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Abstract
Two multiscale algorithms for stochastic simulations of reaction–diffusion processes
are analysed. They are applicable to systems which include regions with significantly
different concentrations of molecules. In both methods, a domain of interest is divided
into two subsets where continuous-time Markov chain models and stochastic partial
differential equations (SPDEs) are used, respectively. In the first algorithm, Markov
chain (compartment-based) models are coupled with reaction–diffusion SPDEs by
considering a pseudo-compartment (also called an overlap or handshaking region)
in the SPDE part of the computational domain right next to the interface. In the
second algorithm, no overlap region is used. Further extensions of both schemes are
presented, including the case of an adaptively chosen boundary between different
modelling approaches.
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1 Introduction

Stochastic models of well-mixed chemical systems are traditionally formulated in
terms of continuous-time Markov chains, which can be simulated using the Gillespie
stochastic simulation algorithm (SSA) (Gillespie 1977) or its equivalent formulations
(Gibson and Bruck 2000; Cao et al. 2004; Klingbeil et al. 2011). These algorithms
provide statistically exact sample paths of stochastic chemical models described by
the corresponding chemical master equation (CME). However, they can be compu-
tationally expensive for larger chemical systems, because they explicitly simulate
each occurrence of each chemical reaction. A number of approaches have been devel-
oped in the literature to decrease the computational intensity of SSAs. Taking into
account separation of timescales, chemical reaction networks can be simplified by
model reduction before they are simulated (Kang 2012; Kang and Kurtz 2013; Kang
et al. 2014; Kim et al. 2017; Kang et al. 2019). The idea of model reduction can also
be used to develop computational methods which efficiently estimate quantities of
interest from stochastic simulations (Cao et al. 2005a, b; Erban et al. 2006; Cotter
et al. 2011). Another approach is to describe the molecular populations in terms of
their concentrations that change continuously (rather than treating them as discrete
random variables). This can be achieved by the chemical Langevin equation, which
is a stochastic differential equation (SDE) acting as a bridge between discrete SSAs
and deterministic reaction rate equations (Kurtz 1976, 1978; Gillespie 2000). Efficient
algorithms which make use of the SDE approximations have been developed for the
simulation of chemical systems especially when they include processes occurring on
different timescales (Haseltine and Rawlings 2002; Salis and Kaznessis 2005; Griffith
et al. 2006; Cotter and Erban 2016). More recently, the SDE approximations have
been extensively used to develop hybrid algorithms which use boths SSAs and SDEs
for different components of the studied systems (Liu et al. 2012; Ganguly et al. 2015;
Duncan et al. 2016; Altintan et al. 2016). The chemical Fokker–Planck equation cor-
responding to the chemical Langevin equation can also be used to efficiently estimate
quantities of interest from stochastic models (Erban et al. 2009; Cotter et al. 2013;
Liao et al. 2015; Cucuringu and Erban 2017).

In this paper, we consider spatially distributed (reaction–diffusion) models which
can be described in terms of the reaction–diffusion master equation (RDME) (Erban
et al. 2007). A spatial domain is discretized into compartments (which are assumed
to be well mixed), and diffusion is modelled as a jump process between neigh-
bouring compartments (Erban and Chapman 2009; Kang et al. 2012b; Hu et al.
2014). In the literature, the RDME approach has been adapted to model and sim-
ulate spatially distributed systems using uniformmeshes (equivalently, subvolumes or
compartments) (Stundzia and Lumsden 1996; Elf et al. 2003; Lampoudi et al. 2009),
nonuniform meshes (Bernstein 2005) or complex geometries (Isaacson and Peskin
2006). The resulting compartment-based model can be simulated by the Gillespie
SSA. Compartment-based reaction–diffusion approaches have been used to model
several intracellular processes, including Min oscillations in E. coli (Fange and Elf
2006; Arjunan and Tomita 2010), ribosome biogenesis (Earnest et al. 2015, 2016),
actin dynamics in filopodia (Zhuravlev and Papoian 2009; Erban et al. 2014) and
pattern formation in morphogen signalling pathways (Kang et al. 2012a). They have
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also been implemented in a number of software packages including MesoRD (Hattne
et al. 2005), URDME (Engblom et al. 2009), STEPS (Wils and De Schutter 2009),
SmartCell (Ander et al. 2004), Lattice Microbes (Roberts et al. 2013) and Smoldyn
(Robinson et al. 2015). As in the case of the simulation of well-mixed systems, the
Langevin approach provides an approximation of the compartment-basedmodelwhich
can reduce the computational intensity of simulations. Spatial Langevin approaches
(Kalantzis 2009; Ghosh et al. 2015; Bhattacharjee et al. 2015) and stochastic partial
differential equations (SPDEs) (Dogan and Allen 2011; Alexander et al. 2002, 2005;
Atzberger 2010; Kim et al. 2017) have been suggested to model stochastic reaction–
diffusion systems. A hybrid method has also been introduced using the Langevin
approximation for diffusion coupled with the compartment-based model for reactions
(Lo et al. 2016).

In the thermodynamic limit (of large populations), compartment-based models lead
to reaction–diffusion partial differential equations (PDEs) which are written in terms
of spatio-temporal concentrations of chemical species. This property can be exploited
to design multiscale (hybrid) algorithms which use the compartment-based Markov
chain model in a subset of the simulated system and apply reaction–diffusion PDEs
in other parts (Kalantzis 2009; Ferm et al. 2010; Yates and Flegg 2015; Spill et al.
2015; Harrison and Yates 2016). Other hybrid methods have also been developed
in the literature including methods which couple more detailed Brownian dynamics
(molecular-based) approaches with the compartment-based method (Flegg et al. 2012;
Klann et al. 2012; Flegg et al. 2015; Dobramysl et al. 2016) or with reaction–diffusion
PDEs (Franz et al. 2013; Schaff et al. 2016; Bakarji and Tartakovsky 2017).

In this paper, we analyse two multiscale algorithms which couple compartment-
based models with suitably discretized SPDEs. They can be used when a large number
of molecules of some species are located in parts of the computational domain. In the
region with a small number of molecules, we use a compartment-based model written
as a continuous-time Markov chain. In other regions, we use SPDEs derived from the
Markov process. The goal of this multiscale methodology is to get an approximation
of the spatio-temporal statistics which we would obtain by running the underlying
Markov chain model in the entire computational domain. The paper is organized
as follows. In Sect. 2, we present the derivation of the SPDE description from the
compartment-based model. In Sect. 3, two multiscale schemes are presented. An
illustrative example with a static boundary between the SPDE and Markov chain sub-
domains is studied in Sect. 4. The algorithm is extended to a time-dependent interface
in Sect. 5. In Sect. 6, we discuss an example with multiple species.

2 From Continuous-TimeMarkov Jump Processes to Stochastic
Partial Differential Equations

We consider a system of N chemically reacting species S1, S2, …, SN , which are
diffusing (with diffusion constants Di , i = 1, 2, . . . , N ) in the bounded domain
Ω ⊂ R

3. We use a compartment-based stochastic reaction–diffusion model (Erban
et al. 2007), i.e. we divide the domain Ω into K compartments Ck , k = 1, 2, . . . , K ,
and model the diffusion as a jump process between neighbouring compartments.
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(a)

(b)

Fig. 1 a A schematic illustration of the elongated domain Ω for K = 9. b A schematic illustration of the
multiscale setup

In order to simplify the analysis, we consider that Ω is an elongated pseudo-one-
dimensional domain Ω = [0, Kh] × [0, hy] × [0, hz], where h, hy, hz > 0, as
shown in Fig. 1a. Compartments are rectangular cuboids with the volume hhyhz where
Ck = [(k−1)h, kh]×[0, hy]×[0, hz] for k = 1, 2, . . . , K . Let Zk

i (t), i = 1, 2 . . . , N ,
k = 1, 2, . . . , K , be the number of molecules of the i th chemical species in the kth
compartment at time t . Then, Zk(t) is an N -dimensional column vector with each
component representing the number of molecules of the corresponding species in the
kth compartment at time t . We define

Z(t) =
(
Z1(t)T,Z2(t)T, . . . ,ZK (t)T

)T
,

which is a K N -dimensional column vector and T denotes the transpose of a vector.
We assume that the chemical system is subject to M chemical reactions with ζ j ,
j = 1, 2, . . . , M , being the corresponding N -dimensional stoichiometric vector. Let
ζ k
j , j = 1, 2 . . . , M , k = 1, 2, . . . , K , be a K N -dimensional stoichiometric vector

which gives a net molecule change during each occurrence of the j th reaction in
the kth compartment. Let νk−,i (resp. νk+,i ), i = 1, 2, . . . , N , k = 1, 2, . . . , K be
a K N -dimensional stoichiometric vector which gives a net molecule change during
diffusion of the i th species from the kth compartment to the (k−1)th (resp. (k+1)th)
compartment. Let

λkj : [0,∞)N → [0,∞), j = 1, 2 . . . , M, k = 1, 2, . . . , K ,

be the propensity function of the j th chemical reaction in the kth compartment, i.e.
λkj (Z

k(t)) dt is the probability that the j th reaction occurs in the kth compartment

during the time [t, t + dt) given that the current state at time t is Zk(t). We denote by
Rk
j (t), j = 1, 2 . . . , M , k = 1, 2, . . . , K , a random process which counts the number

of times the j th reaction occurs in the kth compartment up to time t . Then,

Rk
j (t) = Y k

j

(∫ t

0
λkj (Z

k(s)) ds

)
, (1)
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where Y k
j are independent unit Poisson processes. We define Rk

−,i (t) (resp. R
k
+,i (t)),

i = 1, 2, . . . , N , k = 2, 3, ..., K (resp. k = 1, 2, ..., K − 1), random processes count-
ing the numbers of times that one molecule of the i th species in the kth compartment
diffuses to the (k − 1)th compartment (resp. to the (k + 1)th compartment) up to time
t . Then,

Rk
±,i (t) = Y k

±,i

(∫ t

0

Di

h2
Zk
i (s) ds

)
, (2)

where Y k
±,i are independent unit Poisson processes. The governing equation for the

state vector Z(t) is

Z(t) = Z(0) +
K∑

k=1

M∑
j=1

Rk
j (t) ζ k

j +
K∑

k=2

N∑
i=1

Rk
−,i (t) νk−,i +

K−1∑
k=1

N∑
i=1

Rk
+,i (t) νk+,i . (3)

When the propensities are large (Kurtz 1978), the counting processes in Eqs. (1)–(2)
can be approximated as

Rk
j (t) ≈

∫ t

0
λkj (Z

k(s)) ds +
∫ t

0

√
λkj (Z

k(s)) dWk
j (s),

Rk
±,i (t) ≈

∫ t

0

Di

h2
Zk
i (s) ds +

∫ t

0

√
Di

h2
Zk
i (s) dW

k
±,i (s),

where Wk
j and Wk

±,i are standard Brownian motions. Using νk+,i = −νk+1
−,i for k =

1, 2, . . . , K − 1 and changing the index (k + 1) → k in the last term of Eq. (3),
governing Eq. (3) can be approximated by the following SDE (Gillespie 2000; Kurtz
1978)

Z(t) = Z(0) +
K∑

k=1

M∑
j=1

(∫ t

0
λkj (Z

k(s)) ds +
∫ t

0

√
λkj (Z

k(s)) dWk
j (s)

)
ζ k
j

+
K∑

k=2

N∑
i=1

{∫ t

0

Di

h2

(
Zk
i (s) − Zk−1

i (s)
)
ds +

∫ t

0

√
Di

h2
Zk
i (s) dW

k
−,i (s)

−
∫ t

0

√
Di

h2
Zk−1
i (s) dWk−1

+,i (s)

}
νk−,i . (4)

Since Wk
−,i and Wk−1

+,i terms always appear together in Eq. (4), and since the sum of
independent normal random variables is normally distributed, Eq. (4) can be rewritten
as
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Z(t) = Z(0) +
K∑

k=1

M∑
j=1

(∫ t

0
λkj (Z

k(s)) ds +
∫ t

0

√
λkj (Z

k(s)) dWk
j (s)

)
ζ k
j

+
K∑

k=2

N∑
i=1

{∫ t

0

Di

h2

(
Zk
i (s) − Zk−1

i (s)
)
ds

+
∫ t

0

√
Di

h2

(
Zk
i (s) + Zk−1

i (s)
)
dWk−1

i (s)

}
νk−,i ,

(5)

where Wk−1
i is a standard Brownian motion. Let Vh = hhyhz be the volume of each

compartment, and define c(t) = Z(t)/Vh as a concentration vector for species at time
t . Define

λ̂
k,h
j (ck(t)) = λkj (Z

k(t))

Vh
, where ck(t) = Zk(t)

Vh
.

Dividing Eq. (5) by Vh , we get

c(t) = c(0) +
K∑

k=1

M∑
j=1

(∫ t

0
λ̂
k,h
j (ck(s)) ds +

∫ t

0

1√
Vh

√
λ̂
k,h
j (ck(s)) dWk

j (s)

)
ζ k
j

+
K∑

k=2

N∑
i=1

{∫ t

0

Di

h2

(
cki (s) − ck−1

i (s)
)
ds

+
∫ t

0

1√
Vh

√
Di

h2

(
cki (s) + ck−1

i (s)
)
dWk−1

i (s)

}
νk−,i ,

(6)

where cki (t) = Zk
i (t)/Vh . The second part of Eq. (6) is consistent with the discretized

Langevin scheme for a diffusion equation, as studied in Alexander et al. (2002). We
rewrite Eq. (6) using the fact that reaction happens among species in the same compart-
ment and that diffusion occurs between neighbouring compartments. Differentiating
Eq. (6), the concentration of the chemical species in the kth compartment satisfies

dck(t) =
M∑
j=1

(
λ̂
k,h
j (ck(t)) dt + 1√

Vh

√
λ̂
k,h
j (ck(t)) dWk

j (t)

)
ζ j

+ D
h2

{(
ck+1(t) − ck(t)

)
χ{k �=K } −

(
ck(t) − ck−1(t)

)
χ{k �=1}

}
dt

+ 1√
Vh

1

h

{
dWk(t)

√
D
(
ck+1(t) + ck(t)

)
χ{k �=K }

− dWk−1(t)
√
D
(
ck(t) + ck−1(t)

)
χ{k �=1}

}
,

(7)
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where Wk(t) are N × N diagonal matrices with Wk
i (t) on its diagonal for i =

1, 2, . . . , N , k = 1, 2, . . . , K − 1 and χ{·} is an indicator function. In Eq. (7), ζ j
is an N -dimensional stoichiometric vector of the j th reaction for j = 1, 2, . . . , M ,
and D is a N × N diagonal matrix which has diffusion constants of individual species
on its diagonal, i.e.

D =

⎡
⎢⎢⎢⎣

D1 0 . . . 0
0 D2 . . . 0
...

...
. . . 0

0 0 . . . DN

⎤
⎥⎥⎥⎦ .

We approximate white noise processes in Eq. (7) as

1√
h

dWk
j (t)

dt
≈ η j (x, t),

1√
h

dWk(t)

dt
≈ ξ(x, t),

where η j (x, t), j = 1, 2, . . . , M, are spatio-temporal white noise processes (Walsh
1986), i.e.

∫ x ′+Δx

x ′

∫ t ′+Δt

t ′
η j (x, t) dx dt, x ′ ∈ [0, Kh], t ′ ∈ [0,∞),

is normally distributed with zero mean and variance ΔxΔt . Matrices ξ(x, t) are diag-
onal N × N matrices where diagonal entries are independent spatio-temporal white
noise processes. Then, Eq. (7) is a solution of a discretized version of a SPDE in space
which can be formally written in the following form

∂c(x, t)
∂t

=
M∑
j=1

λ̂ j (c(x, t), x) ζ j + D
∂2c(x, t)

∂x2
+

M∑
j=1

√
λ̂ j (c(x, t), x)

hyhz
ζ j η j (x, t)

+ ∂

∂x

[
ξ(x, t)

√
2Dc(x, t)

hyhz

]
, (8)

where c(x, t) is a spatio-temporal concentration related to ck(t) by

1

h

∫ kh

(k−1)h
c(x ′, t) dx ′ ≈ ck(t).

The reaction term λ̂ j : [0,∞)N × [0, Kh] → [0,∞) in Eq. (8) is related to λ̂
k,h
j by

1

h

∫ kh

(k−1)h
λ̂ j (c(x ′, t), x ′) dx ′ ≈ λ̂

k,h
j (ck(t)).
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Note that Eqs. (6)–(7) are discretized versions of Eq. (8), but the compartment-based
model in (3) breaks down as h → 0 as discussed in Section 2.2 of Engblom et al.
(2009). TheSPDE inEq. (8) is consistent to the ones in the previouswork (seeEquation
1 in Kim et al. 2017 and Equation 3.24 in Dogan andAllen 2011). For more details, see
derivations of the SPDE for diffusion in Section 3.1 of Dogan and Allen (2011) and
the general version (Equations 8.2.54–8.2.56) in Sections 8.1-8.2 of Gardiner (2004).

3 Multiscale Algorithms Combining Compartment-BasedModels
with SPDEs

In this section, we present a multiscale approach which uses both SPDEs and Markov
chain models. We develop two algorithms, denoted Scheme 1 and Scheme 2 in what
follows, which are applied to illustrative examples in Sects. 4, 5 and 6. Considering
the same set up as in Sect. 2, we study a system of N chemically reacting species
S1, S2, …, SN , which are diffusing (with diffusion constants Di , i = 1, 2, . . . , N )
in an elongated domain Ω = [0, L] × [0, hy] × [0, hz], where L = Kh, given in
Fig. 1. The domain Ω is divided into K compartments (rectangular cuboids) with
Ck = [(k − 1)h, kh] × [0, hy] × [0, hz] for k = 1, 2, . . . , K .

The main goal of this paper is to replace the Markov chain description in a part of
the computational domain by the corresponding SPDEs. Let us consider that we use
the SPDE in Eq. (8) in the domain Ωs = [0, I ] × [0, hy] × [0, hz] where I = Ksh
and K > Ks ∈ N; i.e. we consider that the first Ks compartments are described by a
suitable discretization of the SPDE in Eq. (8) (see Fig. 1b). We only use the Markov
chain model for the remaining Km = K − Ks compartments, i.e. in subdomain
Ωm = [I , L] × [0, hy] × [0, hz]. In this section, we develop an appropriate boundary
condition on the interface I between Ωs and Ωm .

In order to design the numerical scheme, the SPDE in Eq. (8) needs to be appro-
priately discretized. We denote by Δx the mesh size used in the discretization of the
SPDE. There are two important cases: (i) Δx > h and (ii) Δx ≤ h. In this section,
we focus on case (ii), because we are interested in coupling the SPDE in Eq. (8) with
Markov chain models. The case (i) is important when one uses discretized SPDEs to
design efficientmultiscale schemes, but this introduces additional discretization errors.
We will discuss case (i) in Sect. 7. In Ωs , each compartment of size h is discretized
into α grid points (α ∈ N) with each grid size equal toΔx . In the remaining part of the
computational domainΩm , the compartment-basedmodel is used. The state of the sys-
tem of the multiscale model is described by vectors Xk(t), k = 1, 2, . . . , Ksα + Km .
The vector Xk(t) for k = 1, 2, . . . , Ksα represents species ‘numbers’ in the mesh
interval [(k − 1)Δx, kΔx] in the SPDE region Ωs , i.e. it is related to spatio-temporal
concentration c(x, t) used in the SPDE description by

Xk(t) ≈ hyhz

∫ kΔx

(k−1)Δx
c(x, t) dx .
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Fig. 2 Schematic diagrams of a Scheme 1 and b Scheme 2 describing molecular transfer between Ωs and
Ωm . Note that the size of a virtual compartment in Ωs is h in panel (a)

The vectorXKsα+k(t) for k = 1, 2, . . . , Km represents species numbers inCKs+k =
[I + (k − 1)h, I + kh] in the Markov chain region Ωm , i.e. it is related to the state
vector Zk(t) used in the Markov chain description by XKsα+k(t) = ZKs+k(t).

We consider two different schemes to describe transfer of molecules near the inter-
face I coupling discretized SPDEs and the Markov chain model, as shown in Fig. 2.
Without loss of generality, both schemes are introduced for diffusion, because the
description of reactions does not influence the transfer of molecules across the inter-
face I . In Scheme 1, we assume that there is a virtual compartment, CKs = [I −h, I ],
inΩs , where the molecules are partially treated using a compartment-based approach.
Such overlap (handshaking) regions are common in many multiscale methodologies,
including coupling molecular dynamics with Brownian dynamics simulations (Erban
2014, 2016), Brownian dynamics with PDEs (Franz et al. 2013), or in atomistic to
continuum coupling methods (Miller and Tadmor 2009). We define a state vector

X(t) =
(
X1(t)T,X2(t)T, . . . ,XKsα+Km (t)T

)T
,

which is a (Ksα + Km)N -dimensional column vector. Scheme 1 is described using
the following evolution equation for state vector X(t):

X(t) = X(0) +
Ksα∑
k=2

N∑
i=1

{∫ t

0

Di

Δx2

(
Xk
i (s) − Xk−1

i (s)
)
ds

+
∫ t

0

√
Di

Δx2

(
Xk
i (s) + Xk−1

i (s)
)

χ{
Xk
i (s)+Xk−1

i (s)≥0
} dWk−1

i (s)

}
νk−,i

+
K∑

k=Ksα+2

N∑
i=1

Y k
−,i

(∫ t

0

Di

h2
Xk
i (s) ds

)
νk−,i

+
K−1∑

k=Ksα+1

N∑
i=1

Y k
+,i

(∫ t

0

Di

h2
Xk
i (s) ds

)
νk+,i
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+
α∑

	=1

N∑
i=1

Y Ksα+1
−,i

(∫ t

0

Di

h2
XKsα+1
i (s) ds

)
I 	−,i (t) η	−,i

︸ ︷︷ ︸
Markov chain → SPDE

+
α∑

	=1

N∑
i=1

Y Ksα+,i

⎛
⎝
∫ t

0

Di

h2

α∑
j=1

X (Ks−1)α+ j
i (s)χ{∑α

j=1 X
(Ks−1)α+ j
i (s)≥1

} ds

⎞
⎠I 	+,i (t) η	+,i

︸ ︷︷ ︸
SPDE → Markov chain

,

(9)

where the first sum on the right-hand side represents diffusion in Ωs (compare with
Eq. (5) replacing h byΔx). Note that the indicator function χ{

Xk
i (s)+Xk−1

i (s)≥0
} is used

to make sure the term inside the square root not being negative. Here the symbols νk±,i
describe (Ksα+Km)N -dimensional stoichiometric vectors. The second and third sums
represent diffusion in the compartment-based region,Ωm , where Y k

±,i are independent
unit Poisson processes (compare with Eq. (2)). The last two sums represent transition
of a molecule from Ωm to Ωs and from Ωs to Ωm , respectively. A molecule in Ωm in
the boundary compartment, CKs+1, jumps to the SPDE domain with a rate Di/h2. A
molecule which jumps is placed to one of the mesh points in the overlap compartment,
CKs . To describe this process in Eq. (9), we have defined indicator functions

I 	±,i (t) = χ{U±,i (t)∈[I−h+(	−1)Δx,I−h+	Δx]}, for 	 = 1, 2, . . . , α,

where U±,i (t) are independent random variables uniformly distributed on inter-
val [I − h, I ] for each t and i . Stoichiometric vectors, η	±,i for 	 = 1, 2, . . . , α,
i = 1, 2, . . . , N , give changes due to the diffusion of the i th species between the 	th
SPDE discretization point in CKs and the compartment CKs+1 across the interface
I . Transition of a molecule from Ωs to Ωm is described by the last term of Eq. (9)
using time-changed Poisson processes. A molecule, anywhere in the overlap com-
partment CKs , can be transferred with a rate Di/h2. The corresponding molecule is
then randomly subtracted from one of α discretization grid points which are in CKs .

Note that the molecular copy number,
∑α

j=1 X
(Ks−1)α+ j
i (s), in the last term of Eq.

(9) can be non-integer value due to the non-integer concentration in CKs . To prevent

X (Ks−1)α+ j
i (s) being negative due to the molecular transfer from Ωs to Ωm , another

indicator function is used in the last term of Eq. (9) to set the propensity as zero if the
total molecular copy number in CKs is less than 1.

Scheme 2 is described in terms of two unknown parameters, denoted Ψ1 and Ψ2,
by the following evolution equation for the state vector X(t):

X(t) = X(0) +
Ksα∑
k=2

N∑
i=1

{∫ t

0

Di

Δx2

(
Xk
i (s) − Xk−1

i (s)
)
ds

+
∫ t

0

√
Di

Δx2

(
Xk
i (s) + Xk−1

i (s)
)

χ{
Xk
i (s)+Xk−1

i (s)≥0
} dWk−1

i (s)

}
νk−,i
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+
K∑

k=Ksα+2

N∑
i=1

Y k−,i

(∫ t

0

Di

h2
Xk
i (s) ds

)
νk−,i

+
K−1∑

k=Ksα+1

N∑
i=1

Y k
+,i

(∫ t

0

Di

h2
Xk
i (s) ds

)
νk+,i

+
N∑
i=1

Y Ksα+1
−,i

(∫ t

0
Ψ1

Di

h2
XKsα+1
i (s) ds

)
ν
Ksα+1
−,i

︸ ︷︷ ︸
Markov chain → SPDE

+
N∑
i=1

Y Ksα+,i

(∫ t

0
Ψ2

Di

Δx2
XKsα
i (s)χ{

XKsα
i (s)≥1

} ds
)

ν
Ksα+,i

︸ ︷︷ ︸
SPDE → Markov chain

. (10)

The first three sums on the right hand side in Eq. (10) are identical to those in Eq. (9).
The fourth and fifth sums describe molecular transfer between the last grid point
in Ωs and the boundary compartment CKs+1. A molecule in Ωm in the boundary
compartment, CKs+1, jumps to the last grid point of the SPDE domain with rate
Ψ1Di/h2, and the transfer rate in the opposite direction is Ψ2Di/Δx2. Note that
XKsα
i (s) in the fifth term of Eq. (10) can be non-integer value due to the non-integer

concentration in Ωs . To prevent X
Ksα
i (s) being negative due to the molecular transfer

from Ωs to Ωm , we use an indicator function to set the propensity as zero if the
molecular copy number in the last grid point in Ωs is less than 1.

To determine parameters Ψ1 and Ψ2 of Scheme 2, we use the discretization of the
PDE for diffusion using a finite volume approximation (Bernstein 2005). It gives the
jump coefficient of the i th species from the j th compartment to the neighbouring j ′th
compartment as Di/(h j |a j −a j ′ |), where h j is the length of the j th compartment and
a j and a j ′ are the centres of the j th and j ′th compartments, respectively. Considering
the size of the domain allowed for molecule transfer across the interface in Scheme
2, we set |a j − a j ′ | = (Δx + h)/2. We take h j = Δx for the jump coefficient from
Ωs to Ωm and h j = h for the jump coefficient from Ωm to Ωs . Then, we match the
jump coefficients to the rate constants for jump across the interface given in Eq. (10)
to derive the following formula for the parameters of Scheme 2

Ψ1 = 2h

Δx + h
and Ψ2 = 2Δx

Δx + h
.

Themultiscale algorithm forScheme1 for the case of diffusion only is given inTable 1.
We denote a propensity of diffusion of the i th species in the (Ks + k)th compartment
in Ωm to the left (resp. right) as ak−,i (t) = Di/h2X

Ksα+k
i (t), for k = 1, 2, . . . , Km ,

(resp. ak+,i (t) = Di/h2X
Ksα+k
i (t), for k = 1, 2, . . . , Km − 1) for i = 1, 2, . . . , N .

This definition also includes the propensity of a diffusive jump of the i th species from
the Markov chain domain, given as a1−,i (t). We denote a propensity of diffusive jump
of the i th species from the SPDE domain by
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a0+,i (t) = Di

h2

α∑
j=1

X (Ks−1)α+ j
i (t).

Then, we define total propensity in Ωm

a0 =
N∑
i=1

Km∑
k=1

ak−,i +
N∑
i=1

Km−1∑
k=0

ak+,i . (11)

Total propensity a0 is used in steps [A] and [B] in the pseudocode in Table 1 to select
time when the next event occurs in Ωm . The pseudocode denotes the time of the next
update in each subdomain as ts and tm , and the current time as t . In step [B], we update
the compartment-based part of the system. In step [C], we update the SPDE part of
the system by

X(t + Δt) = X(t) +
Ksα∑
k=2

N∑
i=1

{
Di

Δx2

(
Xk
i (t) − Xk−1

i (t)
)

Δt

+
√

DiΔt

Δx2
(
Xk
i (t) + Xk−1

i (t)
)
χ{

Xk
i (t)+Xk−1

i (t)≥0
} ζ k−1

i

⎫⎬
⎭ νk−,i ,(12)

where ζ k−1
i are independent normally distributed random numbers with zero mean

and unit variance.

4 Application: Static Boundary

In this section, we apply the multiscale approach to examples in which we know a
priori the position of the boundary I between Ωs and Ωm . Generalization to a more
complicated case with a moving boundary is presented in Sect. 5.

4.1 AMorphogen Gradient Model

We consider a morphogen gradient model inΩ = [0, L]×[0, hy]×[0, hz]. It consists
of one chemical species S, i.e. Zk(t) is a scalar describing the number of molecules
of S in Ck . The state of the Markov chain model is described by the K -dimensional

column vectorZ(t) = (Z1(t), Z2(t), . . . , ZK (t)
)T
.Morphogen is subject to diffusion

which is described by Eq. (2). There are also two reactions in the system. Morphogen,
S, is produced in the first compartment with rate J , i.e. the propensity is λ11

(
Z1
) = J .

Morphogen degrades everywhere with rate δ, i.e. with propensity λk2

(
Zk
) = δZk for

k = 1, 2, . . . , K . In all stochastic simulations of the morphogen gradient model, we
assume that 500 morphogen molecules are initially uniformly distributed in the half
of the domain,Ωs = [0, L/2]×[0, hy]×[0, hz]. The parameters are given in Table 2.
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Table 2 Parameter values in the morphogen gradient model studied in Sect. 4.1

Notations Description Values

L Length of the domain 20µm

D Diffusion coefficient 0.8µm2 s−1

δ Degradation rate 0.05 s−1

J Production rate 25μm−2 s−1

Δx Spatial discretization in Ωs 0.2µm

h Spatial discretization in Ωm 1µm

hy , hz Spatial discretization in y and z directions 1µm

Δt Time discretization for SPDE 5 × 10−4 s

Denoting c(x, t) the morphogen density at point x and time t , the deterministic
model can be written as PDE

∂c

∂t
= D

∂2c

∂x2
− δ c, with boundary conditions

−D
∂c

∂x

∣∣∣∣
x=0

= J , D
∂c

∂x

∣∣∣∣
x=L

= 0,

where D is the diffusion constant of morphogen S. We apply the multiscale approach
using both schemes developed in Sect. 3. Since the morphogen is produced at the left
end, the morphogen has a decreasing gradient as it goes towards L . Therefore, we
split the spatial domain in half and set the left half as Ωs and the right half as Ωm , i.e.
I = L/2. The (Ksα+Km)-dimensional state vector of themultiscalemodel is denoted
X(t) = (

X1(t), X2(t), . . . , XKsα+Km (t)
)T
. Note that the morphogen molecules are

only produced in the first discretization mesh point with size Δx in Ωs . In Fig. 3, we
simulate the morphogen gradient model using Scheme 1 of the multiscale algorithm.
We calculate 104 realizations of the sample paths of the stochastic process and present
mean and standard deviations of the morphogen numbers in Ω at different times,
t = 0, 2, 5, 20 s. Morphogen numbers in α grid points of Ωs are summed so that
they can be compared to the numbers in the underlying Markov chain model. We
compare the results with mean and standard deviations of the morphogen numbers
which we calculate analytically using matrix analysis for reaction–diffusion Markov
chain models (Gadgil et al. 2005; Kang et al. 2012b). In Fig. 3, morphogen numbers
in Ωs (resp. in Ωm) are expressed as green bars (resp. blue bars). Error bars represent
one standard deviations from the mean number of morphogens in each compartment.
Mean and standard deviations of the morphogen numbers from the analytic solution
are drawn as a red line and blue dotted lines. The results using the multiscale algorithm
match perfectly to the ones from the exact solution.

In Fig. 4, we present relative errors of the means and standard deviations of the
number of molecules between the Markov chain model and multiscale model. The
analytic solution is used for the statistics of theMarkov chainmodel, and both schemes
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Fig. 3 Comparison between mean numbers of morphogens and their standard deviations from the mean
using the analytic solution (red lines and blue dotted lines) and Scheme 1 (green bars and blue bars for the
means in Ωs and Ωm , respectively, and error bars for the standard deviations) (Color figure online)

are applied numerically for the multiscale approaches. Errors are defined as

em(k) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 − E
[∑α

	=1 X
(k−1)α+	

]

E
[
Zk
] , for k = 1, 2, . . . ,

K

2
,

1 − E
[
Xk+K (α−1)/2

]

E
[
Zk
] , for k = K

2
+ 1, . . . , K ,

ev(k) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 − σ
[∑α

	=1 X
(k−1)α+	

]

σ
[
Zk
] , for k = 1, 2, . . . ,

K

2
,

1 − σ
[
Xk+K (α−1)/2

]

σ
[
Zk
] , for k = K

2
+ 1, . . . , K ,

(13)

where E[·] and σ [·] represent a mean and standard deviation. In Fig. 4a, red and green
lines represent em(k) and ev(k) at time t = 50 s using Scheme 1, respectively, and blue
and purple lines are for Scheme 2. We observe that the relative errors in Eq. (13) are
less than 4% in the entire simulation domain. In Fig. 4b, we compare the maximum
absolute values of the relative errors defined in Eq. (13) with α = 1, 5, 10, 25 and
fixed compartment size h where α = h/Δx . In both schemes, the relative errors are in
a range of less than 4% except for the case when α = 25 with Scheme 2. The relative
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Fig. 4 a Errors em (k) and ev(k) given by Eq. (13) are computed at time 50 s. b The maximum absolute
values of the errors em (k) and ev(k) given by Eq. (13) are computed at time 50 s with a static boundary
and different values of α. The maximum value of the errors is taken over all region, Ω . Red and green
lines are relative errors of the means and standard deviations between the analytic solution of the Markov
chain model and Scheme 1. Blue and purple lines are relative errors between the Markov chain model and
Scheme 2 (Color figure online)

errors in the mean and standard deviation become significantly larger when we apply
the multiscale algorithm using Scheme 2with α = 25. In this case, the mean inCKs+1
gets larger than the mean in CKs which shows a bias in the method for larger values
of α (the exact mean number of molecules decreases along the x-axis). We provide an
explanation of this phenomenon in the next section.

4.2 A DiffusionModel with Two Compartments

In Sect. 4.1, we have observed that the error of Scheme 2 increases when we decrease
the ratio of the numerical discretization inΩs and the compartment size.Whenα = 25,
the mean number of molecules of the morphogen does not have a decreasing gradient
across the interface I in Scheme 2. To investigate this numerical error, we consider
diffusion in a theoretical two-compartment model. It is similar to the one in Sect. 4.1,
but we set J = δ = 0 so that there is no flux or degradation of the morphogen.
We use L = 2h and I = h (= 1μm) so that Ωs = [0, h] × [0, hy] × [0, hz] and
Ωm = [h, 2h] × [0, hy] × [0, hz]. Then, each region consists of one compartment,
Ks = Km = 1, and X(t) is an (α + 1)-dimensional vector.

In Fig. 5a, we present simulation results of the two-compartment model using
Scheme 1 (red line) and Scheme 2 (green line) with α = 10, 20, 30, 40, 50 and com-
pare them to the simulation result of the Markov chain model using the Gillespie SSA
(purple line). The Markov chain model has α +1 numerical grid points where the first
α ones are with size Δx = h/α and the last one with size h. Diffusion of molecules
is simulated by jumps from grid points to their nearest neighbours, i.e. the numerical
meshes in the Markov chain model are coupled by diffusion in the same way as it is
done in Scheme 2. Applying both multiscale algorithms and the Gillespie SSA, we
compare the mean morphogen numbers in the second compartment computed from
100 realizations of simulation. Using 50molecules in total, the exact value of themean
numbers of molecules in Ck , k = 1, 2, is 25. Notice that Scheme 1 and the Gillespie
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Fig. 5 a The mean number of morphogens in C2 at time t = 50 s. Different simulation methods are
compared with α = 10, 20, 30, 40, 50: the Gillespie SSA with multigrid discretization (α grid points with
sizeΔx and one grid point with size h), Scheme 1, Scheme 2 and “Scheme 2 with no noise” due to diffusion
in Ωs . b The probability distribution of the normalized morphogen number in C1 with Scheme 2. The
probability distributions are computed for X	(t)/Δx , 	 = 1, 2, . . . , α and compared among the cases with
α = 10, 50 at time t = 0.01, 50 s. Initially, 50 molecules are located in Ωs in panels (a, b) (Color figure
online)

SSA with two mesh sizes correctly approximate the means. However, Scheme 2 over-
estimates the mean morphogen number in C2 as α gets large. To understand where
the numerical error arises, we also simulate Scheme 2 without the noise term in the
SPDEs (marked as a blue line in Fig. 5a), i.e. we remove the term with a square root
in Eq. (10).

In Fig. 5a, we observe that the mean morphogen number in C2, E[Xα+1], is under-
estimated as α increases when we use Scheme 2 without noise term in the SPDEs.
Note that X	, 	 = 1, 2, . . . , α, always have non-negative integer values due to no
noise term in modified Eq. (10). The molecular transfer from Ωs to Ωm occurs when
Xα ≥ 1. However, the frequency of this transfer is not sufficient as α gets large, which
lowers Xα+1. On the other hand, with noise terms included in Eqs. (9) and (10), there
are more chances that X	 < 0 for some 	 = 1, 2, . . . , α due to large fluctuations with
a small number of molecules as α gets large. Then, it is more frequent that Xα ≥ 1 due
to the fact that

∑α+1
	=1 X	 = 50 and X	 < 0 for some 	 = 1, 2, . . . , α. More frequent

molecular transfer from Ωs to Ωm causes overestimation of the mean morphogen
number in C2 in Scheme 2.

In Fig. 5b, we compare distributions of the morphogen numbers when α = 10
and 50. The distributions are computed from 1000 realizations of simulation when
t = 0.01 s and 50 s. Each distribution is computed over all X	, 	 = 1, 2, . . . , α so that
we can display an overall range of the morphogen number in each discretization ofΩs .
Each X	 is normalized by Δx so that the distributions can be compared for different
α’s. The normalized mean morphogen number (density) in Ωs decreases significantly
in both cases with α = 10 and 50 as time evolves. On the other hand, the variance of
the morphogen density is much greater for α = 50 than for α = 10 at t = 0.01 s due
to the lower morphogen number in each discretization of Ωs . Therefore, we conclude
that the error in Scheme 2 strongly depends on the size of fluctuations close to the
interface. On the other hand, the molecular transfer from Ωs to Ωm is decided by
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∑α
	=1 X

	 in Scheme 1. This makes Scheme 1 more robust than Scheme 2 for large
values of α.

5 Application: Moving Boundary

In some applications (Robinson et al. 2014), it is difficult to decide a position of the
interface I a priori. In this section, we extend the presented algorithm to the case when
the location of the interface I (t) between Ωs and Ωm moves in time, based on the
number of molecules in each part of the domain. The multiscale approach with the
adaptive interface is applied to the example introduced in Sect. 4.

The adaptive algorithm is described inTable 3. Following (Robinson et al. 2014),we
introduce two thresholds denoted Qupper and Qlower (Qupper ≥ Qlower), and one inte-
ger parameter nc. We initialize the position of the interface I (0) = 0 in step [A’], i.e.
we initially model the whole domain using the detailed compartment-based approach.
We run the original Scheme 1 until time ncΔt . We check whether the interface I (t)
should be moved in step [C’]. If the number of molecules in the compartment next
to the interface in Ωs is smaller than Qlower, a compartment-based model is used in
that region. On the other hand, if the number of molecules in the boundary compart-
ment next to interface I (t) in Ωm is larger than threshold Qupper, the corresponding
compartment is transferred to the SPDE region where the molecules are redistributed
uniformly in α grid points. Due to the uniform redistribution of the molecules, rapid
changing of the interface I (t) introduces more errors. Note that in Scheme 1 with
a fixed boundary, one molecule has been chosen randomly from α discretizations of
CKs in Ωs and transferred to CKs+1 in Ωm . Similarly, we have taken one molecule
fromCKs+1 and transferred the molecule to the randomly chosen SPDEmesh point in
CKs . However, in the adaptive algorithm, we modify the setting of Scheme 1 so that a
molecule is taken uniformly from the entire region of CKs and transferred to CKs+1,
i.e. 1/α molecule is subtracted in all α SPDE grid points of CKs . Similarly when the
molecule is transferred from CKs+1 to CKs , 1/α molecule is added in all α grid points
of CKs . Without this modification of the setting in Scheme 1, the appropriate level of
the morphogen gradient is not formed in Fig. 6.

The adaptive algorithm [A’]–[D’] is applied to the morphogen gradient model
introduced in Sect. 4, and the results are presented in Fig. 6. We use Qlower = 15,
Qupper = 25 and nc = 10. Other parameters are given in Table 2. Our initial condition
is Xk(0) = 0, for k = 1, 2, . . . , Ksα + Km , i.e. the system starts with no molecules
and the gradient is formed during the simulation. In Fig. 6, one realization of the
algorithm in Table 3 at different times t = 0.5, 2, 10, 40 s is presented. The green
and blue bars represent the numbers of molecules in the corresponding compartments
in Ωs and Ωm , respectively. The blue dotted line represents interface I (t) between
two regions, and the red circles are the mean numbers of molecules obtained from the
analytic solution of the stochastic model. Our results show that the boundary between
two regions is moving to the right in time as the molecule numbers increase due to the
production on the left.

In Fig. 7a and b, we simulate the adaptive algorithm with fixed thresholds for a
range of values of nc = 1, 10, 102, 103, 104, which are the numbers of time steps to
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Fig. 6 Comparison between one realization of the number of morphogens using Scheme 1 with a moving
interface, given in Table 3 (green bars and blue bars for themorphogen numbers inΩs andΩm , respectively)
and the mean number of molecules given analytically by the compartment-based model (red dots). A blue
dotted line represents the location of the interface I (t) (Color figure online)

check the criterion to move the interface I (t) in step [C’]. Two sets of fixed thresholds
are chosen, (Qlower, Qupper) = (15, 25) in (a) and (Qlower, Qupper) = (20, 20) in
(b). In Fig. 7c and d, we simulate the adaptive algorithm with fixed numbers of time
steps, nc, for different values of Qlower and Qupper, which are the threshold values to
check before we move the interface I (t) in step [C’]. We use the following pairs of
the values for the thresholds: (Qlower, Qupper) = (5, 55), (10, 40), (15, 25), (20, 20).
Two fixed numbers of time steps are used, nc = 1 in (c) and nc = 1000 in (d). As
shown in Fig. 7b and c, we observe that the maximum absolute values of the relative
errors increase as the number of time steps, nc, or the size of the threshold window,
Qupper − Qlower, gets smaller. This is because the small size of the number of time
steps (or the threshold window) makes the interface location change frequently, which
causes additional errors. On the other hand, Fig. 7a and d do not show similar pattern
since large size of the threshold window (Qupper − Qlower = 10) and the number of
time steps (nc = 103) prevent frequent movement of the interface location. Overall,
Scheme 2 has slightly smaller errors than Scheme 1. In Fig. 7, the maximum absolute
values of the relative errors are calculated using 104 realizations of simulation using
Scheme 1 or 2 for each value of nc and for each set of values of (Qlower, Qupper) and
using the analytic solution of the Markov chain model.
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Fig. 7 The maximum absolute values of the errors defined by Eq. (13) at time 50 s using the multiscale
algorithms, with a moving boundary. Different values of nc = 1, 10, 102, 103, 104, are used with fixed
thresholds a (Qlower, Qupper) = (15, 25) and b (Qlower, Qupper) = (20, 20). Different threshold values
(Qlower, Qupper) = (5, 55), (10, 40), (15, 25), (20, 20) are used with, c nc = 1 and d nc = 103. Red
and green lines are the maximal relative errors of the means and standard deviations between the analytic
solution of the Markov chain model and Scheme 1, given by Eq. (13). Blue and Purple lines are maximal
relative errors between the Markov chain model and Scheme 2, given by Eq. (13) (Color figure online)

6 Applications: Multiple Species

In this section, we illustrate the applicability of the presented multiscale approaches
to chemical systems with multiple species. Since different chemical species can have
very different molecular distributions in the computational domain, the partition of
the computational domain into subdomains Ωs and Ωm can be species dependent. We
use the pom1p gradient model from Saunders et al. (2012) to illustrate a multiscale
approach, where each species has a different partition into Ωs and Ωm depending on
its molecular distribution. The model consists of two species, slow-diffusing pom1p
clusters, denoted S1, and fast-diffusing pom1p particles, denoted S2. We use pseudo
1-dimensional domain Ω as in Fig. 1, where L = 14μm, which is divided into
K = 40 compartments, Ck , k = 1, 2, . . . , K . Both S1 and S2 are produced in the
whole computational domain with space-dependent rates given by Saunders et al.
(2012), i.e. with propensities

λkj (Z
k) = a j exp

[
−a6

(
k − K + 1

2

)2
]
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Table 4 Parameter values in the two-state model for pom1p gradient

Notations Description Values

L Length of the Domain 14µm

I1 Left boundary of Ωs 3.5µm

I2 Right boundary of Ωs 10.5µm

D1 Diffusion coefficient of S1 0.02µm2 s−1

D2 Diffusion coefficient of S2 0.2µm2 s−1

a1 Production parameter of S1 1.029 s−1

a2 Production parameter of S2 0.441 s−1

a3 Fragmentation rate of S1 0.26 s−1

a4 Aggregation rate 0.049 s−1

a5 Disassociation rate 0.035 s−1

a6 Parameter of production 0.1089

Δx Spatial discretization in Ωs 0.035µm

h Compartment size in Ωm 0.35µm

Δt Time discretization for SPDE 0.0005 s

where j = 1, 2, k = 1, 2, . . . , K , and a1, a2 and a6 are constants given in Table 4. In
addition to production, species S1 and S2 are subject to the following reactions which
take place in the whole domain

S1 −→ S2, S1 + S2 −→ S1 + S1, S2 −→ ∅,

with the corresponding propensities given by

λk3(Z
k) = a3Z

k
1, λk4(Z

k) = a4Z
k
1 Z

k
2, λk5(Z

k) = a5Z
k
2,

where k = 1, 2, . . . , K , and a3, a4 and a5 are constants given in Table 4.
In Fig. 8, we present an illustrative simulation of pom1p gradient model. We plot

spatial distributions of S1 and S2 at times t = 50 s and t = 1000 s. We observe that the
spatial distribution of S1 contains a region with high abundance of molecules in the
centre of the computational domain. The chemical species S2 has low copy numbers
in the entire domain. Therefore, we introduce the SPDE region in the middle of the
domain by (note that we fix K = 40 in this example)

Ωs =
30⋃

k=11

Ck,

where the coarse graining is only applicable to S1 in Ωs . In particular, we have intro-
duced two interfaces, I1 and I2 between Ωs and Ωm . Diffusion of chemical species
S1 is simulated using the algorithm in Table 1. Similarly, production of S1 is imple-
mented using the SPDE and Markov chain model in Ωs and Ωm , respectively, as it is
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Fig. 8 Mean numbers of the molecules of slow-diffusing pom1p clusters, S1 and fast-diffusing pom1p
particles, S2 and their standard deviations from the means at t = 50, 1000 s computed by averaging over
104 realizations of simulation using the SSA and the multiscale algorithm with Scheme 1 (Color figure
online)

done in Eq. (9). The chemical species S2 is simulated by the Markov chain model in
the entire domain, because the average number of molecules of S2 is relatively low.
In particular, diffusion, production and degradation of S2 are implemented as in the
underlying Markov chain model. The only complications are reactions

S1 −→ S2 and S1 + S2 −→ S1 + S1, (14)

because they include both species S1 and S2, which are in Ωs described by dif-
ferent modelling approaches. We treat these reactions as time-changed Poisson
processes in both subdomains Ωm and Ωs . Discretizing each compartment, Ck , k =
11, 12, . . . , 30, intoα grid points, the state of S1 variable is described by vector,X(t) =
(X1, X2, . . . , X20(α+1)) where X1, X2, . . . , X10 (resp. X20α+11, X20α+12, . . . ,

X20(α+1)) are the numbers of molecules of S1 in the left (resp. right) part of Ωm .
The values of SPDE description in compartment Ck , k = 11, 12, . . . , 30, are given
by X10+(k−11)α+	, 	 = 1, 2, . . . , α. The state of S2 variable is described by vector,
Y(t) = (Y 1,Y 2, . . . ,Y 40) where Y k is the number of molecules of S2 in compart-
mentCk , k = 1, 2, . . . , K . The propensity of the first reaction in (14) of the multiscale
model is given by
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λk3(X) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a3Xk, for k = 1, 2, . . . , 10,

a3

α∑
	=1

X10+(k−11)α+	, in Ωs (i.e. for k = 11, 12, . . . , 30),

a3X20(α−1)+k, for k = 31, 32, . . . , 40.

(15)

The propensity of the second reaction in (14) of the multiscale model is given by

λk4(X, Yk) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a4X
kY k , for k = 1, 2, . . . , 10,

a4Y
k

α∑
	=1

X10+(k−11)α+	, in Ωs (i.e. for k = 11, 12, . . . , 30),

a4X
20(α−1)+kY k , for k = 31, 32, . . . , 40.

(16)

We simulate reactions in (14) as time-changed Poisson processes with propensities
in Eqs. (15)–(16). If the first of these reactions occurs in Ck , k = 11, 12, . . . , 30,
we subtract 1/α from each X10+(k−11)α+	, 	 = 1, 2, . . . , α, and we add one to Y k .
If the second reaction in (14) occurs in Ck , k = 11, 12, . . . , 30, we add 1/α to each
X10+(k−11)α+	, 	 = 1, 2, . . . , α, andwe subtract one fromY k . Note that the conversion
of S1 in Ck , k = 11, 12, . . . , 30, is applied equally to the entire α grid points of Ck

rather than to one randomly chosen grid point in Ck as it is done (consistently with
Eq. (9)) for diffusion across the interfaces.

In Fig. 8, green bars and blue bars represent the mean numbers of molecules
of the pom1p clusters and particles in Ωs and Ωm using the multiscale algorithm
with Scheme 1. Error bars represent one standard deviation from the mean in the
multiscale approach. Red lines and blue dotted lines are the mean numbers and
their standard deviations from the means computed by the Gillespie SSA simulat-
ing the compartment-based approach in the entire domain. Both statistics using the
compartment-based approach and themultiscale algorithm are computed by averaging
over 104 realizations of the simulations for each case.

7 Discussion

AMarkov chain model (compartment-based model) has been widely used to describe
the discrete nature of the molecular copy numbers and inherent stochasticity in
reaction–diffusion systems (Erban and Chapman 2019), but it can be computationally
intensive. A possible approach to increase efficiency of simulations is to approximate
a part of the model by some coarse-grained methods. In this paper, we have introduced
two multiscale algorithms coupling the SPDEs and the Markov chain model, which
provide good approximations to the solutions obtained by the Markov chain model
applied in the entire spatial domain. Two couplingmethods of theMarkov chainmodel
and the SPDEs across the interface have been studied. In this section, we compare the
presented approach with methods in the literature.

Several Langevin formulations have been introduced to model fluctuating hydro-
dynamics for chemically reactive species (Bhattacharjee et al. 2015) and stochastic
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reaction–diffusion systems (Kalantzis 2009; Ghosh et al. 2015). In particular, the spa-
tial chemical Langevin equation was applied to the Gray–Scott model, and its pattern
formation was compared to the ones obtained by the reaction–diffusion master equa-
tion and PDEs (Ghosh et al. 2015). The spatial chemical Langevin equation consists of
a system of stochastic differential equations, and it corresponds to Eq. (4) in Sect. 2. On
the other hand, several approaches using SPDEs (Atzberger 2010; Dogan and Allen
2011; Alexander et al. 2002, 2005; Kim et al. 2017) have been introduced to model
stochastic reaction–diffusion systems. In Atzberger (2010), the SPDE was derived
for reaction–diffusion systems, and discretization of PDEs and stochastic fields was
discussed. Unlike Eq. (5), the stochastic fields in the discretized SPDEs account for
fluctuations due to diffusion but not for reaction. In Kim et al. (2017), the SPDE for
reaction–diffusion systems was derived which is consistent with Eq. (8). In their for-
mulation, diffusion was implemented by the SPDE while the reaction was simulated
using the exact or modified SSA.

In Yates and Flegg (2015), two hybrid algorithms are suggested for coupling a
compartment-based model and a PDE model when the size of the PDE discretiza-
tion is less than or equal to the compartment size. Both algorithms extend the PDE
approach to the systems with low copy numbers of molecules in a part of the com-
putational domain. The first algorithm considers the PDE solution as the probability
density to find a particle within the region and is applied to both cases of low and high
copy numbers of molecules in the PDE region. The second algorithm is a simplified
and more efficient version of the first one when the PDE region involves the high
copy number of molecules. Like in this paper, both algorithms implement a pseudo-
compartment with size h in the PDE region where h represents the compartment size.
The second algorithm in Yates and Flegg (2015) is similar to Scheme 1 if a discretized
version of SPDEs replaces the PDEs. However, the interface between the two mod-
elling regimes is assumed to be fixed in Yates and Flegg (2015). In Harrison and Yates
(2016), a hybrid algorithm is introduced coupling a compartment-based model and
PDEs where the size of the PDE discretization is much finer than the compartment
size. In the model, an overlap region is defined with two interfaces (corresponding
to the pseudo-compartment in Scheme 1) where both modelling regimes are valid,
and both cases with fixed and adaptive interfaces are considered. Unlike our pseudo-
compartment in Scheme 1, the overlap region can contain multiple compartments
if needed. On one interface between the compartment-based model and the overlap
region, the population of the PDE solution on the interface is matched to the average
of the population in the neighbouring compartments. On the other interface between
the PDE region and the overlap region, flux on the interface was matched. The hybrid
algorithm in Harrison and Yates (2016) approximates the mean population numbers
in the compartment-based model if it was possible to apply it over the entire spatial
region. The use of the overlap region allowsmatching the variance between twomodels
in the compartment-based region when the fixed interface is used. On the other hand,
the goal of Scheme 1 and Scheme 2 is to approximate the compartment-based model
by employing the discretized version of SPDEs in the region with high molecules.
Therefore, we can match both the mean and variance of the population numbers com-
puted by our multiscale algorithms to the results obtained by the compartment-based
model in the whole spatial domain. This is done for both cases with a fixed or adaptive
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boundary. Unlike the previous approaches in Yates and Flegg (2015); Harrison and
Yates (2016), the presented multiscale algorithms can apply to systems with multiple
species as it is shown in Sect. 6 where each species has a different partition of the
spatial domain into subdomains where different models are used, depending on the
spatial distribution of molecules of each species. In Spill et al. (2015), a hybrid algo-
rithm is presented using a compartment-based model and PDEs, where the size of the
compartment and numerical discretization for the PDE model is equal.

In this paper, we have discussed the case when the mesh size of the numerical
discretization of the SPDEs is smaller (or equal) than the compartment size in the
Markov chain model (h ≥ Δx). This case is useful when we add inherent stochasticity
in the PDE model where a fine spatial resolution of the PDE solution is required
to describe the solution of the SPDE. This case was also discussed in other hybrid
algorithms coupling the compartment-based model and the macroscopic PDEs (Yates
and Flegg 2015; Harrison and Yates 2016). The other case, h < Δx , discussed, for
example, in the hybrid algorithm coupling a random walk on a lattice and the PDE
model (Flekkoy et al. 2001), is helpful when the PDE or SPDE model is used as a
coarse-grained approximation of the compartment-based model. Such approximation
can be used in the region where spatial concentration gradients are not large, so they do
not require a fine resolution in space. Although we have focused on the case h ≥ Δx ,
the presented approach can be extended to h < Δx as well. In fact, if h = Δx ,
both Scheme 1 and Scheme 2 will be the same. If h < Δx , we may be able to
consider an overlap region (like a pseudo-compartment) in the compartment-based
region to extend Scheme 1. The presented SPDE-based approach provides a bridge
between the stochastic approach (using the Markov chain compartment-based model)
and the deterministic approach (using the macroscopic PDEs) by incorporating a
discretized version of SPDEs. The SPDEs can be utilized to build other hybrid models,
for example, by coupling them with macroscopic PDEs. Then, some approaches used
in the hybrid algorithms coupling the compartment-based model with the PDEs (Yates
and Flegg 2015; Harrison and Yates 2016; Spill et al. 2015; Smith and Yates 2018)
will naturally apply to the case with the SPDEs.

Acknowledgements RE would like to thank the Royal Society for a University Research Fellowship and
the Leverhulme Trust for a Philip Leverhulme Prize. This prize money was used to support research visits
of HWK to Oxford. The research leading to these results has received funding from the European Research
Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ ERC Grant
Agreement No. 239870. This research has been supported in part by theMathematical Biosciences Institute
and the National Science Foundation under Grant DMS-1440386 and DMS-1620403 (HWK), and by the
University of Maryland Baltimore County under Grant UMBC KAN3STRT (HWK). The authors would
like to thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and hospitality
during the programme “Stochastic Dynamical Systems in Biology: Numerical Methods and Applications”,
where work on this paper was undertaken. This work was supported by EPSRC Grant No. EP/K032208/1.
This work was supported by a grant from the Simons Foundation.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/


Multiscale Stochastic Reaction–Diffusion Algorithms… 3211

References

Alexander F, Garcia A, Tartakovsky D (2002) Algorithm refinement for stochastic partial differential equa-
tions: I. Linear diffusion. J Comput Phys 182(1):47–66

Alexander F, Garcia A, Tartakovsky D (2005) Algorithm refinement for stochastic partial differential equa-
tions: II. Correlated systems. J Comput Phys 207(2):769–787

Altintan D, Ganguly A, Koeppl H (2016) Efficient simulation of multiscale reaction networks: a multilevel
partitioning approach. Am. Control Conf. 2016:6073–6078

Ander M, Beltrao P, Di Ventura B, Ferkinghoff-Borg J, Foglierini M, Kaplan A, Lemerle C, Tomás-Oliveira
I, Serrano L (2004) SmartCell, a framework to simulate cellular processes that combines stochastic
approximation with diffusion and localisation: analysis of simple networks. Syst Biol 1(1):129–138

Arjunan S, TomitaM (2010)A newmulticompartmental reaction–diffusionmodelingmethod links transient
membrane attachment of E. coli MinE to E-ring formation. Syst Synth Biol 4(1):35–53

Atzberger P (2010) Spatially adaptive stochastic numerical methods for intrinsic fluctuations in reaction–
diffusion systems. J Comput Phys 229(9):3474–3501

Bakarji J, Tartakovsky D (2017) On the use of reverse Brownian motion to accelerate hybrid simulations.
J Comput Phys 334:68–80

Bernstein D (2005) Simulating mesoscopic reaction–diffusion systems using the Gillespie algorithm. Phys
Rev E 71(4):041103

Bhattacharjee A, Balakrishnan K, Garcia A, Bell J, Donev A (2015) Fluctuating hydrodynamics of multi-
species reactive mixtures. J Chem Phys 142(22):224107

Cao Y, Gillespie D, Petzold L (2005a) Multiscale stochastic simulation algorithm with stochastic partial
equilibrium assumption for chemically reacting systems. J Comput Phys 206:395–411

Cao Y, Gillespie D, Petzold L (2005b) The slow-scale stochastic simulation algorithm. J Chem Phys
122(1):14116

Cao Y, Li H, Petzold L (2004) Efficient formulation of the stochastic simulation algorithm for chemically
reacting systems. J Chem Phys 121(9):4059–4067

Cotter S, Zygalakis K, Kevrekidis I, Erban R (2011) A constrained approach to multiscale stochastic
simulation of chemically reacting systems. J Chem Phys 135:094102

Cotter S, Vejchodsky T, Erban R (2013) Adaptive finite element method assisted by stochastic simulation
of chemical systems. SIAM J Sci Comput 35(1):B107–B131

Cotter S, Erban R (2016) Error analysis of diffusion approximation methods for multiscale systems in
reaction kinetics. SIAM J Sci Comput 38(1):B144–B163

CucuringuM, Erban R (2017) ADM-CLE approach for detecting slow variables in continuous timeMarkov
chains and dynamic data. SIAM J Sci Comput 39(1):B76–B101

Dobramysl U, Rudiger S, Erban R (2016) Particle-based multiscale modeling of calcium puff dynamics.
Multiscale Modell Simul 14(3):997–1016

Dogan E, Allen E (2011) Derivation of stochastic partial differential equations for reaction–diffusion pro-
cesses. Stoch Anal Appl 29(3):424–443

Duncan A, Erban R, Zygalakis K (2016) Hybrid framework for the simulation of stochastic chemical
kinetics. J Comput Phys 326:398–419

Earnest T, Lai J, Chen K, Hallock M, Williamson J, Luthey-Schulten Z (2015) Toward a whole-cell model
of ribosome biogenesis: kinetic modeling of SSU assembly. Biophys J 109(6):1117–1135

Earnest T, Cole J, Peterson J, Hallock M, Kuhlman T, Luthey-Schulten Z (2016) Ribosome biogenesis in
replicating cells: integration of experiment and theory. Biopolymers 105:735–751

Elf J, Doncic A, Ehrenberg M (2003) Mesoscopic reaction–diffusion in intracellular signaling. Fluct Noise
Biol Biophys Biomed Syst 5110:114–125

Engblom S, Ferm L, Hellander A, Lötstedt P (2009) Simulation of stochastic reaction–diffusion processes
on unstructured meshes. SIAM J Sci Comput 31:1774–1797

Erban R, Chapman SJ (2009) Stochastic modelling of reaction–diffusion processes: algorithms for bimolec-
ular reactions. Phys Biol 6(4):046001

Erban R, Chapman SJ, Maini P (2007) A practical guide to stochastic simulations of reaction–diffusion
processes, 35 p. arXiv:0704.1908

Erban R, Kevrekidis I, Adalsteinsson D, Elston T (2006) Gene regulatory networks: a coarse-grained,
equation-free approach to multiscale computation. J Chem Phys 124(8):084106

Erban R, Chapman SJ, Kevrekidis I, Vejchodsky T (2009) Analysis of a stochastic chemical system close
to a SNIPER bifurcation of its mean-field model. SIAM J Appl Math 70(3):984–1016

123

http://arxiv.org/abs/0704.1908


3212 H.-W. Kang, R. Erban

Erban R (2014) From molecular dynamics to Brownian dynamics. Proc R Soc A 470:20140036
Erban R (2016) Coupling all-atom molecular dynamics simulations of ions in water with Brownian dynam-

ics. Proc R Soc A 472:20150556
Erban R, Chapman SJ (2019) Stochastic modelling of reaction-diffusion processes. Cambridge texts in

applied mathematics. Cambridge University Press
Erban R, FleggM, Papoian G (2014)Multiscale stochastic reaction–diffusionmodeling: application to actin

dynamics in filopodia. Bul Math Biol 76(4):799–818
Fange D, Elf J (2006) Noise-induced Min phenotypes in E. coli. PLoS Comput Biol 2(6):637–648
FermL,HellanderA,Lötstedt P (2010)Anadaptive algorithm for simulation of stochastic reaction–diffusion

processes. J Comput Phys 229:343–360
Flegg M, Chapman J, Erban R (2012) The two-regime method for optimizing stochastic reaction–diffusion

simulations. J R Soc Interface 9(70):859–868
FleggM,Hellander S, ErbanR (2015) Convergence ofmethods for coupling ofmicroscopic andmesoscopic

reaction–diffusion simulations. J Comput Phys 289:1–17
Flekkoy E, Feder J, Wagner G (2001) Coupling particles and fields in a diffusive hybrid model. Phys Rev

E 64:066302
Franz B, Flegg M, Chapman SJ, Erban R (2013) Multiscale reaction–diffusion algorithms: PDE-assisted

Brownian dynamics. SIAM J Appl Math 73(3):1224–1247
Gadgil C, Lee C, Othmer H (2005) A stochastic analysis of first-order reaction networks. Bull Math Biol

67:901–946
Ganguly A, Altintan D, Koeppl H (2015) Jump-diffusion approximation of stochastic reaction dynamics:

error bounds and algorithms. Multiscale Model Simul 13(4):1390–1419
Gardiner CW (2004) Handbook of Stochastic Methods, 3rd edn. Springer, Berlin
Ghosh A, Leier A, Marquez-Lago T (2015) The spatial chemical Langevin equation and reaction diffusion

master equations: moments and qualitative solutions. Theor Biol Med Model 12(1):5
Gibson M, Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many species and

many channels. J Phys Chem A 104:1876–1889
Gillespie D (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–

2361
Gillespie D (2000) The chemical Langevin equation. J Chem Phys 113(1):297–306
Griffith M, Courtney T, Peccoud J, Sanders W (2006) Dynamic partitioning for hybrid simulation of the

bistable HIV-1 transactivation network. Bioinformatics 22(22):2782–2789
Harrison J, Yates C (2016) A hybrid algorithm for coupling partial differential equation and compartment-

based dynamics. J R Soc Interface 13(122):20160335
Haseltine E, Rawlings J (2002) Approximate simulation of coupled fast and slow reactions for stochastic

chemical kinetics. J Chem Phys 117:6959–6969
Hattne J, Fange D, Elf J (2005) Stochastic reaction–diffusion simulation with MesoRD. Bioinformatics

21(12):2923–2924
Hu J, Kang H-W, Othmer H (2014) Stochastic analysis of reaction–diffusion processes. Bull Math Biol

76(4):854–894
Isaacson S, Peskin C (2006) Incorporating diffusion in complex geometries into stochastic chemical kinetics

simulations. SIAM J Sci Comput 28(1):47–74
Kalantzis G (2009) Hybrid stochastic simulations of intracellular reaction–diffusion systems. Comput Biol

Chem 33(3):205–215
Kang H-W (2012) A multiscale approximation in a heat shock response model of E. coli. BMC Syst Biol

6(1):143
Kang H-W, KhudaBukhsh W, Koeppl H, Rempala G (2019) Quasi-steady-state approximations derived

from the stochastic model of enzyme kinetics. Bull Math Biol 81(5):1303–1336
Kang H-W, Kurtz T (2013) Separation of time-scales and model reduction for stochastic reaction networks.

Ann Appl Probab 23(2):529–583
Kang H-W, Kurtz T, Popovic L (2014) Central limit theorems and diffusion approximations for multiscale

Markov chain models. Ann Appl Probab 24(2):721–759
Kang H-W, Zheng L, Othmer H (2012a) The effect of the signalling scheme on the robustness of pattern

formation in development. Interface Focus 2(4):465–486
Kang H-W, Zheng L, Othmer H (2012b) A new method for choosing the computational cell in stochastic

reaction–diffusion systems. J Math Biol 65(6–7):1017–1099

123



Multiscale Stochastic Reaction–Diffusion Algorithms… 3213

Kim C, Nonaka A, Bell J, Garcia A, Donev A (2017) Stochastic simulation of reaction–diffusion systems:
a fluctuating-hydrodynamics approach. J Chem Phys 146(12):124110

Kim J, Rempala G, Kang H-W (2017) Reduction for stochastic biochemical reaction networks with multi-
scale conservations. Multiscale Model Simul 15(4):1376–1403

Klann M, Ganguly A, Koeppl H (2012) Hybrid spatial Gillespie and particle tracking simulation. Bioinfor-
matics 28(18):i549–i555

Klingbeil G, Erban R, Giles M, Maini P (2011) STOCHSIMGPU: parallel stochastic simulation for the
systems biology Toolbox 2 for MATLAB. Bioinformatics 27(8):1170–1171

Kurtz T (1976) Limit theorems and diffusion approximations for density dependentMarkov chains, stochas-
tic systems: modeling, identification and optimization. Springer, Berlin, pp 67–78

Kurtz T (1978) Strong approximation theorems for density dependentMarkov chains. Stoch Processes Appl
6(3):223–240

Lampoudi S, Gillespie D, Petzold L (2009) The multinomial simulation algorithm for discrete stochastic
simulation of reaction–diffusion systems. J Chem Phys 130(9):094104

Liao S, Vejchodsky T, Erban R (2015) Tensor methods for parameter estimation and bifurcation analysis
of stochastic reaction networks. J R Soc Interface 12(108):20150233

Liu Z, Pu Y, Li F, Shaffer C, Hoops S, Tyson J, Cao Y (2012) Hybrid modeling and simulation of stochastic
effects on progression through the eukaryotic cell cycle. J Chem Phys 136(3):034105

Lo W, Zheng L, Nie Q (2016) A hybrid continuous-discrete method for stochastic reaction–diffusion
processes. R Soc Open Sci 3(9):160485

Miller R, Tadmor E (2009) A unified framework and performance benchmark of fourteen multiscale atom-
istic/continuum coupling methods. Model Simul Mater Sci Eng 17:053001

Roberts E, Stone J, Luthey-Schulten Z (2013) Lattice microbes: high-performance stochastic simulation
method for the reaction–diffusion master equation. J Comput Chem 34(3):245–255

Robinson M, Andrews S, Erban R (2015) Multiscale reaction–diffusion simulations with Smoldyn. Bioin-
formatics 31:2406

Robinson M, Flegg M, Erban R (2014) Adaptive two-regime method: application to front propagation. J
Chem Phys 140(12):124109

Salis H, Kaznessis Y (2005) Accurate hybrid stochastic simulation of a system of coupled chemical or
biochemical reactions. J Chem Phys 122:054103

Saunders T, PanK, Angel A, GuanY, Shah J, HowardM, Chang F (2012) Noise reduction in the intracellular
pom1p gradient by a dynamic clustering mechanism. Dev Cell 22(3):558–572

Schaff J, Gao F, Li Y, Novak I, Slepchenko B (2016) Numerical approach to spatial deterministic-stochastic
models arising in cell biology. PLOS Comput Biol 12(12):e1005236

Smith C, Yates C (2018) Spatially-extended hybrid methods: a review. J R Soc Interface 15(139):20170931
Stundzia A, Lumsden C (1996) Stochastic simulation of coupled reaction–diffusion processes. J Comput

Phys 127(1):196–207
Spill F, Guerrero P, Alarcon T, Maini P, Byrne H (2015) Hybrid approaches for multiple-species stochastic

reaction–diffusion models. J Comput Phys 299:429–445
Walsh J (1986) An introduction to stochastic partial differential equations, École d’Été de Probabilités de

Saint Flour XIV-1984, pp 265–439
Wils S, De Schutter E (2009) STEPS: modeling and simulating complex reaction–diffusion systems with

Python. Front Neuroinformatics 3(15):1–8
Yates C, Flegg M (2015) The pseudo-compartment method for coupling partial differential equation and

compartment-based models of diffusion. J R Soc Interface 12(106):20150141
Zhuravlev P, Papoian G (2009) Molecular noise of capping protein binding induces macroscopic instability

in filopodial dynamics. Proc Natl Acad Sci 106(28):11570–11575

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Multiscale Stochastic Reaction–Diffusion Algorithms Combining Markov Chain Models with Stochastic Partial Differential Equations
	Abstract
	1 Introduction
	2 From Continuous-Time Markov Jump Processes to Stochastic Partial Differential Equations
	3 Multiscale Algorithms Combining Compartment-Based Models with SPDEs
	4 Application: Static Boundary
	4.1 A Morphogen Gradient Model
	4.2 A Diffusion Model with Two Compartments

	5 Application: Moving Boundary
	6 Applications: Multiple Species
	7 Discussion
	Acknowledgements
	References




