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Abstract.

Melanopsin is an unusual vertebrate photopigment that, in mammals, is expressed
in a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs), whose
signaling has been implicated in non-image forming vision, regulating such functions as
circadian rhythms, pupillary light reflex, and sleep. The biochemical cascade underlying
the light response in ipRGCs has not yet been fully elucidated. We developed a stochastic
model of the hypothesized melanopsin phototranduction cascade and illustrate that the
stochastic model can qualitatively reproduce experimental results under several different
conditions. The model allows us to probe various mechanisms in the phototransduction
cascade in a way that is not currently experimentally feasible.
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1. Introduction. The mammalian retina, located at the back of the
eye, is the only light sensing tissue and mediates both image forming vi-
sion and non-image forming vision. The classical photoreceptors, rods and
cones, are involved in image forming vision. These photoreceptors convert
light into an electrical signal that is processed in the retina and ultimately
transmitted to the brain via retinal ganglion cells. The phototransduc-
tion cascade in rods and cones has been extensively studied and is well
understood [28]. In the last decade a small subset of retinal ganglion cells
(ipRGCs) have also been shown to be light sensitive photoreceptors (see
for reviews [5, 25, 32]). These ganglion cells express the novel visual pig-
ment melanopsin and mediate non-image forming functions. The ipRGCs
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project to the supra chiasmic nucleus (SCN), and the olivary pretectal nu-
cleus (OPN) where they regulate photoentrainment of circadian rhythms
and pupilary light response respectively [9, 14].

Melanopsin is the atypical vertebrate opsin expressed in ipRGCs. Al-
though melanopsin is expressed in the mammalian retina, it is evolution-
arily more closely related to R-opsins that are typically expressed in in-
vertebrate photoreceptors [29]. The details of the phototransduction cas-
cade activated by melanopsin have not been definitively elucidated. How-
ever, several studies suggest that melanopsin’s G-protein mediated photo-
transduction cascade is similar to that found in Drosophila photoreceptors
[10, 17, 38].

The phototransduction cascade governing the photo-response in both
rods and cones has been the focus of extensive mathematical modeling
[4, 11, 12, 19, 21, 23, 31, 33], using a variety of approaches. Stochastic mod-
els including [12] and [4, 11, 31] introduced hybrid stochastic/deterministic
models for the photo-response in rods and cones. There has been very lit-
tle attention focused on mathematical modeling of the phototransduction
in ipRGCs. Our focus is to develop a stochastic model of the hypothe-
sized melanopsin phototransduction cascade. We use the chemical reac-
tions in the hypothesized phototransduction cascade and model them as a
continuous-time Markov jump process. The model can be also written in
terms of the chemical master equation which governs temporal evolution
of the probability density of species numbers. Using Gillespie’s Stochas-
tic Simulation Algorithm, the exact trajectory of the sample path for the
species numbers is computed. The mean and standard deviations of the
number of open channels are compared to those of experimental data, where
the mean is computed by averaging 4000 realizations of the trajectories for
each time point.

We construct a stochastic model of the hypothesized phototransduc-
tion cascade. The cascade consists of two phases. The activation phase
begins when melanopsin molecules are activated by light which initiates a
chemical cascade that ultimately gates open non-specific cation ion chan-
nels in the plasma cell membrane. The opening of these channels generates
a depolarization in the membrane potential and these electrical signals are
then sent to the brain via the optic nerve. The deactivation phase is the
biochemical process that returns the activated melanopsin and the light-
activated biochemical cascade to its original inactive state. We model 52
chemical reactions in the cascade, involving 33 distinct species. In addition
to constructing the chemical pathway, we also identify the initial conditions
for all the species and 21 rate constants involved in these reactions. We
assume that in this pathway 5 species are abundant and as such we take
them to be constant. We determine the parameters, constants, and initial
conditions using experimental data from single flash experiments under two
different environments. The first set of experimental data that we use to
parameterize our model is current recordings from voltage clamped ipRGC
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cells. The second set of experimental data is calcium imaging data from
melanopsin expressed in human embryonic kidney (HEK) cells. In this
environment, a calcium sensitive dye is used and fluorescence is measured
then normalized with the maximum value. To illustrate these two envi-
ronmental conditions in our mathematical model, we fit the rate constants
and initial conditions to match the experimental data.

One advantage of transfecting melanopsin into HEK cells is that the
HEK cells are more amenable to experimental manipulation. In particular,
Cameron and Robinson [3] created two HEK cell lines where either β-
arrestin 1 or β-arrestin 2 are overexpressed. The proteins β-arrestin 1
and β-arrestin 2 are important in the deactivation of G-protein coupled
receptors. When calcium imaging experiments were repeated using HEK
cell lines with overexpressed β-arrestin, data showed a notable increase in
the speed of deactivation of the phototransduction cascade. Using the same
rate constants as we found to fit the wild type HEK cells, only varying two
initial conditions, our model almost exactly fit the experimental data for
the overexpressed β-arrestin cell line. In fact, for the calcium imaging data,
not only was the stochastic model able to fit the mean of both the wild
type data and the overexpressed β-arrestin data, but the stochastic model
was also able to reproduce the experimental standard deviations by scaling
the rate constants and initial conditions appropriately.

Unlike the rhodopsin phototransduction cascade where the rate con-
stants of the chemical reactions have been measured in vivo, there are no
measurements of rate constants for the melanopsin phototransduction cas-
cade. In fact, experiments are still on-going to confirm the species involved
in the cascade. Thus, part of the challenge of constructing the model was
to find reasonable parameters, rate constants, and initial conditions. We fit
the parameters, rate constants, and initial conditions to the experimental
data manually, by carefully changing one rate constant at a time, until the
simulations qualitatively matched the experimental data. Essentially, the
set of parameters, rate constants, and initial conditions that best fit the
experimental data correspond to an approximate minimizer of the absolute
value of the difference of the experimental data and the simulation data.
However, there is no reason to expect that there is a unique global mini-
mum. To determine the sensitivity of the parameters to perturbation, we
computed the partial rank correlation coefficient using the Latin Hyper-
cube sampling method. Of the 21 rate constants, 7 in HEK environment
(or 14 in ipRGC) had significant p-values, and only 6 showed a strong cor-
relation to number of open channels: the same rate constants showed the
same degree of correlation for both set of experimental conditions.

Section 2 contains a description of the hypothesized melanopsin photo-
transduction cascade in terms of a sequence of chemical reactions. Section 3
contains the parameters that represent the best fit results to both the cal-
cium imaging data and the ipRGC data, as well as graphs showing both
the experimental data and the simulated curve. The parameters from the



4

γ	
  
β	
  

GDP	
  

γ	
  
β	
  α

GDP	
  

α
GTP	
  

PLC	
  

Ca2+	
  
	
  

Ca2+	
  

	
  	
  PIP2	
  

SecM	
  

SecM	
  

A)	
  Ac+va+on	
  Cascade	
  	
  

B)	
  Deac+va+on	
  Cascade	
  	
  

Arres2n	
  
p	
  p	
  p	
   p	
  p	
  p	
  

K	
   K	
  

GTP	
  

Fig. 1. Figure 1A illustrates the activation phase of the melanopsin phototrans-
duction cascade. Initiated by a flash of light illustrated by the lightening bolt next to
the number 1, light isomerizes 11-cis retinal to the all-trans configuration illustrated
by the second step in the figure. In the third step the G-protein binds to the activated
melanopsin, and the fourth step exchanges GTP for GDP on the α subunit of the cognite
G-protein. The β and γ subunits of the G-protein disassociate from the α subunit of the
G-protein, which activates PLC. PLC cleaves PIP2, creating a second messenger (step
6), which in turn opens the channels. The deactivation phase of the melanopsin photo-
transduction cascade is illustrated in Figure 1B. A kinase binds to activated melanopsin
and phosphorylates the carboxy tail; step 8 in the figure. Our model allows for up to
three phosphorylations. Once the tail has been phosphorylated, arrestin binds, which
completes the deactivation phase. PLC deactivation described by reactions (2.10)-(2.12)
are not shown.

calcium imaging data are fixed and initial conditions adjusted to match
experimental results involving overexpressed β-arrestin. Finally, section 4
contains a parameter sensitivity analysis using the Latin hypercube sam-
pling algorithm. The results are discussed in section 5.

2. The Phototransduction Cascade. The melanopsin phototrans-
duction cascade consists of an activation phase and an deactivation phase
(see Figure 1). Figure 1A illustrates the activation phase and the deacti-
vation phase is depicted in Figure 1B. The vertebrate phototransduction
cascade of melanopsin is hypothesized to be similar to the Drosophila pho-
toransduction cascade. We detail the hypothesized pathway below, and
indicate which components of this pathway have been experimentally ver-
ified.
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2.1. Activation. We begin with the activation portion of the cascade,
illustrated by steps 1-7 in Figure 1A. Melanopsin’s phototransduction cas-
cade is initiated by a single flash response, illustrated by the lightening
bolt and step 1 in Figure 1A. Let M0 denote inactivated, unphosphory-
lated melanopsin. Activated melanopsin will be denoted by M∗n, where
the subscript n indicates the number of times the carboxy tail has been
phosphorylated. We assume that a light flash instantaneously activates
some melanopsin molecules, which isomerizes the 11-cis retinal to the all-
trans configuration, illustrated by step 2 in Figure 1. We also assume that
previous to the light flash all the melanopsin is inactivated and unphos-
phorylated:

M0
kL−−→ M0

∗ (2.1)

Since this reaction happens once at the beginning of the experiment and the
reaction occurs instantaneously, we choose some nonzero initial condition
for the amount of activated Melanopsin (M∗0 ) and start the simulation
immediately after the flash. The activated melanopsin then binds to a
G-protein:

Mn
∗ + G ·GDP

kG1y(n)−−−−−⇀↽−−−−−
kG2

Mn
∗ ·G ·GDP, (2.2)

as seen in step 3 of Figure 1. Here GDP is guanosine-5’-diphosphate and
the function y(n), defined in Table 1, indicates the dependence of the rate
constant on the number of phosphorylated sites. The specific G-protein is
unknown, however, it is believed to be in the Gq family of G-proteins [10,
17, 38]. The reactions corresponding to step 4 exchange GTP (guanosine-
5’-triphosphate) for GDP :

Mn
∗ ·G ·GDP

kG3−−→ Mn
∗ ·G + GDP (2.3)

Mn
∗ ·G + GTP

kG4−−→ Mn
∗ ·G ·GTP. (2.4)

Next, the β and γ subunits of the G-protein disassociate (step 5):

Mn
∗ ·G ·GTP

kG5−−→ Mn
∗ + Gα ·GTP + Gβγ . (2.5)

The α-subunit then binds to phospholipase-C (PLC):

PLC + Gα ·GTP
kP−−→ PLC∗ ·Gα ·GTP, (2.6)

forming the PLC G-protein complex and activating PLC. The activated
complex PLC∗ ·Gα ·GTP hydrolyzes phosphatidylinositol 4,5-biphosphate
(PIP2):

PIP2 + PLC∗ ·Gα ·GTP
kS−−→ SecM + PLC∗ ·Gα ·GTP, (2.7)
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creating second messenger SecM , which in turn opens the light-dependent
channels:

SecM + Channel 6=
kO−−⇀↽−−
kC

SecM · Channel=. (2.8)

Here, the activated open channel is considered as a complex of transient
receptor potential channel C6 and C7 [36, 38].

2.2. Deactivation. Next we describe the deactivation portion of the
cascade, illustrated by steps 7-8 in Figure 1B. First, we discuss disassocia-
tion of the second messenger SecM from the channel, and the degradation
of SecM . Channels close as second messenger disassociates, and SecM
degrades according to Michaelis-Menten kinetics [30], with rate

δ(SecM) = kmax
SecM

(SecM +KM )
, (2.9)

where KM is SecM at which δ is half of kmax. This model includes the
dependence of the degradation of SecM on the number of molecules of
SecM . Also part of the deactivation is the PLC and G-protein deactivation
(not shown in Figure 1). The PLC∗ ·Gα ·GTP complex involves not only
the deactivation of PLC, but also the reassociation of the β-γ subunits of
the G-protein:

PLC∗ ·Gα ·GTP
kI1−−→ PLC ·Gα ·GDP (2.10)

PLC ·Gα ·GDP
kI2−−→ PLC + Gα ·GDP (2.11)

Gα ·GDP + Gβγ

kI3−−→ G ·GDP. (2.12)

Deactivation of the melanopsin involves phosphorylation of the car-
boxy tail, as well as binding of β-arrestin. First a kinase binds to the
melanopsin, forming a melanopsin kinase complex:

Mn
∗ + K

kK1z(n)−−−−−⇀↽−−−−−
kK2

Mn
∗ ·K, (2.13)

where the function z(n), defined in Table 1, indicates the dependence of
the rate constant on the number of phosphorylated sites. Then the tail is
phosphorylated by a kinase using adenosine triphosphate (ATP):

Mn
∗ ·K + ATP

kK3−−→ Mn+1
∗ ·K + ADP, (2.14)

transforming the ATP to ADP (adenosine diphosphate). In this step, the
activated melanopsin increases the subscript n to n+ 1 indicating an addi-
tional phosphorylation to the carboxy tail. Blasic et al [2] showed that there
are six phosphorylation sites on the carboxy tail implicated in phototrans-
duction cascade deactivation. Our model includes three phosphorylation
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sites for simplicity. Once the carboxy tail has been phosphorylated, ar-
restin can bind, quenching the cascade. There are two different isoforms of
arrestin expressed in ipRGCs: β-arrestin 1 and β-arrestin 2. Our models
allows for either to bind to the tail via the following chemical reactions:

Mn
∗ + Arrβ1

kB1w(n)−−−−−→ Mn ·Arrβ1 (2.15)

Mn
∗ + Arrβ2

kB2w(n)−−−−−→ Mn ·Arrβ2, (2.16)

where the function w(n) indicates the dependence of the rate constants on
the number of phosphorylated sites. We further model the unbinding of
the arrestin molecule, and the phosphorylated melanopsin returns to its un-
activated state. Once arrestin molecule unbinds from the phosphorylated
melanopsin, we consider this melanopsin to be all in the same class and de-
note this species by Mp. The subscript p indicates that it is phosphorylated
(irrespective of the phosphorylation sites).

Mn ·Arrβ1
kUB1w(n)−−−−−−→ Mp + Arrβ1 (2.17)

Mn ·Arrβ2
kUB2w(n)−−−−−−→ Mp + Arrβ2 (2.18)

Mp
kDe−−→ M0 (2.19)

Our hypothesized melanopsin phototransduction cascade involves 33
species and 52 reactions. Since the size of the cascade is large, species
molecules numbers may have different scales. If the number of molecules
of all species is large, the cascade can be modeled using differential equa-
tions governing species concentration due to ‘law of large numbers’ [22].
However, if there is a subset of species whose number of molecules is small,
fluctuations of small number of molecules may be important and a stochas-
tic model is needed. Due to the fluctuations in the unscaled experimental
data, we model melanopsin phototransduction cascade as a continuous-
time Markov jump process which describes evolution of species numbers in
time.

A Markov-chain model is also expressed in terms of the chemical mas-
ter equation which governs evolution of probability density for species num-
bers. In general, the solution of the chemical master equation cannot be
obtained explicitly especially when the cascade involves nonlinear reactions.
Instead of solving the equation, stochastic simulation can produce one re-
alization of the sample path of the Markov-chain model. For stochastic
simulation of the Markov-chain model for melanopsin phototransduction,
we use Gillespie’s Stochastic Simulation Algorithm (SSA) [7, 8]. SSA gives
one realization of an exact temporal trajectory for the number of molecules
of each species. We perform 4000 realizations of simulation and obtain the
mean value of the number of open channels by averaging at each time
point. We compare these mean values to experimentally measured chan-
nel voltage in ipRGC cells and internal calcium levels in HEK cells, with
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appropriate scaling. We also compute and scale standard deviations of the
species molecules numbers from the data obtained in stochastic simulation
and compare them to those of Ca2+ expression level in the experimental
data. Therefore, the mean of our stochastic model not only fits the average
level of experimental data but also fits their fluctuation level, as measured
by the standard deviation in both experimental and simulation data.

3. Results. We tested our model using two different types of experi-
ments. First, electrophysiological data collected from ipRGCs in response
to a single flash of light illustrates the fast activation and slower deac-
tivation kinetics in the natural environment of melanopsin. Second, we
mimic the experimental conditions of calcium imaging experiments in hu-
man embryonic kidney (HEK) cells that have been transfected with mouse
melanopsin. One advantage of the experiments using transfected tissue
culture cells as a model is that is easier to experimentally manipulate con-
ditions. For instance Cameron and Robinson [3] have shown that increased
expression of β-arrestin 1 and β-arrestin 2 in the HEK cell environment
increases the speed of deactivation. In this section, we show numerical
simulations that correspond to the natural environment of ipRGCs as well
as the wild type calcium imaging data. We further demonstrate that the
overexpressed β-arrestin in the HEK cell environment can be achieved us-
ing the stochastic model by only changing the initial conditions and the
scaling constant.

3.1. Model Parameters. The rate constants, initial conditions, and
constants were fit to wild type data for both the ipRGC cells and the
HEK cells expressing melanopsin. There are several model assumptions
that were made in fitting the data. First, we assumed that the rates of
G protein, kinase and β-arrestin binding depend on the number of sites
phosphorylated. This assumption is based on data from an analogous sit-
uation with rhodopsin, the visual pigment expressed in rod photoreceptors
[18, 20, 27, 35]. To this end, we define three functions y, z, and w to model
this dependence on number of phosphorylations in Table 1. The functions y
and z are decreasing functions of n, the number of phosphorylations of the
carboxy tail, indicating that as the number of phosphorylations increases,
the less likely it is for the G-protein and kinase to bind to it. The function
w is an increasing function of n, meaning that as the number of phospho-
rylations of the carboxy tail increases the more likely it is for arrestin to
bind and inactivate the melanopsin. The functional forms of y, x, w were
chosen to have features which are consistent with the known biological in-
formation, but there is no experimental data that supports these specific
functional forms. The rate constants were fit to the wild type experimen-
tal data using initial conditions inspired by a related deterministic model,
and hand tuned to improve the fit. The rate constants that were used to
qualitatively fit the wild type data for both the HEK cells and the ipRGCs
are shown in Table 2. Rate constants that differ by more than an order of
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Function Reaction Modified

y(n) = e−n/1000 modifies G protein binding rates in reaction (2.2)
z(n) = e−2n modifies kinase binding rates in reaction (2.13)
w(n) = 1−e−100n modifies rates of arrestin binding/unbinding in

reactions (2.15), (2.16), (2.17), (2.18)
Table 1

Functions y, z, and w are used to modify the rate constants as a function of the
number of phosphorylations of the carboxy tail.

magnitude are shaded in gray. A comparison of the rate constants in both
environments can be found in Section 5.

Next, we assume that the numbers of molecules of GTP , PIP2, K,
and ATP do not vary significantly during the simulation due to their large
quantity, therefore we can choose them as constant. These constants can
be embedded in the corresponding reaction rate constants, and we thus
treat each of kG4 ·GTP , kS ·PIP2, kK1 ·K, and kK3 ·ATP as one reaction
rate constant. We further assume that the total number of channels is
constant as well. We chose there to be 550 channels in both environments
with wild type of melanopsin [15], and initially we assume that they are
all closed. Finally, we have to initialize the number of molecules for each
variable. The non-zero initial conditions are displayed in Table 3.

3.1.1. Results for ipRGCs. IpRGC data was collected from whole-
cell currents from a mouse ipRGC in a retinal flat (or whole) mount prepa-
ration using a patch clamp recording technique. The cells were held at
-60 mV in the presence of synaptic blockers and tetrodotoxin (TTX), a
neurotoxin that blocks action potentials by blocking voltage-gated sodium
channels. Light responses were elicited by 25ms pulses of 480nm light with
a maximum intensity of 3× 1013 photons cm−2 s−1. Experimental results
are shown by the light gray line in Figure 2. The electrophysiological data
is from a voltage clamp cell, so the inward current in Figure 2 represents
the depolarization that is observed in vivo. The current values are normal-
ized so that the maximum value of the centerline in time becomes 1. Then,
they are reflected across the horizontal axis to compare them to simulation
data. We assume that the fluctuations in the experimental data are due
to inherent noise in the system as well as fluctuations from the recording
apparatus. Thus, we focus on matching the mean of the data, and do not
try to capture the fluctuations with our model.

The phototransduction cascade was simulated using the Gillespie’s
SSA with the rate constants, parameters, and initial conditions listed in
the tables in Section 3.1. The results of the simulation averaged over 4000
realizations of the simulation are plotted with the experimental data in
Figure 2. The averaged simulation is represented by the solid black curve
in the figure, and the experimental data is given by the gray-scale recording
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Params Rates HEK cells ipRGCs

kG1 y(n) G protein binding for M∗n 10.9091 y(n) 18.1818 y(n)
kG2 G protein unbinding 0.8 2
kG3 GDP unbinding from G

protein
0.9 50

kG4 ·GTP GTP binding 1.0886 50
kG5 disassociation of subunits 3.5 50
kP G protein binding to PLC 0.9091 9.0909
kI1 PLC deactivation 15 150
kI2 PLC disassociation 0.673 7
kI3 Reassociation of subunits 0.0018 0.0036
kS · PIP2 (SecM) production 11.5 60
kmax maximum SecM degrada-

tion
6.05 38.5

KM half-life of SecM degrada-
tion

6.05 1.1

kO channel opening 0.0036 0.7273
kC channel closing 0.06 35
kK1 · K
× z(n)

kinase binding for M∗n 8 z(n) 15 z(n)

kK2 kinase unbinding 8 15
kK3 ·ATP phosphorylation 10 15
kB1 w(n) β-arrestin 1 binding for

M∗n

2.7273 w(n) 90.9091 w(n)

kB2 w(n) β-arrestin 2 binding for
M∗n

2.7273 w(n) 90.9091 w(n)

kUB1 w(n) β-arrestin 1 unbinding for
M∗n

0.1 w(n) 0.01 w(n)

kUB2 w(n) β-arrestin 2 unbinding for
M∗n

0.1 w(n) 0.01 w(n)

kDe melanopsin deactivation 0.2 20
Table 2

The rate constants for the melanopsin phototransduction cascade for both the HEK
cell environment and the ipRGC environment are displayed above. The rate constants
whose differences between HEK cell environment and the ipRGC environment are dif-
ferent by more than an order of magnitude are shaded in gray. The functions y, z, and
w are defined in Table 1.

for a timescale of approximately 5 seconds. The simulation captures the
deactivation part of the phototransduction cascade well. The activation
part of the simulation is not quite as fast as the experimental data, but
still gives a reasonable representation of the data. The exceptional fit that
we get from simulation of the 52 reactions with 33 variables validates that
our model qualitatively captures the mean trend in the experimental data.
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Variables Non-zero Initial Conditions HEK
cells

ipRGCs

M∗0 (0) number of M∗0 molecules 86 86
G ·GDP (0) number of molecules of G ·GDP 33 33
PLC(0) number of PLC molecules 13 13
Channel 6=(0) number of closed channels 550 550
Arrβ1(0) number of molecules of β-

arrestin 1
22 22

Arrβ2(0) number of molecules of β-
arrestin 2

22 22

Table 3
The nonzero initial conditions used in the simulation are listed in this table.
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Comparison of Model and ipRGC data

Fig. 2. Fraction of open channels from the simulated model (black curve) are
plotted as a function of time on the same graph as the experimental data (gray-scale
recordings) shown as reflected normalized current.

3.1.2. Results for Calcium Imaging Data. Data from calcium
imaging experiments was collected using HEK cells. HEK-293 cells were
transfected with wild type mouse melanopsin (opn4m, accession
NP 038915). Cells were plated with 50000 cells in each of 8 wells of a
96 well plate. Cells were loaded with a calcium indicator dye (4µM Fluo-4
AM (Invitrogen)). Melanopsin was regenerated with 20µM 11-cis retinal.
Cells were exposed to a flash of light of wavelength 488nm once per second
for 60 seconds, and the fluorescence was measured ((wavelength 525nm)
once per second for 60 seconds) using a Tecan Infinite 200 microplate reader
(Tecan Group Ltd.). The baseline fluorescence was subtracted. The re-
sponses of all successfully transfected cells were averaged, and both the
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mean and standard deviations of the responses were normalized by the
maximum mean value so that it can be compared with the mathematical
model.

The wild type experimental data is shown by the gray curve in Fig-
ure 3. The gray error bars represent one standard deviation from the mean
of the experimental data. Similarly, the averaged simulation of the photo-
transduction cascade in HEK cells over 4000 realizations using Gillespie’s
SSA is shown with the black line in Figure 3. Black dotted lines represent
one standard deviations from the mean of the simulated data in the figure.
We compute mean and standard deviations of the number of open channels
and scale those by the maximum value of the mean open channel in time
so that simulation result can be compared with the scaled experimental
data. The simulation of the phototransduction cascade in HEK cells fits
the experimental data almost exactly. When we fit the stochastic simu-
lation result to the experimental data, we fit both the scaled mean and
the standard deviations of the open channels. We first fit the scaled mean
value. Since the scaled mean value is the ratio between the mean num-
ber of open channels and its maximum value, this value does not change
if we change the number of molecules in the system keeping the ratio be-
tween molecule numbers of species. Therefore, using standard techniques in
stochastic simulation, we change the system volume to fit the standard de-
viations of the simulation to those of experimental data. When we change
the system volume, the number of molecules and reaction rate constants
whose reactions are not first order are changed. For more details about
the relationship between stochastic reaction rate constants and the system
volume, see [22].

Calcium imaging data was also obtained from HEK293 cells lines that
were generated to overexpress either β-arrestin 1 or 2. Light activation of
melanopsin was measured using the calcium indicator assay as described
for the wild type cell line. Figure 4 shows fitting between overexpressed β-
arrestin experimental data and our simulation results. As in Figure 3, the
gray curve and gray error bar represent the scaled values of the mean and
standard deviations from the mean of the experimental data. The black line
and the black dotted lines are the scaled mean and standard deviations from
the mean of the number of open channels. To reproduce experimental data
with overexpression of β-arrestin using the stochastic model, we use the
same set of the parameters used in the wild type simulation except for the
the initial number of open channels and the initial number of molecules of β-
arrestin 1 or 2. Since fluctuations in overexpressed β-arrestin experimental
data are different from those in the wild type data, we use a scaling constant
(0.8182 for β-arrestin 1 and 7.2727 for β-arrrestin 2) to increase or decrease
fluctuation levels. A scaling constant is multiplied to all initial conditions,
kmax, and KM . All second-order reaction constants with both reactants
varying in time (kB1, kB2, kO, kI3, kP , and kG1) were divided by the
scaling constant. With the modification using the scaling constant, we



13

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

N
o

rm
a

liz
e

d
 F

lu
o

re
s
c
e

n
c
e

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

liz
e

d
 O

p
e

n
 C

h
a

n
n

e
ls

Comparison of Model and Wild Type HEK Data

Fig. 3. Experimental data from calcium imaging experiments are plotted as a func-
tion of time. Gray solid line and error bars are the mean and the standard deviations
from the mean in the experimental results represented as normalized fluorescence. On
the same figure, black solid line and dotted lines are the normalized mean and standard
deviations from the mean of the number of open channels in the stochastic simulation.

can keep the same value for scaled mean number of open channels and
reduce the scaled standard deviations. Fitting between experimental data
and simulation are exact with slight difference around the peaks. The fact
that we can fit the scaled mean value of the overexpressed β-arrestin data
by slightly modifying initial conditions of two species and incorporating
the same set of parameters values used in the wild type simulation before
scaling validates our model and its hypotheses.

4. Parameter sensitivity analysis. In order to perform sensitivity
analysis of the model parameters, we employed a method of partial rank
correlation coefficient (PRCC) using techniques from [26] for stochastic
simulation. Each parameter was allowed to vary from half of the estimated
value to twice of the estimated value. Using Latin Hypercube sampling
method, each parameter was sampled from a uniformly distributed inter-
val. A single stochastic simulation was run using the sampled parameters,
and the resulting number of open channels at the ending time, 5 seconds
for ipRGC and 60 seconds for HEK cells, was calculated. We repeated this
process for 4000 realizations and each realization was computed with a set
of newly sampled parameters. Sampled parameters and the number of open
channels are transformed into rank values and we computed PRCCs of the
parameters. PRCCs in two environments, ipRGC and HEK, are given in
Figure 4. Our null hypothesis is that PRCC between the parameter and
the number of open channels is not significantly different from zero. If
p-value of each parameter is less than 0.01, we strongly reject the null hy-
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Comparison of Model and Overexpressed β−arrestin 2 HEK Data

Fig. 4. Experiments in HEK cells with increased values of β-arrestin 1 and β-
arrestin 2 over the wild type showed an increased speed of deactivation. Experimental
results with error bars representing the standard deviation are plotted along with simu-
lated values. Parameters are exactly as the wild type calcium imaging except for scaling,
but with different initial conditions to simulate the increased values of β-arrestin 1 and
β-arrestin 2, respectively. In the top panel, the initial number of open channels and
that of molecules of β-arrestin 1 are set as 275 and 33. In the bottom panel, the initial
number of open channels and that of molecules of β-arrestin 2 are set as 385 and 33.
In both cases, other initial conditions are set to be the same as the wild type simula-
tion. Then, all initial conditions and some rate constants are scaled by 0.8182 (top)
and 7.2727 (bottom) to match standard deviations of simulation and experimental data.

pothesis, which means that PRCC between the parameter and the number
of open channels is significantly different from zero. Therefore, we are only
interested in the statistically significant case with p-value less than 0.01. In
Table 4, parameters with p-value less than 0.01 in the ipRGC environment
are given with their PRCCs and ranges of the sampled parameters. Simi-
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larly in Table 5, parameters in the HEK environment with p-value less than
0.01 are listed. The parameters with p-values close to zero are statistically
highly significant.

PRCC is a correlation coefficient, so it is between ±1. The closer the
PRCC is to ±1, the ranks of the number of open channels and the corre-
sponding parameter have strong linear correlation. If the PRCC is close to
0, the rank of the number of open channels has no or weak correlation with
the rank of the corresponding parameter. In general, model parameters are
more sensitive under the HEK environment than under ipRGC environment
comparing the ranges of PRCC in Figures 4 and 5. Interestingly, statisti-
cally significant parameters with a certain amount of correlation with the
number of open channels are similar under two environment: kmax, KM ,
kI1, kI3, kS · PIP2, kO, and kC . In the ipRGC environment, KM , kI3,
kS · PIP2, and kO are slightly positively correlated and kmax, kI1, and
kC are slightly negatively correlated with the number of open channels.
In the HEK environment, KM , kS · PIP2, and kO are strongly positively
correlated and kmax, kI1, and kC are strongly negatively correlated with
the number of open channels. The rate constant kI3 is slightly positively
correlated and kUB2 is slightly negatively correlated with the number of
open channels.

Surprisingly, the rate constants associated with the G-protein cascade
kG1−5 and the rate constant associated with PLC binding kP either were
not sensitive or had only a slight correlation in either environment. The
rate constants associated with the unbinding of β-arrestin kUB1 and kUB2

either were not sensitive or had only a slight negative correlation on the
number of open channels in both environments. The parameters with the
strongest correlation, positive or negative, were associated with either the
production (kS · PIP2), degradation (kmax, KM ), or binding or unbinding
(kO, kC) of SecM to the channels. The rate constants associated with
deactivation of PLC kI1 and kI3 had a strong negative correlation and a
significant level of positive correlation, respectively, on the number of open
channels in both environments. The HEK cell environment seemed more
sensitive to the changes in these parameters than the ipRGC environment
based on the magnitude of the PRCC.

5. Discussion. Based on the hypothesized phototransduction path-
way of melanopsin, a stochastic model was developed that qualitatively
reproduced experimental data from two different experimental paradigms.
First, we were able to produce a set of parameters, rate constants, and
initial conditions for the stochastic model so that the mean of 4000 realiza-
tions of the phototransduction cascade corresponded to experimental data
collected using voltage clamp from ipRGCs. We were also able to find a set
of parameters, rate constants and initial conditions for the stochastic model
so that the mean and standard deviation of 4000 realizations of the hypoth-
esized phototransduction cascade matched mean and standard deviation of
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Params Ranges PRCC in
ipRGC

p-value in ipRGC

kmax [19.25, 77] −0.3151 6.4813× 10−93

KM [0.55, 2.2] 0.1687 6.4901× 10−27

kI1 [75, 300] −0.2830 1.4916× 10−74

kI3 [0.0018, 0.0073] 0.2579 8.7588× 10−62

kS · PIP2 [30, 120] 0.2792 1.5149× 10−72

kO [0.3636, 1.4545] 0.2671 2.6029× 10−66

kC [17.5, 70] −0.3010 1.5309× 10−84

Table 4
PRCCs and p-values in ipRGC

Params Ranges PRCC in
HEK cells

p-value in HEK
cells

kG2 [0.4, 1.6] −0.0472 0.0028
kG4 ·GTP [0.5443, 2.1772] −0.0775 9.3255× 10−7

kmax [3.0250, 12.1] −0.5451 1.7026× 10−308

KM [3.0250, 12.1] 0.4897 2.5927× 10−240

kI1 [7.5, 30] −0.5997 0
kI2 [0.3365, 1.3460] 0.0655 3.4113× 10−5

kI3 [0.0009, 0.0036] 0.1481 4.6334× 10−21

kS · PIP2 [5.75, 23] 0.5986 0
kO [0.0018, 0.0073] 0.5222 8.2804× 10−279

kC [0.03, 0.12] −0.5402 6.8776× 10−302

kK1 ·K [4, 16] −0.0615 9.9019× 10−5

kK3 ·ATP [5, 20] −0.0476 0.0026
kUB1 [0.05, 0.2] −0.0662 2.8055× 10−5

kUB2 [0.05, 0.2] −0.1143 4.2536× 10−13

Table 5
PRCCs and p-values in HEK cells

the wild type data from calcium imaging experiments in HEK cells trans-
fected with mouse melanopsin. We were also able to match the mean and
standard deviation of the calcium imaging experiments on HEK cell lines
that overexpressed β-arrestin by only changing two initial conditions in the
model, otherwise using the same rate constants and parameters as found
for the HEK wild type cell line, and scaling initial conditions, rate con-
stants, and parameters appropriately to match the fluctuation levels. Our
simulations provide strong evidence that melanopsin has a robust photo-
transduction cascade that is similar with that of invertebrate (Drosophila)
photoreceptors.

Table 2 contains the best fit rate constants for the ipRGC and HEK
cells. Melanopsin is naturally expressed in ipRGCs, thus these rate con-
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stants more likely correspond to those measured in ipRGCs. However, there
is no reason to believe that the rate constants in HEK cells are the same,
and in fact, for our simulations, the rate constants highlighted in Table 2
differ by more than an order of magnitude between the ipRGC and HEK
cell environments. There are several reasons to expect differential rate con-
stants. First, if ipRGCs are indeed similar to Drosophila photoreceptors
where many of the key proteins involved in phototransduction are localized
in a “signalplex” [24, 34], then the key proteins involved in phototransduc-
tion in ipRGCs maybe localized in a similar molecular structure. This
hypothesized signalplex could speed up the phototransduction cascade in
ipRGCs as compared to the signaling observed in transfected HEK cells.
Second, the ionic environment and regulation of calcium maybe different
in HEK cells as compared to ipRGCs. Calcium is a key ion involved in the
regulation of many cytosolic enzymes. Thirdly, the calcium released and
measured in HEK cells is most likely being released from internal stores and
the actual channel being opened may differ from the channel in ipRGCs.
Finally, the lipids that make up the plasma membrane in ipRGCs and HEK
cells could be different. It has been demonstrated that lipids are important
in the regulation of TRP channels in Drosophila photoreceptors [13].

There are actually five morphological subtypes of melanopsin express-
ing retinal ganglion cells [1, 32]. The simulations and experimental data
shown here correspond to M1 cells. The kinetics of the light response for
the subtypes M2-M5 are known to be different than those of the M1 sub-
class, yet the mechanisms underlying these physiological differences have
not yet been elucidated [16]. Our parameter sensitivity analysis suggests
that in order to significantly change the time course of the light-activated
response of M1 ipRGCs, the rate constants associated with the production,
degradation, or binding of SecM have the strongest correlation with the
number of open channels and a p-value that makes it statistically signifi-
cant. Thus our work suggests experiments that altered the rate constants
of the enzymes involved in regulating second messenger concentration will
alter the kinetics of the light responses of M2-M5.

The focus of both the simulations and experimental data presented
here is the biochemical response of dark-adapted cells to a single light flash.
Light adaptation is defined as the change in response of a photoreceptor to
either a sustained background light or to a series of light flashes. Like most
photoreceptors, ipRGCs adapt to background light of various intensities
and exhibit adaptation when responding to a series of light flashes [6, 37].
ipRGCs respond to a series of identical light flashes by a decrease in the
size of the response and acceleration of the kinetics (results not shown).
We used our model to simulate a series of light flashes and our model was
able to reproduce the decrease in amplitude but not the increase in the
response kinetics. Therefore, our model needs to be modified to incorpo-
rate the biochemical mechanisms underlying adaptation in ipRGCs. These
mechanisms have yet to be elucidated but may include calcium regula-
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tion, and phosphorylation of melanopsin by both Protein Kinase A and a
G-protein coupled receptor kinase.
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Fig. 5. A method of partial rank correlation coefficient (PRCC) is used with
stochastic simulation. PRCCs of the rate constants with the number of open chan-
nels in the ipRGC environment are given on the top and those in the HEK cells are
given on the bottom.The dashed lines at ±0.1 represent artificial thresholds to indicate
sensitive parameters. The parameters kmax, KM , kI1, kI3, kS ·PIP2, kO, and kC are
statistically significant with p-values less than 0.01 in both environment. Additionally,
kG2, kG4 ·GTP , kI2, kK1 ·K, kK3 ·ATP , kUB1, and kUB2 are statistically significant
in the HEK environment.


