

Substituting the limiting values (7.11) for wℓ and zi,j , ℓ = 1, 2, . . . , 12, i = 1, 2 . . . , K,
j = 1, 2, . . . , 6, into equations (7.2)–(7.4), we obtain equations (5.9), (5.10) and (5.6),
which are equal to the reaction rate equations (5.1)–(5.3). In particular, we deduce
the following lemma.

Lemma 6 Let us assume that constants ai, bi, i = 1, 2, . . . ,K are given by (6.3).
Then there exist δ0 > 0 and ε0 > 0 such that the reaction rate equations (7.2)–(7.10)
have at least K stable limit cycles for all δ ∈ (0, δ0) and ε ∈ (0, ε0).

Proof This follows directly from Lemma 5 and Tikhonov’s theorem [22, 23]. �

The right-hand sides of reaction rate equations (7.2)–(7.10) only include quadratic
terms. Therefore, there exists a CRN corresponding to reaction rate equations (7.2)–
(7.10) which includes (at most) second-order reactions. We can obtain it by applying
the construction in the proof of Lemma 1. The right-hand sides of equations (7.2) and
(7.3) can be interpreted as the set of 16K chemical reactions (compare with (5.12)
for ODEs (5.1)–(5.2))

Rs,∗
i =

{

X + Zi,3
1−→Zi,3, Vi +W2

ki,12−→ Vi +W2 +X, X + Zi,1
ki,13−→ Zi,1,

Vi +X
ki,14−→ Vi + 2X, Vi +W11

ai−→Vi +W11 +X,

Vi +W12
ki,15−→ Vi +W12 +X, X + Zi,2

ki,16−→ Zi,2,

X + Zi,5
1−→Zi,5, Y + Zi,6

1−→Zi,6, Y + Zi,4
1−→Zi,4,

Vi +W7
ki,17−→ Vi +W7 + Y, Y + Zi,2

ki,18−→ Zi,2, Vi + Y
ki,19−→ Vi + 2Y,

Vi +W12
bi−→Vi +W12 + Y, Vi +W11

ki,20−→ Vi +W11 + Y,

Y + Zi,1
ki,21−→ Zi,1

}

, for i = 1, 2, . . . ,K. (7.12)

The right-hand side of equation (7.4) can be interpreted as the set of 14 chemical
reactions for each i = 1, 2, . . . ,K (compare with (5.8) for the right-hand side of
ODE (5.3))

Rs
i =

{

Vi
ki,1−→∅, Vi +X

ki,2−→ 2Vi +X, Vi + Y
ki,3−→ 2Vi + Y,

Vi +W1
ki,4−→W1, Vi +W6

ki,5−→W6, Vi +W2
ki,6−→ 2Vi +W2,

Vi +W7
ki,7−→ 2Vi +W7, Vi +W3

ki,8−→W3, Vi +W8
ki,9−→W8,

Vi +W4
ki,10−→ 2Vi +W4, Vi +W9

ki,11−→ 2Vi +W9,

Vi +W5
1/ε−→W5, Vi +W10

1/ε−→W10, ∅ 1/ε−→Vi

}

. (7.13)

Consequently, reaction rate equations (7.2)–(7.4) correspond to 30K chemical reac-
tions in sets Rs,∗

i and Rs
i , i = 1, 2, . . . ,K. This is already more that 29K chemical
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reactions used in Theorem 1, because we did not combine two terms on the right-
hand sides into one reaction as we did in the set R∗

i (this is further discussed in
equation (9.1) in Section 9). Moreover, there are additional chemical reactions cor-
responding to the dynamics of additional chemical species in equations (7.5)–(7.10).
The right-hand sides of equations (7.5)–(7.8) can be interpreted as the set of 24
chemical reactions given as

Rw =

{

2X
1/δ−→ 2X +W1, 2Y

1/δ−→ 2Y +W6,

X +Wj
1/δ−→X +Wj +Wj+1, for j = 1, 2, 3, 4,

Y +Wj
1/δ−→Y +Wj +Wj+1, for j = 6, 7, 8, 9,

X +W6
1/δ−→X +W6 +W11, Y +W1

1/δ−→Y +W1 +W12,

Wℓ
1/δ−→∅, for ℓ = 1, 2, . . . , 12

}

. (7.14)

Finally, the right-hand sides of equations (7.9)-(7.10) can be interpreted as the set
of 12 chemical reactions for each i = 1, 2, . . . ,K given by

Rz
i =

{

X + Vi
1/δ−→X + Vi + Zi,1, Y + Vi

1/δ−→Y + Vi + Zi,2,

Vi +W2
1/δ−→Vi +W2 + Zi,3, Vi +W7

1/δ−→Vi +W7 + Zi,4,

Vi +W11
1/δ−→Vi +W11 + Zi,5, Vi +W12

1/δ−→Vi +W12 + Zi,6,

Zi,j
1/δ−→∅, for j = 1, 2, . . . , 6

}

. (7.15)

In summary, we conclude that the reaction rate equations (7.2)–(7.10) correspond to
the CRN with N = 7K+14 chemical species and 42K+24 chemical reactions given
by

R = Rw ∪
K
⋃

i=1

Rs
i ∪ Rs,∗

i ∪Rz
i . (7.16)

Using Lemma 6, we deduce that the CRN (S ,C,R) consisting of chemical species S
given by (7.1) and chemical reactions R given by (7.16) is an example of a CRN which
satisfies Theorem 2. The corresponding set of reaction complexes C can be inferred
from the provided lists of reactions Rs,∗

i , Rs
i , Rw and Rz

i , for i = 1, 2, . . . ,K, given
by (7.12), (7.13) (7.14) and (7.15).

8 Proof of Theorem 3

Given an arbitrarily large integer K ∈ N, we will show that there exists a CRN with
two chemical species such that its reaction rate equations have at least K stable
limit cycles and the order of the chemical reactions is at most n(K) = 6K − 2. To
do that, we start with the planar ODEs (3.1)–(3.2) and renormalize time t to get a
planar system with polynomial ODEs. Using an auxiliar function

h(x, y) =

K
∏

k=1

(

1 + (x− ak)
6 + (y − bk)

6
)

,
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we define our new time variable τ by

τ =

∫ t

0

1

h(x(s), y(s))
ds.

Then we obtain

dx

dτ
=

dx

dt

dt

dτ
= h(x, y)

K
∑

k=1

(x− ak)
{

1− (x− ak)
2 − (y − bk)

2}− (y − bk)

1 + (x− ak)6 + (y − bk)6
, (8.1)

dy

dτ
=

dy

dt

dt

dτ
= h(x, y)

K
∑

k=1

(y − bk)
{

1− (x− ak)
2 − (y − bk)

2}+ (x− ak)

1 + (x− ak)6 + (y − bk)6
, (8.2)

which is a planar ODE system with its right-hand side given as polynomials of
degree n(K) − 1 = 6K − 3. Since we only rescaled the time, Figure 1(a) provides
an illustrative dynamics of the ODE system (8.1)–(8.2) for K = 4. The illustrative
trajectories have been calculated in Figure 1(a) by solving ODEs (3.1)–(3.2) in time
interval t ∈ [0, 100] and we can obtain the same result by solving ODEs (8.1)–(8.2)
numerically in time interval τ ∈ [0, 10−9]. Applying x-factorable transformation to
ODEs (8.1)–(8.2), we obtain

dx

dτ
= xh(x, y)

K
∑

k=1

(x− ak)
{

1− (x− ak)
2 − (y − bk)

2}− (y − bk)

1 + (x− ak)6 + (y − bk)6
, (8.3)

dy

dτ
= y h(x, y)

K
∑

k=1

(y − bk)
{

1− (x− ak)
2 − (y − bk)

2}+ (x− ak)

1 + (x− ak)6 + (y − bk)6
, (8.4)

which is a kinetic system of ODEs with polynomials of degree n(K) = 6K − 2 and
which has K stable limit cycles. Solving for K, we obtain K = (n(K) + 2)/6, which
establishes the lower bound (1.4) in Theorem 3.

9 Discussion

The main results of this paper have been formulated as Theorems 1, 2 and 3, which
show that there exist CRNs with K stable limit cycles for any integer K ∈ N. The
CRN presented in our proof of Theorem 1 consisted of N(K) = K + 2 chemical
species S given by (5.5) and M(K) = 29K chemical reactions R (of at most seventh
order) given by (5.13). The number of species and chemical reactions further increases
in our proof of Theorem 2, where we restrict our investigation to CRNs with (at
most) second-order kinetics. On the other hand, if we restrict to CRNs with only
N = 2 chemical species, then the order of the chemical reactions increases with K
as n(K) = 6K − 2 in our proof of Theorem 3.

An important question is whether we can further decrease N(K) (the number
of chemical species) and M(K) (the number of chemical reactions) in Theorems 1
and 2 and still obtain a CRN with K stable limit cycles. One possibility to decrease
M(K) is to use one chemical reaction to interpret multiple terms on the right-hand
sides of ODEs (5.1)–(5.3). We have already done this in the reaction set R∗

i given
by (5.12) with the reaction

Vi + 2X + 2Y
1−→Vi +X + Y, (9.1)

which corresponds to terms of the form −vix
2y2 appearing in both equations (5.1)

and (5.2). Another way to construct a CRN with reactions modelling the two terms,
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−vix
2y2, in the reaction rate equations (5.1)–(5.2), is to use one chemical reaction

per one term on the right-hand side. That is, the chemical reaction (9.1) could be
replaced by two chemical reactions

Vi + 2X + 2Y
1−→Vi +X + 2Y, and Vi + 2X + 2Y

1−→Vi + 2X + Y

without modifying the form of the reaction rate equations (5.1)–(5.2). In particular,
if our aim is to decrease the numberM(K) of chemical reactions, we could consider to
‘merge’ some other reactions, which have the same reactants. For example, reaction
lists (5.8) and (5.12) contain chemical reactions

Vi + 3Y
ki,7−→ 2Vi + 3Y, Vi + 3Y

ki,17−→ Vi + 4Y.

If these chemical reactions had the same reaction rate constants ki,7 and ki,17, then
we could replace them by one chemical reaction given by

Vi + 3Y
ki,7−→ 2Vi + 4Y

and we would obtain a CRN which has 28K chemical reactions rather than 29K,
which we use in Theorem 1. Consequently, there is potential to decrease the size of
the constructed CRN by a careful choice of our parameters or by modifying the right-
hand sides of reaction rate equations (5.1)–(5.3). However, the focus of our paper
was on the existence proofs and we leave the improvement of bounds on N(K) and
M(K) to future work.

Another possible direction to investigate is to consider more detailed stochastic
description of CRNs, written as continuous time discrete space Markov chains and
simulated by the Gillespie algorithm [24]. Such simulations would help us to investi-
gate how our parameters ai, bi, i = 1, 2, . . . ,K, needs to be chosen that the system
not only has the limit cycles of comparable size (as we visualized in Figure 3 in the
ODE setting), but it also follows each of these limit cycles with a similar probability
(comparable to 1/K). This could also be achieved by using the noise-control algo-
rithm [25] for designing CRNs. This algorithm structurally modifies a given CRN
under mass-action kinetics, in such a way that (i) controllable state-dependent noise
is introduced into the stochastic dynamics, while (ii) the reaction rate equations are
preserved. In particular, it could be used to introduce additional chemical reactions
(which do not change the ODE dynamics), but lead to controllable noise-induced
switching between different limit cycles.
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