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Abstract

Oscillations occur in a wide variety of essential cellular processes, such as cell cycle progression,
circadian clocks and calcium signaling in response to stimuli. It remains unclear how intrinsic stochas-
ticity can influence these oscillatory systems. Here we focus on oscillations of Cdc42 GTPase in fission
yeast. We extend our previous deterministic model by Xu and Jilkine to construct a stochastic model,
focusing on the fast diffusion case. We use SSA (Gillespie’s algorithm) to numerically explore the
low copy number regime in this model, and use analytical techniques to study the long-time behavior
of the stochastic model and compare it to the equilibria of its deterministic counterpart. Numerical
solutions suggest noisy limit cycles exist in the parameter regime in which the deterministic system
converges to a stable limit cycle, and quasi-cycles exist in the parameter regime where the deter-
ministic model has a damped oscillation. Near an infinite-period bifurcation point, the deterministic
model has a sustained oscillation, while stochastic trajectories start with an oscillatory mode and
tend to approach deterministic steady states. In the low copy number regime, metastable transitions
from oscillatory to steady behavior occur in the stochastic model. Our work contributes to the un-
derstanding of how stochastic chemical kinetics can affect a finite dimensional dynamical system, and
destabilize a deterministic steady state leading to oscillations.

1 Introduction

Biological systems have the ability to self-organize at the cellular level. Spatial self-organization can result
in spontaneous symmetry breaking of an initially homogeneous distribution to form one or multiple
clusters of molecules, as well as dispersal and reformation of these clusters in an oscillatory manner.
Assembly and maintenance of active cortical domains in the context of cell growth and division has been
termed cell polarization. The master regulator of cell polarity in a variety of organisms, from yeast to
humans, is the protein Cdc42 [19].

Previous modeling of cell polarization prior to division has focused primarily on budding yeast (Sac-
charomyces cerevisae), specifically on symmetry breaking and establishment of active Cdc42 cortical
zones, often via a Turing mechanism [61, 35, 30]. Although there is some evidence that negative feedback
may play a role in competition between multiple cortical domains [43], stochastic models of cell polar-
ization have mainly focused on the effects of single or multiple positive feedback loops on the formation
of a unique polarity zone [1, 21, 54]. Altschuler and Wu group have shown that in the stochastic regime,
mass action positive feedback alone can lead to Cdc42 aggregation [1, 34]. The stochasticity enables
the emergence of a spatially heterogeneous state which is very far from the homogeneous equilibrium of
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the corresponding deterministic model [34, 50]. Freisinger et al. [21], Hegemann et al. [31] and Lawson
et al. [47] have considered effects of multiple positive feedback loops on the robustness of symmetry
breaking in response to internal fluctuations and external pheromone gradients. In a recent study on a
stochastic version of a Turing-type model of cell polarity [54], Pablo, Ramirez, and Elston suggested that
stochasticity can facilitate the speed of Turing-based polarization.

In some circumstances two or more active Cdc42 domains can coexist for some time, and the basis
for the switch from a single to multiple polarity zones remains an open question [71]. Here we focus on
bipolar cortical zones of Cdc42, as well as spatiotemporal oscillations of Cdc42 from pole to pole that
have been observed in fission yeast (Schizosaccharomyces pombe) [14]. S. pombe cells are rod-shaped and
have a constant diameter of 3-4 µm. These cells have a similar aspect ratio and shape as the bacteria
E.coli but are 100-fold larger in volume. Cell growth occurs at the tip of the cell. Newborn cells grow
from the “old” tip (monopolar growth), which have a high level of active Cdc42 (corresponding to an
asymmetric steady state of Cdc42) [14]. Oscillations of Cdc42 from pole to pole have been experimentally
observed once the cell achieves NETO (new end take-off) and starts bipolar growth from both tips [14].
NETO is a size-dependent transition, occurring once the cell is about 9 µm. NETO can result in either a
constant level of Cdc42 at the two tips (symmetric steady state) or out of phase oscillation between the
tips [14, 73]. Once the cell reaches approximately 14 µm, it divides by fission, resulting in two daughter
cells, each about 7 µm long [12]. Oscillations and fluctuations of Cdc42 may regulate morphology and
switch the cell from monopolar to bipolar growth. Several deterministic models for these spatiotemporal
oscillations from pole to pole have been proposed, involving both positive and negative feedback loops in
Cdc42 regulation [14, 72, 73].

The PDE-ODE model of Cdc42 oscillation in our previous study can be reduced to an ODE system
assuming fast diffusion of Cdc42 [73]. We construct a corresponding stochastic model for Cdc42 in the
fission yeast and show that the ODE model is a large volume limit of the stochastic model with appropriate
scaling. Using Gillespie’s Stochastic Simulation Algorithm (SSA) [27], we numerically explore the effect
of intrinsic fluctuations on the oscillations in our stochastic model. We are interested in the interplay
between stochastic dynamics and nonlinear kinetics. It is known that noise can cause a system that is
monostable in the deterministic limit to become bistable in the stochastic model [59]. Other well-known
effects of noise added to ODE systems include noise-induced oscillations, termed stochastic resonance
[22, 9] and coherence resonance [23, 56]. The former requires a weak periodic external force, while the
latter relies on intrinsic noise. Coherence resonance can be found in excitable systems like the FitzHugh-
Nagumo model [56] and excitable systems with saddle-node infinite period bifurcations [23], bistable
systems like the Duffing-Van der Pol oscillator [75], and systems with Hopf bifurcations [66, 74]. (For
mechanism of coherence resonance in excitable and non-excitable systems; see Section 2.4.2 in [25] and
references therein.) For an oscillatory dynamical system, it is possible that intrinsic stochasticity can
change the creation of a limit cycle with an infinite period which is observed in the deterministic model
to a finite period oscillation in the corresponding stochastic model [18].

For our deterministic model of Cdc42 oscillations in fission yeast, we use numerical simulations and
power spectrum analysis to answer the following questions:

1. How do stochastic chemical kinetics affect the dynamical behavior when the corresponding deter-
ministic system has multiple stable steady states?

2. How do inherent fluctuations affect the dynamical behavior of the system in the presence or absence
of a deterministic limit cycle? Do inherent fluctuations change the dynamical behavior of the system
for parameters near the bifurcation point?

3. How do inherent fluctuations affect the period of oscillation?
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Figure 1: A three-compartmental model for Cdc42 and GEF activation. The left and right (grey) compartments represent

two cell tips. The central compartment represents the cytosol. In the stochastic setting, we model a fission yeast cell as a

cylinder with a fixed cell length of 9µm. Blue: Cdc42. Green: GEF. Active, membrane-bound Cdc42 and GEF are shown in

filled circles. Orange arrow: GEF promotes Cdc42 binding. Blue arrow: Cdc42 inhibits GEF binding. The same reactions

take place at tip 2.

2 Models

2.1 Deterministic PDE–ODE model and Reduction to an ODE Model

In our previously published deterministic model [73], the cell is modeled as a one-dimensional domain
[0, L] and considers Cdc42 and its regulator GEF in the bulk (0, L) and at two cell poles at x = 0, L. At
the two poles, there are active membrane-bound Cdc42 molecules with concentrations c1,2 and g1,2. In
the bulk of the cell, there is passive diffusion of inactive Cdc42, C(x, t), and GEF, G(x, t) (see Fig. 1).
The full PDE-ODE model is given by

∂C

∂t
(x, t) = DC

∂2C

∂x2
(x, t), (1a)

∂G

∂t
(x, t) = DG

∂2G

∂x2
(x, t), (1b)

dci
dt

(t) = k+(ci(t), gi(t))C(Li, t)− k−ci(t), i = 1, 2, (1c)

dgi
dt

(t) = kon(ci(t))G(Li, t)− koffgi(t), i = 1, 2. (1d)

Boundary conditions for C(x, t) are taken so that:

J|x=0 = −DC
∂C

∂x
(0, t) = −dc1(t)

dt
, (2a)

J|x=L = −DC
∂C

∂x
(L, t) =

dc2(t)

dt
. (2b)

Similarly, boundary conditions for G(x, t) are taken so that:

J|x=0 = −DG
∂G

∂x
(0, t) = −dg1(t)

dt
, (3a)

J|x=L = −DG
∂G

∂x
(L, t) =

dg2(t)

dt
. (3b)
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We assume that there is mass conservation of Cdc42 and GEF within the cell so that:

Ac1(t) +Ac2(t) + V

∫ L

0

C(x, t) dx = V Ctot, (4)

Ag1(t) +Ag2(t) + V

∫ L

0

G(x, t) dx = V Gtot. (5)

Here L is a dimensionless length of the cell, V is the volume of the entire cell, while A is the cross-
sectional area of cylinder of length L. In dimensional units, L = 1 represents a cell length of 9 µm (see
Appendix Section A.1 for the units for all parameters in the model). The concentration parameter Ctot

represents the total concentration in a cell of 9 µm long. In this paper, we fix the cell size L and take
Ctot as a bifurcation parameter.

The inactive cytosolic (GDP-bound) form of Cdc42 diffuses fast relative to the size of the cell [8]. We
assume fast diffusion for both C and G relative to the size of the domain L and obtain the following
dimensionless equations (see Appendix Section A.2)

C(t) ≈ CtotL− c1(t)− c2(t)

L
, G(t) ≈ GtotL− g1(t)− g2(t)

L
. (6)

The reduced ODE model for Cdc42 and its GEF at each tip then becomes

dci
dt

(t) = k+(ci(t), gi(t))C(t)− k−ci(t), i = 1, 2, (7a)

dgi
dt

(t) = kon(ci(t))G(t)− koffgi(t), i = 1, 2. (7b)

Here we focus on the most likely negative feedback implementation discussed in our deterministic
model [73]. We assume that active GEF promotes Cdc42 activation while active Cdc42 inhibits the
GEF binding. The association rates of Cdc42 and GEF from [73] are nonlinear and given by

k+(ci, gi) = (k0 + kcatc
2
i )gi, kon(ci) =

kon
max

1 + κc2i
, (8)

while dissociation rates with k− and koff are assumed to be linear. The ci dependence in the activation
rate k+ represents the recruitment of GEF by Cdc42. For the deterministic model, the nonlinearity c2i
is necessary for symmetry breaking in a certain parameter regime. Potential chemical reactions that
can lead to this rate have been discussed in [30]. In addition, studies on the biochemistry of Cdc42
binding [17, 69] have reported that the scaffold protein (Scd2) binds to two active Cdc42 molecules,
resulting in cooperativity. The polynomial form of the chemical kinetics has been derived and used as
an approximation for more complex enzyme kinetics in the glycolytic pathway ([5, 53, 33]). Note that
the polynomial form c2i gi in (8) cannot be interpreted as trimolecular kinetics since it is not physically
realistic.

2.2 Stochastic model

2.2.1 Model geometry

For simplicity, we assume diffusion is fast so that we can model the cytosol as a well-mixed cylinder
of length L and model each pole (tip) as a small compartment of radius r; see Fig. 1. There are two
chemical species (Cdc42 and GEF) in two different forms: (1) active, membrane-bound Cdc42 and GEF;
(2) inactive, cytosolic Cdc42 and GEF. We assume that active molecules (filled circles in Fig. 1) only exist
at the two end compartments and the inactive forms are found in the cytosol. The transition between
inactive and active forms is discussed below.
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2.2.2 Binding kinetics

Denote the number of molecules of Cdc42 at tip 1, tip 2, and in the cytosol by n1(t), n2(t), and nc(t),

respectively. We represent these numbers using a vector ~X = (n1, n2, nc). Similarly, we express the

numbers of GEF using a vector ~Y = (m1,m2,mc). Taking into account binding and unbinding at two
poles, we have four possible reactions for X and Y ; see below.

(C1) Binding at pole 1: nc
k+(n1,m1)−−−−−−−→ n1;

(C2) Unbinding at pole 1: n1
k−−−→ nc;

(C3) Binding at pole 2: nc
k+(n2,m2)−−−−−−−→ n2;

(C4) Unbinding at pole 2: n2
k−−−→ nc.

Here we assume that cytosolic GEF and membrane-bound GEF undergo similar binding kinetics
as Cdc42. The binding and unbinding rates for GEF are denoted by kon and koff . The binding rate
kon(n1) represents the negative regulation of GEF association by active Cdc42. We list the reactions for
binding/unbinding below.

(G1) Binding at pole 1: mc
kon(n1)−−−−−→ m1;

(G2) Unbinding at pole 1: m1
koff−−→ mc;

(G3) Binding at pole 2: mc
kon(n2)−−−−−→ m2;

(G4) Unbinding at pole 2: m2
koff−−→ mc.

It remains to reformulate the binding rate functions k+ and kon in terms of molecule numbers n1 and
m1.

2.2.3 Stochastic rates

We need to convert our one-dimensional ODE model to describe a three-dimensional geometry. Specif-
ically, we model the whole cell as a cylinder of length 9µm with radius r; see Fig. 1. We then divide
the domain into three compartments with two small end compartments representing the inter-membrane
space and one central compartment representing the cytosol. We assume that the length of each end
compartment lε is small and fixed. The volume of the left end compartment is approximated by V1 = Alε
and the number of molecules is given by

n1 = 602V1[c1] = 602A(lε[c1]).

Here [c1] represents the concentration measured in units of µM . To reduce the number of parameters,
we absorb the factor lε into [c1] and define a new concentration variable c1 = lε[c1]. It follows that

n1 = 602Ac1.

Similarly, the number of Cdc42 in the cytosol is given by

nc = 602V [C] = 602AL× 9[C].

Here the factor 9 comes from the assumption that the dimensionless parameter L = 1 represents a cell of
9µm long. For simplicity, we absorb the factor into C(t) and set C(t) = 9[C]; see also Section A.2. This
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Reaction Transition Deterministic rate Stochastic rate constant
Cdc42 binding n1 → n1 + 1 (k0 + kcatc

2
1)g1(Ctot − c1/L− c2/L) k0 → k0/(KaL), kcat → kcat/(K

3
aL)

Cdc42 unbinding n1 → n1 − 1 k−c1 k−

GEF binding m1 → m1 + 1 kon
max/(1 + κc21)(Gtot − g1/L− g2/L) kon

max/L, κ→ κ/K2
a

GEF unbinding m1 → m1 − 1 koffg1 koff

Table 1: Reactions in the stochastic model. Only reactions at pole 1 are shown. Replacing n1 and m1 by n2 and m2

gives the reactions at pole 2. Here the rescaling factor Ka = 602A with A = πr2. Cell size: radius r = 2µm and length
L = 9µm. Parameters used in the deterministic model: Ctot = 1.5, Gtot = 1.5, k− = 1, k0 = 0.1, kcat = 40, kon = 1, koff =
0.9 ∼ 1, κ = 8. The time scale of 1 unit corresponds to 15 sec.

rescaled concentration represents the cytosolic concentration of Cdc42 in a cell of 9 µm. The number of
Cdc42 in the cytosol is given by

nc = 602ALC.

The conservation equation for the total number of Cdc42 is

Ncdc = n1 + n2 + nc = 602(c1 + c2)A+ 602C(t)AL = 602CtotAL. (9)

Here Ctot represents the total concentration in a cell of length 9µm. It is measured in units of concentration
per cross-section area.

Using the relation n1 = 602Ac1 and nc = 602ALC(t), we rescale the ODE parameters involved in
binding rates as following (See Appendix Section A.3):

k0 → k0
1

602AL
, kcat → kcat

1

602AL

1

(602A)2
, (10a)

κ→ κ
1

(602A)2
, kon

max →
kon

max

L
. (10b)

Denote the area-dependent rescaling parameter by Ka = 602A. For a radius r = 2µm, we have

Ka = 602A ≈ 7.56× 103. (11)

Then for Ctot = 1.0 and L = 1, the total number of Cdc42 is given by

Ncdc = KaCtotL = 7.56× 103. (12)

The reactions and parameters are listed in Table 1. All the rescaled rates have the same unit as k−.
We use k− = 1 in our stochastic model. This value corresponds to 1/4 min= 15 sec in physical units as
shown in Appendix Section A.3.

3 Results

We begin by simulating the stochastic model using Gillespie’s Stochastic Simulation Algorithm [27] and
compare differences between stochastic and deterministic variants in the same parameter regime. In
particular, we focus on the behavior of the stochastic system close to the parameter regime where the
onset of oscillation occurs in the deterministic model.

3.1 Bifurcations in the Deterministic Model

We first consider the bifurcation diagram of the deterministic ODE system (7) in the (Ctot, c1) plane; see
Fig. 2(a). Recall that the parameter Ctot represents the abundance of Cdc42 and controls the number
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of steady states and symmetry breaking. For Ctot ∈ (0.8662, 1.57), there are three stable steady states
including a pair of asymmetric steady states (corresponding to most of Cdc42 being at one tip of the cell)
and a stable symmetric steady state (corresponding to Cdc42 being evenly divided between two tips).
The latter steady state is a focus and we expect to see a damped oscillation near the focus; see Fig. 2(b)
for a sample numerical solution. Another key parameter is the GEF dissociation rate koff . For a smaller
koff = 0.9, there is a stable limit cycle for Ctot > 1.09 that arises via an infinite period bifurcation; see
Fig. 2(c). We now fix the total amount of Cdc42 Ctot = 1.1 and vary koff . As koff decreases from 1 to
0.96, there is a Hopf bifurcation at koff = 0.9774; see Fig. 2(d). The critical frequency at the Hopf point
is fHB ≈ 0.0854; see the inset in Fig. 2(d). In the next section we show that in the stochastic simulation
with the appropriately rescaled parameter values, intrinsic fluctuations can give rise to a quasi-cycle with
a dominant frequency close to the frequency fHB. For more details of bifurcation analysis of deterministic
model please see [73].

3.2 Stochastic Simulations in Absence of Deterministic Limit Cycle

We now consider stochastic simulation results corresponding to the deterministic parameters for Ctot =
1.1, Gtot = 1.5, and koff = 1.0 when no limit cycle exists in the deterministic model. The concentrations
Ctot and Gtot are converted the total numbers (Ncdc, Ngef) using equation (9). We consider an arbitrary
initial condition

n1 = 0.66×Ncdc, n2 = 0.14×Ncdc,m1 = 0.1×Ngef ,m2 = 0.43×Ngef . (13)
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Figure 2: Bifurcation diagrams and sample solution of the ODE model (7). Bifurcation parameters used: Ctot and koff . (a)
Bifurcation diagram of c1 vs. Ctot with koff = 1. (b) For a fixed Ctot=1.1, the symmetric steady state is stable with a pair of
complex eigenvalues. The eigenvalue is negative, and the real part of the eigenvalue is small, so the numerical solution shows
a sustained damped oscillation. (c) Bifurcation diagram of c1 vs. Ctot with koff = 0.9. In contrast to the case when koff = 1,
the symmetric steady state is now unstable for large L. Instead, we find there is a stable limit cycle for Ctot > 1.09. This
limit cycle persists in the parameter regime while the asymmetric steady state no longer exists. (d) Hopf bifurcation diagrams
of the deterministic ODE model with varying koff and a fixed Ctot = 1.1. As koff changes from 0.96 to 1, a Hopf bifurcation
occurs at koff = 0.9774. Inset: frequency vs. koff . Along the Hopf branch starting at koff = 0.9774, the frequency of the
limit cycle is small and decreases as koff decreases. Noting also that the frequency is small and thus the period (T = 1/f)
is large. As koff further decreased to 0.89 the frequency eventually goes to zero and the period goes to infinity (not shown
in the figure). Other parameters: k0 = 0.1, kcat = 40, n = 2, Gtot = 1.5, L = 1, km = 1, kon

max = 1, m = 2, κ = 8. Red:
stable steady states. Black: unstable steady states. Green: stable limit cycles.
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Figure 3: (a) Sample trajectories of Cdc42 (normalized by total number of Cdc42 molecules Ncdc) at two tips with an
asymmetric initial condition n1 = 0.66×Ncdc, n2 = 0.14×Ncdc,m1 = 0.1×Ngef ,m2 = 0.43×Ngef . With the same initial
condition, different realizations of stochastic simulations can lead to either an asymmetric steady state (purple and yellow)
or an oscillation (blue and green). The time scale of 1 unit corresponds to 15 sec. (b) Histogram of fraction of Cdc42 at tip
1 (n1/Ncdc) at time t = 50 × 15 sec. The histogram is computed over 1000 simulations. Among all these 1000 realizations,
about half of the trajectories (423/1000) approach the high asymmetric steady state (with n1 ≈ 0.7×Ncdc). The other half
of the simulations lead to the oscillations near n1 ≈ 0.4 ×Ncdc. (c,d) Histogram for stochastic realizations with symmetric
initial condition condition: n1 = n2 = 0.42 ×Ncdc,m1 = m2 = 0.21 ×Ngef .

Two sample stochastic simulations are shown in Fig. 3(a). One sample trajectory (yellow and purple
curves) approaches to the asymmetric steady state of the deterministic ODE model, while the other
trajectory is oscillatory over time (blue and green). The mean value is close to the symmetric steady
state of the deterministic model. To test how frequent each type of trajectory occurs, we plot the
histogram of the number of Cdc42 at tip1 at time t = 50; see Fig. 3(b). Each scenario occurs with a
similar frequency. Specifically, 450 realizations (out of 1000 realizations) approach the asymmetric steady
states and about 550 trajectories end up with a y-value (n1/Ncdc) in [0.3, 0.6]. This range is consistent
with the high and low values of the oscillations shown in the time-course plot (Fig. 3(a)). Note also
that the histogram has a small peak where n1/Ncdc < 0.1 in Fig. 3(b). This indicates that a part of
trajectories (27 trajectories) are close to a lower value of the asymmetric steady states when t = 50.

We also considered an initial condition where n1 and n2 are symmetric:

n1 = n2 = 0.42×Ncdc,m1 = m2 = 0.21×Ngef . (14)

The constants 0.42 and 0.21 correspond to the symmetric steady state (c1, g1) of the ODE model with
Ctot = 1.1. Again we get an oscillation near the symmetric steady state of the deterministic model. At
time t = 100 and t = 400, most trajectories are oscillatory. A few trajectories approach an asymmetric
steady states; see the small peaks near 0 and 0.7; see Fig. 3(c,d).

In summary, we compare the dynamical behavior of the stochastic model and deterministic model in
the parameter regime where the deterministic model has a stable symmetric state (focus) and a pair of
asymmetric steady states (see Fig. 2a). The main difference is that the stochastic model has a sustained
oscillation while the deterministic model has a damped oscillation. In the next section, we explore
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the underlying mechanism by analyzing the power spectrum of the time-series generated by stochastic
simulations. It turns out the stochastic oscillation has a dominant frequency that is close to the frequency
at a Hopf point of the deterministic model.

3.3 Power Spectrum Analysis of Quasi-cycles in Stochastic Model

Recall that our deterministic system has a focus with damped oscillations. As we mention in Section 1,
one possible mechanism for noise-induced oscillations is the coherence resonance. Specifically, stochastic
kinetics of the dynamical system can destabilize a focus and give rise to a sustained oscillation. These
oscillations have a narrow frequency distribution. Power spectrum analysis can be used to find the
frequency distribution and to locate the dominant frequency (this refers to the frequency where the
distribution has a maximum).

Here we follow the notation and definition of power spectrum density (PSD) in [24]. We first introduce
the autocorrelation function of a zero mean process x(t)

G(τ) = lim
T→∞

1

T

∫ T

0

x(t)x(t+ τ)dt. (15)

Here τ is a time lag and the autocorrelation function G(τ) measures the influence of a value at time t on
the value at time t+τ . As stated in [24], the power spectrum density S(ω) is related to Fourier transform
of the autocorrelation function

S(ω) = lim
T→∞

1

2πT

∣∣∣∣∣
∫ T

0

e−iωtx(t)dt

∣∣∣∣∣
2

=
1

2π

∫ ∞
−∞

e−iωτG(τ)dτ. (16)

For an ergodic process, we have G(τ) = 〈x(t)x(t+ τ)〉 where 〈 · 〉 denotes the ensemble average. Let x̃(ω)
denote the Fourier transform of x(t), then the covariance of the Fourier coefficient satisfies

〈x̃(ω)x̃(ω′)〉 = δ(ω + ω′)S(ω). (17)

We now define the power spectrum density for the chemical species in our Cdc42-GEF system. As an
example, we consider Cdc42 at tip 1 (n1) and define its power spectrum density (S1(ω)) by

S1(ω) =
1

2π

∫ ∞
−∞

e−iωτG(τ)dτ =
1

2π

∫ ∞
−∞

e−iωτ 〈(n1(t)− nss1 )(n1(t+ τ)− nss1 )〉 dτ. (18)

Here nss1 denotes the steady-state number of Cdc42 at tip 1. Note that the definition in equation (18)
represents the two-sided power spectrum density. Multiplying the expression in (18) by 2 gives the one-
sided power spectrum density (this is used in [64]). In general, it is difficult to calculate the PSD using
the definition since a closed-form expression for the solution n1(t) is unknown. Alternatively, McKane
et al. [51] has developed an analytic approximation for the power spectrum. Their method is based on
a Langevin equation for the chemical reactions using the linear noise approximation. Fourier transform
is then applied to the Langevin equation to derive a theoretical approximation for the power spectrum
density. See also section 2 of [63] for a detailed discussion of the method.

3.3.1 Power spectrum estimation using the linear noise approximation

Here we use the method developed by McKane et al. [51] to estimate the power spectrum of inherent
fluctuations in our stochastic model near the deterministic steady state. Recall that there are six chemical
species in our three-compartmental model and two conservation equations. Following the analysis in the
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cyclic Lotka–Volterra model [58], we reduce the number of chemical species to four using the conservation
equation of the total number of Cdc42 (GEF). Introduce the concentration variable

u = (c1, c2, g1, g2). (19)

In this section, we use both ui, i = 1, 2, 3, 4, and c1, c2, g1, g2 to refer the component of u. To find the
power spectral density, it is more convenient to rewrite the deterministic ODE for species i in the generic
form

dui
dt

=

p∑
r=1

Sirfr(u).

Here S is the stoichiometric matrix and Sir refers to its (i, r)th component, r labels the single-step
reaction, fr is the reaction rate, and p is the number of single-step reactions. For our Cdc42-GEF
system, the total number of reactions p equals to 8. In addition, we set the first four reactions to be
the activation of Cdc42 at pole 1, deactivation of Cdc42 at pole 1, activation of Cdc42 at pole 2, and
deactivation of Cdc42 at pole 2. The other four reactions represent the GEF binding kinetics in the same
order. The expressions of the reaction rates fi(1 ≤ i ≤ 8) are given below.

f1 = (k0 + kcatc
2
1)g1(Ctot − c1/L− c2/L), f2 = k−c1, (20a)

f3 = (k0 + kcatc
2
2)g2(Ctot − c1/L− c2/L), f4 = k−c2, (20b)

f5 =
kon

max

1 + κc21
(Gtot − g1/L− g2/L), f6 = koffg1, (20c)

f7 =
kon

max

1 + κc22
(Gtot − g1/L− g2/L), f8 = koffg2. (20d)

In the following calculation, we take L = 1. The corresponding stoichiometric matrix S is a 4 by 8 matrix
and is given by

S =

(
S1 0
0 S1

)
, S1 =

(
1 −1 0 0
0 0 1 −1

)
. (21)

We now quantify the effect of inherent fluctuations near a steady state u∗ = (c∗1, c
∗
2, g
∗
1 , g
∗
2). Let N be

the system size and we take N = 602A. We denote a vector for species copy numbers after a time change
as n(βt) = (n1(βt), n2(βt),m1(βt),m2(βt)) and the scaled difference from the deterministic steady state
as ξ = (ξ1, ξ2, ξ3, ξ4). Then, we define the scaled difference as

ξj(t) =
√
N

(
nj(βt)

N
− u∗j

)
j = 1, · · · , 4. (22)

The fluctuations ξj around the steady state u∗j satisfies the Langevin equation (the derivation uses a
system-size expansion [67])

dξj
dt

(t) =

4∑
j′=1

Ajj′ξj′(t) + ηj(t) (23)

with white noise terms satisfying

E[ηj(t)] = 0, E[ηj(t)ηj′(t
′)] = Djj′δ(t− t′) (24)

where δ is a Dirac delta function. The matrix A is the Jacobian at the fixed point u∗ and its jth column
is given by

A1j = ∂(f1(u)−f2(u))
∂uj

∣∣∣
u=u∗

, A2j = ∂(f3(u)−f4(u))
∂uj

∣∣∣
u=u∗

,

A3j = ∂(f5(u)−f6(u))
∂uj

∣∣∣
u=u∗

, A4j = ∂(f7(u)−f8(u))
∂uj

∣∣∣
u=u∗

.
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A direct matrix calculation gives

D = diag(f1 + f2, f3 + f4, f5 + f6, f7 + f8) (25)

where diag(d1, · · · , dn) represents an n× n diagonal matrix with the ith element as di.
Next, we proceed to calculate the power spectrum by taking the Fourier transform of the Langevin

equation (23). Denote the Fourier transform of ξj(t) by

ξ̃j(ω) =
1

2π

∫ ∞
−∞

e−iωtξj(t)dt,

and define vectors ξ̃ =
(
ξ̃1, ξ̃2, ξ̃3, ξ̃4

)
and η̃ = (η̃1, η̃2, η̃3, η̃4). Taking the Fourier transform of equation

(23) gives

iωξ̃j(ω) =
∑
j′

Ajj′ ξ̃j(ω) + η̃j(ω). (26)

which can be written as, Φ(ω)ξ̃(ω) = η̃(ω) where Φ is a 4 × 4 matrix with each element defined as
Φjj′ = −Ajj′ + iωδjj′ . Solving the linear system Φ(ω)ξ̃(ω) = η̃(ω) for ξ̃(ω) gives

ξ̃(ω) = Φ−1(ω)η̃(ω) (27)

where where Φ−1 is an inverse of Φ. Note that the Fourier transform of the white-noise term ηj(t) satisfies

〈η̃j(ω)〉 = 0, 〈η̃j(ω)η̃j′(ω
′)〉 = Djj′δ(ω + ω′). (28)

It follows that 〈
ξ̃(ω)ξ̃(ω′)T

〉
=
〈
Φ−1(ω)η̃(ω)η̃(ω′)TΦ−1(ω′)T

〉
= δ(ω + ω′)Φ−1(ω)DΦ−1(ω′)T

= δ(ω + ω′)Φ−1(ω)D (Φ∗(−ω′))−1
(29)

where Φ∗ represent the conjugate transpose of Φ. Setting ω′ = −ω in equation (29), then〈
|ξ̃j(ω)|2

〉
=

〈(
ξ̃(ω)ξ̃(−ω)T

)
jj

〉
= δ(0)

(
Φ−1(ω)D (Φ∗(ω))

−1
)
jj
.

Using equation (17), we obtain the power spectrum of the fluctuation ξj

Sj(ω) =
(

Φ−1(ω)D (Φ∗(ω))
−1
)
jj
. (30)

A closed form expression for Sj(ω) is complicated due to the calculation of the inverse matrix Φ−1.
Here we compute Sj(ω) numerically for an arbitrary ω and then plot Sj(ω) as a function of ω. For the
parameters Ctot = 1.1 and Ctot = 1.6, the power spectrum density is shown by the red curve in Fig. 4(a,c).
As expected, the power spectrum has a maximum at a dominant frequency ωc ≈ 0.54. Note that ω refers
to the angular frequency, the regular frequency f (cycles per unit time) is given by f = ωc/(2π) = 0.0861,
which is close the frequency at the Hopf bifurcation point f = 0.0854; see the inset of Fig. 2(d). The
averaged frequency obtained using 2000 stochastic realizations is also close to the Hopf frequency; see the
histogram Fig. 4(b). Similar results are observed for a large Ctot = 1.6 (in this case, the deterministic
model is uni-stable). We now compare the theoretical approximation (equation (30)) with the stochastic
simulation. Both results predict a similar dominant frequency. One major difference lies in the width of
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Figure 4: (a) Power spectrum density of the number of Cdc42 at tip1 with Ctot = 1.1. Red: theoretical approximation
of power spectrum density S1(ω)/N (normalized by the integral of S1(ω)/N). Blue: averaged numerical power spectrum
density calculated using 2000 realizations. For each realization, we compute the power spectrum density using a fast Fourier
transform; see Section B.2 for details. The numerical power spectrum density is normalized by the total power (integral of
S(ω)/(2π)) computed using the trapezoidal rule. (b) Histogram of dominant frequencies (f) of 2000 realizations. The mean
regular frequency is obtained as f ≈ 0.0812, which is close to the frequency at the Hopf bifurcation point fHB ≈ 0.085; see
Fig. 2(d). (c,d) Same plots for Ctot = 1.6.

the band near the dominant frequency. In comparison to the stochastic simulation, the power spectrum
approximation using a linear noise approximation has a smaller frequency window near the dominant
frequency. Also, for the case with Ctot = 1.1, the power spectrum density of the stochastic simulation
data has another small peak between 0.5 and 1. This additional peak is not captured by the linear noise
approximation.

Another way to detect the dominant frequency is to consider the determinant |det Φ(ω)| [15, 64].

Note that the expression S1(ω) = Φ−1(ω)D (Φ∗(ω))
−1

is singular when the determinant det Φ(ω) is zero.
Recall that Φ(ω) = A− iωI4 where A is the Jocobian matrix at the steady state. Near a Hopf bifurcation
point of the deterministic model, the Jacobian A has a pair of conjugate eigenvalues λ1,2 = γ ± iω0 with
the real part γ close to zero. It follows that the matrix Φ has a pair of conjugate eigenvalues which are
given by λ1,2 − iω = γ ± i(ω0−ω). As ω approaches ω0 (i.e., ω = (1− ε)ω0 with |ε| � 1), the magnitude
of the eigenvalue |λ1,2− iω|2 = γ2 + ε2ω2

0 becomes small. As a result, det |Φ−1(ω)| is large near the Hopf
frequency ω0.

3.4 Stochastic Simulations in the Presence of a Deterministic Limit Cycle

We now focus on the parameter regime where the deterministic ODE model has a limit cycle. The
bifurcation diagram of the deterministic model is shown in Fig. 2(c). We briefly summarize the bifurcation
diagram, which is described in more detail in [73]. An infinite period bifurcation occurs at Ctot ≈ 1.09.
For Ctot > 1.09, there is a stable limit cycle. For an intermediate Ctot ∈ (1.09, 1.558), the deterministic
system is tristable with a pair of stable asymmetric steady states and a stable limit cycle. For Ctot > 1.558,
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the steady states vanish and only the limit cycle persists. For Ctot near the bifurcation point Ctot ≈ 1.09,
we show the numerical solutions in Fig. 5(a-c).

Note that in a stochastic setting, there is an additional parameter N = 602A which represents the
the system size. Over a finite time interval, the stochastic model with appropriate scaling approaches
the deterministic model as the system size gets large (N → ∞) (see Appendix Section A.4) [44, 45].
However, if a deterministic model has multiple steady states, its stochastic counterpart may have a
different steady-state behavior as t→∞. For example, a stochastic model may approach a steady state
which is unstable in the deterministic model; see Keizer’s paradox [39]. Mathematically speaking, the
exchange of two limits (t→∞ and N →∞) can be problematic; see [68] for an explanation of Keizer’s
paradox. More recent work identified a general class of stochastic chemical reaction networks where
the systems always exhibit extinction events under some conditions while a subset of chemical species
maintains robust steady-state concentrations in the corresponding deterministic mass-action systems
regardless of the total concentration levels of the systems [4]. The work was extended to find sufficient
conditions for extinction events under the stochastic setting [36]. Though this class of stochastic chemical
reaction networks shows extinction events, it was analytically proven that the long-term behavior before
the extinction event of the stochastic model agrees with the limiting behavior of the deterministic system
[16, 3]. Here we focus on the dynamics during a finite time and perform stochastic simulation to explore
how the system behavior changes as the system size N , the concentration parameter Ctot, and the GEF
dissociation rate koff change.

In the following, we consider the parameter regime where the deterministic model has a stable limit
cycle but no stable steady states and the parameter regime where multiple stable steady states and a sta-
ble limit cycle coexist. For the former, the stochastic model also has stochastic oscillations and stochastic
oscillation persists as the copy number is reduced to hundreds. The averaged period of stochastic oscilla-
tions is consistent with the period of the deterministic oscillation. On the other hand, in the parameter
regime where the deterministic model has multiple attractors, we observe stochastic transitions when
the copy number is in hundreds. Finally, we explore the sensitivity of the deterministic system to initial
perturbations near a bifurcation point.

3.4.1 Stochastic oscillation and transition to steady behavior

How does intrinsic stochasticity affect the limit cycle of the equivalent ODE system? What happens
when a limit cycle coexists with stable steady state(s)? Consider the symmetric initial condition:

n1 = n2 = 0.42×Ncdc, m1 = m2 = 0.21×Ngef .

Recall that Ncdc and Ngef are determined by

Ncdc = 602ACtot = 602πr2Ctot, Ngef = 602AGtot = 602πr2Gtot.

We can change the total number Ncdc by either changing the concentration parameter Ctot or the system-
size N = 602πr2. For simplicity, we fix the GEF concentration parameter Gtot = 1.5. If we change the
system size, then the number of Cdc42 (Ncdc) and the number of GEF (Ngef) change simultaneously where
the ratio Ncdc/Ngef = Ctot/Gtot stays fixed. In the following, we show stochastic simulation results for
different Ctot and N . We change the system size N by changing the radius of the cell, r, since it does
not appear in the deterministic ODE model, and does not change the length of the cell. Furthermore,
in fission yeast, the cell curvature (which is affected by the radius) is known to influence the size of the
active Cdc42 zone [10]. The default value for r is taken to be 2 µm. For r = 2 µm and Ctot = 1.0, the
corresponding number of Cdc42 is Ncdc = 7565.

We fix Ctot = 1.1 and vary r as well as the initial molecular copy numbers correspondingly in the
stochastic model as shown in Fig. 5(d-f). For r = 1, 2, and 4 µm, sample trajectories start with an
oscillatory mode and then transit to an asymmetric steady state. Note that this behaviour is different
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Figure 5: Deterministic and stochastic trajectories near Ctot = 1.1. (a-c) Numerical solution of the deterministic model
with Ctot = 1.09, 1.09051486, and 1.1. (d-f) Time-course plots of two stochastic realizations with Ctot = 1.1 and different
system sizes. Here we change the system size N = 602πr2 by changing the cell radius r. For r = 1, 2, and 4 µm, the
stochastic solution oscillates and then switch to an asymmetric steady state. The behavior for the stochastic model with
Ctot = 1.1 is similar to the behavior of the deterministic model with a smaller Ctot = 1.09; see Fig. 5(a). Increasing the
system size may delay the transition to an asymmetric steady state; see histograms of transition times in Fig. 5(d-f). The
initial condition is given by equation (14).

from the deterministic model at Ctot = 1.1 since the deterministic model has a sustained oscillation.
Similar results are obtained with an even larger system size r = 15 (not shown). However, the behavior
of the stochastic trajectory (Fig. 5(d-f)) is similar to the behavior of the deterministic model at a smaller
Ctot = 1.09 (Fig. 5(a)), which is close to the bifurcation point. Hence, based on numerical simulation
we hypohesize that increasing the system-size does not give rise to sustained oscillation but may lead
to a delay in the transition time to an asymmetric steady state; see histograms of transition times in
Fig. 5(d-f). To detect if oscillations occur in different stochastic realizations, we repeat the stochastic
simulations for 1000 times and plot the histogram of the number of Cdc42 at tip 1 (normalized by Ncdc)
at a large time t = 400; see Fig. 6(a). The resulting histogram has two peaks located at the asymmetric
steady states. The numerics suggest that in the stochastic model trajectories approach an asymmetric
steady state and oscillations are unlikely to occur for Ctot = 1.1 (see section 3.4.3).

We then choose a high value Ctot = 1.6 where the deterministic ODE model has a stable limit cycle
(no stable steady states exist). In Fig. 7(a), we show sample stochastic trajectories for r = 2, 1, and 0.5
µm. Oscillations persist in the stochastic variant in all these three cases. A histogram of the number
of Cdc42 at tip 1 with Ctot = 1.6 and r = 1 µm is shown in Fig. 6(f). As the system size parameter r
decreases to 0.5, the total number of Cdc42 is reduced to 756. With such a low copy number, oscillations
still exist although some irregular behavior in the periodicity emerges; see the bottom curve in Fig. 7(a).

Finally, we consider two cases with intermediate values Ctot = 1.4 and Ctot = 1.3. For these two
values, the deterministic model has a pair of stable asymmetric steady states and a stable limit cycle. In
the stochastic model, coexistence of these three possibilities is observed when Ctot = 1.3 and r = 2; see
Fig. 7(c) (time-course plot) and Fig. 6(b) (histogram). As Ctot is increased to 1.4, oscillations are more
likely to occur; see Fig. 7(b) and Fig. 6(c). Now let us consider the effect of reducing the system size for
Ctot = 1.3, 1.4. In both cases, as the system-size parameter r changes from 2 to 1, trajectories are more
likely to approach an asymmetric steady state; see the middle panels in Fig. 7(b,c) and histograms in
Fig. 6(d,e). For a much smaller r = 0.5, there are random transitions between two asymmetric steady
states; see the bottom panels in Fig. 7(b,c). For r = 0.5, robust oscillations are observed only when
Ctot > 1.6 (Ncdc > 756).
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Figure 6: Histograms of the number of Cdc42 molecules at tip 1(normalized by Ncdc) at time t = 400 for different Ctot.
(a) Ctot = 1.1 and r = 2 µm. All 1000 trajectories approach an asymmetric steady state of the deterministic model. With
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of the trajectories have end-points distributed between the two steady states. (c) Ctot = 1.4, r = 2. Most of the trajectories
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Note that this value lies in the multi-stability region of the deterministic ODE where a pair of stable asymmetric steady
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an asymmetric state. (c) Ctot = 1.3. For r = 2, two arbitrary stochastic realizations show that stochastic oscillations and
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3.4.2 Period of oscillation

We now compare oscillations in deterministic and stochastic models. For simplicity, we focus on the
parameter regime where the deterministic system converges to a stable limit cycle and there are no stable
steady states, so we do not have to consider metastable switching from a limit cycle to a steady state
and back. Stochastic simulations show that a noisy limit cycle exists in this regime and we compute the
averaged period of 1000 stochastic cycles and compare with the period of deterministic limit cycle, which
we computed using XPPAUT. For the deterministic solution, we use the initial condition (c1, c2, g1, g2) =
(0.42, 0.42, 0.21, 0.21) + ε(1,−1, 1, 1) with ε = 0.001. This corresponds to the symmetric branch of the
bifurcation diagram Fig. 2(c). The small perturbation is included so that the deterministic system
converges to an oscillatory solution. Such an initial perturbation is not necessary for a stochastic model.
The inherent fluctuations coming from the discreteness of molecular numbers and the random nature of
reactions are sufficient to destabilize a symmetric state and to converge to an oscillation.

In Fig. 8(a), we plot the period of oscillation as a function of the concentration parameter Ctot

for r = 2 µm. In both stochastic and deterministic models, the period decreases as the amount of
Cdc42 Ctot increases. We then fix Ctot = 1.6 and vary the parameter koff (GEF dissociation rate). For
the deterministic model, a Hopf bifurcation occurs at koff = 0.9903 and a stable limit cycle exists for
koff < 0.9903. Above the bifurcation point, the deterministic model has a stable steady state while
the stochastic model has a quasi-cycle. Here we focus on the regime koff < 0.99 where stochastic and
deterministic limit cycles exist. In Fig. 8(b), we plot the period of deterministic oscillation (green) and
the averaged period of stochastic oscillation (blue) as a function of koff . The results in both models are
consistent. Note that the period increases quickly from 10 to 43 (in dimensionless units) as the parameter
koff decreases from 0.9 to 0.7. This fast change in period can be reduced if we reduce the autocatalysis
rate (e.g., kcat = 20 instead of kcat = 40); see inset in Fig. 8(b). It then stays near 43 for a wide range
of koff ∈ (0.3, 0.7). In this parameter regime, we observe relaxation oscillations in both stochastic and
deterministic models; see Fig. 8(c,d) for solutions with koff = 0.7. The model, thus predicts that by
varying the residence time of active GEF on the cell tips, 1/koff , one should observe a change in period
of the oscillation even if the amount of Cdc42 and GEF in the cell does not change.

3.4.3 Sensitivity to perturbations near a bifurcation point

Finally, we explore the dynamics near the infinite period bifurcation point Ctot ≈ 1.1. Under small
perturbation of the initial condition, the deterministic model can converge to different attractors. One
initial condition that can lead to an oscillation is given by

[c1(0), c2(0), g1(0), g2(0)] = [0.8980, 0.1809, 0.0770, 0.4300]. (31)

This initial condition has two main features: (1) the active Cdc42 is high at tip 1(c1 > c2), while the GEF
at the same tip is low (g1 � g2); (2) the inactive Cdc42 (substrate) Ctot− c1− c2 ≈ 0.0211 is almost zero
while the GEF is still plentiful. Therefore, the binding rate of Cdc42 at tip1 is low and its concentration
decreases quickly. As a result, more free Cdc42 becomes available and the Cdc42 concentration at tip 2
increases quickly due to the strong positive feedback. The accumulation at tip 2 triggers the negative
feedback and inhibits GEF binding. As a result, g2 decreases which leads to a decrease in Cdc42 binding
rate, resulting in an oscillation. See Fig. 9(a,b) for the time-course plot and Fig. 9(c,d) for the limit cycle
visualized in the phase plane. Next, we illustrate how the deterministic system can be perturbed away
from the limit cycle. Consider two small perturbations of the initial condition (31):

[c1(0), c2(0), g1(0), g2(0)] = [0.8980, 0.1809, 0.0770, 0.4300] + [0, 0, 0, 0.01]. (32)

[c1(0), c2(0), g1(0), g2(0)] = [0.8980, 0.1809, 0.0770, 0.4300] + [0,−0.0209, 0, 0]. (33)

As we increase the initial amount of GEF at tip 2 by 0.01 (IC (32)), the system approaches a steady state
with c2 > c1 and Cdc42 becomes dominant at tip 2; see the red trajectory in Fig. 9(c,d). On the other
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Figure 8: Comparison of deterministic and stochastic oscillations in the parameter regime where the deterministic system
converges to an oscillation. (a) Period vs. Ctot with a fixed koff = 0.9. As Ctot increases, the period of deterministic
oscillation (green) and the period of stochastic oscillation (green) decrease. The averaged period of stochastic oscillation
is computed using 1000 realizations. (b) Period vs. koff . As koff decreases, the period of oscillation increases and there
is a fast change when koff decreases from 0.9 to 0.7. Such a fast change can be reduced if the autocatalysis rate kcat is
reduced from 40 to 20; see the inset. (c) Time-course plots of oscillations with koff = 0.9, 0.7. As koff decreases, both
deterministic and stochastic oscillations change from a sinusoidal wave to a relaxation oscillation. The concentration c1 and
g1 are normalized by Ctot and Gtot, respectively. (d) Periodic orbits in the (c1, g1) plane. Other parameters are the same
as in Fig. 2. The time scale of 1 unit corresponds to 15 sec.

hand, if we reduce the amount of Cdc42 at tip 2 (IC (33)), the system will converge to another steady
state with c1 > c2; see the orange trajectory in Fig. 9(c,d). With the initial condition (31), stochastic
simulations approach one of the steady states; see black curves. As the deterministic system is quite
sensitive to ICs, inherent fluctuations in the stochastic system help the trajectory escape the basin of
attraction of the limit cycle and approach the stable steady state (see also Fig. 5).

4 Discussion

Polarity establishment has often been modeled using deterministic equations that ignore the discrete
nature of molecules, and concentrations of molecular species are treated as continuous variables. For
example, the deterministic model of Das et al. [14], added noise to parameter values in a DDE model
to represent random fluctuations in order to capture the observed variability in concentration of Cdc42
between the two tips of the cell. Here, our stochastic model using a continuous-time Markov jump process
with fixed parameters naturally describes inherent (intrinsic) fluctuations in the underlying biochemical
system. We use this stochastic model to test the effect that cell size has on fluctuations, while keeping
concentration of Cdc42 and GEF constant, which would not be possible to do in a deterministic model.
Due to the fast diffusion coefficient of cytosolic Cdc42, we assume the system is well-mixed and do not
consider the effect of diffusion in our stochastic model. The effect of diffusion and growing cell size in a
stochastic model for Cdc42 oscillation will be considered separately in a future publication.

We find that for the symmetric steady state, where the amount of Cdc42 at the two tips should be
identical according to the deterministic model, the amount of fluctuations in the difference between the
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jectories in the (c1, g1) and (c2, g2) phase planes. Three initial conditions are used to generate different trajectories. IC1 (blue
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tic trajectories using IC1 are shown in black. Other parameters are the same as in Fig. 5.

normalized species copy number and the concentration greatly exceedsO(N−1/2), which one would naively
expect in stochastic simulations. Instead, we observe high-amplitude stochastic oscillations around this
deterministic steady state. For a dynamical system with a decaying oscillation, McKane et al. [51] have
previously shown that stochastic kinetics of the dynamical system can give rise to a sustained oscillation
with a larger amplitude. Such a phenomenon (termed coherence resonance) has also been observed in
other biological models including a predator-prey model [52], a cyclic Lotka–Volterra model [58], and
a stochastic Wilson–Cowan model [11]. We determine the dominant frequency of these quasi-cycles
numerically, and analytically derive a formula for the power spectrum applying the method by McKane
et al. [51]. We also showed that the power spectrum has a local maximum very close to the observed
dominant frequency. A more rigorous treatment of coherence resonance using multi-scale analysis can be
found in [46].

There is a wide literature on the effect of stochastic chemical kinetics on oscillations in cell biology. The
Tyson group has compared deterministic and stochastic models of cell cycle regulation [38, 6]. Variability
in oscillations of the p53-Mdm2 regulatory circuit is thought to be due to low-frequency noise in protein
production rates [26]. The robustness of circadian oscillations depend on both the number of molecules
and the degree of cooperativity of the negative feedback [28, 29, 20]. Spatiotemporal oscillations of the
Min proteins from pole to pole have been observed in E. coli. Some stochastic models of Min oscillations
include [2, 65, 55, 32, 40]. Similar to Howard and Rutenberg [32], we also find that in some parameter
regimes, stochastic effects are necessary to observe oscillations in the model, and that cells can, in
principle, use these fluctuations to generate pattern forming dynamics when molecule number is in the
thousands. In an environment with changing external cues, such as nutrient or pheromone gradients,
Cdc42 fluctuations may allow fission yeast to adapt and redirect the direction of growth. However, for
very small cells (with r=0.5 µm), where molecule number is in the hundreds, fluctuations lead to random
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switching from a stable limit cycle to a steady state and back, or extinguish oscillations altogether.
Modeling studies in budding yeast estimate the number of Cdc42 molecules to be around 3000 molecules
[42]. However, note that an estimate for total number of Cdc42 is about 80,000 molecules in fission
yeast (Pombase https://www.pombase.org/gene/SPAC110.03). For GEF1 there is estimated 45,000
molecules per cell. However there are only about 10 RNA molecules of Cdc42 per cell and only 3 or so
RNA molecules for GEF1.

We focus on a direct comparison between the deterministic and stochastic models. The propensity
in our stochastic model is derived using a heuristic method. We replace the concentration variable in
the deterministic rate by the normalized copy number n/Ω since our model for Cdc42 does not include
a bimolecular (or higher-order) reaction between the same species. The chemical rate constants that
appear in the deterministic equations represent macroscopic quantities that depend on stochastic chemical
kinetics, which are mass action [27]. To re-formulate more complicated nonlinear association rates as
mass action kinetics would require a replacement of the current non-linear terms in system (7) by specific
enzyme kinetics. Such a description would involve the introduction of new variables and new assumptions,
as well as relatively ad hoc choices regarding their reactions and behaviour, obfuscating the comparison
between the deterministic and stochastic models. Stochastic simulation and linear noise approximation
for the Hill-type reaction kinetics are still an active area of research [7, 62, 41, 48]. In [62], the authors
simulate a specific model of gene regulatory network with a negative feedback using two algorithms. One
algorithm is derived from a master equation that models a reduced reaction with a Hill-type rate. The
other algorithm is derived from a master equation that models a set of elementary reactions with mass
action kinetics. By comparing the coefficients of variance of the simulation results, the authors suggest
that stochastic simulation by the Gillespie method underestimates the size of fluctuations for Hill-type
kinetics. Whether this conclusion holds for a general reaction with other kinetics remains unknown.

In addition to the stochastic model using a continuous-time Markov jump process which is equivalent
to the chemical master equation (CME), other approaches for modeling stochastic biochemical reac-
tions include the chemical Langevin equation (CLE) and its associated chemical Fokker–Planck equation
(CFPE). A thorough discussion of these methods can be found in a recent review [60]. The major lim-
itation of the CME is that the analytical solution is often unknown and the numerical simulation is
expensive. An alternative is to use the CLE, which is a diffusion approximation to the CME ([37]). To
achieve a good approximation, the CLE requires the molecule number to be large. One known issue of
the CLE is that numerical integrations of the CLE can result in negative numbers of molecules [49, 70].
This is likely to occur in our model since the mean concentration of Cdc42 at one end can be low and thus
the molecules at this end are likely to be depleted in a stochastic model. To avoid the issue of producing
negative numbers, some modification of the standard CLE would be necessary.

One remaining mathematical task is to analyze the dynamical behavior in the parameter regime
where the deterministic system has an infinite period bifurcation point. Whether such an infinite-period
bifurcation would occur in the stochastic model remains unknown. For a system with a saddle-node
infinite period bifurcation, Erban et al. [18] showed that the period of stochastic oscillation remains
finite for a finite system size. For our system, the difficulty in doing similar analysis lies in coexistence of
oscillations and steady states. As shown in Fig. 7, with stochastic chemical kinetics, transitions between
steady states and cycles are likely to occur. A potential extension is to calculate the mean residence
time near a steady state or a cycle and the mean switching time between cycles and steady states. One
related task is to estimate the basins of attraction of the deterministic model using the method proposed
in [13] and to explore how stochastic fluctuations may affect the basins. Our result is based on numerical
simulations, and rigorous studies of the dynamics of the stochastic system including the existence of
stationary distributions and asymptotic stability of stochastic cycles remain open.
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Appendices

A Scaling of the Deterministic and Stochastic Models

A.1 Dimensionalization of Deterministic Model

Note that our deterministic model [73] used dimensionless units including all the concentrations and
the cell size parameter L. Hence, for the stochastic simulation we need to reconstruct the dimensional
model with parameters that have appropriate units. Recall that there are three types of variables with
different units: length, time, and concentration. For concentrations, we have both membrane and cytosolic
concentrations. One choice for these two concentrations are proteins per unit area (µm−2) and protein
copy numbers per unit volume (µm−3).

Denote x̃ and t̃ by the length and time variables in dimensions. Denote C̃(G̃) and c̃(g̃) by the cytosolic
and membrane concentrations of Cdc42(GEF) in dimensions. Consider the change of variables

x̃ = αx, t̃ = βt, C̃(x̃, t̃) = γC(x, t), c̃1,2(t̃) = γmc1,2(t). (34)

Here α represents the units of length. Since L = 1 corresponds to 9µm, we set α = 9µm. Also, the Cdc42
dissociation rate k− = 1 corresponds to 4 min−1[14], hence we take β = 1/4 min = 15 sec. We will discuss
the units of concentrations (i.e., values of γ, γm) at a later time.

Using equation (34), we have

∂C

∂t
=
β

γ

∂C̃

∂t̃
,

∂C

∂x
=
α

γ

∂C̃

∂x̃
,

∂2C

∂x2
=
α2

γ

∂2C̃

∂x̃2
,

dci
dt

=
β

γm

dc̃i

dt̃
. (35)

Hence from (1), the diffusion equation and ODEs with dimensions are given by

∂C̃

∂t̃
(x̃, t̃) =

DCα
2

β

∂2C̃

∂x̃2
, (36a)

dc̃1

dt̃
(t̃) =

(
k0

γβ
+

kcat
γγ2

mβ
c̃21

)
g̃1C̃(0, t̃)− k−

β
c̃1(t̃), (36b)

dg̃1

dt̃
(t̃) =

konmax/β

1 + κc̃21/γ
2
m

γm
γ
G̃(0, t̃)− koff

β
g̃1(t̃). (36c)

We list the dimensions of rates below.

k̃0 =
k0

γβ

1

[conc.]× sec
, k̃cat =

kcat
γγ2

mβ

1

[conc.]2m × [conc.]× sec
, (37a)

k̃on
max =

kon
max

β

γm
γ

[conc.]m
[conc.]× sec

, κ̃ =
κ

γ2
m

1

[conc.]2m
, k̃off =

koff

β

1

sec
. (37b)

Here [conc.] represents cytosolic concentration and [conc.]m represents membrane concentration. It re-
mains to determine the units of concentrations γ and γm and the corresponding order of magnitude.

A.2 Units of Concentration and Model Geometry

For the stochastic model geometry, we model the rod-shaped cell as a cylinder. In this case, each cell
tip is a small disk with a radius r and a small thickness. This is the model geometry that is consistent
with our one-dimensional deterministic model. For molecules attached to the cell membrane, we measure
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the concentration using molecular copy number per cross-section area since the thickness is fixed. For
cytosolic concentration, we use the units of molecular copy number per volume (µm3).

Let γm = #
area = n1µm−2 and γ = #

volume = ncµm−3. Here n1 and nc are numbers that represent the
order of magnitude. The number of molecules in each compartment is given by

n1 = c̃1A, m1 = g̃1A, nc(t̃) = C̃(t̃)V, mc(t̃) = G̃(t̃)V. (38)

Note that in the last two equations, we drop the spatial-dependence. This holds when diffusion in the
cytosol is fast. The conservation equation is then given by

Ncdc = n1 + n2 + nc ⇒ c̃1A+ c̃2A+ C̃(t̃)V = C̃totV,

⇒ C̃(t̃) =
C̃totV/A− c̃1 − c̃2

V/A
. (39)

Since we model the cell as a cylinder, the ratio V/A is given by

V ≈ A× (αL), (40)

where α = 9µm. Equation (39) becomes

C̃(t̃) =
C̃totαL− c̃1 − c̃2

αL
. (41)

We now rewrite the above equation in terms of the dimensionless variables. Using the change of variables
(34) to remove the tilde notations gives

C(t)γ =
CtotγαL− c1γm − c2γm

αL
,

⇒ C(t)
αγ

γm
=
CtotL(αγ/γm)− c1 − c2

L
. (42)

Suppose we choose γ and γm such that
αγ

γm
= 1. (43)

Then we can recover the conservation equation (6).

A.3 Derivation of Stochastic Rates

We now write down the equation for the number of molecules in each compartment using equation (38)
and the differential equations (36). The ODEs for the number of Cdc42 at tip1 (n1) and the number of
GEF at tip1 (m1) are given by

dn1

dt̃
(t̃) =

(
k0

γβ
+

kcat
γγ2

mβ

n2
1

A2

)
m1

nc(t̃)

V
− k−

β
n1(t̃), (44a)

dm1

dt̃
(t̃) =

kon
max/β

1 + κn2
1/(γ

2
mA

2)

γm
γ

A

V
mc(t̃)−

koff

β
m1(t̃). (44b)
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Our goal is to derive the stochastic rates. The above ODEs imply the rescaling relations

k′0 =
k̃0

V
=

k0

γβV
, (45a)

k′cat =
k̃cat
A2V

=
kcat
γγ2

mβ

1

A2V
, (45b)

k′on =
k̃onA

V
=
kon

maxγm
γβ

A

V
, (45c)

κ′ =
κ̃

A2
=

κ

γ2
mA

2
, (45d)

k′− = k̃− =
k−
β
, k′off = k̃off =

koff

β
. (45e)

Here the rates with the ′ notation represent the rates we use in stochastic simulation, the rates with the
tilde notation represent the rates in physical units, and the rates without any notation are dimensionless.

Using the relations V = AαL and αγ = γm, we simplify the rescaling relation as

k′0 =
k0

γβαLA
=

k0

γmβLA
, (46a)

k′cat =
kcat

γ3
mA

3Lβ
, (46b)

k′on =
kon

maxγm
γβ

A

V
=
kon

max

βL
, (46c)

κ′ =
κ

γ2
mA

2
, (46d)

k′− =
k−
β
, k′off =

koff

β
. (46e)

Setting γm = 602, we recover equation (10). Note that the unit of all stochastic rate constants except for
κ′ is per 1/4 min (15 sec) due to the factor 1/β in (46).

A.4 Derivation of the Reduced ODE Model from the Stochastic Model

Remind that the numbers of molecules of Cdc42 at tip1, at tip2, and in the cytosol at time t̃ by n1(t̃),
n2(t̃), and nc(t̃). Similarly, the numbers of molecules of GEF at tip1, tip2, and in the cytosol at time t̃
are m1(t̃), m2(t̃), and mc(t̃). Then, the species copy numbers are governed by the following stochastic
equations

ni(t̃) = ni(0) + Yi,1

(∫ t̃

0

(
k′0 + k′catni(s̃)

2
)
mi(s̃)nc(s̃) ds̃

)
− Yi,2

(∫ t̃

0

k′−ni(s̃) ds̃

)
, i = 1, 2,

nc(t̃) = nc(0) +

2∑
i=1

[
−Yi,1

(∫ t̃

0

(
k′0 + k′catni(s̃)

2
)
mi(s̃)nc(s̃) ds̃

)
+ Yi,2

(∫ t̃

0

k′−ni(s̃) ds̃

)]
,

mi(t̃) = mi(0) + Yi,3

(∫ t̃

0

k′on

1 + κ′ni(s̃)2
mc(s̃) ds̃

)
− Yi,4

(∫ t̃

0

k′offmi(s̃) ds̃

)
, i = 1, 2,

mc(t̃) = mc(0) +

2∑
i=1

[
−Yi,3

(∫ t̃

0

k′on

1 + κ′ni(s̃)2
mc(s̃) ds̃

)
+ Yi,4

(∫ t̃

0

k′offmi(s̃) ds̃

)]
,

(47)
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where Yk’s are independent Poisson processes. Adding the equations for CDC42 (or GEF) in (47), the
total number of molecules of Cdc42 (or GEF) is conserved as

n1(t̃) + n2(t̃) + nc(t̃) = n1(0) + n2(0) + nc(0) ≡ Ncdc,
m1(t̃) +m2(t̃) +mc(t̃) = m1(0) +m2(0) +mc(0) ≡ Ngef .

(48)

Plugging in t̃ = βt and using the change of variables (s̃ = βs), (47) become

ni(βt) = ni(0) + Yi,1

(∫ t

0

(
k′0 + k′catni(βs)

2
)
mi(βs)nc(βs)β ds

)
− Yi,2

(∫ t

0

k′−ni(βs)β ds

)
,

nc(βt) = nc(0) +

2∑
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[
−Yi,1
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0

(
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2
)
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)
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0

k′−ni(βs)β ds

)]
,

mi(βt) = mi(0) + Yi,3
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0

k′on

1 + κ′ni(βs)2
mc(βs)β ds

)
− Yi,4
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k′offmi(βs)β ds

)
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[
−Yi,3

(∫ t

0

k′on

1 + κ′ni(βs)2
mc(βs)β ds

)
+ Yi,4

(∫ t

0

k′offmi(βs)β ds

)]
,

(49)

for i = 1, 2. Assuming all species copy numbers are of the same order, we normalize the species copy
numbers by a scaling parameter N = γmA = 602A. Define normalized variables as

cNi (t) =
ni(βt)

N
, CN (t) =

nc(βt)

NL
, gNi (t) =

mi(βt)

N
, GN (t) =

mc(βt)

NL
, (50)

for i = 1, 2.
We express the stochastic rate constants in (46) using N as the following:

k′0 =
k0

NβL
, k′cat =

kcat
N3βL

, k′on =
kon

max

βL
, κ′ =

κ

N2
, k′− =

k−
β
, k′off =

koff

β
. (51)

Then, plugging in the normalized variables and scaled rate constants in (50) and (51), (49) becomes

cNi (t) = cNi (0) +
1

N
Yi,1
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0
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(
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N
i (s)2

)
gNi (s)CN (s) ds

)
− 1

N
Yi,2

(∫ t

0

Nk−c
N
i (s) ds

)
,

CN (t) = CN (0) +

2∑
i=1

1

NL

[
−Yi,1

(∫ t

0

N
(
k0 + kcatc

N
i (s)2

)
gNi (s)CN (s) ds

)
+ Yi,2

(∫ t

0

Nk−c
N
i (s) ds

)]
,
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GN (s) ds

)
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0

NkoffgNi (s) ds
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GN (t) = GN (0) +
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1 + κcNi (s)2
GN (s) ds

)
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0

NkoffgNi (s) ds
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,

(52)

for i = 1, 2. The strong law of large numbers states that, for a unit Poisson process Y , 1
N Y (Nu) → u

almost surely as N → ∞. Therefore, assuming that cNi (0) → ci(0), CN (0) → C(0), gNi (0) → gi(0), and
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GN (0)→ G(0) as N →∞, XN ≡
(
cN1 , c

N
2 , C

N , gN1 , g
N
2 , G

N
)

converges to the limit which is a solution of

ci(t) = ci(0) +

∫ t

0

[(
k0 + kcatci(s)

2
)
gi(s)C(s)− k−ci(s)

]
ds,

C(t) = C(0) +
1

L

∫ t

0

2∑
i=1

[
−
(
k0 + kcatci(s)

2
)
gi(s)C(s) + k−ci(s)

]
ds,

gi(t) = gi(0) +

∫ t

0

[
kon

max

1 + κci(s)2
G(s)− koffgi(s)

]
ds,

G(t) = G(0) +
1

L

∫ t

0

2∑
i=1

[
− kon

max

1 + κci(s)2
G(s) + koffgi(s)

]
ds,

(53)

for i = 1, 2 as N → ∞. Note that ci and gi are the solution of the reduced ODE model for Cdc42 and
GEF given in (7) and the total concentrations of Cdc42 and GEF are conserved as

c1(t) + c2(t)

L
+ C(t) ≡ Ctot,

g1(t) + g2(t)

L
+G(t) ≡ Gtot,

(54)

which is consistent to (6). Setting N = 602A and t = 0 in (50), we obtain that

ni(0) = 602Aci(0), nc(0) = 602ALC(0), mi(0) = 602Agi(0), mc(0) = 602ALG(0), (55)

for i = 1, 2. Then, (55), (48), and (54) provides how Ctot and Ncdc (Gtot and Ngef ) are related as follow:

Ncdc = 602A(c1(t) + c2(t) + LC(t)) = 602ALCtot,

Ngef = 602A(g1(t) + g2(t) + LG(t)) = 602ALGtot.
(56)

B Power Spectrum Analysis

B.1 Discrete Fourier transform

Here we use the fast Fourier transform to estimate the temporal power spectrum density of a discrete
time series {n1(ti)}Nt

i=1 generated by Gillespie’s algorithm. We first replace n1(ti) by n1(ti) − n∗1. The
default time interval is given by t = 0 : ∆t : tend with tend = 200 and a uniform time step ∆t = 0.001. For
the frequency interval, we set the sample frequency fs = 1/∆t = 1000 and define the frequency domain
by

ff = [0 : Nt − 1] ∗∆f, ∆f =
fs
Nt
. (57)

Here Nt is the length of the time series. For each frequency fk, the discrete Fourier transform of n1(t) is
given by

ñ1(k) :=

Nt−1∑
j=0

n1(tj)e
−2πijk/N . (58)

Define the one-sided power spectrum P (k) by [57, 64]

P (k) =


|ñ1(k)|2

N2
t

, k = 0, Nt/2,

|ñ1(k)|2 + |ñ1(Nt − k)|2

N2
t

, 1 ≤ k ≤ Nt/2− 1.
(59)
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The power spectral density (PSD) over the frequency range (fk − fs/(2Nt), fk + fs/(2Nt)) is given by

S(fk ±
1

2
fs) =

P (k)

∆f
=
|ñ1(k)|2 + |ñ1(Nt − k)|2

Ntfs
. (60)

The corresponding PSD over the angular frequency range (ωk −∆ω/2, ωk + ∆ω/2) is

S(ωk ±
1

2
∆ω) =

P (k)

∆ω
. (61)

Here the angular frequency increment is∆ω = 2πfs/Nt. Finally, we average the PSD of a single realization
r over R realizations to obtain a numerical approximation for the PSD. Denote the PSD of a single
realization r by Sr(ωk). The averaged PSD is given by

S(ωk) =
1

R

R∑
r=1

Sr(ωk). (62)

B.2 MATLAB code

%read data

x=n_1/N;% N is the system size

idx1=ceil(length(x)*0.5);

x=x(idx1:end);

t=time(idx1:end);

dt=t(2)-t(1);

%remove the steady state component (x_ss is close to mean(xd))

xd=x-x_ss;

% Zero-padding: add zeros to x so that length(x) equals to a power of 2.

Nt = 2^nextpow2(length(xd));

% sample frequency

fs = 1/dt;

ff = [0:Nt-1]*fs/Nt;% frequency vector

df=ff(2)-ff(1);

%FFT

q = fft(xd,Nt);

%power spectrum

Pxx = q.*conj(q)/Nt^2;

%power spectrum density(psd)

Sxx=Pxx/df;

% one-sided psd

ff=ff(1:floor(Nt/2)+1);

Sxx=Sxx(1:floor(Nt/2)+1);

Sxx(2:end-1)=2*Sxx(2:end-1);

% psd in angular frequency

w=2*pi*ff;

Sw=Pxx/(df*2*pi);

% find the dominant frequency f

[pwrest,idx] = max(Sxx);

fprintf(’The maximum power(using FFT) occurs at f = %3.3f \n’,ff(idx))
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55. Nenad Pavin, Hana Čipčić Paljetak, and Vladimir Krstić. Min-protein oscillations in escherichia coli
with spontaneous formation of two-stranded filaments in a three-dimensional stochastic reaction-
diffusion model. Physical Review E, 73(2):021904, 2006.

56. Arkady S Pikovsky and Jürgen Kurths. Coherence resonance in a noise-driven excitable system.
Physical Review Letters, 78(5):775, 1997.

57. William H Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery. Numerical recipes
in C, volume 2. Cambridge university press Cambridge, 1996.

58. Tobias Reichenbach, Mauro Mobilia, and Erwin Frey. Coexistence versus extinction in the stochas-
tic cyclic Lotka-Volterra model. Physical Review E, 74(5):051907, 2006.

59. Michael Samoilov, Sergey Plyasunov, and Adam P Arkin. Stochastic amplification and signaling
in enzymatic futile cycles through noise-induced bistability with oscillations. Proceedings of the
National Academy of Sciences of the United States of America, 102(7):2310–2315, 2005.

60. David Schnoerr, Guido Sanguinetti, and Ramon Grima. Approximation and inference methods
for stochastic biochemical kinetics—a tutorial review. Journal of Physics A: Mathematical and
Theoretical, 50(9):093001, 2017.

61. Brian D Slaughter, Sarah E Smith, and Rong Li. Symmetry breaking in the life cycle of the budding
yeast. Cold Spring Harbor perspectives in biology, 1(3):a003384, 2009.

62. Philipp Thomas, Arthur V Straube, and Ramon Grima. The slow-scale linear noise approximation:
an accurate, reduced stochastic description of biochemical networks under timescale separation
conditions. BMC systems biology, 6(1):39, 2012.

63. Philipp Thomas, Arthur V Straube, Jens Timmer, Christian Fleck, and Ramon Grima. Signatures
of nonlinearity in single cell noise-induced oscillations. Journal of theoretical biology, 335:222–234,
2013.

64. David LK Toner and Ramon Grima. Molecular noise induces concentration oscillations in chemical
systems with stable node steady states. The Journal of chemical physics, 138(5):02B602, 2013.

30



65. Filipe Tostevin and Martin Howard. A stochastic model of Min oscillations in Escherichia coli and
Min protein segregation during cell division. Physical biology, 3(1):1, 2005.

66. OV Ushakov, H-J Wünsche, F Henneberger, IA Khovanov, Lutz Schimansky-Geier, and MA Zaks.
Coherence resonance near a Hopf bifurcation. Physical review letters, 95(12):123903, 2005.

67. Nicolaas Godfried Van Kampen. Stochastic processes in physics and chemistry, volume 1. Elsevier,
1992.

68. Melissa Vellela and Hong Qian. A quasistationary analysis of a stochastic chemical reaction:
Keizer’s paradox. Bulletin of mathematical biology, 69(5):1727–1746, 2007.

69. Edward Wheatley and Katrin Rittinger. Interactions between Cdc42 and the scaffold protein Scd2:
requirement of sh3 domains for gtpase binding. Biochemical Journal, 388(1):177–184, 2005.

70. Joshua Wilkie and Yin Mei Wong. Positivity preserving chemical langevin equations. Chemical
Physics, 353(1-3):132–138, 2008.

71. Chi-Fang Wu and Daniel J Lew. Beyond symmetry-breaking: competition and negative feedback
in GTPase regulation. Trends in cell biology, 23(10):476–483, 2013.

72. Bin Xu and Paul C Bressloff. A PDE-DDE model for cell polarization in fission yeast. SIAM
Journal on Applied Mathematics, 76(5):1844–1870, 2016.

73. Bin Xu and Alexandra Jilkine. Modeling Cdc42 oscillation in fission yeast. Biophysical Journal,
114(3):711–722, 2018.

74. Anna Zakharova, Alexey Feoktistov, Tatyana Vadivasova, and Eckehard Schöll. Coherence res-
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