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Abstract The paper outlines a general approach to deriving quasi steady-state approximations (QSSAs) of
the stochastic reaction networks describing the Michaelis-Menten enzyme kinetics. In particular it explains
how different sets of assumptions about chemical species abundance and reaction rates lead to the standard
QSSA (sQSSA), the total QSSA (tQSSA), and the reverse QSSA (rQSSA) approximations. These three QS-
SAs have been widely studied in the literature in deterministic ordinary differential equation (ODE) settings
and several sets of conditions for their validity have been proposed. With the help of the multiscaling tech-
niques introduced in [4, 27] it is seen that the conditions for deterministic QSSAs largely agree (with some
exceptions) with the ones for stochastic QSSAs in the large volume limits. The paper also illustrates how the
stochastic QSSA approach may be extended to more complex stochastic kinetic networks like, for instance,
the Enzyme-Substrate-Inhibitor system.
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1 Introduction

In chemistry and biology, we often come across chemical reaction networks where one or more of the species
exhibit a different intrinsic time scale and tend to reach the equilibrium state faster than the others. The quasi
steady state approximation (QSSA) is a commonly used tool to simplify the description of dynamics of such
systems. In particular, QSSA has been widely applied to the important class of chemical reaction networks
known as the Michaelis-Menten models of enzyme kinetics [15, 26, 48].

Traditionally, the enzyme kinetics has been studied using systems of ordinary differential equations
(ODEs). The ODE model allows one to analyze various aspects of the enzyme dynamics such as asymp-
totic stability. However, it ignores the fluctuations of the enzyme reaction network due to intrinsic noise and
instead focuses on the averaged dynamics. If accounting for the intrinsic noise is desirable then the use of
an alternative stochastic model of reaction network may be more appropriate, especially when some of the
species have low copy numbers. It is well-known that the molecular fluctuations in the species with small
copy numbers, and stochasticity in general, can lead to interesting dynamics. For instance, in a recent pa-
per [41], Perez et al. gave an account of how the intrinsic noise controls the dynamics and steady state of a
morphogen-controlled bistable genetic switches. In a recent paper [1], Anderson et al. show that, in general,
the behaviors of the deterministic system and the stochastic system can be vastly different with regards to
the possibility of an explosion. In particular, they provide examples of an explosive stochastic system whose
deterministic counterpart admits bounded solutions, and also non-explosive stochastic models whose deter-
ministic counterpart suffers a blow-up. It is also worthwhile to note that there are stochastic reaction networks
whose associated stochastic process explodes but the chemical master equation (Kolmogorov equation) still
admits a stationary solution. Along similar lines, David McQuarrie showed in the paper [36] that the expec-
tation for finite volumes do not match the reaction rate equation in general for reactions of high arity (see
[36, Figure 3], for example). All these cases point to the fact that studying only the behavior of the determin-
istic models of enzyme kinetics or reaction networks in general may be often inadequate. Indeed, stochastic
models have been recently strongly advocated by many authors [3, 8, 10, 11, 38, 39]. In this paper, we con-
sider the stochastic models of enzyme kinetics specifically in the context of various stochastic QSSAs with
the goal of relating them to the deterministic ones reported previously in the chemical physics literature. In
order to illustrate how the probabilistic tools discussed here can be used to derive various QSSAs for more
general enzyme kinetics than the basic Michaelis-Menten reaction network, we also briefly consider a fully
competitive enzyme-substrate-inhibitor (ESI) system later in the paper.

The studying of QSSAs is practically useful, as they not only help reduce model complexity, but also
may relate it better to experimental observables by averaging out unobservable or difficult-to-measure model
components (see, for instance, [14] for a recent discussion in the context of enzyme kinetics). A substantial
body of work has been published to justify such QSSA reductions in deterministic models, typically by
means of perturbation theory [6, 20, 35, 45, 47, 50, 52]. In contrast to this approach, we derive here the QSSA
reductions using stochastic multiscaling techniques [4, 27]. While perturbation analysis often agrees with
the stochastic QSSAs1, they fail to capture certain limiting behaviors (for instance, when the limit itself is
stochastic). We shall make this point precise later in Section 4. Although our approach is applicable more
generally, we focus below on the three well established Michaelis-Menten enzyme kinetics QSSAs, namely
the standard QSSA (sQSSA), the total QSSA (tQSSA), and the reverse QSSA (rQSSA). To illustrate more
complicated kinetics we also briefly consider a fully competitive enzyme-inhibitor-substrate system and show
that sQSSA and tQSSA can be derived there as well. In all cases considered here the QSSAs are obtained as a
consequence of the (Poisson) law of large numbers applied to the stochastic reaction network under different
scaling regimes. A similar approach has been recently taken in [30] with respect to a particular type of QSSA
(tQSSA, see Section 2 below). However, our current derivation is different in that it entirely avoids a spatial
averaging argument used in [30]. Such an argument requires additional assumptions that are difficult to verify
in practice.

1 The agreement is meant in the sense that it gives a reduced ODE model whose propensity functions are analogs of those in the
stochastic QSSA.
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The paper is organized as follows. We first review the Michaelis-Menten enzyme kinetics in the deter-
ministic setting and discuss the corresponding QSSAs in Section 2. The stochastic setting is introduced in
Section 3, where we also briefly describe the multiscale approximation technique proposed in [27]. Following
this, we derive the Michaelis-Menten (deterministic) sQSSA, tQSSA and rQSSA approximations from the
stochastic model analysis in Sections 5, 6, and 7 respectively. In Section 8, we extend our approach to more
complicated enzyme networks and derive sQSSA, and tQSSA for the ESI system. We conclude with a short
discussion in Section 9.

2 QSSAs for deterministic Michaelis-Menten kinetics

The Michaelis-Menten enzyme-catalyzed reaction networks have been studied in depth over past several
decades [15, 26, 48] and have been described in various forms. Although the methods discussed below
certainly apply to more general networks of reactions describing enzyme kinetics, in this paper, we adopt
the simplest (and minimal) description for illustration purpose. In its simplest form, the Michaelis-Menten
enzyme-catalyzed network of reactions describes reversible binding of a free enzyme (E) and a substrate (S)
into an enzyme-substrate complex (C), and irreversible conversion of the complex to the product (P) and the
free enzyme. The enzyme-catalyzed reactions are typically schematically represented as

S+E
k1−−⇀↽−−
k−1

C
k2−⇀ P+E, (2.1)

where k1 and k−1 are the reaction rate constants for the reversible enzyme binding in the units of M−1s−1

and s−1 while k2 is the rate constant for the product creation in the unit of s−1. By applying the law of mass
action to (2.1), temporal changes of the concentrations may be described by the following system of ODEs:

d[S]
dt

=−k1[S][E]+ k−1[C],

d[E]
dt

=−k1[S][E]+ k−1[C]+ k2[C],

d[C]

dt
= k1[S][E]− k−1[C]− k2[C],

d[P]
dt

= k2[C],

(2.2)

where the bracket notation [·] denotes species concentration. In this closed system, there are two conservation
laws for the total amount of enzyme and substrate

[E0]≡ [E]+ [C],

[S0]≡ [S]+ [C]+ [P].
(2.3)

These conservation laws not only reduce (2.2) to two equations, but also play an important role in the analysis
of the reaction network given in (2.1). It is worth mentioning that some authors also consider an additional
reversible reaction in the form of binding of the product (P) and the free enzyme (E) to produce the enzyme-
substrate complex (C), i.e., P+E −⇀C. We remark that should we expand the model in (2.1) to include such a
reaction, our discussion in later sections would remain largely the same requiring only simple modifications.

In early 20th century Leonor Michaelis and Maud Menten investigated the enzymatic kinetics in (2.1) and
proposed a mathematical model for it in [37]. They suggested an approximate solution for the initial speed of
the enzyme inversion reaction in terms of the substrate concentrations. Following their work, numerous at-
tempts have been made to obtain approximate solutions of (2.2) under various quasi-steady-state assumptions.
Several conditions on the rate constants have also been proposed to ensure validity of such approximations.
For example in 1920’s Briggs and Haldane derived a simplified version of the Michaelis-Menten equation,
commonly referred to now as the sQSSA [12]. The sQSSA is based on the assumption that the complex
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reaches its steady state quickly after a transient time, i.e., d[C]/dt ≈ 0 [50]. This approximation is found to
be accurate only when the enzyme concentration is small compared to that of the substrate. The condition for
the validity of the sQSSA was first suggested as [E0] � [S0] by Laidler [34], and a more general condition
was derived as [E0]� [S0]+KM by Segel [49] and Segel and Slemrod [50], where KM ≡ (k2 +k−1)/k1 is the
so-called Michaelis-Menten constant.

Borghans et al. later extended the sQSSA to the case with an excessive amount of enzyme and derived the
so-called tQSSA by introducing a new variable for the total substrate concentration [9]. In the tQSSA, one
assumes that the total substrate concentration changes on a slow time scale and that the complex reaches its
steady state quickly after a transient time when d[C]/dt ≈ 0. Then, the complex concentration [C] is found
as a solution of the quadratic equation. Approximating [C] in a simple way, they proposed a necessary and
sufficient condition for the validity of tQSSA as

([E0]+ [S0]+KM)2 � K[E0], (2.4)

where K = k2/k1 is the so-called Van Slyke-Cullen constant [56]. Later, Tzafriri [55] revisited the tQSSA
and derived another set of sufficient conditions for the validity of the tQSSA as ε ≡ (K/(2[S0])) f (r([S0]))�
1 where f (r) = (1− r)−1/2 − 1 and r([S0]) = 4[E0][S0]/([E0]+ [S0]+KM)2. He argued that this sufficient
condition was always roughly satisfied by showing ε was less than 1/4 for all values of [E0] and [S0]. The
tQSSA was later improved by Dell’Acqua and Bersani [19] at high enzyme concentrations when (2.4) is
satisfied.

The rQSSA was first suggested as an alternative to the sQSSA by Segel and Slemrod [50]. In the rQSSA,
the substrate, instead of the complex, was assumed to be at steady state, d[S]/dt ≈ 0, and the domain of
the validity of the rQSSA was suggested as [E0]� K. Then, Schnell and Maini showed that at high enzyme
concentration, the assumption d[S]/dt ≈ 0 was more appropriate in the rQSSA than the assumption d[C]/dt ≈
0 used in the sQSSA or tQSSA due to possibly large error during the initial stage of the reactions [46]. They
derived necessary conditions for the validity of the rQSSA as [E0] � K and [E0] � [S0]. In the following
sections, we will provide alternative derivations of these different conditions arriving at them in a more
natural way. To this end let us start with the stochastic description of (2.1).

3 Multiscale stochastic Michaelis-Menten kinetics

Let XS, XE , XC, and XP denote the copy numbers of molecules of the substrates (S), the enzymes (E), the
enzyme-substrate complex (C), and the product (P) respectively. We assume the evolution of these copy
numbers is governed by a Markovian dynamics given by the following stochastic equations (see, for instance,
[2]):

XS(t) = XS(0)−Y1

(∫ t

0
κ
′
1XS(s)XE(s)ds

)
+Y−1

(∫ t

0
κ
′
−1XC(s)ds

)
,

XE(t) = XE(0)−Y1

(∫ t

0
κ
′
1XS(s)XE(s)ds

)
+Y−1

(∫ t

0
κ
′
−1XC(s)ds

)
+Y2

(∫ t

0
κ
′
2XC(s)ds

)
,

XC(t) = XC(0)+Y1

(∫ t

0
κ
′
1XS(s)XE(s)ds

)
−Y−1

(∫ t

0
κ
′
−1XC(s)ds

)
−Y2

(∫ t

0
κ
′
2XC(s)ds

)
,

XP(t) = XP(0)+Y2

(∫ t

0
κ
′
2XC(s)ds

)
,

(3.1)

where Y1,Y−1 and Y2 are independent unit Poisson processes and t ≥ 0. The quantities κ ′
1,κ

′
−1,κ

′
2 are the

stochastic reaction rate constants. They can be related to the deterministic reaction rate constants by means
of the Avogadro’s number. We shall make this point precise in Section 5. We denote XE0 ≡ XE(t)+XC(t)
and XS0 ≡ XS(t) +XC(t) +XP(t), and as in the deterministic model (2.2) in previous section assume that
the total substrate and enzymes copy numbers, XS0 and XE0 , are conserved in time. As shown in [4, 27], the
representation (3.1) is especially helpful in analyzing systems with multiple time scales or involving species
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with abundances varying over different orders of magnitude. Unlike the chemical master equations, (3.1)
explicitly reveals the relations between the species abundances and the reaction rates.

In the reaction system (2.1), various scales can exist in the species numbers and reaction rate constants,
which determine time scales of the species involved. In order to relate these scales to each other, we introduce
a scaling parameter N (note that N is not necessarily the system size) and express the orders of magnitude of
species copy numbers and rate constants as powers of N2. Denoting scaling exponents for the ith species and
the kth rate constant by αi and βk respectively, we express unscaled species copy numbers and rate constants
in powers of N as

Xi(t) = NαiZN
i (t), for i = S,E,C,P

and κ
′
k = Nβk κk, for k = 1,−1,2,

(3.2)

so that the scaled variables and constants, ZN
i (t) and κk, are approximately of order 1 (denoted as O(1)).

In ZN
i , the superscript represents the dependence of the scaled species numbers on N. Note that to express

different time scales as powers of N, we may apply a time change by replacing t with Nγ t. The scaled species
number after such the time change is denoted by

Xi(Nγ t) = NαiZN
i (N

γ t)≡ NαiZN,γ
i (t).

With this change of variables {ZN,γ}≡
{(

ZN,γ
S ,ZN,γ

E ,ZN,γ
C ,ZN,γ

P

)}
becomes a parametrized family of stochas-

tic processes satisfying, according to (3.1),

ZN,γ
S (t) = ZN

S (0)+N−αS

[
−Y1

(∫ t

0
Nρ1+γ

κ1ZN,γ
S (s)ZN,γ

E (s)ds
)
+Y−1

(∫ t

0
Nρ−1+γ

κ−1ZN,γ
C (s)ds

)]
,

ZN,γ
E (t) = ZN

E (0)+N−αE

[
−Y1

(∫ t

0
Nρ1+γ

κ1ZN,γ
S (s)ZN,γ

E (s)ds
)
+Y−1

(∫ t

0
Nρ−1+γ

κ−1ZN,γ
C (s)ds

)
+ Y2

(∫ t

0
Nρ2+γ

κ2ZN,γ
C (s)ds

)]
,

ZN,γ
C (t) = ZN

C (0)+N−αC

[
Y1

(∫ t

0
Nρ1+γ

κ1ZN,γ
S (s)ZN,γ

E (s)ds
)
−Y−1

(∫ t

0
Nρ−1+γ

κ−1ZN,γ
C (s)ds

)
− Y2

(∫ t

0
Nρ2+γ

κ2ZN,γ
C (s)ds

)]
,

ZN,γ
P (t) = ZN

P (0)+N−αPY2

(∫ t

0
Nρ2+γ

κ2ZN,γ
C (s)ds

)
,

(3.3)

where ρ1 ≡ αS +αE + β1, ρ−1 ≡ αC + β−1, and ρ2 ≡ αC + β2. As seen from (3.3), the values of ρ’s, α’s
and γ’s determine the temporal dynamics of the scaled random processes. For example, consider the limiting
behavior of the scaled process for the first reaction in the equation for S,

N−αSY1

(∫ t

0
Nρ1+γ

κ1ZN,γ
S (s)ZN,γ

E (s)ds
)
. (3.4)

Assuming that ZN,γ
S and ZN,γ

E are O(1) on the time scale of interest, the limiting behavior of the scaled process
depends upon ρ1, αS, and γ . If the ρ1 + γ < αS, the scaled process vanishes to zero as N goes to infinity. This
means that the number of occurrences of the first reaction is outweighed by the order of magnitude of the

2 We note that 1/N plays a similar role as the expansion parameter (usually denoted by ε) in the singular perturbation analysis of
deterministic models [23,50]. In this approach, the time scales are often separated by introducing, in addition to the time variable t, a new
slow time scale τ = εt, where ε is assumed small and eventually sent to zero. This allows one to reformulate the system of differential
equations into the Tikhonov standard form [23]. Alternatively, especially in case of perturbation analysis of chemical reaction networks,
one often scales the reaction rates instead to separate the fast reactions from the assumed slow ones. For instance, a reaction with rate
εk1 will correspond to a slow reaction compared to a reaction with rate k2. See [23, Section 2.4 Examples] for some examples.
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species copy number for S. When ρ1 + γ = αS, the number of occurrences of the first reaction is comparable
with the order of magnitude of the species copy number for S. Then, using the law of large numbers for the
Poisson process3, the limiting behavior of (3.4) is approximately the same as that of

∫ t

0
κ1ZN,γ

S (s)ZN,γ
E (s)ds. (3.5)

Lastly, when ρ1 + γ > αS, the first reaction occurs so frequently that the scaled process in (3.4) tends to
infinity. The limiting behaviors of other scaled processes are determined similarly. Using the scaled processes
involving the reactions where S is produced or consumed, we can choose γ so that ZN,γ

S (t) becomes O(1).
Therefore, we have αS = max(ρ1 + γ,ρ−1 + γ), and the time scale of S is given by

γ = αS −max(ρ1,ρ−1). (3.6)

Note that the time scales of the species numbers and their limiting behaviors are decided by the scaling
exponents for species numbers and reactions, that is, they are dictated by the choice of α’s and β ’s.

In order to prevent the system from vanishing to zero or exploding to infinity in the scaling limit, the
parameters α’s and β ’s must satisfy what are known as the balance conditions [27]. Essentially, these con-
ditions ensure that the scaling limit is O(1). Intuitively, the largest order of magnitude of the production of
species i should be the same as that of consumption of species i. In the Michaelis-Menten reaction network
described in Section 2, balance for the substrate S can be achieved in two ways. First, through the equation
ρ1 = ρ−1, which balances the binding and unbinding of the enzyme and the substrate; and second, by making
αS large enough so that the imbalance between the occurrences of the reversible binding of the enzyme to
substrate can be nullified. This gives a restriction on the time scale γ as γ +max(ρ1,ρ−1) ≤ αS. Combining
the conditions for all species, we get

ρ1 = ρ−1 or γ ≤ αS −max(ρ1,ρ−1),

ρ1 = max(ρ−1,ρ2) or γ ≤ αE −max(ρ1,ρ−1,ρ2),

ρ1 = max(ρ−1,ρ2) or γ ≤ αC −max(ρ1,ρ−1,ρ2),

ρ2 + γ = 0 or γ ≤ αP −ρ2.

(3.7)

In addition to (3.7) further conditions are also required for each linear combination of species, to balance
their collective production and consumption rate. These additional conditions are

ρ2 + γ = 0 or γ ≤ max(αS,αC)−ρ2,

ρ1 = ρ−1 or γ ≤ max(αC,αP)−max(ρ1,ρ−1),
(3.8)

and are obtained by comparing collective production and consumption rates of S+C and C+P, respectively.

4 Discrepancy between stochastic and deterministic QSSAs

The multiscaling technique allows one to produce a wide range of approximations by tuning the scaling
exponents suitably to reflect different regimes of time-scale separation and species abundance. While the
main purpose of the paper is to show how the sQSSA, the tQSSA and the rQSSA can be derived directly
from the stochastic description by means of an appropriate choice of the scaling exponents, the multiscaling
method may also be used to derive other approximations, which have a quasi-steady state flavor and are not
directly derivable from the deterministic systems. To illustrate this point, we furnish two simple examples.

3 The strong law of large numbers states that, for a unit Poisson process Y , 1
N Y (Nu)→ u almost surely as N → ∞, (see [21]).
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4.1 Michaelis-Menten kinetics with extremely large enzyme concentration

Consider the Michaelis-Menten kinetics (2.1) with the enzyme E in much greater abundance compared to the
other species. We also assume that all reaction constants have the same order of magnitude. In order to model
such a pathological case in the deterministic setting, one could assume the enzyme concentration does not
change over time, i.e., d[E]/dt ≈ 0 and consider the following reduced model:

d[S]
dt

=−k1[E][S]+ k−1[C], and
d[C]

dt
= k1[E][S]− (k−1 + k2)[C], (4.9)

where [E] is no longer a function of time t, and is treated as a constant (i.e., [E] = [E0] at all times). Note that
here we do not assume the conservation law [E] + [C] ≡ [E0]. A similar setup under the assumption of the
conservation law will be discussed later in Section 7. By virtue of the constancy of [E], the quantity k1[E] can
be interpreted as an effective reaction rate in the reduced system

S
k1[E]−−−⇀↽−−−
k−1

C
k2−⇀ /0 (4.10)

where we assume that k1,k−1, and k2 are all O(1). Since k1[E] is much greater than the other two reaction rate
constants, the above system qualitatively predicts rapid decay in substrate concentration and an initial growth
in complex concentration. However, such a prediction does not provide insights into the inherent time scales
of the different species.

Now, let us consider the deterministic approximation derived from the stochastic framework. The idea is
to study the stochastic system in the (possibly distinct) intrinsic time scales of the species, while matching
the assumptions about the abundances (and the reaction rates) made in the deterministic setup. Therefore,
setting αS = αC = αP = 1, αE = 2, and β1 = β−1 = β2 = 0 we see that the reaction propensities are given
by ρ1 = 3,ρ−1 = ρ2 = 1. This ensures that the stochastic system is indeed comparable to the deterministic
system in (4.9). The choice of αE = 2 reflects the high abundance of the enzyme. The time scales of S, E, and
C are given by

γS =αS −max{ρ1,ρ−1}=−2,
γE =αE −max{ρ1,ρ−1,ρ2}=−1,
γC =−2,

revealing two different intrinsic time scales. The advantage of the multiscaling approach is that we may study
the reaction system separately in each one.

Let us begin with the time scale of S, i.e., set γ = γS = −2. Following the scaling notations introduced
earlier in this section, we obtain

(
Z(−2)

S ,Z(−2)
C ,Z(−2)

P

)
as a scaling limit of

(
ZN,−2

S ,ZN,−2
C ,ZN,−2

P

)
as N goes

to infinity. Then, the scaling limit of S satisfies

Z(−2)
S (t) = Z(−2)

S (0)−
∫ t

0
κ1Z(−2)

S (s)ZE(0)ds, (4.11)

where E is approximated as its initial value since the time scale of E (γE = −1) is later than that of S
(γS =−2). There are two things of note here. First, the above QSSA for S derived from the stochastic system
in the time scale of S is different from the reduced model in the coupled ODE system (4.9). Second, the above
equation (4.11) allows us to make a quantitative statement about the decay rate of S. Indeed, Z(−2)

S decays
exponentially with a decay rate κ1ZE(0) depending solely on κ1 and the initial enzyme concentration, i.e.,

Z(−2)
S (t) = Z(−2)

S (0)exp(−κ1ZE(0)Z
(−2)
S (t)).

Now, let us look at the time scale of the enzyme, i.e., set γ = γE = −1. In this time scale, we do not get
a functional limit for ZN,−1

S and ZN,−1
C immediately. However, the term in (3.4) with our choice of scaling
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exponents is in the time scale of γ =−1. Since ρ1 + γ = 2, which is greater than αS = 1, the substrates S will
be rapidly converted into complex molecules C (see the parametrized family (3.3)). As a consequence, the
substrates and the complexes will be averaged out in the limit as N → ∞. In this case, we can still approximate
the average values of the fast species (S and C) by showing that the occupational random measures of S and
C converge to a limiting measure as N → ∞ (as done in [27, 30, 33]). If we denote a limit point of ZN,−1

E by
Z(−1)

E , then expectedly, the limit Z(−1)
E satisfies Z(−1)

E (t) = ZE(0). Moreover, from the limiting measure (of
the occupational measures), we can get the averaged behaviors of S and C as

Z(−1)
S (t)≡

∫
Z(−1)

S dψ = 0, and also, Z(−1)
C (t) = 0, (4.12)

where ψ is the conditional equilibrium or the local-averaging distribution (see [27, 30, 33] for similar ex-
amples). Therefore, in the time scale of the enzyme, there is no dynamic behavior (time evolution) at all in
the limit. Note that (4.12) does not depend on the values of the reaction rate constants. One can obtain such
a behavior from the system (4.9) by additionally assuming d[S]/dt ≈ 0 and d[C]/dt ≈ 0, which renders the
ODE system completely trivial and our assumptions about the initial species abundances irrelevant. On the
other hand, the averaged behavior (4.12) is a direct implication of the multiscale approximation in the time
scale of the enzyme, rather than an additional assumption.

4.2 Three species kinetics

Consider the following three-species example introduced by Anderson et al. [1]

/0
k1−−⇀↽−−
k−1

E
k2−−⇀↽−−
k−2

Ein,

2C 1−⇀ 3C, (4.13)

3C+E 1−⇀ 2C+E

where E and Ein represent active and inactive enzymes. The authors in [1] considered the case when k±1 =
k±2 = 1 and showed that if the initial copy number of C is greater or equal to 2, the species C always
explodes to infinity in the stochastic model while its concentration always converges to the steady state 1 in
the corresponding ODE model.

For the purpose of our current discussion we have modified the parameter values to consider the following
two cases. Case 1: k±1 = 1, k±2 = 100 and Case 2: k±1 = 100, k±2 = 1. In the ODE model for Case 1, the
species Ein evolves fast. Therefore, we define a new slow variable ET ≡ E +Ein and assume d[Ein]/dt ≈ 0.
This gives [Ein]≈ k2[ET ]/(k2 + k−2), [E]≈ k−2[ET ]/(k2 + k−2) leading to the reduced ODE model:

d[ET ]

dt
= k1 −

k−1k−2

k2 + k−2
[ET ], and

d[C]

dt
= [C]2 − k−2

k2 + k−2
[C]3[ET ]. (4.14)

Now, let us consider the system approximation for Case 1 using the stochastic multiscaling framework. Set-
ting the stochastic and deterministic rate constants to be equal (κ ′

i = ki), let αE = αEin = αC = 0, β±1 = 0,
and β±2 = 1 with N = 100. It follows that the reaction propensities are given by ρ±1 = ρ3 = ρ4 = 0 and
ρ±2 = 1. The choice of β±2 = 1 reflects the fast conversion between active and inactive enzymes. As N → ∞,
the scaling limits of ET and C give the following reduced model

ZET (t) = ZET (0)+Y1 (κ1t)−Y−1

(∫ t

0

κ−1κ−2

κ2 +κ−2
ZET (s)ds

)
ZC(t) = ZC(0)+Y3

(∫ t

0
ZC(s)(ZC(s)−1)ds

)
−Y4

(∫ t

0

κ−2

κ2 +κ−2
ZC(s)(ZC(s)−1)(ZC(s)−2)ZET (s)ds

)
.

. (4.15)
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The above model is stochastic and the copy numbers of ET and C are O(1), i.e., αE = αEin = αC = 0. Note
that the propensity functions of the ODE (4.14) and the stochastic reduced models (4.15) are slightly different
since the reactants are dimers or trimers of C. Observe further that in (4.15) C explodes which is an important
feature of the full dynamics of (4.13) lost in the reduced ODE model (4.14).

Next, consider the ODE model for Case 2. The species ET evolves fast in this case. Therefore, we assume
d[ET ]/dt ≈ 0, which gives [ET ] ≈ [Ein] + k1/k−1, [E] ≈ k1/k−1 and results in the following reduced ODE
model:

d[Ein]

dt
=

k1k2

k−1
− k−2[Ein], and

d[C]

dt
= [C]2 − k1

k−1
[C]3. (4.16)

As for Case 1, consider now the approximation of Case 2 using the stochastic multiscaling framework. Set
αE = αEin = αC = 0, β±1 = 1, and β±2 = 0 with N = 100. The reaction propensities are given by ρ±1 = 1 and
ρ±2 = ρ3 = ρ4 = 0. As N → ∞, the scaling limit of Ein and C gives the following reduced stochastic model:

ZEin(t) = ZEin(0)+Y2

(
κ1κ2

κ−1
t
)
−Y−2

(∫ t

0
κ−2ZEin(s)ds

)
ZC(t) = ZC(0)+Y3

(∫ t

0
ZC(s)(ZC(s)−1)ds

)
−Y4

(∫ t

0

κ1

κ−1
ZC(s)(ZC(s)−1)(ZC(s)−2)ds

)
,

(4.17)

Interestingly, note that in (4.17) C fluctuates with a low copy number (about 2-10 molecules) when we start
with two molecules of C. In contrast, in the ODE system (4.16) the concentration of C attains steady state.
As in Case 1, the propensity functions in the reduced models (4.16) and (4.17) are slightly different due to
the discrepancy between propensities of higher order reactions for stochastic and deterministic equations.

The three-species example shows that the reduced stochastic and the ODE models may have different
dynamics depending on the choice of the parameter values. In Case 1, the species C explodes in the stochastic
model while it does not in the corresponding ODE model. In Case 2, though there is no explosion of C, C
fluctuates randomly but never goes below 2 molecules in the stochastic model with two molecules of C
initially, while C converges to the steady state 1 in the corresponding ODE model.

It is of importance to note that in both reaction system examples discussed in this section the stochastic
QSSA techniques allowed us to derive reduced stochastic models exhibiting important aspects of the original
dynamics that the corresponding ODE approximations failed to capture. It is often possible to use multiscaling
techniques on the deterministic system directly (for instance, as done in [35]) and they often agree with the
stochastic QSSAs (in the sense that it gives a reduced ODE model whose propensity functions are analogs of
those in the stochastic QSSA), but the stochastic averaging in (4.12) and the stochastic limits in the example
described above can not be obtained from deterministic systems. Having thus demonstrating the usefulness
of the stochastic QSSA we now return to the discussion of the sQSSA, tQSSA and rQSSA approximations
for the stochastic Michaelis-Menten kinetics (3.1).

5 Standard quasi-steady-state approximation (sQSSA)

In the deterministic sQSSA, one assumes that the substrate-enzyme complex C reaches its steady-state quickly
after a brief transient phase while the other species are still in their transient states. Therefore, by setting
d[C]/dt ≈ 0, one approximates the steady state concentration of the complex. The steady state equation of
the complex in (2.2) and the conservation of the total enzyme concentration in (2.3) give

[C] =
[E0][S]

KM +[S]
, (5.1)
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where KM = (k−1 + k2)/k1. The substrate concentration is then given by

d[S]
dt

=−k2[E0][S]
KM +[S]

. (5.2)

The corresponding differential equations for [E] and [P] can be written similarly. This approximation is known
as the sQSSA of the Michaelis-Menten kinetics (2.1) under the deterministic setting.

Now, we use stochastic equations for the species copy numbers in (3.1) and apply the multiscale ap-
proximation to derive an analogue of (5.1)-(5.2). Equations like (5.2) have been previously derived from
the stochastic reaction network [16, 17]. It was also revisited specifically using the multiscale approximation
method in [2,27]. However, for the sake of completeness, we furnish a brief description below. Assuming that
E and C are on the faster time scale than S and P, consider the scaled processes in (3.3) with the following
scaling exponents:

αS = αP = 1, αE = αC = 0,
β1 = 0, β−1 = β2 = 1,

(5.3)

that is, ρ1 = αS +αE + β1 = 1, ρ−1 = αC + β−1 = 1, and ρ2 = αC + β2 = 1. Note that when γ = 0, the
above corresponds to assuming the abundances of the substrate and the product are order N while those of
the enzyme and the enzyme-substrate complex are order 1. We are interested in the time scale of S given in
(3.6). Plugging in the scaling exponent values in (5.3), the time scale of S we are interested in corresponds to
γ = 0. Setting γ = 0 in the scaled stochastic equations in (3.3) and writing ZN

i instead of ZN,γ
i for i = S,E,C,P

one obtains from (5.3). Define M ≡ ZN
E (t)+ZN

C (t) and

ZN
C (t)≡

∫ t

0
ZN

C (s)ds = Mt −
∫ t

0
ZN

E (s)ds.

Note that M = ZN
E (0)+ ZN

C (0) = XE(0)+XC(0), and that M does not depend on the scaling parameter N.
As done in [2, 27], assume that ZN

S (0) → ZS(0). The scaled variables ZN
S and ZN

C are bounded so they are
relatively compact in the finite time interval [0,T ], where 0 <T < ∞. Then,

(
ZN

S ,ZN
C

)
converges to (ZS,ZC)

as N → ∞ and satisfies for every t > 0,

ZS(t) = ZS(0)−
∫ t

0
κ1ZS(s)

(
M− ŻC(s)

)
ds+

∫ t

0
κ−1ŻC(s)ds,

0 =
∫ t

0
κ1ZS(s)

(
M− ŻC(s)

)
ds−

∫ t

0
(κ−1 +κ2) ŻC(s)ds. (5.4)

Note that we get (5.4) by dividing the equation for ZN
C (t) in (3.3) by N and taking the limit as N → ∞. From

(5.4), we get

ŻS(t) =− κ2MZS(t)
κM +ZS(t)

,

ŻC(t) =
MZS(t)

κM +ZS(t)
,

(5.5)

where κM = (κ−1 +κ2)/κ1, which is precisely the sQSSA.
Note that we only use the Poisson law of large numbers and the conservation law to derive (5.5). In

Figure 1, we compare the limit ZS(t) in (5.5) with the scaled substrate copy number ZN
S (t) in (3.3), obtained

from 1000 realizations of the stochastic simulation (using the Gillespie algorithm [22]). Figure 1 shows the
excellent agreement between the scaled process ZN

S (t) and its limit ZS(t).
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Conditions for sQSSA in the deterministic system. We have shown that the scaling exponents (5.3) indeed
yielded the sQSSA. We now show how the conditions (5.3) are related to the conditions proposed in the
literature for the validity of the deterministic sQSSA. First, we consider a general condition derived by Segel
[49] and Segel and Slemrod [50],

[E0] � [S0]+KM, (5.6)

where KM = (k−1 + k2)/k1 is the Michaelis-Menten constant. We rewrite (5.6) in terms of the species copy
numbers and the stochastic reaction rate constants. The stochastic and the deterministic reaction rates are
related as follows

(k1,k−1,k2) =
(
V κ

′
1,κ

′
−1,κ

′
2
)
, (5.7)

where V is the system volume multiplied by the Avogadro’s number [32]. We also use the relation between
molecular numbers and molecular concentrations as

[i] = Xi(t)/V, i = S,E,C,P. (5.8)

Combining (5.7) and (5.8) with (5.6), and canceling out V , we get

XE0 � XS0 +
κ ′
−1 +κ ′

2

κ ′
1

. (5.9)

Plugging in our choice of the scaled variables and rate constants given in (3.2) and (5.3) into (5.9) gives

ZN
E (t)+ZN

C (t) � N
(
ZN

S (t)+ZN
P (t)

)
+ZN

C (t)+
N (κ−1 +κ2)

κ1
. (5.10)

Since ZN
i (t)≈O(1) and κk ≈O(1), the left and the right sides of (5.10) become of order 1 and N, respectively.

We see that our choice of the scaling in the stochastic model is in agreement with the conditions for the validity
of the sQSSA in the deterministic model (5.6).

Note that the choice of scaling exponents in (5.3) is, in general, not unique. We now derive more general
conditions on the scaling exponents, α’s and β ’s, leading to the sQSSA limit (5.5). Note that for (5.5) to hold
the time scale of C should be faster than that of S, so that we can obtain (5.4) from the equation of C, i.e.,

αC −max(ρ1,ρ−1,ρ2) < αS −max(ρ1,ρ−1), (5.11)

which is an analogue of d[C]/dt ≈ 0. Moreover, for E to be expressed in terms of C and retained in the limit,
the species copy number of C has to be greater than or equal to that of E in the conservation equation of the
total enzyme

αE ≤ αC. (5.12)

Finally, all reaction propensities are of the same order so that all the terms are present in (5.5)

ρ1 = ρ−1 = ρ2. (5.13)

Combining (5.11), (5.12), and (5.13) together, we get the following conditions

αE ≤ αC < αS,

αS +β1 = β−1 = β2.
(5.14)

The second condition in (5.14) can be rewritten as αS = β−1 −β1 = β2 −β1 and so (5.14) implies

XE0 � XS0 ,

XE0 �
κ ′
−1

κ ′
1

≈ κ ′
2

κ ′
1
,

which is comparable to the general condition (5.6) for the sQSSA in the deterministic system.
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(a) (b)

Fig. 1: Michaelis-Menten kinetics with sQSSA derived from the stochastic system. The scaling limit of
the substrate copy number, drawn in yellow dotted line, is compared with the mean substrate copy number
(in blue) obtained from the direct simulations of the stochastic system (3.1). The light blue shaded region
represents one standard deviation from the mean. Different choices of initial conditions are used to reflect
the fact that convergence can be achieved under varying values of the conservation constant M. Simulation
settings: (a) N = 100, (XN

S (0),XN
E (0),XN

C (0),XN
P (0)) = (100,10,0,0) for the upper curve and (50,20,0,0)

for the lower curve; and (b) N = 1000, (XN
S (0),XN

E (0),XN
C (0),XN

P (0)) = (1000,10,0,0) for the upper curve
and (750,20,0,0) for the lower curve. The reaction rate constants are (κ1,κ−1,κ2) = (1,1,0.1) in both (a)
and (b).

6 Total quasi-steady-state approximation (tQSSA)

In the tQSSA we introduce a new variable, namely the total substrate concentration [T ]≡ [S]+ [C]. The idea
behind the tQSSA is to get an accurate approximation of (2.2) for a wider range of dynamics (for example, for
both high and low enzyme concentrations). Assuming that [T ] changes on the slow time scale, the equations
(2.2)-(2.3) give the following reduced model [9, 55]

d[T ]
dt

=−k2[C],

d[C]

dt
= k1 {([T ]− [C]) ([E0]− [C])−KM[C]} ,

(6.1)

where KM = (k−1 + k2)/k1. Assuming that d[C]/dt ≈ 0 and using [C]≤ [E0], the unique solution is found as
the positive root of the quadratic equation

[C] =
([E0]+KM +[T ])−

√
([E0]+KM +[T ])2 −4[E0][T ]

2
, (6.2)

and the evolution of the total substrate concentration obeys

d[T ]
dt

= −k2
([E0]+KM +[T ])−

√
([E0]+KM +[T ])2 −4[E0][T ]

2
. (6.3)

The above approximation is the tQSSA of the Michaelis-Menten kinetics (2.1) derived from the deterministic
equation (2.2).
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Now, consider the stochastic model (3.1). We will apply the multiscale approximation with the appropriate
scaling so that (6.3) is obtained as the limit of the stochastic system (3.3) for N → ∞ . We assume that S, E,
and C are on the faster time scale than P. Then our choice of scaling is

αS = αE = αC = αP = 1,
β1 = β2 = 0, β−1 = 1,

(6.4)

that is, ρ1 =αS+αE +β1 = 2, ρ−1 =αC+β−1 = 2, and ρ2 =αC+β2 = 1. We are interested in behavior of the
stochastic model in the time scale of T . Adding unscaled equations for S and C and dividing by Nmax(αS,αC)

from (3.3) we have

NαS ZN,γ
S (t)+NαC ZN,γ

C (t)
Nmax(αS,αC)

=
NαS ZN

S (0)+NαC ZN
C (0)

Nmax(αS,αC)

− 1
Nmax(αS,αC)

Y2

(∫ t

0
Nρ2+γ

κ2ZN,γ
C (s)ds

)
.

Thus, the time scale of T is given by

γ = max(αS,αC)−ρ2. (6.5)

Using (6.4) gives γ = 0. We denote ZN,γ
i as ZN

i for i = S,E,C,P as we did in Section 5.
Define the new slow variable

ZN
T (t) ≡ ZN

S (t)+ZN
C (t),

which satisfies

ZN
T (t) = ZN

T (0)−
1
N

Y2

(∫ t

0
Nκ2ZN

C (s)ds
)
. (6.6)

We have two conservation laws for the total amount of substrate and enzyme, mN ≡ ZN
E (t) + ZN

C (t) and
kN ≡ ZN

T (t)+ZN
P (t), and we denote their limits as N → ∞ by m and k, respectively. We also define

ZN
C (t) ≡

∫ t

0
ZN

C (s)ds = mNt −
∫ t

0
ZN

E (s)ds.

Since ZN
T (t)≤ kN → k and ZN

C (t)≤mNt →mt, ZN
T and ZN

C are bounded, they are also relatively compact in the
finite time interval t ∈ [0,T ] where 0 < T < ∞. Since the law of large numbers implies that ZN

T (0)→ ZT (0)
as N → ∞ then

(
ZN

T ,ZN
C

)
(possibly along a subsequence only) converges to (ZT ,ZC) which satisfies

ZT (t) = ZT (0)−
∫ t

0
κ2ŻC(s)ds,

0 =
∫ t

0
κ1
(
ZT (s)− ŻC(s)

)(
m− ŻC(s)

)
ds−

∫ t

0
κ−1ŻC(s)ds. (6.7)

Note that (6.7) is the limit as N → ∞ when we divide the equation for the scaled variable of C in (3.3) by N.
Hence, we obtain

ŻC(t) =
(m+κD +ZT (t))−

√
(m+κD +ZT (t))

2 −4mZT (t)

2
, (6.8)

ŻT (t) = −κ2
(m+κD +ZT (t))−

√
(m+κD +ZT (t))

2 −4mZT (t)

2
, (6.9)

where κD ≡ κ−1/κ1. The equations (6.8) and (6.9) are analogous to (6.2) and (6.3), respectively. Note that
we only have κD in (6.8)-(6.9) instead of KM = (k−1 + k2)/k1 in (6.2)-(6.3). The reaction rate κ2 disappears,
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since the propensity of the second reaction is of order of N, which is slower than the other two reactions
whose propensities are of order N2 as shown in (3.3). In Figure 2, we compare the limit ZT (t) in (6.9) and the
scaled total substrate copy number ZN

T (t) in (6.6), obtained from 1000 realizations of the stochastic simulation
using Gillespie’s algorithm [22]. The plot indicates close agreement between the scaled process ZN

T (t) and its
proposed approximation ZT (t).

Conditions for tQSSA in the deterministic system. To derive tQSSA from (6.1), it is assumed that the total
substrate concentration changes in the slow time scale and that the complex reaches its steady state quickly
after some transient time, that is, d[C]/dt ≈ 0. The complex concentration [C] is then found as the nonnegative
solution of a quadratic equation. As mentioned earlier, Borghans et al. [9] approximated [C] in a form simpler
than the exact solution in (6.2) and found a necessary and sufficient condition for the validity of the tQSSA
as

K[E0] � ([E0]+ [S0]+KM)2 , (6.10)

where K = k2/k1 and KM = (k−1+k2)/k1. The benefit of tQSSA over sQSSA is that (6.10) is always roughly
valid [40, 55]. The condition (6.10) is equivalent to

1 �
(

1+
[E0]+ [S0]

K
+

k−1

k2

)(
1+

[S0]+KM

[E0]

)
(6.11)

and is implied by any one of the following

K � [E0]+ [S0],

k2 � k−1,

[E0]� [S0]+KM.

(6.12)

We convert concentrations and deterministic rate constants to molecular numbers and stochastic rate constants
using (5.7)-(5.8). After simplification, the condition in (6.10) becomes

κ ′
2

κ ′
1

XE0 �
(

XE0 +XS0 +
κ ′
−1 +κ ′

2

κ ′
1

)2

, (6.13)

by using the same argument as in (5.9). Plugging our choice of the scaled variables and rate constants as
specified in (3.2) and (6.4) yields

κ2

κ1
N
(
ZN

E (t)+ZN
C (t)

)
�
(

N
(
ZN

E (t)+ZN
C (t)

)
+N

(
ZN

S (t)+ZN
C (t)+ZN

P (t)
)
+

Nκ−1 +κ2

κ1

)2

.

Since in the above expression the term on the left is O(N) and the term on the right is O(N2), our choice of
scaling in the stochastic model is in agreement with the condition (6.10) for the validity of the tQSSA in the
deterministic model.

As in case of the sQSSA, we may again derive more general conditions on the scaling exponents, α’s and
β ’s, which will lead to tQSSA limit in (6.9). To this end note that the time scale of C is faster than that of T
so that we can derive an analogue of d[C]/dt ≈ 0 in (6.7)

αC −max(ρ1,ρ−1,ρ2) < max(αS,αC)−ρ2. (6.14)

Moreover, the species copy number of C has an order greater than or equal to that of S, since otherwise C
would disappear in the limit of T . Similarly, the species copy number of C has an order greater than or equal
to that of E so that the limit for E can be expressed in terms of a conservation constant and C. Therefore, we
have

max(αS, αE) ≤ αC. (6.15)
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(a) (b)

Fig. 2: Michaelis-Menten kinetics with tQSSA. The scaling limit of the total substrate copy number,
drawn in yellow dotted line, is compared with the mean total substrate copy number (in blue), obtained
from direct simulations of the system (3.1). The light blue shaded region represents one standard devi-
ation from the mean. Different choices of initial conditions are used to reflect the fact that convergence
can be achieved under varying values of the conservation constant m. Simulation settings: (a) N = 100,
(XN

S (0),XN
E (0),XN

C (0),XN
P (0)) = (100,10,0,0) for the upper curve and (50,10,0,0) for the lower curve; and

(b) N = 1000, (XN
S (0),XN

E (0),XN
C (0),XN

P (0)) = (1000,10,0,0) for the upper curve and (750,25,0,0) for the
lower curve. The reaction rate constants are (κ1,κ−1,κ2) = (1,4,1) in both (a) and (b).

Finally, to obtain a quadratic equation with a square root solution in the limit, the enzyme binding reaction
rate should be equal to the unbinding reaction rate. That is,

ρ1 = ρ−1. (6.16)

Combining (6.14), (6.15), and (6.16), we get the following conditions

max(αS, αE)≤ αC,

β2 < β−1 = αC +β1.
(6.17)

Note that due to β2 < β−1 in (6.17), we have the discrepancy between κD in (6.9) and KM in (6.3). In other
words, the reason behind this discrepancy is that the propensity of the second reaction (product formation) is
of order of N, which is slower than the other two reactions whose propensities are of order N2 as shown in
(3.3). Therefore, the reaction rate κ2 disappears. This minor discrepancy essentially shows that even though
the scaling exponents in the stochastic system are in agreement with those in the deterministic setting, the
resultant limiting system may differ. Note that, the condition (6.17) implies

XS0 ≈ XE0 ,

κ ′
2

κ ′
1
�

κ ′
−1

κ ′
1

≈ XE0 ,
(6.18)

which is consistent with the condition k2 � k−1 in (6.12) that was also suggested for the stochastic system
tQSSA in [5].
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7 Reverse quasi-steady-state approximation (rQSSA)

In the deterministic rQSSA, it is assumed that the enzyme is in high concentration. In this approximation,
two time scales are considered. Starting with an initial condition ([S], [E], [C], [P]) = ([S0], [E0],0,0) in (2.2),
the enzyme concentration is [E] ≈ [E0] during the initial transient phase. Since there is almost no complex
during this time, we get an approximate model as

d[S]
dt

=−k1[E0][S],

d[C]

dt
= k1[E0][S].

(7.1)

After the initial transient phase, the substrate is depleted. Therefore, we assume that d[S]/dt ≈ 0 in (2.2) and
obtain

[S] =
k−1[C]

k1 ([E0]− [C])
, (7.2)

so that the differential equation for the complex becomes

d[C]

dt
=−k2[C]. (7.3)

We refer to the approximation of the system (2.2) by (7.1)-(7.3) as the rQSSA of the Michaelis-Menten
kinetics in the deterministic setting.

As in the previous sections, let us consider the stochastic equations for the Michaelis-Menten kinetics
given by (3.1) and apply another multiscale approximation with time change, to derive the rQSSA in (7.1)-
(7.3) as the limit of stochastic system. Assuming that S and C are on faster time scale than E and P, the
following scales are chosen

αS = αC = αP = 1, αE = 2,
β1 = 0, β−1 = β2 = 1,

(7.4)

that is, ρ1 = αS +αE +β1 = 3, ρ−1 = αC +β−1 = 2, and ρ2 = αC +β2 = 2. Note that this choice of scaling
does not satisfy the balance equations introduced in (3.7). The inequalities for S and C give γ ≤−2 and those
for E and P give γ ≤−1. These conditions suggest the first and the second time scales as γ =−2 when S and
C become O(1) and γ =−1 when E and P are O(1). Define the following conservation constants

mN ≡ ZN,γ
E (t)+

1
N

ZN,γ
C (t),

kN ≡ ZN,γ
S (t)+ZN,γ

C (t)+ZN,γ
P (t),

(7.5)

which we assume to converge to some limiting values m and k as N → ∞, respectively. In this setting, ZN,γ
S ,

ZN,γ
E , ZN,γ

C , and ZN,γ
P are bounded so that they are relatively compact for t ∈ [0,T ], where 0 < T < ∞.

In the first time scale when γ = −2, the scaled species for E and P converge to their initial conditions,
ZN,−2

E (t)→ ZE(0) and ZN,−2
P (t)→ ZP(0) as N →∞, since the scaling exponents in the propensities are greater

than those of species copy numbers in this time scale. Therefore
(

ZN,−2
S ,ZN,−2

C

)
converges to

(
Z(−2)

S ,Z(−2)
C

)
satisfying

Z(−2)
S (t) = ZS(0)−

∫ t

0
κ1Z(−2)

S (s)ZE(0)ds,

Z(−2)
C (t) = ZC(0)+

∫ t

0
κ1Z(−2)

S (s)ZE(0)ds.
(7.6)
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Since ZN,−2
C (t) is bounded by kN from (7.5), the remaining reaction terms for the unbinding of the complex

and for the product production vanish as N → ∞. The equations (7.6) are seen as the integral version of (7.1),
that is, the rQSSA for the first (transient) time scale.

Next, consider the second time scale when γ = −1. Plugging γ = −1 in the equation for S in (3.3), and
applying the law of large numbers, we obtain

ZN,−1
S (t) ≈ ZN

S (0)−
∫ t

0

(
Nκ1ZN,−1

S (s)ZN,−1
E (s)−κ−1ZN,−1

C (s)
)

ds. (7.7)

Using (7.7), the equations for E and C in (3.3) become

ZN,−1
C (t) ≈ ZN

C (0)+ZN
S (0)−ZN,−1

S (t)−
∫ t

0
κ2ZN,−1

C (s)ds, (7.8)

ZN,−1
E (t) ≈ ZN

E (0)−
∫ t

0
κ1ZN,−1

S (s)ZN,−1
E (s)ds, (7.9)

since the remaining reaction terms are asymptotically equal to zero. Dividing (7.7) by N, we obtain∫ t

0
κ1ZN,−1

S (s)ZN,−1
E (s)ds → 0, (7.10)

as N → ∞, since all other terms vanish asymptotically. Due to (7.9) and (7.10), ZN,−1
E (t)→ ZE(0) as N → ∞.

Defining ZN,−1
S (t) ≡

∫ t
0 ZN,−1

S (s)ds and using (7.10) and (7.8), we conclude that
(
ZN,−1

S ,ZN,−1
C

)
converges

to
(
Z(−1)

S ,Z(−1)
C

)
satisfying

0 =
∫ t

0
κ1Ż

(−1)
S (s)ZE(0)ds,

Z(−1)
C (t) = ZC(0)+ZS(0)− Ż(−1)

S (t)−
∫ t

0
κ2Z(−1)

C (s)ds. (7.11)

Therefore,

Ż(−1)
S (t) = 0,

Ż(−1)
C (t) =−κ2Z(−1)

C (t),
(7.12)

which is the analogue of the rQSSA in the second time scale (7.2)-(7.3) as derived from the deterministic
model.

We illustrate the quality of rQSSA in the stochastic Michaelis-Menten system with some simulations.
In Figure 3, we compare the limit Z(−2)

S (t) in (7.6) and the scaled substrate copy number ZN,−2
S (t) in (3.3)

using 1000 runs of the Gillespie’s algorithm. In Figure 4, we compare the limit Z(−1)
C (t) in (7.12) and the

scaled complex copy number ZN,−1
C (t) in (3.3) using 10000 runs of the Gillespie’s algorithm. Note that the

initial condition of Z(−1)
C (t) is ZC(0)+ZS(0) in (7.11). However, this does not affect since ZS(0) = 0 in our

simulation in Figure 4. In both time scales, the scaled processes are in close agreement with the proposed
limits.

Conditions for rQSSA in the deterministic system. Consider the general condition for the validity of the
rQSSA at high enzyme concentrations suggested by Schnell and Maini [46],

K � [E0] and [S0]� [E0], (7.13)

where K = k2/k1. Rewriting (7.13) in terms of molecular copy numbers and stochastic rate constants using
(5.7)-(5.8) gives

κ ′
2

κ ′
1
� XE0 and XS0 � XE0 , (7.14)
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(a) (b)

Fig. 3: Michaelis-Menten kinetics with rQSSA in the first time scale γ = −2: The scaling limit of the sub-
strate copy number, drawn in yellow dotted line, is compared with the mean substrate copy number (in blue)
obtained from direct simulations of the system (3.1). The light blue shaded region represents one standard de-
viation from the mean. Simulation settings: (a) N = 100, (XN

S (0),XN
E (0),XN

C (0),XN
P (0)) = (90,106,10,0) for

the upper curve and (50,106,10,0) for the lower curve; and (b) N = 1000, (XN
S (0),XN

E (0),XN
C (0),XN

P (0)) =
(900,106,10,0) for the upper curve and (500,75 ·104,110,0) for the lower curve. The reaction rate constants
are (κ1,κ−1,κ2) = (1,1,0.1) in both (a) and (b). Given the scaling assumptions, the convergence is not sensi-
tive to the exact values of the initial conditions. The only purpose of the two different sets of initial conditions
is to illustrate convergence under varying values of the conservation constant m.

since V ’s all cancel out. Using our choice of scaling in (3.2) and (7.4), the conditions (7.14) become

Nκ2

κ1
�
(

N2ZN,γ
E (t)+NZN,γ

C (t)
)

and

N
(

ZN,γ
S (t)+ZN,γ

C (t)+ZN,γ
P (t)

)
�
(

N2ZN,γ
E (t)+NZN,γ

C (t)
)
.

(7.15)

Since the inequalities in (7.15) hold for large N, our choice of scaling is seen to satisfy the conditions (7.13).
As in the previous sections, we may also derive more general conditions on the scaling exponents, α’s

and β ’s, leading to (7.6) and (7.12). In the first scaling, the time scales of S and C are the same and faster than
the time scale of E. Therefore it follows that

αS −max(ρ1,ρ−1) = αC −max(ρ1,ρ−1,ρ2)< αE −max(ρ1,ρ−1,ρ2). (7.16)

Since the binding reaction rate of the enzyme is faster than the rates of the other two reactions as we see in
the limit (7.6), we have

max(ρ−1,ρ2) < ρ1. (7.17)

Combining (7.16) and (7.17), the conditions in the first time scale are

αS = αC < αE ,

max(β−1,β2)< αE +β1.
(7.18)

Then, the condition in (7.18) implies

XS0 � XE0 ,

max
(

κ ′
−1

κ ′
1
,

κ ′
2

κ ′
1

)
� XE0 ,

(7.19)
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(a) (b)

Fig. 4: Michaelis-Menten kinetics with rQSSA in the second time scale γ =−1: The scaling limit of the com-
plex copy number, drawn in yellow dotted line, is compared with the mean complex copy number (in blue)
obtained from direct simulations of the system (3.1). The light blue shaded region represents one standard de-
viation from the mean. Simulation settings: (a) N = 100, (XN

S (0),XN
E (0),XN

C (0),XN
P (0)) = (0,104,100,0) for

the upper curve and (0,7500,50,0) for the lower curve; and (b) N = 1000, (XN
S (0),XN

E (0),XN
C (0),XN

P (0)) =
(0,105,103,0) for the upper curve and (0,75 ·103,500,0) for the lower curve. The reaction rate constants are
(κ1,κ−1,κ2) = (1,1,0.1) in both (a) and (b). Given the scaling assumptions, the convergence is not sensitive
to the exact values of the initial conditions. The only purpose of the two different sets of initial conditions is
to illustrate convergence under varying values of the conservation constant m.

which is comparable to (7.13).
Next, consider the second time scale and the condition on the scaling exponents that yields (7.12). Note

that the conditions (7.16)-(7.17) are already sufficient to derive the limiting process in the second time scale.
The condition (7.16) implies the time scales of S and C are the same. Since ρ2 < ρ1 as in (7.17), the time
scale of S+C is slower than that of S. Setting the time scale of S+C as the reference one, we see that on
that timescale S will be rapidly depleted and then approximated by zero in view of the discrepancy between
the consumption and production rates of S, due to ρ−1 < ρ1 in (7.17). Therefore, the conditions in (7.16)-
(7.17) are sufficient to obtain the limit in (7.12) on the second time scale as well. Finally, note that the
stochastic Michaelis-Menten system with (7.18) does not provide an analogue equation for S in (7.2) due to
the condition, ρ−1 < ρ1, as shown in (7.17). Assuming ρ−1 = ρ1 will balance production and consumption
of S, but in this case we can no longer claim the relative compactness of S.

8 Enzyme-Substrate-Inhibitor System

Our multiscaling approach to deriving QSSAs for enzyme kinetics may be extended to more realistic reac-
tion networks. To illustrate this, consider the following known as ESL and described in [15]. Inhibitors are
compounds that diminish the rate of enzyme-catalyzed reactions. They form complexes with the enzymes
that exhibit a wide variety of catalytic properties. The most common type of inhibition is the competitive in-
hibition, where the inhibitor competes with the substrate in that it binds to the same site on the enzyme as the
substrate. Interestingly, similar inhibitory behavior is also observed when more substrates that bind with the
same enzyme are present [15, Chapter 4]. This is commonly observed in many industrial applications. Each
substrate competes with other substrates for the same catalytic site and inhibit each others’ enzymatic reac-
tions. Note that there are also other variants of ESI system depending on the nature of competitiveness, such
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as the uncompetitive inhibition system, mixed inhibition system, substrate inhibition system etc [15, Chapter
4]. However, since the approach to derive QSSAs remains the same across these variants, for the purpose of
illustration we only consider here the fully competitive ESI system described by the following set of chemical
reactions [49]:

S+E
k1−−⇀↽−−
k−1

C1
k2−⇀ P1 +E,

I +E
k3−−⇀↽−−
k−3

C2
k4−⇀ P2 +E,

(8.1)

where C1,C2 are, respectively, the substrate-enzyme and the inhibitor-enzyme complexes; P1, and P2 are the
respective products; and S, E denote, as before, the substrate and free enzyme. Classically, the enzyme-
substrate-inhibitor system has been studied using ODEs for the concentrations of the various species, as was
done for the Michaelis-Menten system. In order to specify our stochastic model, let XS, XI , XE , XC1 , XC2 ,
XP1 , and XP2 denote the copy numbers of molecules of the substrates S, the inhibitors I, the enzymes E,
the enzyme-substrate complex C1, the inhibitor-enzyme complex C2, and the products P1,P2 respectively. As
done in Section 3, we assume a Markovian dynamics for these copy numbers along with law of mass-action.
We also introduce the scaled processes and the necessary exponents:

Xi(t) = NαiZN
i (t), for i = S, I,E,C1,C2,P1,P2,

and κ
′
k = Nβk κk, for k = 1,−1,3,−3,2,4,

(8.2)

Standard QSSA (sQSSA) for the ESI system The standard QSSA (sQSSA) for the ESI system is analogous to
that for the Michaelis-Menten enzyme kinetics described in Section 5. Here, one assumes both the enzyme-
substrate complex C1 and the inhibitor-enzyme complex C2 reach a steady-state quickly after a brief transient
phase while the other species still remain transient. Therefore, one sets d[C1]/dt ≈ 0 and d[C2]/dt ≈ 0. We
use the following scaling exponents:

αS = αI = αP1 = αP2 = 1, αE = αC1 = αC2 = 0,
β1 = β3 = 0, β−1 = β−3 = β2 = β4 = 1,

(8.3)

to obtain the stochastic sQSSA, which is analogous to its deterministic counterpart [40, 49]:

ŻS(t) =− κ2MZS(t)

κ
(1)
M

(
1+ ZI(t)

κ
(2)
M

)
+ZS(t)

, (8.4)

ŻI(t) =− κ4MZI(t)

κ
(2)
M

(
1+ ZS(t)

κ
(1)
M

)
+ZI(t)

, (8.5)

where M ≡ ZN
E (t)+ZN

C1
(t)+ZN

C2
(t), κ

(1)
M = (κ−1 +κ2)/κ1 and κ

(2)
M = (κ−3 +κ4)/κ3. For the sake of brevity

the detailed calculations are omitted as they largely follow the familiar pattern from previous sections. With
regards to the validity of the sQSSA, the following conditions were proposed by [49]:

[E0]� κ
(2)
M

(
1+

[S0])

κ
(1)
M

)
+[I0] and [E0]� κ

(1)
M

(
1+

[I0])

κ
(2)
M

)
+[S0], (8.6)

where [E0] ≡ [E] + [C1] + [C2], [S0] ≡ [S] + [C1] + [P1] and [I0] ≡ [I] + [C2] + [P2] describe the conservation
laws in the system. As done in Section 5, rewriting (8.6) in terms of the species copy numbers, we see that
the left hand sides of both inequalities in (8.6) correspond to ZE +ZC1 +ZC2 , which is order 1. On the other

hand, κ
(2)
M

(
1+ [S0])

κ
(1)
M

)
+[I0] simplifies to N

(
κ−3+κ4

κ3
+

(κ−3+κ4)κ1
κ3(κ−1+κ2)

(ZS +ZP1)+(ZI +ZP2)
)
+

(κ−3+κ4)κ1
κ3(κ−1+κ2)

ZC1 +
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ZC2 , which is of order N. In a similar fashion, the quantity κ
(1)
M

(
1+ [I0])

κ
(2)
M

)
+[S0] can be simplified to

N
(

κ−1+κ2
κ1

+
(κ−1+κ2)κ3
κ1(κ−3+κ4)

(ZI +ZP2)+(ZS +ZP1)
)
+

(κ−1+κ2)κ3
κ1(κ−3+κ4)

ZC2 +ZC1 , which is also of order N. Therefore,
the condition (8.6) is included in the validity region for the stochastic sQSSA.

Total QSSA (tQSSA) for the ESI system In [40], the authors propose the tQSSA for the ESI system. Following
[9], they define two new total substrates as follows:

T1 ≡ S+C1, and T2 ≡ I +C2. (8.7)

Applying the usual quasi-steady state approximation d[C1]/dt ≈ 0 and d[C2]/dt ≈ 0, and assuming [C1] <
[T1], [C2]< [T2], one can rewrite the system of ODEs in terms of T1 and T2. This yields the total QSSA for the
ESI system [40]. To obtain the stochastic tQSSA, we apply the following scalings:

αS = αI = αP1 = αP2 = αE = αC1 = αC2 = 1,
β1 = β3 = β2 = β4 = 0, β−1 = β−3 = 1.

(8.8)

In order to specify the conservation laws, let mN ≡ ZN
E (t)+ZN

C1
(t)+ZN

C2
(t), and lN

1 ≡ ZN
T1
(t)+ZN

P1
(t), lN

2 ≡
ZN

T2
(t)+ZN

P2
(t). We assume mN → m, lN

1 → l1, lN
2 → l2 as N → ∞. Now, define the cumulative processes:

ZN
C1
(t)≡

∫ t

0
ZN

C1
(s)ds and ZN

C2
(t)≡

∫ t

0
ZN

C2
(s)ds,

so that ZN
C1
(t)+ZN

C2
(t) = mNt −

∫ t
0 ZN

E (s)ds. Then, given the constants κ
(1)
D ≡ κ−1/κ1, and κ

(2)
D ≡ κ−3/κ3,

the stochastic tQSSA is given by

ŻC1 = m−

(
m− ŻC1(t)

(
1+

κ
(1)
D

ZT1(t)− ŻC1(t)

))1+
κ
(2)
D

ZT2(t)−m− ŻC1(t)
(

1+ κ
(1)
D

ZT1 (t)−ŻC1 (t)

)
 ,

which implies the steady-state concentration of the substrate-enzyme complex is found by solving the fol-
lowing cubic equation for a positive root:

p(1)3 (ŻC1)≡− (κ
(1)
D −κ

(2)
D )(ŻC1)

3 +
(
(m+κ

(1)
D +ZT1(t))(κ

(1)
D −κ

(2)
D )− (ZT1(t)κ

(2)
D +ZT2(t)κ

(1)
D )
)
(ŻC1)

2

+
(
−m(κ

(1)
D −κ

(2)
D )+κ

(2)
D (m+κ

(1)
D )+(ZT1(t)κ

(2)
D +ZT2(t)κ

(1)
D )
)

ZT1(t)ŻC1 −mκ
(2)
D (ZT1(t))

2.

(8.9)

An analogous third degree polynomial can be written for ŻC2 . Finally, the tQSSA for the totals is expressed
as follows:

ŻT1(t) =−κ2ŻC1 , and ŻT2(t) =−κ4ŻC2 , (8.10)

where ŻC1 , and ŻC2 satisfy their respective cubic equations [40].
Interestingly, when the substrate and the inhibitor have identical affinity towards the enzyme in that κ

(1)
D =

κ
(2)
D = κD, the third degree polynomial p(1)3 reduces to a second degree polynomial, allowing for simpler

computations. In that case, the tQSSA limiting ODEs are given by

ŻT1(t) =−κ2
ZT1(t)(ZT (t)+κD +m)

2ZT (t)

(
1−

√
1− 4mZT (t)

(ZT (t)+κD +m)2

)
,

ŻT2(t) =−κ4
ZT2(t)(ZT (t)+κD +m)

2ZT (t)

(
1−

√
1− 4mZT (t)

(ZT (t)+κD +m)2

)
,

(8.11)
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where ZT (t)≡ ZT1(t)+ZT2(t) is the total of the substrate, the inhibitor, the substrate-enzyme complex and the
inhibitor-enzyme complex. Note that the limiting equations given in (8.10) and (8.11) are analogous to their
deterministic counterparts with the exception that we have κ

(1)
D ,κ

(2)
D instead of the Michaelis-Menten type

constants κ
(1)
M ,κ

(2)
M . The reason behind this discrepancy is that the propensities of the product formations are

of order N, which are slower than the other reactions leading to the disappearance of the constants κ2 and κ4.
Regarding the validity of the tQSSA, the following sufficient condition was proposed by [40]:

max{
k2C1([T

(1)
0 ], [T (2)

0 ])

[T (1)
0 ]

,
k4C2([T

(1)
0 ], [T (2)

0 ])

[T (2)
0 ]

}max{
C1([T

(1)
0 ], [T (2)

0 ])

k1[E0][T
(1)

0 ]
,
C2([T

(1)
0 ], [T (2)

0 ])

k3[E0][T
(2)

0 ]
}� 1, (8.12)

where, as before, [E0] ≡ [E] + [C1] + [C2], [T
(1)

0 ] ≡ [S] + [C1] and [T (2)
0 ] ≡ [I] + [C2], and C1([T

(1)
0 ], [T (2)

0 ]),

and C2([T
(1)

0 ], [T (2)
0 ]) are the steady-state concentrations of the substrate-enzyme complex and the inhibitor-

enzyme complex treated as functions of the initial conditions [T (1)
0 ], [T (2)

0 ]. Since the quantities C1,C2 are to
be obtained as a positive root to a cubic equation analogous to (8.9), a direct comparison with the stochastic
validity conditions is cumbersome. However, for the special case of identical affinity, we can simplify the
equations and do a qualitative comparison. When the substrate and the inhibitor exhibit the same affinity, the
quantities C1 and C2 admit the following relatively simpler expressions [40]:

C1([T
(1)

0 ], [T (2)
0 ]) =

[T (1)
0 ] ([T0]+KD +[E0])

2[T0]

(
1−

√
1− 4[E0][T0]

([T0]+KD +[E0])2

)
,

C2([T
(1)

0 ], [T (2)
0 ]) =

[T (2)
0 ] ([T0]+KD +[E0])

2[T0]

(
1−

√
1− 4[E0][T0]

([T0]+KD +[E0])2

)
,

(8.13)

where KD = k−1/k1, [T0] ≡ [T (1)
0 ]+ [T (2)

0 ]. Then, the sufficient condition proposed by [40] in (8.12) can be
rewritten as

[E0]�
k2

k1

([T0]+KD +[E0])
2

4[T0]2

(
1−

√
1− 4[E0][T0]

([T0]+KD +[E0])2

)2

,

which allows for a direct comparison with our stochastic system. As done in Section 6, if we convert the
concentrations appearing above to molecular species copy numbers in our stochastic system, we can imme-
diately see that the left hand side of the above inequality is of order N. On the other hand, the right hand side

is of order 1. To see this, note that the quantity ([T0]+KD+[E0])
2

4[T0]2
corresponds to (ZT (t)+κD+m)2

(ZT (t))2 and therefore, is
of order 1. Similarly, the quantity under the square root sign is also of order 1 for our choice of the scaling
exponents. Therefore, the inequality above is satisfied in our stochastic setup and the validity region for the
stochastic system tQSSA is therefore included in the validity region for the deterministic system tQSSA.

9 Summary and Discussion

In this paper, we derived the popular s- t- and rQSSA for the Michaelis-Menten model of enzyme kinet-
ics from general stochastic equations describing mass-action interactions between enzyme, substrate and
enzyme-substrate complex in terms of a jump Markov process. We have shown that these various QSSAs
are consequences of the Poisson law of large numbers under the appropriately chosen scaling regimes. Our
derivations relied on the general multiscale approximation approach [4, 27] for stochastic enzyme kinetics
network that could be also applied to identify similar QSSAs in other more complicated chemical reactions
models. For illustration, we briefly outlined derivation of two QSSAs in the enzyme-substrate-inhibitor sys-
tem of [49]. We remark that another important class of models with enzyme-type dynamics where our QSSA
derivations could be potentially applicable are the networks of protein phosphorylation in signaling transduc-
tion, such as the mitogen-activated protein kinase (MAPK) pathway [7,18,24]. In MAPK signaling pathway,
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Conditions on sQSSA tQSSA rQSSA
stochastic αE ≤ αC < αS max(αS, αE )≤ αC αS = αC < αE
scaling αS = β−1 −β1 = β2 −β1 β2 < β−1 = αC +β1 max(β−1,β2)< αE +β1
stochastic XE0 � XS0 XE0 ≈ XS0 XS0 � XE0

abundance XE0 �
κ ′
−1
κ ′

1
≈ κ ′

2
κ ′

1

κ ′
2

κ ′
1
� κ ′

−1
κ ′

1
≈ XE0 max

(
κ ′
−1
κ ′

1
,

κ ′
2

κ ′
1

)
� XE0

deterministic [E0]� [S0]+KM K[E0]� ([E0]+ [S0]+KM)2 K � [E0] and [S0]� [E0]
abundance

Table 1: Comparison of conditions for the quasi-steady-state approximations in the stochastic and deter-
ministic Michaelis-Menten kinetics. The Xi’s denote the species copy numbers in the stochastic setting. In
the deterministic setting, [·] is used to denote the species concentrations. Recall that the α’s correspond to
the scaling of species abundance (Xi ≈ O(Nαi)) while the β ’s correspond to the scaling of the reaction rate
(κ ′

k ≈ O(Nβk)). The parameters are K = k2/k1 and KM = (k−1 + k2)/k1.

the product of one level of the cascade may act as the enzyme at the next level, with different Michaelis-
Menten QSSAs found to be appropriate at different levels [7, 18, 24, 44].

In order to summarize the general results on the s- t- and r-QSSAs discussed in the paper, we list in
Table 1, the conditions for validity of different QSSAs in terms of their scaling exponents and the stochastic
and deterministic species abundances. We note that the conditions for the stochastic scalings presented in the
first row of the table clearly separate the range of parameter values into three regimes. As can bee seen, in case
of the sQSSA the exponent αS should be greater than the other species scaling exponents, while for rQSSA the
exponent αE should be greater. In the tQSSA, αC needs to be greater than or equal to the other exponents. For
the sQSSA and the rQSSA, the stochastic species abundance conditions (listed in the second row) are seen to
also imply the deterministic abundance conditions (listed in the third row). However, the necessary condition
for the tQSSA derived from the stochastic model is slightly different then the corresponding deterministic
model condition, as it requires similar order of magnitude for the total amount of enzyme and the total amount
of substrate. Note, however, that the condition on the deterministic rates k2 � k−1, which is an analog of the
stochastic rates condition κ ′

2 � κ ′
−1, implies both the deterministic and the stochastic abundance conditions

for the tQSSA.
The QSSAs for the stochastic Michaelis-Menten kinetics lead to ODE systems where reaction propen-

sities follow the rational or square-root functions. Such non-mass-action propensity functions based on the
QSSAs are often used as intensity functions in the random time change representation of the approximating
Poisson processes in order to help build more accurate reduced stochastic models. See, for instance, Grima
et al.[25], Chow et al. [13], as well as others [28, 54] who have applied this idea to construct approximate,
stochastic Michaelis-Menten kinetic networks or even gene regulatory networks [51]. However, in some cases
such approximations have been also found to perform poorly. Indeed, the authors investigating this issue re-
cently in [53] found the relative error of the approximation using Michaelis-Menten propensities to be as
high as 30% for certain reaction networks. Similarly, Kim [29, 31] considered accuracy of the related heuris-
tic stochastic simulation scheme where additionally the fast reactions were omitted to improve computational
efficiency and concluded that the approach was reasonably accurate under tQSSA but not under other types
of QSSAs. As some of the current authors argued in their recent joint work with Kim ([30]), such approx-
imations often perform better when one simultaneous re-scales the reaction rates and chemical species. It
is hoped that our derivations presented here could be used to suggest such re-scalings, at least for networks
satisfying certain parametric restrictions like, for instance, those presented in Table 1 [29, 42, 43].

The approach to QSSAs for the stochastic Michaelis-Menten enzyme kinetics often presented in the
chemical physics literature relies on the two-step procedure. First, one applies the large volume van Kampen
limit (also known as the system size expansion) to obtain the limiting ODE system, and then one derives the
QSSAs for the deterministic system by applying various scaling relations. Since the ODE approximation to
the stochastic system is typically not uniform with respect to the rate parameters, this two step approximation
may be correct or not, depending the specific scalings used and the values of the reaction rates. In contrast to
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the two-step approach, we derive here the QSSAs directly from the stochastic system as a scaling limit of a
subset of the reaction rates and the chemical species. The scaling exponents in our derivations are chosen so
that the resultant scaling limits match those derived from the ODEs, thereby providing further insights into
the validity of these approximations across ranges of species and parameter values. Such approach is relevant
not only when one needs to estimate the parameters of the Michaelis-Menten kinetics (see, for instance, [13]
for application to the tQSSA), but also when the reaction rates vary over several orders of magnitude, which
is often the case in biochemical network models.

The multiscaling approach as outlined in Section 3 may be used to derive various QSSAs in the presence
of intrinsic noise, and also for modeling the intrinsic noise itself. Although we do not discuss such applications
here, let us just briefly remark that our techniques could yield diffusion approximations under various scaling
relationships among species and reaction rates. Indeed, under scaling regimes satisfying certain technical
requirements, one can apply the functional central limit theorem (or the so-called linear noise approximation)
to the stochastic enzyme kinetic reaction system (3.1) and approximate not only the mean (as we did here)
but also higher order moments, which are often of interest in applications. Note that our present derivations
do not suggest any such approximation of the higher order moments, since we rely solely on the first order
considerations via the Poisson law of large numbers. For higher order analysis the QSSA approximations
necessarily need to be more subtle, as discussed recently in [30]. Building upon some of the QSSA results
discussed here, we hope to be able to pursue this topic in our future work.
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