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Abstract

Biochemical reaction networks frequently consist of species evolving on multiple timescales.
Stochastic simulations of such networks are often computationally challenging and therefore var-
ious methods have been developed to obtain sensible stochastic approximations on the timescale
of interest. One of the rigorous and popular approaches is the multiscale approximation method
for continuous time Markov processes. In this approach, by scaling species abundances and
reaction rates, a family of processes parameterized by a scaling parameter is defined. The
limiting process of this family is then used to approximate the original process. However, we
find that such approximations become inaccurate when combinations of species with disparate
abundances either constitute conservation laws or form virtual slow auxiliary species. To obtain
more accurate approximation in such cases, we propose here an appropriate modification of the
original method.

1 Introduction

Biochemical reaction networks frequently evolve with disparate timescales. The simulations of
the stochastic system describing such multi-scale biochemical reaction networks are extremely
slow because the computation is predominantly spent on simulating fast reactions [10, 21, 50, 12].
One approach to resolve this problem is using disparate timescales among species [58, 51, 14].
Fast species regulated by fast reactions will quickly equilibrate to a quasi-steady-state (QSS)
while other species (slow species) will continue to evolve slowly on a different timescale (slow
timescale). Thus, on the slow timescale, the fast species are assumed in QSS, which is determined
by the evolution of slow species. By replacing the fast species with their QSS, we can derive the
reduced stochastic system depending solely on the slow species. Such reduced system accurately
approximates the slow timescale dynamics of the original full stochastic system with a much
lower computational cost.

However, in most systems with nonlinear reactions, deriving the exact QSS is difficult, and
thus various approximations for QSS have been proposed [8, 53, 59, 25, 11, 28, 54, 48, 6, 49, 50,
13]. Since typically the accuracy of such approximations has been investigated numerically due
to the lack of analytical tools, their validity is difficult to fully establish. Indeed, recent studies
have shown the potential inaccuracy of a popular approach based on a deterministically derived
QSS (e.g. Michaelis-Menten function) [9, 55, 56, 1, 40, 41]. These results indicate the need for
justification of the QSS approximation using theoretical analysis [47, 23, 32].
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One method allowing for a rigorous analysis is the multiscale approximation method, which
was first introduced in [5] and further developed and systemized in [34]. The method is based
on the idea of scaling species abundances, reaction rate constants, and time with a common
scaling parameter to define a family of processes indexed by the scaling parameter. The limit
of the family is then used to approximate the original process on the timescale of interest.
This multiscale approximation method has provided accurate approximate reduced models for
various multiscale stochastic biochemical reaction networks, including the complex model of the
heat shock response in E. coli [33, 34, 35]. The multiscale approximation method allows for
a rigorous analysis of the accuracy of the reduced model using theorems in stochastic analysis
such as the law of large numbers and the martingale central limiting theorem [35]. Recently,
this method was extended to study the chemical reaction-diffusion networks [52]. The scaling
method developed for the multiscale approximation has also been used to derive various tools
to study chemical reaction networks having multiscale nature, such as hybrid approximation
and its simulation algorithms [19, 20, 29], parameter sensitivity analysis [26, 27], and the error
analysis for stochastic numerical schemes [4, 3].

The current paper proposes the modified multiscale approximation method, which leads to
accurate approximations for a broader class of multiscale stochastic biochemical reaction net-
works than the original method. Even though we concentrate, for the sake of simplicity, on two
specific examples of networks, our proposed approach is seen to apply more broadly. The paper
is organized as follows. In Section 2, we briefly review the procedure of the original stochastic
multiscale approximation using an example of the Michales-Menten enzyme kinetics. We also
point out that the resulting reduced model does not accurately approximate the original model
if the system has conservation laws involving species whose abundances are on disparate scales.
To improve the accuracy, we propose a modification for the multiscale approximation method
in Section 3. In Section 4, using an example of the genetic oscillatory system, we show that the
stochastic multiscale approximation leads to an inaccurate approximation if the approximation
uses a slow auxiliary variable, the combination of fast species whose abundances are on disparate
scales. On the other hand, for such system, our modified multiscale approximation method leads
to an accurate approximation. In Section 5, we summarize our results and discuss future work.
The details of our analysis described in the main text are provided in the appendix.

2 Stochastic multiscale approximation method

In this section, we review the multiscale approximation method [5, 33, 34] and describe its limita-
tions under conservation laws involving species with disparate molecular abundances. Consider
a Michaelis-Menten enzyme kinetics with a product converting back to substrate [1, 40]. This
system consists of four reactions as described in 1(a) and Table 1: a free enzyme (E) reversibly
binds with a substrate (S) to form a complex (C) and then the complex irreversibly dissociates
into a product (P ) and a free enzyme. The product is assumed to be converted back to the sub-
strate so that the substrate concentration is non-zero at the steady state. Propensity functions
corresponding to these four reactions are derived based on the mass action kinetics by defining
Xi(t) be the abundance of the ith species at time t (Table 1).

Let Rtk(·) be a counting process for the number of occurrences of the kth reaction up to time
t defined as

Rtk (λ′k(X)) := Yk

(∫ t

0

λ′k(X(s))ds

)
, (1)

where Yk are independent unit Poisson processes, and λ′k(X) are the propensity functions of
the kth reaction given in Table 1. With these counting processes, we can derive the system of
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Figure 1: Michaelis-Menten kinetics with a convertible product. (a) The diagram of the biochemical
reaction network. (b) The simulations of ordinary differential equations, which are large volume
limits of stochastic systems (2). When converting stochastic propensity functions to macroscopic
reaction rates, volume V = 1/nM is assumed. Here, S(0) = C(0) = 0, E(0) = ET (40nM), and
P (0) = ST (80nM). For N0 = 10, the scaling exponents for species abundance (i.e. αi) are set to
0 for S and 1 for others at the steady state.

Table 1: Reactions and propensity functions of the Michaelis-Menten kinetics with a convertible
product

Reactions Propensity functions

S + E
κ′1−→ C λ′1(X) := κ′1XSXE

C
κ′2−→ S + E λ′2(X) := κ′2XC

C
κ′3−→ P + E λ′3(X) := κ′3XC

P
κ′4−→ S λ′4(X) := κ′4XP

κ′i are stochastic reaction rate constants with units in the number of molecules rather than concentrations. Xi(t) is
the number of molecules of the ith species at time t.

stochastic equations describing the state of Xi(t):

XS(t) = XS(0) +Rt2(λ′2(X)) +Rt4(λ′4(X))−Rt1(λ′1(X)),

XE(t) = XE(0) +Rt2(λ′2(X)) +Rt3(λ′3(X))−Rt1(λ′1(X)),

XC(t) = XC(0) +Rt1(λ′1(X))−Rt2(λ′2(X))−Rt3(λ′3(X)),

XP (t) = XP (0) +Rt3(λ′3(X))−Rt4(λ′4(X)).

(2)

In this system, the total numbers of molecules of the substrate (XST
) and the enzyme (XET

)
are conserved over time:

XST
:= XS(t) +XC(t) +XP (t) = XS(0) +XC(0) +XP (0), (3)

XET
:= XC(t) +XE(t) = XC(0) +XE(0). (4)

In the following subsections, we briefly describe how to derive the reduced system approximating
the slow-scale dynamics of (2) with the multiscale approximation method [5, 33, 34].

2.1 Deriving the normalized system

The first step of the multiscale approximation method is scaling reaction rate constants, species
abundances, and time via a common scaling parameter (N0) to identify the timescale of each
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species. Here, we choose the value of the scaling parameter as N0 = 10 to transform the original
reaction rate constants (κ′i) to the normalized constants (κi) with κ′i = Nβi

0 κi. The scaling
exponents (βi) are chosen so that the normalized reaction rate constants (κi) are of order 1 as
presented in Table 2.

Table 2: Normalized reaction rate constants

Name Description Values & Normalized rates (κi)

κ′1 Binding rate constant for E to S 0.017/s = 10−2 × 1.7/s =: N−20 κ1
κ′2 Unbinding rate constant for C 0.03/s = 10−2 × 3/s =: N−20 κ2
κ′3 Production rate constant for P 0.0016/s = 10−3 × 1.6/s =: N−30 κ3
κ′4 Conversion rate constant for P to S 0.0007/s = 10−3 × 0.7/s =: N−30 κ4

The values of reaction rate constants are adopted from [40]

Similarly, the scaling exponents (αi) are chosen so that Xi(t)/N
αi
0 becomes of order 1. Since

we are interested in the slow-scale dynamics of the system, we determine αi based on the
steady state values of the ordinary differential equations, which are the large volume limit (i.e.
thermodynamic limit) of the stochastic system [43, 22] (1(b)):

αS = 0, αE = 1, αC = 1, αP = 1.

Using these scaling exponents, we define the normalized species abundance on the times of
order N3

0 as

ZN0
i (t) :=

Xi(tN0
3)

Nαi
0

(5)

since we are interested in the dynamics at the timescale of order N3
0 (1(b)). Then, we derive the

counting processes in terms of the normalized rate constants (κi) and the normalized variables
(ZN0

i (t)) on the timescale of order N3
0 . For instance, the counting process for the first reaction

becomes

Y1

(∫ N3
0 t

0

λ′1(X(s))ds

)
= Y1

(∫ N3
0 t

0

κ′1XS(s)XE(s)ds

)

= Y1

(∫ t

0

(
N0
−2κ1

)
ZN0

S (u)
(
N0Z

N0

E (u)
)
N3

0 du

)
=: Y1

(∫ t

0

N0
2λ1(ZN0(u))du

)
,

(6)

where ZN0 is the vector whose ith component is ZN0
i . Here in the second equality, we apply

the change of variable s = N3
0u, and in the third equality, we define a normalized propensity

function as λ1(ZN0)(u) := κ1Z
N0

S (u)ZN0

E (u). In a similar way, we derive the counting processes
for other reactions in terms of normalized propensity functions (see Table 3). Since λi(Z

N0) is
of order 1, we can easily recognize the order of the counting processes in Table 3. The higher
order indicates the faster counting process.

By substituting the counting processes in Table 3 into the original stochastic system (2),
we obtain the normalized stochastic system for ZN0(t). In this normalized system, we replace
now the fixed scaling parameter value N0 with a varying parameter N to derive a family of
vector-valued processes {ZN (t)} depending on the parameter N :

ZNS (t) = ZNS (0) +Rt2
(
N2λ2(ZN )

)
+Rt4

(
Nλ4(ZN )

)
−Rt1

(
N2λ1(ZN )

)
,

ZNE (t) = ZNE (0) +N−1
(
Rt2
(
N2λ2(ZN )

)
+Rt3

(
Nλ3(ZN )

)
−Rt1

(
N2λ1(ZN )

))
,

ZNC (t) = ZNC (0) +N−1
(
Rt1
(
N2λ1(ZN )

)
−Rt2

(
N2λ2(ZN )

)
−Rt3

(
Nλ3(ZN )

))
,

ZNP (t) = ZNP (0) +N−1
(
Rt3
(
Nλ3(ZN )

)
−Rt4

(
Nλ4(ZN )

))
.

(7)
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Table 3: Counting processes for the normalized system

Reaction Counting processes

S + E
N0
−2κ1−−−−−→ C Rt1

(
N0

2λ1(Z
N0)
)

:= Y1

(∫ t
0 N0

2κ1Z
N0
S (u)ZN0

E (u)du
)

C
N0
−2κ2−−−−−→ S + E Rt2

(
N0

2λ2(Z
N0)
)

:= Y2

(∫ t
0 N0

2κ2Z
N0
C (u)du

)
C

N0
−3κ3−−−−−→ P + E Rt3

(
N0

1λ3(Z
N0)
)

:= Y3

(∫ t
0 N0

1κ3Z
N0
C (u)du

)
P

N0
−3κ4−−−−−→ S Rt4

(
N0

1λ4(Z
N0)
)

:= Y4

(∫ t
0 N0

1κ4Z
N0
P (u)du

)
Here, the scaling exponents, αS = 0, αE = 1, αC = 1, αP = 1, are used to derive the normalized species abundance
ZN0

i as described in (5), and the scaling exponents, β1 = −2, β2 = −2, β3 = −3, β4 = −3 are used to derive normalized
reaction rates as described in Table 2. λi(Z

N0) are normalized propensity functions for ith reactions, which are order
of 1, and thus the orders of reaction rates of R1, R2, R3, and R4 are 2, 2, 1, and 1, respectively.

The initial conditions for the family of precesses {ZN (t)} are defined so that ZNi (0)→ ZN0
i (0)

as N →∞:

ZNS (0) = ZN0

S (0) = XS(0),

ZNi (0) =
1

N

⌊
NZN0

i (0)
⌋

=
1

N

⌊
N

N0
Xi(0)

⌋
, i = E,C, P.

(8)

The floor function (b c) is used so that the initial conditions of unnormalized species NαiZNi (0)
have integer values (see [34] for details). In the following, we will find the limit of this family of
processes as N →∞ and use it to approximate the slow-scale dynamics of the stochastic system
given in (2). Note that this approach is analogous to a singular perturbation approach based on
Tikhonov’s theorem [57, 37, 24], which reduces the multiscale deterministic systems by setting
a small scaling parameter as 0 in the limit.

2.2 Balance equations

In the family of processes {ZN (t)} given in (7), the order of the maximum production rates
for species S is N2 due to the term Rt2

(
N2λ2(ZN )

)
since λi(Z

N ) is of order 1. The order of

the maximum consumption rate is also N2 due to Rt1
(
N2λ1(ZN )

)
. That is, both maximum

production and consumption rates of species S have the same scaling exponents as 2. If the
maximum exponent of the production rates is larger than that of the consumption rates, the
normalized abundance of the species asymptotically goes to infinity as N →∞. In the opposite
case, it asymptotically goes to zero in the limit. Thus, when the maximum exponents of pro-
duction and consumption rates are equal, which is known as the “balance equation”, the limit
of normalized species can be nondegenerate [33]. In case when there is a subset of species which
do not satisfy the balance equations, their limit will be nondengenerate only for a certain time
period, which gives the restriction on the choice of the timescale (see [33, 34] for further details).
In our example in (7), all species and their linear combinations satisfy the balance equations.
We also show that a nondegenerate limit of {ZN (t)} exists (see Appendix 2 for details).

2.3 Deriving the average of fast variables and limiting model

For the species P in (7), the maximum scaling exponent of the reaction rates and the scaling
exponent of species abundance (i.e. αP ) are all 1. This indicates that the number of molecules
of P and its change by reactions are of the same order on the current timescale, and therefore
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the current slow timescale is a natural timescale for P . In other words, P is a slow-species in
terms of the singular perturbation theory [37]. For other species, αi is less than the maximum
scaling exponents of their reaction rates. Hence, the abundance of these species would fluctuate
rapidly by reactions on the current slow timescale, indicating that they are fast species. Due
to the rapid fluctuation, these fast species do not have a functional limit. Instead, they are
averaged out in the limit as N → ∞ [46, 5, 34]. We now describe how to derive the average
values of fast species in the limit.

Using two conservation constraints of the systems (7):

ZNST
: =

1

N
ZNS (t) + ZNC (t) + ZNP (t) =

1

N
ZNS (0) + ZNC (0) + ZNP (0), (9)

ZNET
: = ZNE (t) + ZNC (t) = ZNE (0) + ZNC (0), (10)

we can simplify (7) as

ZNS (t) = ZNS (0) +Rt2
(
N2κ2Z

N
C

)
+Rt4

(
Nκ4Z

N
P

)
−Rt1

(
N2κ1Z

N
S Z

N
E

)
, (11)

ZNP (t) = ZNP (0) +N−1Rt3
(
Nκ3Z

N
C

)
−N−1Rt4

(
Nκ4Z

N
P

)
. (12)

(11)-(12) are closed since ZNC (t) and ZNE (t) are determined by ZNS (t) and ZNP (t) from the con-
servations in (9-10) as follows:

ZNC (t) = ZNST
− 1

N
ZNS (t)− ZNP (t), (13)

ZNE (t) = ZNET
− ZNC (t) = ZNET

− ZNST
+

1

N
ZNS (t) + ZNP (t). (14)

Because the maximum order of the reaction rate (N2) in (11) is greater than NαS = N0, species
S is rapidly fluctuating and thus its behavior in (12-13) is averaged out as N → ∞. To derive
the averaged value, we use the law of large numbers for the Poisson process:

lim
N→∞

sup
x≤x0

∣∣∣∣Y (Nαx)

Nα
− x
∣∣∣∣ = 0, (15)

where α > 0, x0 > 0 and Y is a unit Poisson process. From (15), it follows that

Rt1
(
N2κ1Z

N
S Z

N
E

)
N2

=
Y1

(∫ t
0
N2κ1Z

N
S (u)

(
ZNET

− ZNST
+ 1

NZ
N
S (u) + ZNP (u)

)
du
)

N2

has the same limit as the following integral:∫ t

0

κ1Z
N
S (u)

(
ZNET

− ZNST
+

1

N
ZNS (u) + ZNP (u)

)
du.

Applying this result after dividing (11) by N2, we get∫ t

0

(
κ2Z

N
C (u)− κ1ZNS (u)

(
ZNET

− ZNST
+

1

N
ZNS (u) + ZNP (u)

))
du→ 0

as N →∞ since ZNS (t)/N2 and Rt4
(
Nκ4Z

N
P

)
/N2 go to zero. As ZNS (t)/N → 0 in the limit, we

get ∫ t

0

(
κ2Z

N
C (u)− κ1ZNS (u)

(
ZNET

− ZNST
+ ZNP (u)

))
du

=

∫ t

0

(
κ2
(
ZNST
− ZNP (u)

)
− κ1ZNS (u)

(
ZNET

− ZNST
+ ZNP (u)

))
du→ 0 (16)
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Setting the integrand of (16) to zero in the limit and defining ZP := limN→∞ ZNP , we can derive
the averaged value of the fast species (Z̄S(t)) in terms of the slow species (ZP (t)) in the limit
(see Appendix 1 for the detailed derivation):

Z̄S(t) =
κ2 (ZST

− ZP (t))

κ1 (ZET
− ZST

+ ZP (t))
, (17)

where

ZST
= lim

N→∞
ZNST

=
XC(0)

N0
+
XP (0)

N0
, (18)

ZET
= lim

N→∞
ZNET

=
XE(0)

N0
+
XC(0)

N0
. (19)

Since Z̄S(s)/N → 0 as N → ∞, the averaged value of another fast species (C) in the limit
is also derived from (13) as

Z̄C(s) = ZST
− ZP (s). (20)

Using this averaged value in the limit and the law of large numbers given in (15), we get the
limiting equation of (12):

ZP (t) = ZP (0) +

∫ t

0

(
κ3Z̄C(s)− κ4ZP (s)

)
ds. (21)

Note that this reduced system solely depends on ZP since Z̄C(s) is determined by ZP (s) from
(20). Following the original multiscale approximation method [5, 34], we used ZP (t) of the
limiting model to approximate XP (t) after unnormalizing the species abundance and rescaling
back the time as

XP (t) ≈ N0ZP (N−30 t). (22)

The advantage of this approximation is that its error can be estimated using the law of large
numbers and the martingale central limiting theorem [44, 45, 18, 35]. In our case, we get

XP (t) = N0ZP (N−30 t)+O(N
1/2
0 ) since it has been known that 1

N0
XP (N3

0 t)−ZP (t) = O
(
N
−1/2
0

)
[35]. Note that XN − ZN = O(N−β) for some β > 0 means that Nβ

(
XN (t)− ZN (t)

)
⇒ U(t)

as N → ∞ where U(t) = O(1) (stochastically bounded). Here, ⇒ indicates convergence in
distribution (i.e. weak convergence).

However, the approximation (22) obtained from the deterministic limiting model (21) cannot
capture the fluctuation of XP (t). One natural way to resolve this issue is to replace the deter-
ministic reaction terms in (21) by random jump processes with the corresponding propensity
functions, which leads to the following stochastic process:

ZP (t) = ZN0

P (0) +N0
−1Rt3 (N0κ3ZC)−N−10 Rt4 (N0κ4ZP ) , (23)

where

ZC(t) = ZST
− ZP (t). (24)

Note that this stochastic equation is the same as the original one for ZN0

P in (12) except for
ZC(t), which now solely depends on the slow variable ZP (t) as Z̄C(s) does in (20). Similarly to
(22), we can use ZP (t) in (23) to approximate XP (t), as XP (t) ≈ N0ZP (N−30 t).

In Appendix 3, we show that

XP (t) ≈ N0ZP (N−30 t) + E(N−30 t), (25)

E(t) =

∫ t

0

√
κ3
∣∣XS(0)− Z̄S(s)− E(s)

∣∣+ κ4 |E(s)| dW (s) (26)

+

∫ t

0

{
κ3
(
XS(0)− Z̄S(s)− E(s)

)
− κ4E(s)

}
ds,

7
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Figure 2: The reduced model (23-24) does not accurately approximate the original model (2). (a)
The simulated trajectories of the original full model, XP (t), and the reduced model, N0ZP (N−30 t).
The colored ranges and histograms represent standard deviations of XP (t) and N0ZP (N−30 t) from
their mean and their distributions at the steady state, respectively. Here, the initial condition
is the one used in 1(b). In particular XS(0) = 0. (b) The relative differences of mean and
standard deviation at the steady state (t=5000s) between the full model and the reduced model
are numerically estimated for various values of XS(0). Here, XC(0) = 0, XE(0) = 40, XP (0) =
80 − XS(0). (c) The simulated trajectories of the original full model, XP (t), and the reduced
model, N0ZP (N−30 t) when XS(0) = 20. Due to the larger value of XS(0), the error becomes larger
than (a).

where W is a standard Brownian motion. Importantly, XP (t) = N0ZP (N−30 t) + O(1) because
E(t) = O(1), indicating that the new approximation with N0ZP (N−30 t) is more accurate than
the deterministic limit in (22). However, the new approximation with N0ZP (N−30 t) still contains
a considerable error as illustrated in Fig. 2(a). In consistent with our error analysis in (26), the
numerically estimated errors also increase as

∣∣XS(0)− Z̄S(s)
∣∣ becomes larger considering the

fact that Z̄S(s) ≈ 2 (Fig. 2(b) and (c)).
The dependence of errors on

∣∣XS(0)− Z̄S(s)
∣∣ indicates that the error seen in Fig. 2 mainly

stems from neglecting the species S in the approximating process. Specifically, the initial con-
dition of species S, XS(0), is ignored in the limiting total conserved quantity (ZST

) of (18) due
to the fact that the scaling exponent of S (αS) is smaller than other scaling exponents in the
conservation constraint (9). For the same reason, Z̄S(s) is also neglected in the limit of the
conservation constraint (20). Since Z̄C(s) in (20) is used to derive (24), S is also neglected in
the reduced model (23-24). Therefore, as XS(0) takes a larger portion of XST

in (3), ignoring
XS(0) in deriving ZST

causes a larger error as seen in Fig. 2(b) and (c).
Note that we used one scaling exponent for species abundance of S (i.e. αS = 0) for simplicity

even when its order of magnitude of species abundance changes in time. In such case, αS is
supposed to be adjusted throughout time as suggested in the original multiscale approximation
method [33, 34]. Specifically, when XS(0) = O(N0) as in the case of Fig. 2(c), it is suggested
to use αS = 1 for the initial transient period and αS = 0 in the later time. However, with
such multiple choices of αS in time, the approximation process becomes complex since different
reduced models will be derived in time and combining their numerical simulations is difficult.

3 Modified multiscale stochastic approximation method

In order to correct the approximate errors seen in Fig. 2, we introduce a modified conservation
law of the normalized variables:

ZNST
: =

1

N0
ZNS (t) + ZNC (t) + ZNP (t) =

1

N0
ZNS (0) + ZNC (0) + ZNP (0). (27)

8



Note that 1
NZ

N
S (t) in (9) is replaced by 1

N0
ZNS (t) to prevent approximating ZNS as 0 in the

conservation law when N →∞. The limit of the newly derived total conserved quantity among
the normalized species is

ZST
:= lim

N→∞
ZNST

=
1

N0
(XS(0) +XC(0) +XP (0)) =

1

N0
XST

.

In contrast to ZST
in (18), ZST

does not depend on the fraction of XS(0) in XS(0) +XC(0) +
XP (0) as the total amount of the substrate, XST

, is fixed —ZST
is more natural conservation

constant than ZST
. By substituting the new conservation constraint into (11-14), we define a

new family of stochastic processes:

ZNS (t) = ZNS (0) +Rt2
(
N2κ2Z

N
C

)
+Rt4

(
Nκ4Z

N
P

)
−Rt1

(
N2κ1Z

N
S Z

N
E

)
, (28)

ZNP (t) = ZNP (0) +N−1Rt3
(
Nκ3Z

N
C

)
−N−1Rt4

(
Nκ4Z

N
P

)
, (29)

ZNC (t) = ZNST
− 1

N0
ZNS (t)− ZNP (t), (30)

ZNE (t) = ZNET
− ZNC (t) = ZNET

−ZNST
+

1

N0
ZNS (t) + ZNP (t). (31)

Though this new family of processes is different from the one in (11-14), we will use the same no-
tation (ZNi (t)) for simplicity. Since (28-31) is equivalent to the original normalized system in (7)
when N = N0, the new family of processes includes the original system. Thus, the limiting model
of (28-31) can be used to approximate the original system. To derive the limiting model, we

divide (28) by N2 and let N →∞ to get
∫ t
0

(
κ2Z

N
C (s) + 1

N κ4Z
N
P (s)− κ1ZNS (s)ZNE (s)

)
ds→ 0 in

the same way as described in the previous section. As 1
N κ4Z

N
P (s)→ 0, we get

∫ t
0

(
κ2Z

N
C (s)− κ1ZNS (s)ZNE (s)

)
ds→

0. Substituting (30-31) in the equation, we get∫ t

0

(
κ2Z

N
C (s)− κ1N0

(
ZNST

− ZNC (s)− ZNP (s)
) (
ZNET

− ZNC (s)
))
ds → 0 (32)

as N → ∞. Setting the integrand to zero in the limit, we get the following approximation of
the averaged value of fast species (ZC) with respect to the slow species ZP := limN→∞ ZNP :

Z̄C(s) ≈
ZET

+ ZST
− ZP (s) + Kd

N0

2
(33)

−

√(
ZET

+ ZST
− ZP (s) + Kd

N0

)2
− 4ZET

(ZST
− ZP (s))

2
,

where Kd = κ2

κ1
(See Appendix 1 for detailed derivation). Using (33) and the law of large

numbers in (15), and letting N →∞ in (29), we get a limiting model for the slow species P :

ZP (t) ≈ ZP (0) +

∫ t

0

(
κ3Z̄C(s)− κ4ZP (s)

)
ds. (34)

We convert this deterministic limiting model to the stochastic process as in the previous section:

ZP (t) = ZN0

P (0) +N0
−1Rt3 (N0κ3ZC)−N0

−1Rt4 (N0κ4ZP ) , (35)

where

ZC(t) =
ZET

+ ZST
−ZP (t) + Kd

N0

2
(36)

−

√(
ZET

+ ZST
−ZP (t) + Kd

N0

)2
− 4ZET

(ZST
−ZP (t))

2
.
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Figure 3: The reduced model (35) accurately approximates the original model (2). (a) The sim-
ulated trajectories of the original full model, XP (t), and the reduced model, N0ZP (N−30 t). The
colored ranges and histograms represent the standard deviations of XP (t) and N0ZP (N−30 t) from
their mean and their distributions at the steady state, respectively. The initial condition used in
(a) is the same as those used in Fig. 2 (a). In particular, XS(0) = 0. (b) The relative differences of
mean and standard deviation at the steady state (t=5000s) between the full model and the reduced
model are numerically estimated for various XS(0). (c) The simulated trajectories of the original
full model, XP (t), and the reduced model, N0ZP (N−30 t) when XS(0) = 20.

Note that in this new approximation, ZC(t) is determined by ZP (t) differently from the previ-
ous approximation in (23-24). We again use N0ZP (N−30 t) to approximate XP (t) of the original
model, which is accurate as seen in Fig. 3(a). Furthermore, the new approximation is ac-
curate regardless of the initial condition of S (Fig. 3(b) and (c)) in contrast to the previous
approximation (Fig. 2).

To investigate the accuracy of the new approximation, we perform the error analysis and
obtain the following:

XP (t) ≈ N0ZP (N−30 t) + E(N−30 t), (37)

E(t) =

∫ t

0

√
(κ3 + κ4) |E(s)| dW (s)−

∫ t

0

(κ3 + κ4) E(s) ds, (38)

where W is a standard Brownian motion (see Appendix 4 for detailed analysis). In particular,
since E(0) = 0 and the diffusion and drift terms are proportional to E(s), it follows that E(t) = 0
and thus XP (t) = N0ZP (N−30 t)+o(1), which shows the accuracy of the newly reduced model in
(35-36). Note that XN = ZN + o

(
N−β

)
for some β > 0 means that Nβ

(
XN (t)− ZN (t)

)
⇒ 0

as N →∞, where ⇒ indicates convergence in distribution (i.e. weak convergence).

4 Multiscale approximation for a genetic oscillatory sys-
tem

In the previous section, we propose a modified multiscale approximation method that leads to
an accurate approximation for the stochastic system with a single steady state. In this section,
we apply the same idea to the transcriptional negative feedback loop system, which generates
oscillations (Fig. 4 (a)) [39, 40, 42, 38]. This system consists of 9 reactions as described in Table
4: the transcription of mRNA (M) occurs proportional to active DNA (DA) and then M is
translated into protein (P ), which promotes the production of the repressor (R). The repressor
reversibly binds with DA to form repressed DNA complex (DR). Furthermore, M , P , and R
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Figure 4: Transcriptional negative feedback loop, (a) The diagram of the biochemical reaction
network. (b) The simulations of ordinary differential equations, which is the large volume limit
of stochastic system (39). When converting stochastic propensity functions to macroscopic re-
action rates, volume V = 1nM−1 is assumed. Here, M(0) = 180nM,P (0) = 210nM,R(0) =
20nM,DR(0) = 160nM , and DA(0) = 0nM . For N0 = 10, the scaling exponents (αi) for species
abundance become 1 for R and DA, and 2 for others.

degrade. This model is described with the following set of stochastic equations:

XM (t) = XM (0) +Rt1(λ′1(X))−Rt2(λ′2(X))

XP (t) = XP (0) +Rt3(λ′3(X))−Rt4(λ′4(X))

XR(t) = XR(0) +Rt5(λ′5(X))−Rt6(λ′6(X))−Rt8(λ′8(X)) +Rt9(λ′9(X))

XDR
(t) = XDR

(0) +Rt8(λ′8(X))−Rt9(λ′9(X))−Rt7(λ′7(X))

XDA
(t) = XDA

(0)−Rt8(λ′8(X)) +Rt9(λ′9(X)) +Rt7(λ′7(X)).

(39)

Note that the total number of DNA (XDT
) is conserved

XDT
:= XDA

(t) +XDR
(t) = XDA

(0) +XDR
(0). (40)

To derive the normalized system of (39), we scaled reaction rate constants with N0 = 10:
κ′1 = N1

0κ1, κ′i = N2
0κi for i = 8 and 9, and κ′i = N0

0κi for others as seen in Table 4. According
to the simulations of the deterministic system, which is the large volume limit of (39), the scaling
exponents of the molecular abundance (αi) can be chosen as 1 for XDA

and XR and 2 for other
species (Fig. 4 (b)). Using αi, we define the normalized species abundance at the times of order
N0

0 as ZN0
i (t) := Xi(t)/N

αi
0 .

Using the normalized species (ZN0
i (t)) and the normalized reaction rate constants (κi), we

derive the normalized propensity functions (λi(Z
N0)), which are of order 1 as described in Table

4. After replacing the original propensity functions in (39) by the normalized ones, we replace
N0 with N and obtain a family of vector-valued processes {ZN (t)} satisfying

ZNM (t) = ZNM (0) +N−2(Rt1(N2λ1(ZN ))−Rt2(N2λ2(ZN ))),

ZNP (t) = ZNP (0) +N−2(Rt3(N2λ3(ZN ))−Rt4(N2λ4(ZN ))),

ZNR (t) = ZNR (0) +N−1(Rt5(N2λ5(ZN ))−Rt6(Nλ6(ZN ))−Rt8(N4λ8(ZN ))

+Rt9(N4λ9(ZN ))),

ZNDR
(t) = ZNDR

(0) +N−2(Rt8(N4λ8(ZN ))−Rt9(N4λ9(ZN ))−Rt7(N2λ7(ZN ))),

ZNDA
(t) = ZNDA

(0) +N−1(−Rt8(N4λ8(ZN )) +Rt9(N4λ9(ZN )) +Rt7(N2λ7(ZN ))).

Initial conditions (ZNi (0)) are defined as done in the previous section (8). For all species,
the exponents of the maximum production and consumption rates are the same (i.e. balance
equations are satisfied), justifying our choice of the timescale. Note that in the above system
the normalized total DNA, ZNDA

(t)/N + ZNDR
(t), is conserved. In the limit of this conserved

relation, ZNDA
(t)/N will be neglected, and thus all DNA is under repressed status in the limit.
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Table 4: Reactions and propensity functions

Reactions Original & normalized propensity functions

DA
κ′1−→ DA +M λ′1(X) := κ′1XDA

= N2
0κ1Z

N0
DA

=: N2
0λ1(Z

N0)

M
κ′2−→ φ λ′2(X) := κ′2XM = N2

0κ2Z
N0
M =: N2

0λ2(Z
N0)

M
κ′3−→M + P λ′3(X) := κ′3XM = N2

0κ3Z
N0
M =: N2

0λ3(Z
N0)

P
κ′4−→ φ λ′4(X) := κ′4XP = N2

0κ4Z
N0
P =: N2

0λ4(Z
N0)

P
κ′5−→ P +R λ′5(X) := κ′5XP = N2

0κ5Z
N0
P =: N2

0λ5(Z
N0)

R
κ′6−→ φ λ′6(X) := κ′6XR = N1

0κ6Z
N0
R =: N1

0λ6(Z
N0)

DR
κ′7−→ DA λ′7(X) := κ′7XDR

= N2
0κ7Z

N0
DR

=: N2
0λ7(Z

N0)

DA +R
κ′8−→ DR λ′8(X) := κ′8XDA

XR = N4
0κ8Z

N0
DA
ZN0
R =: N4

0λ8(Z
N0)

DR
κ′9−→ DA +R λ′9(X) := κ′9XDR

= N4
0κ9Z

N0
DR

=: N4
0λ9(Z

N0)

The 7th reaction describes the degradation of R bound to DNA. κ′1 = 15.1745/hr, κ′8 = 200/hr, κ′9 = 50/hr and other
κ′i are 1/hr, which are adopted from [40]. Thus, for N0 = 10, κ′1 = N1

0κ1, κ
′
i = N2

0κi for i = 8 and 9, and κ′i = N0
0κi

for others so that κi are of order 1. The scaling exponents (αi), 1 for R and DA, and 2 for others are used to derive
normalized species ZN0

i , which are of order 1. Hence, the normalized propensity functions (λi(Z
N0)) are of order 1,

and the orders of reaction rates can be easily derived from λ′i(Z
N0)/λi(Z

N0).

Thus, the reduced model with the original multiscale approximation method reaches the steady
state rather than oscillates. This example again indicates that the limiting model derived using
the original method does not accurately approximate the full model when the system has a
conservation among species with disparate scales of molecular abundances. Thus, the modified
conservation constraint as described in Section 3 is used as

ZNDT
:= ZNDA

(t)/N0 + ZNDR
(t) = ZNDA

(0)/N0 + ZNDR
(0),

and the limit of ZNDT
as N →∞ is defined as

ZDT
:= lim

N→∞
ZNDT

= XDA
(0)/N2

0 +XDR
(0)/N2

0 = XDT
/N2

0 .

Using this modified conservation constraint, we define a new family of stochastic processes, using
the same notation (ZNi (t)) for simplicity:

ZNM (t) = ZNM (0) +N−2(Rt1(N2λ1(ZN ))−Rt2(N2λ2(ZN ))), (41)

ZNP (t) = ZNP (0) +N−2(Rt3(N2λ3(ZN ))−Rt4(N2λ4(ZN ))), (42)

ZNR (t) = ZNR (0) +N−1(Rt5(N2λ5(ZN ))−Rt6(Nλ6(ZN ))−Rt8(N4λ8(ZN )) (43)

+Rt9(N4λ9(ZN ))),

ZNDR
(t) = ZNDR

(0) +N−2(Rt8(N4λ8(ZN ))−Rt9(N4λ9(ZN )) (44)

−Rt7(N2λ7(ZN ))),

ZNDA
(t) = N0(ZNDT

− ZNDR
(t)). (45)

Because the maximum scaling exponents of the reaction rates of species R and DR are greater
than the scaling exponents of molecular abundance (αi), R and DR fluctuate rapidly and are
averaged out. To derive the average values of these fast variables, we divide (44) by N2 and use
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the law of large numbers for Poisson process in (15) to get∫ t

0

(
κ8Z

N
DA

(u)ZNR (u)− κ9ZNDR
(u)
)
du

=

∫ t

0

(
κ8N0(ZNDT

− ZNDR
(u))ZNR (u)− κ9ZNDR

(u)
)
du→ 0 (46)

as N →∞. Note that (46) consists of only the fast variables ZR and ZDR
and thus, we cannot

use (46) to derive the limiting average of the fast variables with respect to the slow variables.
To circumvent this problem, we introduce the auxiliary species T = R + DR, as suggested by
the original multiscale approximation method [33, 34]. Since the abundance of T has the same
order as DR, we get

ZNT (t) := (XR(t) +XDR
(t))/N2 = N−1ZNR (t) + ZNDR

(t), (47)

so that ZNT (t) is of order 1. We now derive the equation for ZNT (t) using (43)-(44):

ZNT (t) = ZNT (0) +N−2(Rt5(N2λ5(ZN ))−Rt10(N2λ10(ZN ))), (48)

R10(N2λ10(ZN )) := Y6

(∫ t

0

Nκ6Z
N
R (u)du

)
+ Y7

(∫ t

0

N2κ7Z
N
DR

(u)du

)
≡ Y10

(∫ t

0

(
Nκ6Z

N
R (u) +N2κ7Z

N
DR

(u)
)
du

)
= Y10

(∫ t

0

N2κ10Z
N
T (u)du

)
.

Note that κ6 = κ7 = 1 is used to define κ10 := κ6 = κ7, and thus two reaction terms can be
combined using the superposition principle of Poisson processes [15]. The process for ZNT (t)
satisfies the balance equation, and ZNT (t) is a slow variable because the maximum scaling ex-
ponent of the reaction rates and the scaling exponent for the species abundance are equal as 2.
We substitute (47) into (46) and get∫ t

0

(
κ8N0(ZNDT

− ZNDR
(u))N(ZNT (u)− ZNDR

(u))− κ9ZNDR
(u)
)
du→ 0 (49)

as N →∞. Setting the integrand to zero in the limit, we derive the averaged value of the fast
species (Z̄DR

) in terms of the slow species in the limit (ZT (t) := limN→∞ ZNT (t)):

Z̄DR
(t) = ZT (t), (50)

which is equivalent with the limit of (47). (50) with (45) yields the averaged value of the fast
species (Z̄DA

)
Z̄DA

(t) = N0(ZDT
− ZT (t)). (51)

Using Z̄DA
(t) and the law of large number for the Poisson process, we get the limiting model

for the slow species. Because the limiting model is deterministic, we convert it to the stochastic
system similarly as we did in the previous section:

ZM (t) = ZN0

M (0) +N−20

(
Rt1(N2

0κ1Z̄DA
)−Rt2(N2

0κ2ZM )
)
, (52)

ZP (t) = ZN0

P (0) +N−20

(
Rt3(N2

0κ3ZM )−Rt4(N2
0κ4ZP )

)
, (53)

ZT (t) = ZN0

T (0) +N−20

(
Rt5(N2

0κ5ZP )−Rt10(N2
0κ10ZT )

)
, (54)

Z̄DA
(t) = N0(ZDT

− ZT (t)). (55)

Note that Z̄DA
(t) is derived from (51). In Fig. 5, we used ZM (t) to approximate XM (t) as

XM (t) ≈ N2
0ZM (t), but as seen from the plots, this approximation is inaccurate. In particular,
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Figure 5: The reduced model (52-55) does not accurately approximate the original full model (39).
(a) The simulated trajectories of the original full model, XM (t), and the reduced model, N2

0ZM (t).
The initial condition is the one used in Fig. 4 (b). (b) Fourier transforms of stochastic trajectories
with 104 cycles of the full and reduced model show a large difference.

the reduced model does not generate oscillations with a specific frequency in contrast to the full
model (Fig. 5(b))

We wondered whether the inaccuracy of the reduced model (52-55) stems frm the fact that
we simply fixed scaling exponents (αi = 1) for R and DA throughout the oscillation as they
change between N0

0 and N0 (Fig. 4). That is, as αi of R and DA change throughout the
oscillation, it might not be appropriate to fix the order of λ′8 = κ′8XDA

XR as N4
0 in Table 4,

which is used to derive the equation for the average of fast species (49). However, we find that
although the orders of XDA

and XR change, κ′8XDA
XR = O(N4

0 ) throughout the oscillation.
Thus our choice of fixed scaling exponents (αi) for R and DA is not the reason for the inaccuracy
of the average of fast species (50) and thus the reduced model seen in Fig. 5.

Instead, we find that the inaccurate approximation of the averaged value of the fast species
in (55) is due to the fact that the slow auxiliary species (T ) consists of fast species with disparate
abundance scales and thus a fast species (R) with low scale of abundance is neglected in the
limit. Specifically, Z̄DR

(t) = ZT (t) in (50) is equivalent to approximating N−1ZNR (t) by 0 in
ZNT (t) = ZNDR

(t) + N−1ZNR (t) as N → ∞. Since Z̄DR
(t) = ZT (t) is used to derive Z̄DA

(t) in
(51) and hence ZDA

(t) in (55), R is also neglected in the reduced system given in (52-55), which
leads to apparent errors seen in (Fig. 5).

To resolve this problem, we adopt a similar idea to the one used in the previous section
because a slow variable, ZNT (t), is considered as a constant on fast timescale and thus (47) can
be considered as a conservation law on fast timescale. We re-define ZNT as

ZNT (t) := ZNDR
(t) +N−10 ZNR (t), (56)

which prevents the elimination of ZNR as N → ∞. Though (56) is different from (47), we keep
using the notation ZNT (t) for simplicity. With this new definition, we get the modified relation
of (49): ∫ t

0

(
κ8N0(ZNDT

− ZNDR
(u))N0(ZNT (u)− ZNDR

(u))− κ9ZNDR
(u)
)
du→ 0 (57)

as N →∞. Setting the integrand to zero in the limit, we get the approximation for the averaged
limiting value of ZDR

as

Z̄DR
(t) ≈

ZDT
+ Kd

N2
0

+ ZT (t)−
√

(Kd

N2
0
− ZDT

+ ZT (t))2 + 4ZDT

Kd

N2
0

2
,
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Figure 6: The reduced model (58-61) accurately approximate the original full model (39). (a) The
simulated trajectories of the original full model, XM (t), and the reduced model, N2

0ZM (t). The
initial condition is the one used in Fig. 4 (b). (b) Fourier transforms of stochastic trajectories with
104 cycles of the full and reduced model are consistent.

where Kd = κ9/κ8. Using (45), we get

Z̄DA
(t) ≈ N0

ZDT
− Kd

N2
0
− ZT (t) +

√
(Kd

N2
0
− ZDT

+ ZT (t))2 + 4ZDT

Kd

N2
0

2
.

By using the approximate averaged value (Z̄DA
) and the law of large numbers, we obtain the

modified liming model for the slow species. Since the limiting model is deterministic, as before,
we convert it to the following stochastic system.

ZM (t) = ZN0

M (0) +N−20

(
Rt1(N2

0κ1Z̄DA
)−Rt2(N2

0κ2ZM )
)
, (58)

ZP (t) = ZN0

P (0) +N−20

(
Rt3(N2

0κ3ZM )−Rt4(N2
0κ4ZP )

)
, (59)

ZT (t) = ZN0

T (0) +N−20

(
Rt5(N2

0κ5ZP )−Rt10(N2
0κ10ZT )

)
, (60)

Z̄DA
(t) = N0

ZDT
− Kd

N2
0
−ZT (t) +

√
(Kd

N2
0
− ZDT

+ ZT (t))2 − 4ZDT

Kd

N2
0

2
. (61)

Note that this newly derived reduced system is the same as the one in (52-55) except for (61).
We used ZM (t) to approximate XM (t) as XM (t) ≈ N2

0ZM (t). As seen from the simulation (Fig.
6), the reduced model accurately approximates the original full model.

We can often obtain slow auxiliary variables by combining fast variables because fast re-
actions could cancel each other as seen in (48). These newly derived slow variables play a
critical role in deriving the reduced models in the multiscale stochastic approximation method
[11, 16, 34]. If the slow normalized auxiliary species are derived as proposed in the original
method (47), the constituent fast species of the auxiliary species are ignored in the limit if their
scales of abundances (αi) are smaller than those of other constituent fast species. This leads
to considerable errors as seen in Fig. 5. On the other hand, our modification of the auxiliary
variables given in (56) prevents the fast species with small abundance being neglected in the
limit and leads to more accurate approximation as shown in Fig. 6.

5 Conclusion

Cells consist of diverse species whose abundances are on disparate scales. For instance, the con-
centrations of metabolites vary more than 106 fold in E. coli : the concentration of glutamate and
adenosine are about 102µM and 10−4µM , respectively [7]. Thus, biochemical reaction networks
often have conservation laws involving species with disparate abundance scales. Furthermore,
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the combination of fast species with disparate abundance scales can also form virtual slow aux-
iliary species that evolve slowly due to the cancelation of the fast reactions. In such cases, with
the original multiscale approximation method, the constitute species with the low abundance
are ignored in the conservation constraint or in the auxiliary species of limiting models as shown
in (18) or (50). Therefore, the original multiscale approximation method [5, 34] can lead to
potential errors in the limiting models as seen in our examples (Fig. 2 and Fig. 5). To address
this problem, we proposed here to replace the scaling parameter N by the fixed value N0 in the
conservation constraints and auxiliary variables as we did in (27) and (56). Using these modi-
fied conservation constraints (or auxiliary variables), we redefined the family of the normalized
stochastic processes in such a way that its limit provides accurate approximations for the full
stochastic systems of the Michaelis-Menten kinetics (Fig. 3) and the genetic oscillator (Fig. 6).
This indicates that our modified method is applicable for a broader class of multiscale stochastic
biochemical reaction networks than the original method.

When the abundances of species evolve across multiple scales over time, the original mutiscale
approximation method may require time-dependent scaling exponent αi and thus lead to dif-
ferent reduced models over time [33]. In this case, the approximation process becomes complex
as it requires combining different reduced models over time. On the other hand, our modified
multiscale approximation method using the fixed αi produces an accurate approximation in our
example although some species abundances change over time (Fig. 3(c)). It would be interesting
future work whether our modified method is applicable to general systems where the scales of
species abundances change over time.

Interestingly, the reduced models obtained using our methods coincide with those derived
with the stochastic total quasi-steady state approximation (total QSSA) approach [6, 49, 40, 41].
Therefore, the error analysis used in our work can be also applied to validate the accuracy of the
stochastic total QSSA, which has been up until now investigated mostly numerically. Another
interesting application of our work can be extension of our method to approximate stochastic
reaction-diffusion systems [31, 17, 36, 30, 52].

Appendix 1. Derivation of the spatial averages of fast
species in Section 2 and Section 3

From the original full model described in (11-12), we derive a scaled generator of z = (zS , zP )
as

ANf(z) = N2κ1

(
ZNET

− ZNST
+

1

N
zS + zP

)
zS [f (z − eS)− f(z)] (62)

+N2κ2

(
ZNST
− 1

N
zS − zP

)
[f (z + eS)− f(z)]

+Nκ3

(
ZNST
− 1

N
zS − zP

)[
f

(
z +

1

N
eP

)
− f(z)

]
+Nκ4zP

[
f

(
z + eS −

1

N
eP

)
− f(z)

]
. (63)

Define an occupational random measure of ZNS as

ΓN (D × [0, t]) =

∫ t

0

1D
(
ZNS (s)

)
ds

in the space of measures ν on Z+ × [0,∞) such that ν(Z+ × [0, t]) = t and Z+ is the set of
natural number and zero. Denote the space of measures as L ≡ L(Z+).
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Setting f(z) = zS in (62), we define a martingale

MN (t) = ZNS (t)− ZNS (0) (64)

−
∫
Z+×[0,t]

N2

[
κ2

(
ZNST
− 1

N
zS − ZNP (s)

)
+

1

N
κ4Z

N
P (s)

−κ1zS
(
ZNET

− ZNST
+

1

N
zS + ZNP (s)

)]
ΓN (dzS × ds) .

{ZNP } and {ΓN} are relatively compact in DR+([0,∞)) and L, respectively, where DR+([0,∞))
is the space of cadlag functions with R+ values and L is the space of measures (see Appendix
2). Therefore, we can set (ZP ,Γ) be a limit point of {(ZNP ,ΓN )} in DR+([0,∞)) × L. Using
Lemma 1.5 in [46],∫

Z+×[0,t]

[
κ2

(
ZNST
− 1

N
zS − ZNP (s)

)
+

1

N
κ4Z

N
P (s)

−κ1zS
(
ZNET

− ZNST
+

1

N
zS + ZNP (s)

)]
ΓN (dzS × ds)

converges in distribution to∫
Z+×[0,t]

[
κ2 (ZST

− ZP (s))− κ1zS (ZET
− ZST

+ ZP (s))

]
Γ (dzS × ds) . (65)

After dividing (64) by N2 and and letting N go to infinity, the above term (65) becomes zero
for all t > 0. Using Lemma 1.4 in [46], there exists µ(·) such that Γ(dzS × ds) = µZP (s)(dzS) ds,
and we get∫ t

0

∫
Z+

[κ2 (ZST
− ZP (s))− κ1zS (ZET

− ZST
+ ZP (s))] µZP (s)(dzS) ds = 0 (66)

with probability one.
Then, the average of fast species (Z̄S) is expressed in terms of the slow species (ZP ) as

Z̄S(s) ≡
∫
Z+

zS µZP (s)(dzS) =
κ2 (ZST

− ZP (s))

κ1 (ZET
− ZST

+ ZP (s))
, (67)

which is given in the main text (17). Note that µZP (s) is a local-averaging distribution and the
Poisson distribution with mean Z̄S(s) because the limit of ANf(z)/N2 in (63) is the infinitesimal
generator of the Poisson process. For more details of conditions for averaging, please see Section
5 in [34] and [5].

Next, to derive the approximate averaged value of the fast species (33) of Section 3, we
substitute 1

N zS to 1
N0
zS and ZNST

to ZNST
in (64) and construct a new martingale corresponding

to ZNS in (28)

MN (t) = ZNS (t)− ZNS (0)−
∫
Z+×[0,t]

N2

[
κ2

(
ZNST

− 1

N0
zS − ZNP (s)

)
(68)

+
1

N
κ4Z

N
P (s)− κ1zS

(
ZNET

−ZNST
+

1

N0
zS + ZNP (s)

)]
ΓN (dzS × ds)

where ΓN is an occupation measure of ZNS .
{
ZNP
}

and
{

ΓN
}

are relatively compact, since ZNP
and ZNS are bounded by ZNST

≤ ZST
and N0ZNST

≤ N0ZST
as seen in (27), respectively. Dividing

(68) by N2 and taking a limit, we get∫ t

0

∫
Z+

[
κ2

(
ZST

− 1

N0
zS − ZP (s)

)
−κ1zS

(
ZET

−ZST
+

1

N0
zS + ZP (s)

)]
µZP (s)(dzS) ds = 0
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as we derived (66). Differentiating with respect to t and replacing the time variable by s, the
rewritten equation becomes∫

Z+

[
1

N0
z2S +

(
ZET

−ZST
+ ZP (s) +

Kd

N0

)
zS −Kd (ZST

− ZP (s))

]
µZP (s)(dzS) = 0,

where Kd = κ2

κ1
.

We derive an approximate averaged value for ZNS in the limit:

∫
Z+

zS µZP (s)(dzS) ≈ −
ZET

−ZST
+ ZP (s) + Kd

N0

2/N0

+

√(
ZET

−ZST
+ ZP (s) + Kd

N0

)2
+ 4Kd

N0
(ZST

− ZP (s))

2/N0

by assuming
∫
Z+ z

2
S µZP (s)(dzS) ≈ (

∫
Z+ zS µZP (s)(dzS))2 in the limit. In the Appendix 4, we

will show that this assumption does not cause any error up to the order of magnitude we are
interest in.

Appendix 2. Relative compactness of {ZN
P } and {ΓN}

Here, we will show that {ZNP } and {ΓN} in Appendix 1 are relatively compact in DR+([0,∞))
and L, respectively, where DR+([0,∞)) is the space of cadlag functions with R+ values and L
is the space of measures. Since ZNP (t) ≤ ZNST

and ZNST
→ ZST

as N →∞, ZNP (t) is bounded for

all t ∈ [0,∞), and thus {ZNP (t)} is relatively compact. We will show that for t ∈ [0,∞) and for
fixed δ > 0, there exists r such that

sup
N
P

(∫ t

0

1[r,∞)

(
ZNS (s)

)
ds > δ

)
< δ.

Since
∫ t
0

1[r,∞)

(
ZNS (s)

)
ds ≤

∫ t
0
ZN

S (s)
r ds, we will show that we can set P

(∫ t
0
ZN

S (s)
r ds > δ

)
small enough by choosing an appropriate value for r. We have

P

(∫ t

0

ZNS (s)

r
ds > δ

)
≤ P

(
inf

t∈[0,∞)
ZNE (t) ≤ η

)
+ P

(∫ t

0

ZNS (s)ZNE (s) ds > rδη

)
≤ P

(
inf

t∈[0,∞)
ZNE (t) ≤ η

)
+

1

rδη
E

[∫ t

0

ZNS (s)ZNE (s) ds

]
.

If ZNE (0) 6= 0 and E
[∫ t

0
ZNS (s)ZNE (s) ds

]
< ∞, we can set η small enough and r large enough

so that both probabilities on the right-hand side become small. Then ZNS (t) is stochastically
bounded for t ∈ [0,∞), and by Lemma 1.1 in [46] {ΓN} is relatively compact. Now, we will

show that E
[∫ t

0
ZNS (s)ZNE (s) ds

]
< ∞. Taking the expectation on both sides of the equation

for ZNC (t) in (7) and rearranging terms, we have

E

[∫ t

0

κ1Z
N
S (s)ZNE (s) ds

]
=

1

N
E
[
ZNC (t)

]
− 1

N
E
[
ZNC (0)

]
+ E

[∫ t

0

κ2Z
N
C (s) ds

]
+

1

N
E

[∫ t

0

κ3Z
N
C (s) ds

]
.

The right-hand side is bounded since for all t, ZNC (t) ≤ ZNET
and this converges to ZET

<∞ as

N → ∞. Note that we showed relative compactness of {ΓN} when ZNE (0) 6= 0. If ZNE (0) = 0,
we need additional assumption that ZNS (t) is stochastically bounded for all t ∈ [0,∞).
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Appendix 3. Error analysis for ZP in Section 2

To analyze the error of the process ZP of (23) in approximating ZN0

P of the full model in (12)
with N = N0, we use the technique developed in [2]. To this end, we derive a family of process
ZNP by replacing N0 in (23) with the parameter N as:

ZNP (t) = ZNP (0) +N−1Rt3
(
Nκ3ZNC

)
−N−1Rt4

(
Nκ4ZNP

)
, (69)

where

ZNC (t) = ZNST
− ZNP (t). (70)

We define ZNST
≡ ZNC (0) +ZNP (0) so that ZN0

ST
= ZST

. In this way, (69-70) with N = N0 become

equivalent to the approximate model in (23-24). Furthermore, ZNC (t) → Z̄C(t) as N → ∞
so that ZNP in (69) and ZNP in (12) of the full model have the same limit ZP in (21). Since
ZNP (t)− ZNP (t)→ 0, we define an error between ZNP and ZNP as

EN (t) ≡ N
(
ZNP (t)− ZNP (t)

)
. (71)

to get the asymptotic behavior of the error between ZNP and ZNP of order N−1. To find an
approximate value of EN0(t), we derive a limiting behavior of EN as N → ∞. We rewrite
the reaction terms for ZNP in (12) as the following process, which has the same probability
distribution with that in (12):

ZNP (t) = ZNP (0) +
1

N
Y3,1

(∫ t

0

Nκ3Z
N
C (s) ∧Nκ3ZNC (s) ds

)
(72)

+
1

N
Y3,2

(∫ t

0

(
Nκ3Z

N
C (s)−Nκ3ZNC (s) ∧Nκ3ZNC (s)

)
ds

)
− 1

N
Y4,1

(∫ t

0

Nκ4Z
N
P (s) ∧Nκ4ZNP (s) ds

)
− 1

N
Y4,2

(∫ t

0

(
Nκ4Z

N
P (s)−Nκ4ZNP (s) ∧Nκ4ZNP (s)

)
ds

)
,

where A ∧ B ≡ min (A,B). Similarly, we rewrite the equation for ZNP in (69) as the following
process:

ZNP (t) = ZNP (0) +
1

N
Y3,1

(∫ t

0

Nκ3Z
N
C (s) ∧Nκ3ZNC (s) ds

)
(73)

+
1

N
Y3,3

(∫ t

0

(
Nκ3ZNC (s)−Nκ3ZNC (s) ∧Nκ3ZNC (s)

)
ds

)
− 1

N
Y4,1

(∫ t

0

Nκ4Z
N
P (s) ∧Nκ4ZNP (s) ds

)
− 1

N
Y4,3

(∫ t

0

(
Nκ4ZNP (s)−Nκ4ZNP (s) ∧Nκ4ZNP (s)

)
ds

)
.

Subtracting (73) from (72),

ZNP (t)− ZNP (t) =
1

N
Y3,2

(∫ t

0

(
Nκ3Z

N
C (s)−Nκ3ZNC (s) ∧Nκ3ZNC (s)

)
ds

)
(74)

− 1

N
Y3,3

(∫ t

0

(
Nκ3ZNC (s)−Nκ3ZNC (s) ∧Nκ3ZNC (s)

)
ds

)
− 1

N
Y4,2

(∫ t

0

(
Nκ4Z

N
P (s)−Nκ4ZNP (s) ∧Nκ4ZNP (s)

)
ds

)
+

1

N
Y4,3

(∫ t

0

(
Nκ4ZNP (s)−Nκ4ZNP (s) ∧Nκ4ZNP (s)

)
ds

)
.
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Taking the reaction terms in (74) and subtracting their propensity functions, we define the
following martingale

MN (t) =
1

N
Ỹ3,2

(∫ t

0

(
Nκ3Z

N
C (s)−Nκ3ZNC (s) ∧Nκ3ZNC (s)

)
ds

)
− 1

N
Ỹ3,3

(∫ t

0

(
Nκ3ZNC (s)−Nκ3ZNC (s) ∧Nκ3ZNC (s)

)
ds

)
− 1

N
Ỹ4,2

(∫ t

0

(
Nκ4Z

N
P (s)−Nκ4ZNP (s) ∧Nκ4ZNP (s)

)
ds

)
+

1

N
Ỹ4,3

(∫ t

0

(
Nκ4ZNP (s)−Nκ4ZNP (s) ∧Nκ4ZNP (s)

)
ds

)
,

where Ỹ (u) = Y (u)− u. A quadratic variation of the martingale is (cf. [35])

[
MN

]
t

=
1

N2
Y3,2

(∫ t

0

(
Nκ3Z

N
C (s)−Nκ3ZNC (s) ∧Nκ3ZNC (s)

)
ds

)
+

1

N2
Y3,3

(∫ t

0

(
Nκ3ZNC (s)−Nκ3ZNC (s) ∧Nκ3ZNC (s)

)
ds

)
+

1

N2
Y4,2

(∫ t

0

(
Nκ4Z

N
P (s)−Nκ4ZNP (s) ∧Nκ4ZNP (s)

)
ds

)
+

1

N2
Y4,3

(∫ t

0

(
Nκ4ZNP (s)−Nκ4ZNP (s) ∧Nκ4ZNP (s)

)
ds

)
.

Define a function for ZNC in (13) and ZNC in (70) as

FN (z) = ZNST
− 1

N
zS − zP

F̄N (zP ) = ZNST
− zP

so that FN
(
ZN (s)

)
= ZNC (s) and F̄N

(
ZNP (s)

)
= ZNC (s). As N →∞,

[
MN

]
t

is asymptotic to

1

N

∫ t

0

κ3
∣∣ZNC (s)− ZNC (s)

∣∣ ds+
1

N

∫ t

0

κ4
∣∣ZNP (s)− ZNP (s)

∣∣ ds
=

1

N

∫ t

0

κ3

∣∣∣∣ [FN (ZN (s)
)
− F̄N

(
ZNP (t)

)]
+
[
F̄N

(
ZNP (t)

)
− F̄N

(
ZNP (t)

)] ∣∣∣∣ ds
+

1

N

∫ t

0

κ4
∣∣ZNP (s)− ZNP (s)

∣∣ ds,
where we use the fact that (A−A ∧B) + (B −A ∧B) = |A−B|. Then as N →∞,

[
N ·MN

]
t

is asymptotic to ∫ t

0

κ3

∣∣∣∣N [FN (ZN (s)
)
− F̄N

(
ZNP (t)

)]
+
dF̄N

(
ZNP (t)

)
dZNP (t)

EN (s)

∣∣∣∣ ds. (75)

+

∫ t

0

κ4
∣∣EN (s)

∣∣ ds.
Subtracting and adding the propensity functions and using the fact that (A−A ∧B) −

(B −A ∧B) = (A−B), (74) can be rewritten as
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ZNP (t)− ZNP (t) = MN (t) +

∫ t

0

[
κ3
(
ZNC (s)− ZNC (s)

)
− κ4

(
ZNP (s)− ZNP (s)

)]
ds (76)

= MN (t) +

∫ t

0

κ3
(
FN

(
ZN (s)

)
− F̄N

(
ZNP (s)

))
ds

+

∫ t

0

κ3
(
F̄N

(
ZNP (s)

)
− F̄N

(
ZNP (s)

))
ds

−
∫ t

0

κ4
(
ZNP (s)− ZNP (s)

)
ds.

Multiplying (76) by N , we get

EN (t) ≈ N ·MN (t) (77)

+

∫ t

0

κ3

{
N
[
FN

(
ZN (s)

)
− F̄N

(
ZNP (s)

)]
+
dF̄N

(
ZNP (s)

)
dZNP (s)

EN (s)

}
ds

−
∫ t

0

κ4EN (s) ds

Assuming that EN ⇒ E as N → ∞, where ⇒ implies convergence in distribution (or weak
convergence), we get

N
[
FN

(
ZN (s)

)
− F̄N

(
ZNP (s)

)]
(78)

= N

[
ZNST
− 1

N
ZNS (s)− ZNP (s)− ZNST

+ ZNP (s)

]
= N

[
XS(0)/N − ZNS (s)/N

]
−→ XS(0)− Z̄S(s)

and

dF̄N
(
ZNP (s)

)
dZNP (s)

EN (s) −→ −E(s). (79)

Substituting (78) and (79) to (75) and applying the martingale central limit theorem, N ·MN ⇒
M as N →∞, where M is a Gaussian process with its quadratic variation

[M]t =

∫ t

0

{
κ3
∣∣XS(0)− Z̄S(s)− E(s)

∣∣+ κ4 |E(s)|
}
ds.

Therefore, as N →∞, (77) converges in distribution to

E(t) =

∫ t

0

√
κ3
∣∣XS(0)− Z̄S(s)− E(s)

∣∣+ κ4 |E(s)| dW (s)

+

∫ t

0

{
κ3
(
XS(0)− Z̄S(s)− E(s)

)
− κ4E(s)

}
ds,

where W is a standard Brownian motion and thus E(t) = O(1). Approximating EN0(t) ≈ E(t)
as suggested in [35] and using (71), we obtain

XP (t) ≈ N0ZP (N−30 t) + E(N−30 t),

which indicates that XP (t) = N0ZP (N−30 t) +O(1).

21



Appendix 4. Error analysis for ZP in Section 3

We again use the technique developed in [2] to derive the error between ZP of the approximate
model (35) and ZN0

P of the full model (12) with N = N0. To this end, we derive a family of the
processes ZNP by replacing N0 of ZP in (35) by a parameter N as:

ZNP (t) = ZNP (0) +N−1Rt3
(
Nκ3ZNC

)
−N−1Rt4

(
Nκ4ZNP

)
, (80)

where

ZNC (s) =
ZNET

+ ZNST
−ZNP (s) + Kd

N

2

−

√(
ZNET

+ ZNST
−ZNP (s) + Kd

N

)2 − 4ZNET

(
ZNST
−ZNP (s)

)
2

.

Note that ZN0

C (t) = ZC(t) since ZN0

ST
= ZST

. Then, ZNP (t) of (80) when N = N0 becomes

equivalent to ZP of (35). That is, the family of process (ZNP ) includes the approximate process
ZP of (35). Since ZNC (t) → Z̄C(t) in (20) as N → ∞, ZNP (t) and ZNP (t) of the full model in
(12) converge to the same limit ZP (t) in (21) as N →∞. Since ZNP − ZNP → 0 as N →∞, we
define an error as

EN (t) ≡ N
(
ZNP (t)−ZNP (t)

)
to get the asymptotic behavior of the error of order 1

N in ZNP (t)−ZNP (t).
To find an approximate of EN0(t), we investigate an asymptotic behaviour of EN as N →∞.

As we derived (74), we derive the following equation after replacing ZNP and ZNC by ZNP and ZNC
in (74).

ZNP (t)−ZNP (t) =
1

N
Y3,2

(∫ t

0

(
Nκ3Z

N
C (s)−Nκ3ZNC (s) ∧Nκ3ZNC (s)

)
ds

)
(81)

− 1

N
Y3,3

(∫ t

0

(
Nκ3ZNC (s)−Nκ3ZNC (s) ∧Nκ3ZNC (s)

)
ds

)
− 1

N
Y4,2

(∫ t

0

(
Nκ4Z

N
P (s)−Nκ4ZNP (s) ∧Nκ4ZNP (s)

)
ds

)
+

1

N
Y4,3

(∫ t

0

(
Nκ4ZNP (s)−Nκ4ZNP (s) ∧Nκ4ZNP (s)

)
ds

)
.

Using reaction terms in (81) and subtracting them by their propensity functions, define a mar-
tingale as

MN (t) ≡ 1

N
Ỹ3,2

(∫ t

0

(
Nκ3Z

N
C (s)−Nκ3ZNC (s) ∧Nκ3ZNC (s)

)
ds

)
− 1

N
Ỹ3,3

(∫ t

0

(
Nκ3ZNC (s)−Nκ3ZNC (s) ∧Nκ3ZNC (s)

)
ds

)
− 1

N
Ỹ4,2

(∫ t

0

(
Nκ4Z

N
P (s)−Nκ4ZNP (s) ∧Nκ4ZNP (s)

)
ds

)
+

1

N
Ỹ4,3

(∫ t

0

(
Nκ4ZNP (s)−Nκ4ZNP (s) ∧Nκ4ZNP (s)

)
ds

)
,

where Ỹ (u) = Y (u)− u. Define

F̃N (zP ) ≡ ZNET
+ ZNST

− zP + Kd

N

2

−

√(
ZNET

+ ZNST
− zP + Kd

N

)2 − 4ZNET

(
ZNST
− zP

)
2

,
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so that F̃N
(
ZNP (s)

)
= ZNC (s). As we get (75),

[
N · MN

]
t

is asymptotic to∫ t

0

κ3

∣∣∣∣∣N [FN (ZN (s)
)
− F̃N

(
ZNP (s)

)]
+
dF̃N

(
ZNP (s)

)
dZNP (s)

EN (s)

∣∣∣∣∣ ds+

∫ t

0

κ4
∣∣EN (s)

∣∣ ds.
Next, we show that∫ t

0

N
[
FN

(
ZN (s)

)
− F̃N

(
ZNP (s)

)]
ds −→ 0, (82)

as N →∞. Denoting

AN (zP ) = ZNET
− ZNST

+ zP +
Kd

N
(83)

BN (zP ) = ZNST
− zP , (84)

we have

N
(
FN (z)− F̃N (zP )

)
= −zS −N

AN (zP )−
√
AN (zP )2 + 4

NKdBN (zP )

2

 (85)

=

[
−zS +

KdB
N (zP )

AN (zP )

]

+

−KdB
N (zP )

AN (zP )
+

2KdB
N (zP )

AN (zP ) +
√
AN (zP )2 + 4

NKdBN (zP )


=

[
−zS +

KdB
N (zP )

AN (zP )

]
+
KdB

N (zP )

AN (zP )
·

− 4
N
KdB

N (zP )
AN (zP )2(

1 +
√

1 + 4
N
KdBN (zP )
AN (zP )2

)2 .
The second term on the right is of order 1

N in (85). The integral of the first term in (85) becomes∫ t

0

[
−ZNS (s) +

KdB
N
(
ZNP (s)

)
AN

(
ZNP (s)

) ]
ds =

∫ t

0

[
−ZNS (s) +

κ2
(
ZNST
− ZNP (s)

)
κ1
(
ZNET

− ZNST
+ ZNP (s) + Kd

N

)] ds,
and this converges to 0 as N →∞ using (66) and (67), which shows (82).

Using F̃N (zP )→ F (zP ) ≡ ZST
− zP and ZNP → ZP ,

dF̃N
(
ZNP (s)

)
dZNP (s)

−→ dF (ZP (s))

dZP (s)
= −1, (86)

as N → ∞. Therefore, using the martingale central limit theorem, N · MN ⇒M as N → ∞,
which is a Gaussian process with its quadratic variation

[M]t =

∫ t

0

(κ3 + κ4) |E(s)| ds,

where EN (s) ⇒ E(s) as N → ∞. As we derive (77), we can derive an equation for EN (t)
by replacing EN , MN , F̄N , and ZNP with EN , MN , F̃N , and ZNP , respectively. Then, EN is
asymptotically equal to

EN (t) ≈
∫ t

0

κ3

{
N
[
FN

(
ZN (s)

)
− F̃N

(
ZNP (s)

)]
+
dF̃N

(
ZNP (s)

)
dZNP (s)

EN (s)

}
ds (87)

−
∫ t

0

κ4EN (s) ds+N · MN (t).
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Using (82) and (86), (87) converges in distribution to

E(t) =

∫ t

0

√
(κ3 + κ4) |E(s)| dW (s)−

∫ t

0

(κ3 + κ4) E(s) ds,

as N →∞ where W is a standard Brownian motion. Again, we approximate EN0(t) ≈ E(t) as
suggested in [35] and thus we get

XP (t) ≈ N0ZP (N−30 t) + E(N−30 t)

Since E(0) = 0 and diffusion and drift terms are proportional to E(s), E(t) = 0, which indicates
that XP (t) = N0ZP (N−30 t) + o(1).
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